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Abstract—This paper proposes a sign gradient descent (SGD)
algorithm for predicting the three-dimensional folded protein
molecule structures under the kinetostatic compliance method
(KCM). In the KCM framework, which can be used to simulate
the range of motion of peptide-based nanorobots/nanomachines,
protein molecules are modeled as a large number of rigid
nano-linkages that form a kinematic mechanism under motion
constraints imposed by chemical bonds while folding under the
kinetostatic effect of nonlinear interatomic force fields. In a
departure from the conventional successive kinetostatic fold com-
pliance framework, the proposed SGD-based iterative algorithm
in this paper results in convergence to the local minima of the
free energy of protein molecules corresponding to their final
folded conformations in a faster and more robust manner. KCM-
based folding dynamics simulations of the backbone chains of
protein molecules demonstrate the effectiveness of the proposed
algorithm.

I. INTRODUCTION

Numerical simulations that aim at providing a prediction
of the three-dimensional structure of folded protein confor-
mations and computing the transitions through which these
molecules fold/unfold play an integral role in designing
protein-based nanomachines/nanorobots. Indeed, such numer-
ical simulations can estimate the range of motion of these
peptide-based mechanisms. For instance, the design of parallel
nanorobots, which consist of graphite platforms interconnected
together via serially linked protein-based bio-springs, requires
numerical simulations for finding the motion pattern of the lin-
ear protein actuators within the nano-mechanism (see, e.g., [1],
[2]).

One class of algorithms for predicting the final folded
structures of protein molecules is afforded by the so-called
knowledge-based approaches. Rooted in pattern recogni-
tion and machine learning, these algorithms predict three-
dimensional structures of folded protein conformations by
considering the linear amino acid sequence of a given protein
molecule and utilizing massive datasets of already available
folds [3]. The family of knowledge-based solutions, to which
the Google AlphaFold [4] belongs, cannot capture the protein-
nucleic acid interactions and address the computation of fold-
ing pathways, namely, the transient conformations [5] through
which the protein molecule attains its folded conformation.
Indeed, AI-based methods have been able to find the most
likely folded conformations without considering the stability
and kinetics of the folding process.
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Fig. 1: Protein folding/unfolding against the free energy landscape
of the molecule. In the KCM framework for protein folding [6],
[7], the molecule dihedral angles vary under the nonlinear effect of
interatomic force fields resulting in protein conformational changes
until convergence to a minimum energy state.

The counterpart to knowledge-based approaches, namely,
the family of physics-based methods, relies on using physical
first-principles to numerically compute the folding pathways
and predict the final three-dimensional folded structure of
protein molecules [8]–[10]. To increase the accuracy of fold-
ing pathway computations, numerous optimization techniques
such as optimal control-based [11], [12] and homotopy-
based [13] algorithms can also be augmented with these
numerical methods. While physics-based approaches provide
reliable information about the transient conformations during
the folding process, they are computationally burdensome.

The promising framework of kinetostatic compliance
method (KCM), pioneered by Kazerounian, Ilieş, and collab-
orators, models protein molecules as a large number of rigid
nano-linkages that form a kinematic mechanism under motion
constraints imposed by chemical bonds [6], [7], [14], [15].
In this framework, which addresses the high computational
load of all-atom molecular dynamics approaches, the dihe-
dral angles, which determine the molecule three-dimensional
structure, change under the nonlinear effect of interatomic
force fields resulting in protein conformational changes until
convergence to a minimum energy state. A schematic of
protein folding/unfolding against the free energy landscape of
the molecule is depicted in Figure 1.

Since its advent, the KCM framework has been success-
fully utilized for investigation of the role of hydrogen bond
formation in protein kinematic mobility problem [16] and
design of peptide-based nanomachines [17]–[19]. For instance,
Mundrane et al. [17] have utilized the KCM framework for
simulating the range of motion for closed-loop cyclic 7-
R peptides that are subject to external electric field pertur-



bations. Moreover, it has been demonstrated that entropy-
loss constraints during folding can be encoded in the KCM
framework by using a proper nonlinear optimization-based
control scheme [20]. Moreover, the KCM framework can be
used for systematic investigation of the reverse process of
folding, namely, protein unfolding [21].

