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Synopsis A penalized iterative regression method using a gradient descent algorithm with 

regularization is presented to eliminate size-distribution-induced smearing effects in small-angle X-ray 

scattering (SAXS) profiles, enabling to retrieve the characteristic Bessel-type SAXS oscillations 

(including both peaks and valleys) of representative nanoparticles with varying shapes. 

Abstract Small-angle X-ray scattering (SAXS) that records reciprocal-space signals with 

characteristic Bessel-type oscillations is a powerful technique for studying nanoparticles. However, the 

size polydispersity (or size distribution) of nanoparticles in ensemble samples smears the oscillational 

peaks and valleys in SAXS profiles, making it difficult to extract the accurate real-space information 

(e.g., three-dimensional geometry) of nanoparticles from the SAXS profiles. In this work, a method 

capable of eliminating the size-distribution-induced smearing effect from SAXS profiles by taking the 

known size distribution function into consideration has been developed. The method employs a 

penalized iterative regression to fit the pair distance distribution function (PDDF) derived from a SAXS 

profile, recovering the representative PDDF of the nanoparticles. The method has been evaluated with 

a series of nanoparticle systems with various shapes and size distributions, showing their PDDF profiles 

with high fidelity to the reference ideal PDDF profiles. Inverse Fourier transform of the recovered 

PDDF profiles gives the SAXS profiles presenting the characteristic Bessel-type oscillations, enabling 

reconstruction of the representative three-dimensional geometry of nanoparticles. This method will help 

use SAXS to image the synthesized colloidal nanoparticles where size polydispersity is inevitable. 
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1. Introduction  

Small-angle scattering is a structure-probing technique that collects and analyzes scattered signals in 

the reciprocal space.(Li et al., 2016) Unlike real-space techniques that directly capture microscopic 

images, translating the reciprocal-space scattering signals into real-space images requires complicated 

data processing, which is challenging and computationally expensive. As computational science rapidly 

advances, the complexity of data processing becomes an acceptable trade-off for easy experiment set-

up, high-speed data collection, and high statistical representativeness associated with measuring many 

particles as an ensemble.(Kikhney & Svergun, 2015) For example, synchrotron small-angle X-ray 

scattering (SAXS) has been widely applied in the structural analysis of biomolecules. A number of bio-

SAXS software packages have been developed in the past three decades for analyzing SAXS patterns, 

ranging from simple data-reduction (such as 2D image to 1D plot reduction, data averaging, and 

background subtraction) to complex modeling and fitting.(Ilavsky, 2012; Ilavsky & Jemian, 2009) In 

particular, developing 3D-shape reconstruction programs that aim to rebuild the geometry of particles 

has achieved high fidelity in recovering the shape of biomolecules from their SAXS profiles. Typical 

programs include dummy atom bead filling modeling (DAMMIN, DAMMIF)(Petoukhov et al., 2007), 

iterative electron density retrieving (DENSS)(Grant, 2018), and deep learning methods 

(decodeSAXS)(He et al., 2020). 

SAXS is also considered a powerful tool for studying synthesized nanoparticles. Although biomolecules 

that have a well-defined chemical formula and folding pattern usually exhibit monodispersed size and 

geometric conformation in a solution, the synthesized colloidal nanoparticles exhibit (sometimes broad) 

distributions of size and shape.(Borchert et al., 2005) Intensive efforts have been made to narrow down 

the size distribution and achieve shape uniformity by rigorously controlling the synthesis 

conditions.(Mantzaris, 2005) The dispersions with a size distribution of less than 15% are usually 

considered “monodisperse” nanoparticles. Such a small polydispersity can still cause problems for 

accurate SAXS data analysis. The theoretically sharp oscillations of SAXS signals of individual 

nanoparticles of different sizes overlap, resulting in a smeared SAXS profile without pronounced peaks 

and valleys. 

The size distribution of an ensemble of particles can be retrieved from the SAXS profile when the 

particles exhibit the same simple geometry, for example, a mathematically ideal sphere. Many SAXS 

data analysis programs, including GNOM(Semenyuk & Svergun, 1991), SAXSfit(Ingham et al., 2009), 

Irena(Ilavsky & Jemian, 2009), SASView(Doucet et al., 2021) and FFSAS(Leng et al., 2022) can 

extract the size distribution if the particle geometry is known. For example, Polte and co-workers used 



Journal of Applied Crystallography    research papers 

3 

 

in-situ time-resolved SAXS to study the growth mechanism of colloidal gold nanoparticles.(Polte et al., 

2010) A Schulz-Zimm distribution function fit the size distribution of gold nanoparticles while 

assuming their geometry to be a rigid sphere. Even in a more challenging situation where the 

nanoparticles are multimodally distributed (i.e., exhibiting two or more peaks in the size distribution 

statistics), the fitting can still provide high fidelity in recovering the size distribution 

function.(Thünemann et al., 2009) The successful application of the size-distribution fitting algorithm 

can be attributed to the availability of empirical and theoretical models that describe the distribution 

functions, reducing the fitting process to only a few parameters such as the mean size and the standard 

deviation. However, when the geometry of the nanoparticles is the focus, the size distribution frustrates 

the nanoparticle geometry recovery as the oscillational SAXS signals for identifying the geometry are 

strongly smeared. The application of advanced shape-reconstruction programs in nanoparticle study is 

only limited to the highly monodisperse nanoparticles with <5% size distribution.(Sun et al., 2017) 

With low monodispersity of nanoparticles, the geometry determined from the direct reconstruction 

programs using the smeared SAXS data is often misleading since the programs tend to take for granted 

that the smearing effect results from asymmetric geometry.(Ozerin et al., 2006) Therefore, there is a 

demand for developing a method to deal with the size polydispersity of nanoparticles in order to achieve 

accurate shape from SAXS data.(Mittelbach & Glatter, 1998) 

The problem of refocusing the SAXS profile of a polydisperse system can be analogous to the problem 

of deblurring a blurred image, for which various algorithms have been developed.(Bertero et al., 2009) 

An image-deblurring problem can be simplified as solving the inverse problem of 𝑓𝑓’ = 𝐻𝐻 × 𝑓𝑓 + 𝑛𝑛, in 

which 𝑓𝑓′ and 𝑓𝑓 are the blurred image to be processed and the real image to be recovered, respectively. 

𝐻𝐻 is the blurring operator that indicates how the pixels in the real image diffused into the nearby ones, 

and 𝑛𝑛 is the random noise added to the image. A typical deblurring procedure requires prior knowledge 

of 𝐻𝐻, which, in the SAXS size-refocusing problem, is the information about the size distribution. The 

size distribution of a nanoparticle system can be readily estimated using techniques such as electron 

microscopy and dynamic light scattering with distribution models involving only two parameters (mean 

size and standard deviation). The difference is that a blurred image is taken in the real space while a 

SAXS pattern is taken in the reciprocal space, which requires a proper transformation of the SAXS 

smearing problem to a real-space problem. In this work, we introduce a method to eliminate or reduce 

the size-distribution smearing effect in SAXS profile of a nanoparticle system with the same geometric 

shape. A penalized iterative regression method is used to fit the Fourier-transformed real-space SAXS 

profile with an estimated size-distribution function. A series of theoretical SAXS profiles of 

nanoparticle systems with different size distributions for various shapes have been generated as targets 

to train the method. The output of the estimated pair distance distribution functions (PDDF) of unisized 

model nanoparticles shows high reconstruction quality and fidelity to the idealized reference PDDF 



Journal of Applied Crystallography    research papers 

4 

 

profiles. The calculation relies on the pre-determined size distribution function but is robust even when 

the size distribution function is not accurately determined. 