Despite the KCM computational advantages for numerical
simulation of protein folding dynamics and its utilization
in design of peptide-based nanorobots/nanomachines, this
framework has exclusively relied on the so-called successive
kinetostatic fold compliance (see, e.g., [6], [7]), where the
iterative conformational changes of the protein molecule are
computed by taking steps along a special direction determined
by heuristics. Furthermore, the convergence properties of the
successive kinetostatic fold compliance has not been investi-
gated in the literature due to its heuristic nature.

In this paper, we examine the heuristics behind the con-
ventional successive kinetostatic fold compliance for pro-
tein folding dynamics and arrive at a sign gradient descent
(SGD) iterative algorithm as an alternative to the conventional
approach. SGD algorithms, which were originally proposed
in the context of training artificial neural networks (see,
e.g., [22]), are a class of first-order methods that merely
involve the sign of the gradient of the objective function (the
free energy of the protein molecule in our case) while enjoying
numerical stability and robust convergence properties [23],
[24]. In robotics applications, SGD algorithms have been uti-
lized in settings such as autonomous environmental monitoring
where the sign of the change in gradient (not the magnitude
of the change) plays a crucial role in planning the motion of
the robot (see, e.g., [25]).
Contributions of the paper. This paper contributes to the
KCM-based protein folding framework by developing a family
of SGD algorithms for numerical simulation of protein folding
dynamics. This contribution is a departure from the established
literature (see, e.g., [6], [7]) of the KCM folding framework
where numerical simulations of the folding dynamics have
exclusively relied on the heuristic successive kinetostatic fold
compliance scheme. Moreover, by relying on the rich literature
of SGD optimization (see, e.g., [24]), this paper provides
formal conditions under which the proposed numerical SGD-
based iterative algorithm for kinetostatic folding converges
to folded protein conformations. Finally, the proposed SGD-
based iterative algorithm in this paper results in convergence
to the local minima of the free energy of protein molecules
corresponding to their final folded conformations in a faster
and more robust manner.

The rest of the paper organization is as follows. First,
in Section II, we provide an overview of the kinematics of
protein molecules and the KCM framework for modeling
the protein folding process. Thereafter, in Section III, we
present the conventional KCM-based iteration and our SGD-
based alternative to it. The numerical simulation results are
presented in Section IV. Finally, the paper is concluded with
future research directions and final remarks in Section V.
Notation. We denote the set of all non-negative real and

non-negative integer numbers by R+ and Z0+, respectively.
Given a positive integer M , a vector x = [x1, · · · , xM ]⊤ in
RM , and a real constant p ≥ 1, we denote the p-norm of
the vector by |x|p. Furthermore, we let |x|∞ = max

i
|xi|.

We denote the sign function by sgn(·), which is defined
according to sgn(a) = 1 if a > 0, sgn(a) = 0 if a = 0,
and sgn(a) = −1 if a < 0. Given a vector-valued function
f(x) = [f1(x), · · · , fM (x)]⊤ for some positive integer M ,
we denote sgn(f(x)) =

[︁
sgn(f1(x)), · · · , sgn(fM (x))

]︁⊤
.

II. KINETOSTATIC COMPLIANCE-BASED PROTEIN
FOLDING

In this section, we present an overview of the KCM frame-
work for modeling the in vacuo folding dynamics of protein
molecules.

A. Nano-linkage-based kinematic model of protein molecules

Protein molecules are long molecular chains that consist
of peptide planes with peptide chemical bonds joining them
together. For brevity, we limit our presentation to the protein
main chain. Indeed, the essential folding dynamics can be
effectively explained by considering the motion of the protein
backbone chain (see, e.g., [26]).

As demonstrated in Figure 2, each peptide plane, which
consists of six coplanar atoms, can be considered as a linkage
in the protein kinematic mechanism [27]. Central carbon
atoms, which are denoted by Cα and commonly known as the
alpha-Carbon atoms, act as hinges connecting peptide planes
together. The peptide plane atoms are bonded together via
covalent bonds (i.e., the red line segments in Figure 2).

Remark 1: The assumption of coplanarity of the atoms Cα,
CO, NH, and Cα, which form each of the peptide planes (see
Figure 2), is based on the results from high resolution X-ray
crystallographic experiments (see, e.g., [28]). This coplanarity
assumption has been the basis of various robotics-inspired
approaches in the literature that model protein molecules
as robotic mechanisms with hyper degrees-of-freedom (see,
e.g., [7], [20], [21], [27]).

Each alpha-carbon atom is bonded to four other chemical
components including the three atoms C, N, and H, and a
variable side chain shown with SR. The first alpha-Carbon of
the protein chain structure is bonded to N-terminus, which is
an amino group, as well as one peptide plane. Similarly, the
last Cα atom is chemically bonded to the C-terminus, which
is a carboxyl group, as well as one other peptide plane.

The backbone conformation of the protein molecule kine-
matic structure consisting of the subchain −N − Cα − C−, is
described by a collection of bond lengths and a set of pairs of
dihedral angles, namely, the angles representing the rotations
around the covalent bonds Cα−C and N−Cα (see Figure 2).
Accordingly,

θθθ :=
[︁
θ1, · · · , θ2N ]⊤, (1)

is the configuration vector of the kinematic structure of a given
protein backbone chain with N − 1 peptide planes.



Fig. 2: The protein molecule kinematic mechanism consisting of peptide planes and Cα atom hinges. There also exists a hydrogen atom,
which is not depicted in the figure, connected to each Cα atom via a covalent bond.

Remark 2: In the biochemistry literature, ‘conformation’ is
the standard word for describing the geometry of the protein
molecule kinematic structure. In the robotics literature, on the
other hand, the terminology ‘configuration’ is frequently used
to describe the kinematic structures of robots. In this paper,
unless otherwise stated, we use the two words ‘conformation’
and ‘configuration’ interchangeably.

Each of the dihedral angles in the conformation vector θθθ
in (1) correspond to one degree-of-freedom (DOF) of the
protein molecule kinematic chain. Associated with each DOF,
one may consider a unit vector denoted by uj , 1 ≤ j ≤ 2N .
Each of these vectors are aligned with the rotation axis
about which the kinematic chain can rotate. Therefore, as
demonstrated in Figure 2, the vectors u2i and u2i+1 represent
the unit vectors along the Cα − C bond and N − Cα bond
located within the i-th peptide plane, respectively. Finally, u1

and u2N are the unit vectors of the N- (the amino group) and
C-termini (the carboxyl group), respectively.

An additional collection of vectors, which are called the
body vectors, are required to completely determine the spa-
tial orientation of the rigid peptide nano-linkages in protein
molecules. The body vectors, which are denoted by bj , 1 ≤
j ≤ 2N , complete the description of the relative position of
the coplanar atoms that are located within each of the peptide
planes. Specifically, the relative position of any two atoms is
given by a linear sum of the form k1mb2i + k2mb2i+1, in
which the coefficients k1m and k2m, 1 ≤ m ≤ 4, are constant
and the same across all peptide linkages (see, e.g., [19] for
further details).

The body vectors bj along with the unit vectors uj can
be utilized to provide a complete description of the protein
molecule conformation as a function of the dihedral angle
vector θθθ consisting of the peptide dihedral angles. Indeed, after
one designates the zero position configuration with θθθ = 0, the
matrix transformations

uj(θθθ) = Ξ(θθθ,u0
j )u

0
j , bj(θθθ) = Ξ(θθθ,u0

j )b
0
j , (2)

determines the kinematic structure of the protein molecule
using the dihedral angle conformation vector θθθ. In (2), the

transformation matrix Ξ(θθθ,u0
j ) is defined according to

Ξ(θθθ,u0
j ) :=

j∏︂
r=1

R(θj ,u
0
j ). (3)

Furthermore, in (3), the rotation about the vector u0
j with angle

θj is given by the rotation matrix R(θj ,u
0
j ). After determining

the body vectors bj(θθθ) from (2) and fixing the N-terminus
atom at the origin, the Cartesian coordinates of the kth-peptide
plane atoms are given by

ri(θθθ) =

i∑︂
j=1

bj(θθθ), 1 ≤ i ≤ 2N − 1, (4)

where the integers i = 2k−1 and i = 2k represent the nitrogen
atoms and the alpha-Carbon atoms, respectively.