2. Methods 

2.1. SAXS data calculation and processing procedure 

SAXS intensity profiles of the perfect sphere particles were calculated using SASView, an open-source 

program designed for small-angle scattering modeling and data analysis. PDDF profiles of structures 

with various shapes of a given size were calculated using a self-developed Python script. In the typical 

calculation, a given structure was first approximated using a voxel model generated by filling a 

64×64×64 grid. The autocorrelation of the filled grid was then calculated, resulting in a 127×127×127 

matrix where each element corresponded to a pair distance ranging from 0 to √3 for a unit-size space. 

The discretized PDDF profile was obtained by grouping the elements in the autocorrelation matrix by 

their corresponding pair distances and calculating the sum. The PDDF profile could also add a size 

distribution using the forward Fourier transformation. Conversion from SAXS intensity profiles to 

PDDF profiles was conducted by GNOM, a program in the ATSAS package that uses indirect inverse 

Fourier transform and penalization methods.(Svergun, 1992) Conversion from PDDF profiles to SAXS 

intensity profiles was conducted by a self-developed Python script (pdf2iq). Cubic interpolation was 

performed to the discretized PDDF profiles before the conversion. 3D shape reconstruction was 

conducted by DAMMIF, an ab initio shape determination program that uses a single-phase dummy 

atom model, also available in the ATSAS package.(Petoukhov et al., 2007) Unless specified otherwise, 

default modes and parameters were used in the mentioned program. 

The size-refocusing fitting was performed with a self-developed Python program (SharPy). At the 

current stage of the development, SharPy can read the PDDF profiles generated by GNOM (files with 

.out extension) from SAXS data of a particle ensemble. The program reads the smeared PDDF profiles 

of the particle ensemble 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓) , the type of the size distribution (default: log-normal), and the 

estimated mean size 𝜇𝜇 and standard deviation 𝜎𝜎 of the size distribution function. The objective of the 

program is to find target PDDF profile of the model particle, 𝑃𝑃�0, that gives the lowest goal function. 

The search of 𝑃𝑃�0 is conducted in a binned box with a dimension (Dmax) that is typically larger than the 

mean size 𝜇𝜇 of the particle. The oversized Dmax ensures that the resultant PDDF curve can be included 

completely. The search is based on the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS), a 

gradient descent algorithm that is called out using the scipy.optimize module in the scientific 

computation package SciPy.(Virtanen et al., 2020) Optional functions are available to users to improve 

the performance of the computation potentially. For example, users can input an initial guess of 

𝑃𝑃�0(𝒓𝒓/𝐷𝐷max ) if they have a priori knowledge of the expected result. The default initial guess of 

𝑃𝑃�0(𝒓𝒓/𝐷𝐷max) is a slightly randomized (e.g., 15%) Gaussian distribution close to the PDDF of a spherical 
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particle. In default mode, 51 points on the 𝑃𝑃�0(𝒓𝒓/𝐷𝐷max) need to be optimized, in which the first point 

(r=0) and the last point (r=Dmax) are forced to be 0. After each iteration, the intensity of 𝑃𝑃�0(𝒓𝒓/𝐷𝐷max) is 

normalized to 1 by the maximum value. A typical optimization takes approximately ~100 iterations and 

costs approximately a few minutes on a typical commercial laptop. Future development of the program 

will include an interactive, user-friendly interface and additional functions that may be helpful for the 

SAXS analysis. All scripts and programs are available at https://github.com/wsy94/SharPy . 

Current data processing flow includes: (1) computing the PDDF from the SAXS data of polydisperse 

nanoparticle sample using program GNOM and generating the GNOM output that contains the PDDF 

data; (2) program SharPy taking the GNOM output and size distribution parameters and generating the 

PDDF of the model particle; (3) program pdf2iq converting the PDDF of the model particle to the SAXS 

profile for further analysis. 

2.2. SAXS of synthesized Ag nanoparticles 

2.2.1. Chemicals 

Silver nitrate (AgNO3, 99.85%) was purchased from ACROS organics. Oleylamine (C18H35NH2, 70%) 

was purchased from Sigma Aldrich. Acetone and hexane were purchased from Fisher Chemicals All 

chemicals were used as received without further purification.  

2.2.2. Synthesis of Ag nanoparticles 

The synthesis of Ag nanoparticles was carried out using the method described elsewhere with slight 

modification.(Peng et al., 2010) A solution of 0.090 g of AgNO3 (0.5 mmol) in 10 ml of oleylamine 

was prepared in a round-bottom flask. The flask was connected to a Schlenk line and protected with a 

nitrogen atmosphere while stirring at 600 rpm. The solution was degassed three times at 105 °C to 

remove moisture and oxygen, then heated to 190 °C at a ramping rate of ~10 °C/min. This temperature 

(190 °C) was maintained for 30 min to complete the reaction. The reaction solution was then rapidly 

cooled down by adding 20 ml of acetone. The Ag nanoparticles were collected by centrifugation at a 

rate of 2000 rpm for 10 min. The precipitate was re-dispersed in 5 ml of hexane. This centrifugation/re-

dispersion process was repeated three times. The lastly collected precipitate was re-dispersed in 1:1 

oleylamine: hexane to obtain a dispersion with concentration of approximately 5 mg Ag/ml 

2.2.3. Characterizations of Ag nanoparticles 

Transmission electron microscopy (TEM) images were taken using JEOL JEM-1400 microscope 

operated at 120 kV. SAXS measurements were conducted at the 12-ID-B beamline at the Advanced 

Photon Source (APS), Argonne National Laboratory (ANL). Colloidal Ag nanoparticle dispersions 

were loaded in quartz capillary tubes with diameters of ~1.5 mm. Each SAXS pattern was an average 

of at least 10 repeated measurements of a sample, with an exposure time of 1s for each measurement. 

https://github.com/wsy94/SharPy
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The SAXS profiles of colloidal Ag nanoparticles were background-subtracted against the SAXS profile 

of the 1:1 oleylamine: hexane solution. 