B. KCM-based dynamics of protein folding

The KCM approach for modeling the protein folding pro-
cess pioneered by Kazerounian and collaborators is based on
the well-established fact that the essential folding dynam-
ics can be explained by neglecting the inertial forces (see,
e.g., [6], [11], [29], [30]). Instead, the dihedral angles vary
kinetostatically under the effect of the interatomic force fields.
Consequently, the dihedral angles at each conformation of the
protein molecule change in proportion to the effective torques
acting on the peptide chain.

Considering a peptide chain with Na atoms and N − 1
peptide planes, where the dihedral angle vector is given by
θθθ in (1), and denoting the Cartesian position of any two atoms
ai, aj in the protein chain by ri(θθθ), rj(θθθ), their distance can
be computed from dij(θθθ) := |ri(θθθ) − rj(θθθ)|. The parameters
associated with respective electrostatic charges of the atoms
in the protein molecule, the van der Waals radii of these
atoms, the van der Waals distance between any two atoms,
their dielectric constant, the depth of potential well of any
pair of atoms, and the weight factors for the electrostatic
and van der Waals forces between any pair of two atoms
can be found from [19] and the references therein. Under
these considerations, the aggregated free energy of the protein
molecule can be written as

G(θθθ) := Gelec(θθθ) + Gvdw(θθθ), (5)



where Gelec(θθθ) and Gvdw(θθθ) are the protein molecule elec-
trostatic potential energy and the van der Waals interatomic
potential energy, respectively (see, e.g., [7] for the detailed
expressions). The resultant forces of Coulombic and van der
Waals nature exerted on each atom ai, 1 ≤ i ≤ Na, can
be computed from F elec

i (θθθ) = −∇riGelec and F vdw
i (θθθ) =

−∇riGvdw, respectively.
According to the KCM-based modeling framework [7], it

is required to compute the resultant forces and torques acting
on the peptide planes in the protein molecule. Subsequently,
the computed forces and torques are appended in the 6N -
dimensional vector F(θθθ), which is the generalized force vector
directing the process of protein folding. In the next step,
the generalized force vector F(θθθ) needs to be mapped to an
equivalent torque vector, which is responsible for varying the
dihedral angle vector of the protein molecule. Specifically,
the vector τττ(θθθ) ∈ R2N , which is along the gradient of the
aggregated free energy G(θθθ), is given by

τττ(θθθ) = J⊤(θθθ)F(θθθ), (6)

where the matrix J (θθθ) ∈ R6N×2N is the molecule chain
Jacobian at conformation θθθ (see [7] for further details).

At each folded protein molecule conformation θθθ∗, which
corresponds to a local minimum of the aggregated free energy
G(θθθ), the torque vector vanishes, namely, τττ(θθθ∗) = 0. As
described in the next section, although the torque vector τττ(θθθ) is
along the steepest-descent direction of the free energy gradient
in the conformation landscape, Kazerounian and collabora-
tors [7], [27] have noticed that using a normalized version of
the torque vector for iterative update of the protein molecule
conformations would have an improved performance in terms
of stability and convergence rate.

III. THE CONVENTIONAL KCM-BASED ITERATION AND
ITS SGD-BASED ALTERNATIVE

In this section we first present the conventional KCM-
based iteration for protein folding dynamics. Next, by closely
examining the heuristics behind this numerical scheme, we
propose an SGD-based successive kinetostatic fold compliance
alternative and present its convergence properties.

Given an unfolded protein molecule conformation θθθ0, the
conventional successive kinetostatic fold compliance, which
relates the joint torques to the changes in the dihedral angles,
is given by the numerical iteration (see, e.g., [6], [7])

θθθk+1 = θθθk + κ0
τττ(θθθk)

|τττ(θθθk)|∞
, k ∈ Z0+, (7)

where the normalized torque vector τττ(θθθk)
|τττ(θθθk)|∞ in (7) is responsi-

ble for varying the dihedral angle vector at each conformation
θθθk. Moreover, the positive constant κ0 is chosen small enough
to avoid large variations in the dihedral angles and is tuned in
a heuristic manner. The iterative steps in (7) are repeated until
the aggregated free energy G(θθθ) of the molecule converges to a
close vicinity of a free-energy-landscape local minimum where
the norm of the torque vector, namely, |τττ(θθθk)|2, becomes less

than a desired tolerance τtol (i.e., the convergence criterion is
met if |τττ(θθθk)|2 < τtol).

Despite the fact that the torque vector τττ(θθθk) in the conven-
tional KCM-based iteration given by (7) is along the steepest-
descent direction of the free energy gradient in the conforma-
tion landscape, Kazerounian and collaborators [7], [27] have
noticed that using the normalized torque vector τττ(θθθk)

|τττ(θθθk)|∞ :=[︁ τ1(θθθk)
|τττ(θθθk)|∞ , · · · , τ2N (θθθk)

|τττ(θθθk)|∞

]︁⊤
for iterative update of the protein

molecule conformations would outperform using τττ(θθθk) in
terms of stability and convergence rate. Indeed, normaliz-
ing by the maximum joint torque |τττ(θθθk)|∞ = max

i
|τi(θθθk)|

throughout the entire chain, results in normalizing the torques
according to τi(θθθk)

|τττ(θθθk)|∞ ∈ [−1, 1].
The aforementioned analysis leads to the important insight

that the magnitude of the torque vector τττ(θθθk) does not play a
role in the successive kinetostatic fold compliance algorithm
given by (7). Using this insight, it is possible that one only
considers the sign of the torque vector τττ(θθθk) as an alternative
to the heuristic approach in the conventional successive kine-
tostatic fold compliance in (7). In particular, following the
sign gradient descent optimization literature (see, e.g., [22],
[24]), we propose the SGD-based successive kinetostatic fold
compliance algorithm

θθθk+1 = θθθk + κk sgn
(︁
τττ(θθθk)

)︁
, k ∈ Z0+, (8)

where κk is a step size that changes dynamically in every
iteration and sgn

(︁
τττ(θθθk)

)︁
=

[︁
sgn(τ1(x)), · · · , sgn(τ2N (x))

]︁⊤
.

Furthermore, the step size κk is tuned according to a proper
adaptive step size strategy

κk+1 = S(κk), k ∈ Z0+, (9)

where the mapping S : R+ → R+ should satisfy S(κk) < κk

for every positive κk.
Remark 3: Comparing the successive kinetostatic fold com-

pliance schemes given by (7) and (8), it can be seen that none
of them rely on the magnitude of the original torque vector
τττ(θθθk). Indeed, the conventional kinetostatic fold compliance
in (7) relies on the normalized torque vector τττ(θθθk)

|τττ(θθθk)|∞ , while
the proposed SGD-based successive kinetostatic fold compli-
ance scheme in (8) relies on the sign of the torque vector,
i.e., sgn

(︁
τττ(θθθk)

)︁
. Furthermore, while the step size κ0 in (7) is

fixed, the step size κk in (8) varies in a dynamic manner.
To design the adaptive step size mapping S(·) in (9), one

can use various established methods such as the following step
size adaptation rule (see, e.g., [24])

S(κk) = γ0κk, k ∈ Z0+, (10)

where γ0 ∈ (0, 1) is a positive constant, resulting in the step
size sequence

{︁
κ0 · (γ0)k

}︁
k∈Z0+

. It is remarked that in the
special case of γ0 = 0.5, the step size adaptation rule in (10)
is called the DICHO algorithm.

Moulay et al. [24] have provided conditions on adaptive step
size strategies under which sign gradient descent algorithms
converge. Considering an unfolded conformation θθθ0 of a
protein molecule in the vicinity of a folded conformation θθθ∗,



one can utilize Theorem 1 in [24] to find conditions on the
SGD-based successive fold compliance iteration in (8) with
adaptive step size strategy given by (9) to guarantee asymptotic
convergence to the folded conformation θθθ∗. In particular,
assuming that θθθ∗ is an isolated local minimum of G(θθθ) and
that (θθθ∗ − θθθk)

⊤sgn(τττ(θθθk)) > 0 in an open neighborhood of
θθθ∗, the conditions due to Moulay et al. [24] in the context of
SGD-based protein folding read as follows:

1) 0 < κk < 2(θθθ∗ − θθθk)
⊤sgn(τττ(θθθk));

2) κk(θθθ
∗ − θθθk)

⊤sgn(τττ(θθθk)) ≥ c ∥θθθ∗ − θθθk∥α for some
positive α and c; and,

3) lim
k→∞

κk = 0.