3. Results and discussion 

3.1. The size-distribution smearing effect 

The reciprocal-space-based SAXS signal of a nanoparticle originates from the interference of the 

scattered X-rays by electrons in the particle, representing the Fourier transform of the three-dimensional 

(3D) structure of the nanoparticle in real space. The real-space PDDF (P(r)) of a particle represents the 

autocorrelation of the electron density map, ρ(r), of the particle: 

𝑃𝑃(𝑟𝑟) = 𝑉𝑉𝑟𝑟2𝛾𝛾0(𝑟𝑟) = 𝑉𝑉 ∫ 𝜌𝜌(𝒓𝒓�⃗ + 𝒖𝒖��⃗ )𝜌𝜌(𝒖𝒖��⃗ )d𝑉𝑉𝑢𝑢
𝑉𝑉𝑢𝑢       (1) 

P(r) is a weighted histogram of electron pairs with a distance of r within the nanoparticle. For a single 

nanoparticle, the experimentally measured scattering intensity I (as a function of the scattering vector 

q) is related to P(r) by the Fourier transform: 

𝐼𝐼(𝑞𝑞) = 4𝜋𝜋 ∫ 𝑃𝑃(𝑟𝑟)  sin(𝑞𝑞𝑞𝑞)
𝑞𝑞𝑞𝑞

∞
0 d𝑟𝑟.         (2) 

With the experimentally measured SAXS profile I(q), the corresponding P(r) could be determined by 

using the inverse Fourier transform: 

𝑃𝑃(𝑟𝑟) = 1
2𝜋𝜋2 ∫ 𝐼𝐼(𝑞𝑞)𝑞𝑞𝑞𝑞 sin(𝑞𝑞𝑞𝑞) d𝑞𝑞∞

0 .        (3) 

In the SAXS measurement of a colloidal nanoparticle dispersion, the collected signal, 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒(𝑞𝑞), of the 

nanoparticle ensemble is the sum of the SAXS signals of individual nanoparticles (In(q)) exposed to the 

X-ray beam: 

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒(𝑞𝑞) = ∑𝐼𝐼𝑛𝑛(𝑞𝑞).          (4) 

If the nanoparticles have the same geometric shape (e.g., sphere) with only the difference in size, the 

SAXS signal of the nanoparticle ensemble can be expressed as 

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒(𝑞𝑞) = ∫ 𝑓𝑓(𝑅𝑅)∞
0 ∙ 𝐼𝐼𝑛𝑛(𝑞𝑞,𝑅𝑅)d𝑅𝑅,         (5) 

where f(R) is the size distribution function that tells the frequency of particles with a size parameter of 

R (e.g., the radius of a sphere).  

In this study, particles with the same geometric shape are defined as those that can be inter-converted 

by isotropic size scaling with respect to the center of the mass; for example, spherical particles with 

different radii have the same shape. For nanoparticles with the same shape but different sizes, the 

intensity I and scattering vector q scale as a function of the particle size parameter R. The SAXS 

intensity of a single nanoparticle, 𝐼𝐼𝑛𝑛(𝑞𝑞,𝑅𝑅) , is proportional to 𝑉𝑉2(𝑅𝑅)  (i.e., 𝑅𝑅6 ). Therefore, larger 

nanoparticles contribute more significantly to the overall SAXS signals if they mix with smaller ones. 

The SAXS profile of an ensemble of spherical nanoparticles with non-uniform sizes represents a 
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volume-square-weighted average of the SAXS signal of individual particles. As the scattering vector q 

is in the reciprocal space, the q-axis of the scattering curve 𝐼𝐼𝑛𝑛(𝑞𝑞,𝑅𝑅)  inversely scales to the size 

parameter R: the curve shrinks towards the lower q region for large particles and stretches to the higher 

q region for small particles. If we assume the large and small particles have the same shape, the 

normalized scattering signal of a representative model particle can be described as 𝐴𝐴(𝑞𝑞′) as a function 

of 𝑞𝑞′ = 𝑞𝑞𝑞𝑞. 𝐴𝐴(𝑞𝑞′)  is the pseudo form factor (A(q') vs q') of the unit size particle for a given shape. For 

example, the theoretical SAXS signal of a spherical particle with a radius of R can be described as 

𝐼𝐼(𝑞𝑞,𝑅𝑅) = �4𝜋𝜋𝑅𝑅
3

3
3[sin(𝑞𝑞𝑞𝑞)−𝑞𝑞𝑞𝑞 cos(𝑞𝑞𝑞𝑞)]

(𝑞𝑞𝑞𝑞)3  �
2

= 𝑅𝑅6𝐴𝐴(𝑞𝑞𝑞𝑞) = 𝑅𝑅6𝐴𝐴(𝑞𝑞′).      (6) 

For an ensemble of spherical nanoparticles with a size distribution function 𝑓𝑓(𝑅𝑅), the total SAXS signal 

is 

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒(𝑞𝑞) = ∫ 𝑓𝑓(𝑅𝑅)∞
0 ∙ 𝑅𝑅6𝐴𝐴(𝑞𝑞𝑞𝑞)d𝑅𝑅.         (7) 

 

Figure 1 (a) Single particle SAXS profiles of spherical particles whose radii range from 20 Å to 50 Å 

(green to red curves) and the size-distribution smeared SAXS profile (black curve, offset for easy 

visualization) calculated using a 𝜇𝜇  = 35 Å, 𝜎𝜎 =  0.25 log-normal distribution (insert). (b) The 

corresponding PDDF profiles of spherical particles whose radii range from 20 Å to 50 Å (green to red 

curves), with their intensities normalized by the size-distribution populations (bars in inset, (a)) and the 

synthetic PDDF profile of the particle ensemble (black curve) considering the size-distribution effect. 

The models show the direct 3D shape reconstruction results of DAMMIF from the smeared PDDF 

profile of the particle ensemble (gray model) and the unsmeared PDDF profile of a single particle 

(orange model). 
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Figure 1(a) shows the smearing effect of size distribution using the computed SAXS profiles of 

spherical particles described by eq. (6). A log-normal size distribution function (Figure 1(a), insert) is 

applied to the particle ensemble: 

𝑓𝑓(𝑅𝑅) = 1
𝑅𝑅𝑅𝑅√2𝜋𝜋

exp (− (𝑙𝑙𝑙𝑙𝑙𝑙−𝑙𝑙𝑙𝑙𝑙𝑙)2

2𝜎𝜎2
),         (8) 

where 𝜇𝜇 is the median of particle radius (fixed as 35 Å), and 𝜎𝜎 is the distribution parameter (fixed as 

0.25 or ~25% of the coefficient of variation). Figure 1(a) highlights the individual SAXS profiles of 

spherical particles with radii from 20Å to 50Å, which account for 95% of the particle populations in 

the ensemble. The oscillations in the SAXS profiles of individual nanoparticles with enlarging size shift 

towards the low q direction. Although the nanoparticles are perfectly spherical, the total oscillation in 

the ensemble SAXS profile does not show strong oscillation peaks and valleys. The reconstructed 3D 

geometry from this ensemble SAXS profile would be distorted and does not represent the particles in 

the ensemble (Figure 1b). 

The PDDF calculated from the SAXS signal of a nanoparticle ensemble is expressed as: 

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) = 1
2π2 ∫ 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒(𝑞𝑞)(𝑞𝑞 · 𝑟𝑟) sin(𝑞𝑞 · 𝑟𝑟) d𝑞𝑞∞

0   

 = 1
2𝜋𝜋2 ∫ ∫ 𝑓𝑓(𝑅𝑅)∞

0 ∙ 𝑅𝑅6𝐴𝐴(𝑞𝑞𝑞𝑞)(𝑞𝑞 · 𝑟𝑟) sin(𝑞𝑞 · 𝑟𝑟)d𝑅𝑅 d𝑞𝑞∞
0 .     (9) 

Due to the linear property in the Fourier transform, the linear combination of scattering signal [I(q,R) 

= R6A(qR)] weighted by 𝑓𝑓(𝑅𝑅) in the reciprocal space also gives the linear combination of PDDF in the 

real space 

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) = ∫ 𝑓𝑓(𝑅𝑅) � 1
2𝜋𝜋2 ∫ 𝑅𝑅6𝐴𝐴(𝑞𝑞𝑞𝑞)(𝑞𝑞 · 𝑟𝑟) sin(𝑞𝑞 · 𝑟𝑟) d𝑞𝑞∞

0 �∞
0 d𝑅𝑅  

= ∫ 𝑓𝑓(𝑅𝑅) 𝑃𝑃𝑆𝑆𝑆𝑆(𝑟𝑟,𝑅𝑅)∞
0 d𝑅𝑅,         (10) 

where 𝑃𝑃𝑆𝑆𝑆𝑆(𝑟𝑟,𝑅𝑅) is the PDDF of a single particle with a size parameter R. Similar to the scattering 

intensity function I(q) of the particles with the same shape that can be scaled by the size parameter R, 

their corresponding PDDFs can also be scaled. As inferred from eq. (10), the amplitude of 𝑃𝑃𝑆𝑆𝑆𝑆(𝑟𝑟,𝑅𝑅) is 

proportional to 𝑉𝑉2(𝑅𝑅) (i.e., 𝑅𝑅6). 

Therefore, the PDDF of a particle with size parameter R can also be obtained from the stretching 

transformation from the PDDF of a unit-size particle with the same shape (𝑃𝑃0(𝑟𝑟′)): 

𝑃𝑃𝑆𝑆𝑆𝑆(𝑟𝑟,𝑅𝑅) = 𝑅𝑅6𝑃𝑃0(𝑟𝑟′)  = 𝑅𝑅6𝑃𝑃0(𝑟𝑟/𝑅𝑅),         (11) 

in which 𝑟𝑟′ = 𝑟𝑟/𝑅𝑅 (𝑟𝑟′ ∈ [0,1]). Thus, 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) can be reduced to a linear combination of a series of 

stretched 𝑃𝑃0(𝑟𝑟′) weighted by the size distribution: 

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) = ∫ 𝑓𝑓(𝑅𝑅) 𝑅𝑅6𝑃𝑃0(𝑟𝑟′)∞
0 d𝑅𝑅 =  ∫ 𝑓𝑓(𝑅𝑅) 𝑅𝑅6𝑃𝑃0(𝑟𝑟/𝑅𝑅)∞

0 d𝑅𝑅,     (12) 

which has a similar description to 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒(𝑞𝑞) in the reciprocal space expressed in eq. (7).  
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Figure 1(b) shows how the PDDF profiles of a series of spherical nanoparticles of varying sizes combine 

into a total PDDF profile, using the same log-normal size distribution described in eq. (8). In the log-

normal distribution, the population of large particles gradually decreases. As a result, the ensembled 

total PDDF profile also features a diminishing tail, as does the size-distribution function. This tail is 

contributed by the large particles in the ensemble, even though they have a small population, since the 

PDDF intensity scales by R6. Compared to the PDDF of an individual particle with a sharply defined 

Dmax (the maximum pair distance within a particle), the tailing effect often leads to an overestimation 

of particle size and gives misleading geometry. In order to obtain reliable geometric information, the 

PDDF curve must be deconvoluted from the smeared profile before ab initio reconstruction. Directly 

using the PDDF profile of a particle ensemble with size distribution for DAMMIF shape reconstruction 

results in an asymmetric, distorted geometry (gray model, inset/Figure 1b) that offers no clue about the 

original particle shape (orange model, inset/Figure 1b). 

3.2. A penalized regularization-based size-refocusing method on deconvoluting representative 
PDDF 

Solving either the inverse problem described in eq. (7) in reciprocal space or eq. (12) in real space 

becomes necessary to extract the particle geometry information from SAXS measurements. Both 

equations are analogous to the image deblurring problem, with typical difficulties associated with 

inverse problems, such as having no unique solution and being highly sensitive to noise. Since there is 

no universal analytical equation to describe the scattering intensity I(q) or the PDDF P(r) for a particle 

with an arbitrary shape, these inverse problems cannot be reduced to fit an analytical equation with 

limited parameters. Therefore, the problem must be converted into a discrete function that can be solved 

numerically. Compared to the scattering intensity I(q), which contains multiple oscillation waves with 

intensities following a power-law decay, the PDDF P(r) is easier to solve in a discrete, numerical way. 

As the PDDF P(r) is essentially a distribution function, it should have typical features such as 

continuous, positive, and converging to zero at the high and low limits. These features can be guidelines 

when conducting numerical fittings to exclude unreasonable solutions. 

To find a possible numerical solution of P0(𝑟𝑟/𝑅𝑅), one can discretize the P0(𝑟𝑟/𝑅𝑅) into N segments (i.e., 

fitted 𝑃𝑃�0(𝒓𝒓/𝑅𝑅) array) and try different value combinations until the fitted 𝑃𝑃�𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓) gets close enough to 

the observed 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓) . However, this approach will lead to an infinite number of solutions if no 

constraint is applied to P0(𝑟𝑟/𝑅𝑅). Additionally, this searching approach, if fully randomized (Monte-

Carlo), will have a total computational complexity of dN as the solution lies in an N-dimensional space. 

Therefore, the search for P0(𝑟𝑟/𝑅𝑅) must be conducted with a priori knowledge to tell what a good 

P0(𝑟𝑟/𝑅𝑅) is and in which direction one can find it. The qualification of a “good” P0(𝑟𝑟/𝑅𝑅) can be justified 

by using penalty functions, which has been discussed during the development of GNOM by 
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Svergun.(Svergun, 1992) Fundamentally, one can use Chi-squared (CHISQR) to describe how far the 

fitted 𝑃𝑃�𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓) is from the observed one: 

CHISQR= 1
𝑁𝑁
�𝑃𝑃
�𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓)−𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓)

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓) �
2
,         (13) 

where 𝒓𝒓 is the array of spacing for numerical calculation. In this research, r is set as an evenly spaced 

array from r=0 to r=3μ (3-fold of the estimated median particle size, μ) at which the contribution of a 

particle to the ensembled 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) is nearly vanished. Only adapting CHISQR as the only goal function 

to minimize does not give a fitted 𝑃𝑃�0(𝑟𝑟/𝑅𝑅) with high fidelity. The data points on the fitted 𝑃𝑃�0(𝑟𝑟/𝑅𝑅) are 

usually scattered and may have negative values. Those 𝑃𝑃�0(𝑟𝑟/𝑅𝑅) may mathematically give a good fit to 

the ensembled 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓), but are counterintuitive to our knowledge of the PDDF of real particles: the 

fitted 𝑃𝑃�0(𝑟𝑟/𝑅𝑅) is supposed to be smooth because the particles at the SAXS scale can be considered 

continuously-distributed matters. For a size-normalized model particle, where the maximum dimension 

of the fitting box is normalized to Dmax (i.e., r/Dmax spans from 0 to 1), the smoothness (SMOOTH) of 

the fitted array 𝑷𝑷�𝟎𝟎 can be quantified as: 