IV. NUMERICAL SIMULATIONS

In this section we present numerical simulation results for
KCM-based protein folding dynamics to validate our proposed
SGD-based successive kinetostatic fold compliance algorithm
given by (8) and compare its performance against the conven-
tional kinetostatic fold compliance algorithm given by (7).

In our simulations, we considered a protein molecule back-
bone chain consisting of N − 1 = 15 peptide planes, which
corresponds to having a 2N = 32-dimensional dihedral angle
space (i.e., the conformation vector θθθ in (1) consists of 32
dihedral angles). Our implementation followed the guidelines
of Protofold I [6], [19] on an Intel® Core™ i7-6770HQ
CPU@2.60GHz. To demonstrate the advantages of our pro-
posed SGD-based folding algorithm, we purposefully chose a
relatively large parameter κ0 for the conventional kinetostatic
fold compliance algorithm given by (7). In particular, we set
κ0 = 0.01. Furthermore, we set the initial step size for the
SGD-based algorithm in (8) to be equal to κ0 = 0.01 (the
same as the fixed step size in (7)). Moreover, we chose an
adaptive step size strategy similar to (10) with γ0 = 0.99.

Our initial protein molecule conformations in both tests
were chosen to be the same pre-coiled backbone chain in a
vicinity of an α-helix conformation. Figure 3 depicts the free
energy of the protein backbone peptide chain starting from the
same initial conformations (also depicted in the same figure)
under the conventional algorithm (blue curve) and the SGD-
based algorithm (red curve). Furthermore, Figure 3 depicts
the configurations of the protein molecule in the 30th and the
600th iterations under the conventional and SGD-based folding
algorithms, respectively.

As it can be clearly seen from Figure 3 the free energy
under the successive kinetostatic fold compliance algorithm
has gone through oscillations and converged to a higher free
energy level of the protein molecule. On the other hand, the
free energy of the protein backbone chain under the SGD-
based algorithm has not gone through the same oscillations and
converged to a lower free energy level of the protein molecule
in a faster manner.

The observations in Figure 3 are in accordance with a
well known fact from the established KCM literature that
the price to pay for convergence is to choose smaller step
sizes with more iterations required for convergence and a
consequent higher computational burden. To demonstrate this

fact, we reduced the step size associated with the conventional
algorithm from κ0 = 0.01 to κ0 = 0.001. The free energy level
of the protein backbone chain is depicted in Figure 4. As it can
be seen from the figure, the free energy of the protein molecule
under the conventional successive kinetostatic fold compliance
algorithm with a smaller step size (κ0 = 0.001) manages
to converge to the same free energy level as of its SGD-
based counterpart, but only with a higher number of numerical
iterations (1500 iterations in contrast with 600 iterations).

V. CONCLUDING REMARKS AND FUTURE RESEARCH
DIRECTIONS

In a departure from the established kinetostatic fold com-
pliance literature on numerically simulating the protein fold-
ing process, this paper proposed a sign gradient descent
algorithm for predicting the three-dimensional folded protein
molecule structures. The more stable and robust convergence
properties of the proposed SGD-based algorithm makes it
suitable for accurate simulation of the range of motion of
peptide-based nanorobots/nanomachines such as parallel nano-
mechanisms [1], [2] and closed-loop cyclic 7-R peptide-based
mechanisms [17]. As future research directions, we envision
that the proposed SGD-based successive kinetostatic fold
compliance literature can be utilized for efficient numerical
investigation of the KCM-based protein folding dynamics un-
der solvation effects and entropy-loss constraints. Furthermore,
our proposed algorithm has the potential of lending itself
to stochastic SGD extensions by relying on the emerging
literature of stochastic sign descent methods (see, e.g., [31]).
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