SMOOTH = 1
𝜋𝜋

(�𝑷𝑷�0′ �/�𝑷𝑷�0�),         (14) 

where ‖𝑨𝑨‖ denotes the norm of an array: ‖𝑨𝑨‖ = �∑ �𝑎𝑎𝑖𝑖,𝑗𝑗�
2 𝑖𝑖,𝑗𝑗 �

1/2
 and 𝑷𝑷�0′  is the first derivative array of 

the function 𝑃𝑃�0(𝑟𝑟/𝑅𝑅). SMOOTH equals to ~1.1 for the PDDF of a solid sphere. The SMOOTH penalty 

term increases as the points on the 𝑷𝑷�𝟎𝟎 array get scattered. Second, solid particles often have higher 

electron density than the surrounding environment in SAXS experiments. In such a case, the PDDF 

calculated from a background-subtracted SAXS profile should also have positive values. The positivity 

(POSITV) of an array can be quantified as: 

POSITV= 1
2
��𝑷𝑷

�0+�𝑷𝑷�0��
�𝑷𝑷�0�

�.         (15) 

An array of all positive elements will have a POSITV value equal to 1 while an array of all negative 

elements has a value of 0. There are other penalty functions in the discussion of GNOM paper(Svergun, 

1992) for quantifying the goodness of a fitted curve. To simplify the calculation, only SMOOTH and 

POSITV are adapted. The following results show that those two terms are enough to solve the current 

problem. A good fitting of 𝑃𝑃�0(𝑟𝑟/𝑅𝑅) should simultaneously have a CHISQR as low as possible, a 

reasonable SMOOTH, and a POSITV equal to (or close to) 1. Therefore, the overall goal function with 

the added penalty terms becomes: 

GOAL=  CHISQR+ 𝑎𝑎1 (SMOOTH − 1.1) +  𝑎𝑎2 (1 − POSITV),    (16) 

where a1 and a2 are the weighing factors of penalty terms that indicate how important those qualities 

should be considered during optimization. Empirical magnitudes of a1 and a2 are 10-3 and 104, 

respectively, which accept 𝑃𝑃�0(𝑟𝑟/𝑅𝑅) with SMOOTH from 1.1~4 but reject most 𝑃𝑃�0(𝑟𝑟/𝑅𝑅) with any 

negative values. With a goal function described in eq. (16), we used Broyden–Fletcher–Goldfarb–
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Shanno algorithm (BFGS) to determine the gradient descent direction with adopting the approximated 

Hessian matrix.(Fletcher, 2000) The BFGS algorithm avoided the calculation of the inverse of large 

matrices, making it suitable for optimizing problems with a large number of variables. Such regularized 

fitting over eq. (12) will give the PDDFs at unit size, i.e., 𝑃𝑃�0(𝑟𝑟/𝑅𝑅) and at the representative median size 

R, i.e., 𝑃𝑃(𝑟𝑟,𝑅𝑅). 

The process of deconvoluting the SAXS and PDDF profiles of an individual particle from a particle 

ensemble is summarized in the flowchart in Figure 2. The penalized regularization-based size-

refocusing method described above is implemented as a Python script named SharPy. Its contribution 

to the data processing procedure is emphasized in the flowchart in green. This Monte-Carlo-like process 

consists of two parts: guessing a potential result from the PDDF of the particle ensemble and the results 

from previous iterations and fitting the results of individual particle PDDF to that of the particle 

ensemble while evaluating the penalty terms. This guess-fit circle fills the gap in solving the inverse 

problem of deconvoluting the individual particle PDDF from the particle ensemble. This process makes 

it possible to sharpen the SAXS signals from the size-distribution smearing effect and eventually extract 

the geometry information of the polydisperse particle system. 

 

Figure 2 Flowchart describing the relationship of the SAXS and PDDF profiles of individual particle 

and particle ensemble. The red arrows highlight the process of deconvoluting the SAXS and PDDF 

profiles of an individual particle from a particle ensemble and the role of SharPy in this procedure is 

highlighted by green arrows. 

Figure 3(a) shows the deconvoluted PDDF of a particle with the median size, i.e., 𝑃𝑃0(𝑟𝑟,𝑅𝑅) from the 

ensembled 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) of spherical particles with a 25% log-normal size distribution and a median diameter 

of 70Å. The original ensembled 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) (upper panel, black curve) has a vanishing tail caused by the 

size distribution, indicating an overestimation of the particle size. In contrast, the recovered PDDF of 

the particle at the median size (lower panel, purple dots) after size refocusing shows a clear cut-off Dmax 

at 70 Å, which fits well with the theoretical PDDF calculated from an ideally spherical model (lower 

panel, gray curve). Figure 3(b) shows the SAXS scattering intensities converted from the corresponding 

PDDFs presented in Figure 3(a). Compared to the original one with the size distribution smearing effect 

(black curve), the recovered SAXS profile (purple curve) shows characteristic Bessel-type oscillations 
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of a symmetric sphere. The oscillations' position and spacing fit well with that calculated from the ideal 

model (gray curve). The recovered SAXS profile did not reach 100% fidelity to the original one, 

possibly because the potential of PDDF fitting function is relatively flat around the actual solution, and 

the Fourier transform further magnifies the discrepancy in resulting SAXS, especially in the log-log 

presentation. However, the deconvoluted PDDF is already accurate enough to quantitatively analyze 

the essential geometry parameters of particle ensembles. 

 

Figure 3 (a) The deconvoluted 𝑃𝑃�0(𝑟𝑟) (𝑅𝑅 = 35Å) (pink dots) from the smeared 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) (black curve) 

of a spherical particle ensemble with a median radius 𝜇𝜇 = 35 Å, 𝜎𝜎 = 0.25 log-normal distribution, 

which fits well with the reference PDDF profile computed from a mathematically ideal sphere model 

(gray curve). (b) The corresponding SAXS profiles calculated from the PDDF profiles in (a), with 

intensity normalized for comparison. 

The roles of each penalty term are studied by optionally introducing them into the goal function. A 

slightly over-estimated Dmax (80 Å) is chosen to ensure the search box includes the PDDF curve 

completely. As shown in Figure 4(a), adapting CHISQR as the only goal function to minimize does not 

result in a reasonable 𝑃𝑃�0(𝑟𝑟/𝑅𝑅) (gray plot). The data points on the fitted 𝑃𝑃�0(𝑟𝑟/𝑅𝑅) are scattered and turn 

negative where r > 70 Å. Introducing POSITV into the goal function removes the negative parts (green 

plot), but the main part of the curve is still scattered. The SAXS intensity profiles calculated from the 

fitted PDDF curves (Figure 4(b)) are far away from the reference presented in Figure 3(b) and even 

have negative values. Adding SMOOTH to the goal function only makes the fitted PDDF curve smooth, 

and the part where r > 70 Å is still negative (blue plot, Figure 4(a)). The difference between SAXS 

intensity profiles of adapting SMOOTH only and both POSITV and SMOOTH may not be notable 

(blue curve vs. purple curve, Figure 4(b)), but the negative parts still cause difficulties for the 3D shape-

reconstruction programs. For example, a dummy atom modeling program like DAMMIF can get 
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confused by the negative part of the PDDF curve. The 3D structures reconstructed from the fitted PDDF 

have irregular shapes and fractal surfaces as the 3D reconstruction program tried to “fit” the scattered 

and negative parts in the PDDF (Figure 4(c)). It is not surprising that the fitted 𝑃𝑃�𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓)  and the 

corresponding 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒(𝑞𝑞) all fit well with the target 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓) and 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒(𝑞𝑞), despite the addition of penalty 

terms. The high-quality fitting again emphasizes the importance of adding regulations for selecting the 

most reasonable solutions from many possible candidates. 

 

Figure 4 (a) The deconvoluted 𝑃𝑃�0(𝑟𝑟/𝐷𝐷max) (𝐷𝐷max = 80 Å) from the smeared 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) of a spherical 

particle ensemble with a 𝜇𝜇 = 35 Å, 𝜎𝜎 = 0.25 log-normal distribution, with penalty terms optionally 

added to the goal function: adding both POSITV and SMOOTH (pink), adding SMOOTH only (blue), 

adding POSITV only (green), and no penalty terms (gray). (b) Corresponding SAXS intensity profiles 

calculated from the PDDF profiles in (a), with intensities offset for easy visualization. (c) 3D 

reconstruction results from DAMMIF calculated using the SAXS intensity profiles in (b). The color 

coding is the same for (a-c).  

Simulated SAXS profiles of particle systems with different shapes are generated to verify the generality 

of the developed approach. The well-described common particle shapes, such as dimers, plates, rods, 

and spheres, are reduced to voxel models rasterized by a 64×64×64 grid (more details see Methods 

section). Autocorrelation and spherical average are then applied to the voxel models to calculate the 

PDDF of the model particle according to eq. (1). A log-normal distribution with median half maximum 

dimension 𝜇𝜇 = 25 Å,𝜎𝜎 = 0.25 is applied to the PDDF to simulate the smeared 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓) and 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒(𝑞𝑞). 

The fitting procedure was conducted in a search box larger than the maximum dimension of the particle 

(Dmax=80 Å), with only the 𝜎𝜎 values of the size distribution being provided. The tested models include:  

(i) dimers consisting of a pair of identical spherical particles with varying spacings; 

(ii) round plates with the same equatorial radius but with varying thicknesses; 

(iii) rods with the same length but with varying equatorial radii; 

(iv) hollow spheres with the same size but varying hollow interiors. 
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The maximum dimensions of the model particles are all normalized by Dmax. The PDDF recovered by 

the developed approach fits well with the PDDF directly calculated from the model (Figure 5), which 

shows an overall similarity >0.99 in most cases, quantified by the Pearson’s correlation coefficient: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴,𝐵𝐵) = ∑(𝐴𝐴𝑖𝑖−𝐴̅𝐴)(𝐵𝐵𝑖𝑖−𝐵𝐵�)
�∑(𝐴𝐴𝑖𝑖−𝐴̅𝐴)2 ∑(𝐵𝐵𝑖𝑖−𝐵𝐵�)2

,        (17) 

where A and B are substituted by the arrays of fitted 𝑃𝑃�0(𝑟𝑟/𝐷𝐷max)  and reference 𝑃𝑃0(𝑟𝑟/𝐷𝐷max) , 

respectively. The distinct features of PDDF curves for particles with assorted shapes are accurately 

reconstructed, allowing for qualitative shape determination. A dimer structure can be identified by the 

presence of characteristic double peaks in the PDDF curve (Figure 5(a-c)). Other notable PDDF details 

include the broad and mostly symmetrical peak of a round plate (Figure 5(d-f)), the sharp apex and 

sloped peak tail of a cylindric rod (Figure 5(g-i)), and the triangular-shaped peak of a hollow shell 

(Figure 5(j-l)). The high accuracy also allows for quantitative analysis of the model particles. For 

example, it makes it possible to measure the distance between the two domains of a dimer (Figure 5(a-

c)). When the size distribution is high, the two peaks in the PDDF curve of a dimer become overlapped 

and might be difficult to distinguish. However, data processing with the size-refocusing approach 

results in the two peaks that can be well separated with precise peak positions. The corresponding 

scattering intensity profiles 𝐼𝐼0(𝑞𝑞) also show similarity to the references 𝐼𝐼0(𝑞𝑞) that are calculated from 

voxel models (Figure S1). All the fitted 𝐼𝐼0(𝑞𝑞) follow the Guinier law of 𝐼𝐼~exp (−1
3
𝑅𝑅𝑔𝑔2𝑞𝑞2) in the low q 

range (q < 1/Rg , Rg representing radius of gyration). The power laws of the intensity decrease are also 

followed for different particles: 𝐼𝐼~𝑞𝑞−1 for 1D nanorods (Figure S1(d-f)) and 𝐼𝐼~𝑞𝑞−2 for 2D nanoplates 

(Figure S1(g-i)) in the corresponding q range (from ~ 0.1 to ~ 0.2Å-1). As voxel models with fractal 

surfaces were used, the Porod law of 𝐼𝐼~𝑞𝑞−4 at high q range (q > 0.5 Å-1) is not followed for a smooth 

particle. The data at high q pertain more to the details of high spatial resolution, such as the surface 

structure. It is unnecessary to include high q range scattering data as it requires high-precision modeling 

and high computational cost. Overfitting may also result in possible mismatching of the recovered 

𝑃𝑃�0(𝑟𝑟/𝐷𝐷max) to the reference 𝑃𝑃0(𝑟𝑟/𝐷𝐷max). For example, the implementation of SMOOTH penalty term 

may cause a slight distortion on the apex of the PDDF of hollow shell structures. The possible 

overfitting is mitigated by adjusting the weighting factor of each penalty term (i.e., a1 and a2 in eq. 

(16)). To clarify, a smaller a1 (1/10 to the regular value) was employed during the fitting of hollow shell 

models to reduce the distortion on the peak apex (Figure 5(j-l)). In practice, we suggest operators adjust 

those fitting parameters on a case-by-case basis to obtain good results. 
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Figure 5 The recovered 𝑃𝑃�0(𝑟𝑟/𝐷𝐷max) (𝐷𝐷max = 80 Å, pink dots) from the smeared 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) of particle 

ensembles with assorted shape: (a-c) dimers with increasing spacing, (d-f) circular nanoplates with 

increasing thickness, (g-i) nanorods with increasing equatorial radius while maintaining the same 

length, (j-l) nanoshells with enlarging hollow interiors while maintaining the same outer diameter. 

The size distribution was fixed to a log-normal distribution with a median size of 50 Å along the 

longest direction and a standard deviation of 0.25. The reference curves (gray curves) were computed 

from the 64×64×64 voxel models (insets). The numbers above the voxel models refer to the 

correlation coefficient between the recovered and reference PDDF curves. 

The dynamics of the fitting process are presented in Figure 6, using one trial on the dimer case (Figure 

5(a)) as an example. The fitting process starts with an initial guess of 𝑃𝑃�0(𝑟𝑟/𝐷𝐷max ), which is a 

perturbated (15%) Gaussian distribution curve. The purpose of introducing randomness is to explore 

the solution space and avoid potential local minima during optimization. After approximately 120 

iterations, the process ends with a result showing the typical double-peak shape PDDF of a dimer 

structure (Figure 6(a)). Meanwhile, the size-distribution-smeared 𝑃𝑃�𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) gradually converges to the 

target 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟), which shows only a singular peak (Figure 6(b)). Figure S2 illustrates how the terms (i.e., 

CHISQR, SMOOTH, and POSITV) in the goal function evolve during the fitting process. As a potent 
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regulator, POSITV always sticks to 1, so any trial with negative values is rejected. At the beginning of 

the search, CHISQR quickly reduces to reach an overall fit for the target 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) (the green stage in 

Figure 6(b)). The rapid reduction of CHISQR is at the expense of losing suitable SMOOTH. The 

temporary 𝑃𝑃�0(𝑟𝑟/𝐷𝐷max) (the green stage in Figure 6(a)) is still noisy. After the initial increase, SMOOTH 

drops to approximately 2.5 while CHISQR continuously drops to 10-2 (the yellow stage). The refinement 

during this stage removes the spikes on the 𝑃𝑃�0(𝑟𝑟/𝐷𝐷max) and pushes the 𝑃𝑃�𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) closer to the target 

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟). According to the definition in eq. (14), a dimer’s PDDF profile with 2 peaks and 1 deep has a 

SMOOTH value of ~3. At the late stage (orange to red), the peak on the 𝑃𝑃�0(𝑟𝑟/𝐷𝐷max) splits into two 

peaks and the SMOOTH value raises back to ~3. The driving force at this stage is the continuous 

refinement of CHISQR. The combination of the gradient descent searching and the penalty terms makes 

the fitting process able to find the hidden peaks that are smeared in the ensembled 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓) due to the 

size distribution. 

 

Figure 6 The evolution dynamics of (a) guessed PDDF of single particle 𝑃𝑃�0(𝑟𝑟/𝐷𝐷max) and (b) fitted 

PDDF of particle ensemble 𝑃𝑃�𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) in the course of fitting the dimer models presented in Figure 5(a).  

The size-refocusing approach, which is based on gradient descent searching with the regularization of 

penalty terms, performed well on the simulated dataset of particle ensembles with different geometries. 

However, as with any numerical fitting method used to solve an ill-posed inverse problem, there is a 

concern that the “good” performance may result from overfitting,(Hawkins, 2004) where a fitting that 

focuses too much on the trivial details of the input data. In an overfitting case, once those trivial details 

are covered, for example, by the experimental noise, the fitting will become unstable and generate 

unreliable results. We conducted experiments to determine if the method remains stable when facing 
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different interferences. According to eq. (12), possible interferences may come from either the observed 

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) or the pre-determined size-distribution function f(R). The dimer particle ensemble in Figure 

5(a) was chosen as the test case, where the particles have a log-normal size distribution with a standard 

deviation of 0.25 (the gray curve). A 5% random perturbation was added to the input 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) data to 

simulate the experimental noise generated from measurements and data handling processes. Despite 

this interference, the fitting process is still able to deconvolute the two-peak shaped 𝑃𝑃�0(𝑟𝑟/𝐷𝐷max) from 

the 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) of a dimer particle ensemble with a 25% log-normal size distribution (Figure S3(a), orange 

plot). The fitting result indicates that the overall 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) curve is fitted instead of focusing on the trivial 

details from artificially generated data. The pre-determined size distribution function f(R) may also 

introduce errors to the fitting process. Typically, the size distribution of a particle ensemble grown from 

a solution can be described by using a log-normal size distribution (eq. (8)). The median particle size 𝜇𝜇 

and the standard deviation 𝜎𝜎 need to be determined from the statistical analysis of particle size in order 

to fit with a log-normal size distribution. In this approach, we assume that other methods, like electron 

microscopy, determine f(R). As a result, the fitting algorithm should be robust in case there are minor 

errors in determining the size distribution function f(R). The accuracy of the median size μ does not 

affect the fitting results because the fitting object is a size-normalized, unitless PDDF of the model 

particle. However, selecting a significantly underestimated μ should be avoided because it would result 

in the PDDF exceeding the limit. An overestimated μ does not cause any harm to the fitting since the 

margin is penalized to zero. The actual median size μ (or the maximum dimension) of the particle can 

still be determined from fitting even if the input median size μ is overestimated. As for the other input 

parameter 𝜎𝜎, tests were conducted on the same dimer particle ensembles with 𝜎𝜎=0.25 (~25%) log-

normal distribution but giving a false f(R) with 𝜎𝜎=0.20 (underestimated) or 0.30 (overestimated) to the 

fitting program (Figure S3(a), blue and purple plots). An overall peak shift is observed in both cases 

because the log-normal size distribution is an asymmetric distribution function: the portion of large 

particles increases as 𝜎𝜎 increases. It is important to point out that the SAXS measures the volume-

squared average of properties of a particle ensemble. The underestimation or overestimation of the 

contribution of large particles leads to the averaged particle size shifting towards the opposite direction. 

In contrast, the geometry information is still well recovered. The influence of picking different types of 

distribution functions was also studied. While asymmetric distribution functions like log-normal and 

Schulz-Zimm are more accurate in describing low-quality particle ensembles, the symmetric Gaussian 

(or normal) distribution function is commonly used to describe the polydispersity of synthesized 

particles in many studies: 

𝑓𝑓(𝑅𝑅) = 1
𝜎𝜎√2𝜋𝜋

exp (− (𝑅𝑅−𝜇𝜇)2

2𝜎𝜎2
).          (18) 

Robustness tests indicate that the fitting program can recover the characteristic two-peak feature of a 

dimer structure if the size distribution function used in the fitting process is substituted by a Gaussian 
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distribution function with the same μ and 𝜎𝜎  (Figure S3(a), green plot). The corresponding size-

refocused SAXS intensity profiles I(q), converted from the PDDF, are compared in Figure S3(b). The 

power law of 𝐼𝐼~𝑞𝑞−1 for a linearly placed dimer is followed in the corresponding q range (from ~ 0.1 to 

~ 0.2Å-1) in all cases. The size-refocused SAXS profiles are suitable for quantitative morphological 

analysis. For example, the distance between the center of two spheres of a dimer structure can be 

determined from the positions of the two peaks (P1 and P2) in its PDDF curve. For a dimer where the 

centers of two spheres are spaced twice as far as their radii, the PDDF peaks is spaced following r(P1): 

r(P2) = 0.5. The fitted PDDF with falsely given f(R) has an r(P1): r(P1) ratio between 0.4 and 0.5, 

referring to dimer structures where the two domains slightly fused into each other, possibly forming 

bottleneck at the interface. A falsely given f(R) can result in incomplete removal of the size-distribution 

smearing effect. It is unnecessary to strive for perfectionism in this issue since the size-distribution 

smearing effect causes a loss of information, making it impossible to refocus the SAXS profile perfectly. 

The more accurate we know about the size distribution, the higher quality we can get from the 

refocusing fitting. The results suggested that precise determination of particle size distribution function 

is essential even though our refocusing fitting is robust. The developed size refocusing approach can 

tolerate falsely given f(R) and extract quantitative geometrical information from smeared data. 

Real-world size distributions of nanoparticle ensembles are often complicated, displaying irregular 

curves such as multi-peaks. To assess the efficacy of our method in handling such cases, we present an 

example of refocusing the PDDF of spherical nanoparticle from an ensemble with a bimodal Gaussian 

size distribution. Specifically, we simulated a nanoparticle ensemble with a size distribution consisting 

of two Gaussian distributions (Figure S4(a)). One distribution had a mean diameter of 30 Å, while the 

other had a mean diameter of 90 Å. Both distributions exhibited a standard deviation of 15%. It is 

noteworthy that in SAXS measurements, the scattering intensity and PDDF are directly proportional to 

the volume squared of the particles. Consequently, the larger particle contributed 729 (36) times more 

to the scattering intensity and PDDF than the smaller particle. To ensure comparable contributions in 

the PDDF, we set their ratio based on the number of particles to 1:1000 (Figure S4(b). The size-

refocusing algorithm also performed well in the case of the bimodal size distribution, as presented in 

Figure S4(c). The underlying deconvolution principle remains consistent regardless of the distribution 

function's appearance. The algorithm successfully retrieved the characteristic one-peak, symmetric 

feature of the spherical particle PDDF from the complex PDDF with bimodal size distributions. 

We applied the size-refocusing fitting method to the experimental SAXS profiles of colloidal Ag 

nanoparticles. The Ag nanoparticles were synthesized from chemical reduction of AgNO3 in oleylamine 

at elevated temperatures and characterized with transmission electron microscopy (TEM) (Figure 7(a)). 

The details of the synthesis, TEM characterization, and SAXS experiment are described in supporting 

materials. The synthesized Ag nanoparticles were spherical in shape, with an average radius of 7.9 nm. 

The size distribution, presented in Figure 7(b), indicates that the synthesized Ag nanoparticles have a 
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polydisperse distribution with a standard deviation of ~12%. The PDDF profile of the Ag nanoparticles 

was calculated from the measured SAXS profile. Both the measured SAXS profile and PDDF profiles 

were found to be smeared due to the polydispersity of the particles. We applied the size-refocusing 

method to the smeared PDDF profile using a 12% log-normal size distribution to obtain a more accurate 

representation of the spherical Ag nanoparticle geometry. The resulting recovered PDDF profile, shown 

in Figure 7(c), exhibits a more symmetric shape and a clear cut-off at Dmax around 9 nm, which is close 

to the average diameter determined from the TEM measurement. The size-refocused SAXS profile was 

calculated from the recovered PDDF profile using the forward Fourier transform. The size-distribution 

smearing effect is removed from the SAXS profile, as shown in Figure 7(d). The size-refocused SAXS 

profile exhibits a clear oscillational structure, enabling more accurate determination of morphological 

parameters such as the radius of gyration. 

 

Figure 7 (a) TEM image of the synthesized Ag nanoparticles. (b) Statistic histogram of the diameter 

of Ag nanoparticles measured from TEM images. (c) PDDF profile and size-refocused PDDF profile 

of Ag nanoparticles using a 12% log-normal size distribution function. (d) SAXS profiles measured 

from the colloidal Ag nanoparticle dispersions and the size-refocused SAXS profile of Ag 

nanoparticles converted from the size-refocused PDDF, intensities vertically offset for visibility. 

 

While our method has demonstrated promising results in addressing the challenges posed by size 

polydispersity in nanoparticles, it is important to acknowledge the limitations of this approach. First, 
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our focus on the nanoparticle polydispersity is their variations in size, and the PDDF of the particles in 

the ensemble should follow the scaling function in eq. (11). However, this requirement may not be 

applicable to complex nanoparticles composed of multiple domains, where polydispersity encompasses 

parameters beyond size distribution. For instance, nanoparticles with a core-shell structure exhibit 

polydispersity that involves variations in overall size, the core-shell ratio, and the symmetry of the core 

and shell. Our method will not work for such systems. Second, the current method also relies on the 

known particle size-distribution in the fitting process. However, in situations where techniques like 

TEM are not available, there is a need to extract both the size-distribution and accurate geometrical 

information solely from the SAXS profile. Although our method has shown effectiveness even when 

the size-distribution is not precisely determined, accurately determining the size distribution without 

any a priori knowledge of the particle geometry remains a challenge. Future research efforts could focus 

on developing functions to directly determine the size distribution from the SAXS profile, enabling 

simultaneous fitting of both the size distribution functions and the PDDF. This enhancement would 

significantly broaden the applicability of our size-refocusing algorithm and extend its potential in 

studying synthesized nanoparticles without the need of additional characterization techniques. 

4. Conclusion 

We have developed a practical fitting approach for reducing the size-distribution smearing effect in the 

PDDF profile of polydisperse particle system. The approach relies on gradient descent searching with 

regularization of penalty terms. The resulting PDDF of the size-refocused model particle is of high 

quality for shape reconstruction. While the size-refocusing procedure requires a pre-determined size 

distribution function, it is still robust even when the size-distribution function is not accurately 

determined. Size distributions of nanoparticle systems usually undermine the quality of SAXS data, 

rendering many such systems unsuitable for SAXS study. Preparing samples to narrow down 

polydispersity could be time-consuming and generate unnecessary waste. Separation techniques like 

size-exclusion chromatography and size-selective precipitation may not always work for various 

nanoparticle systems made of different materials. Our size-refocusing data fitting method provides a 

post-processing strategy for the polydispersity problem. The size-refocusing fitting will also benefit in-

situ SAXS studies of nanoparticle growth and transformation, where polydispersity cannot be narrowed 

in real time. The size-refocusing procedure reveals detailed morphological information that benefits the 

application of advanced 3D reconstruction techniques on polydisperse nanoparticle systems. We expect 

that the size-refocusing fitting method will become an essential step in the SAXS data processing, 

helping researchers obtain clear and detailed 3D images from nanoparticles of interest. 
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Supporting information  

S1. Supplementary figures 

 

Figure S1 The corresponding SAXS intensity profiles calculated from the recovered PDDF profiles 

(pink curves) and reference PDDF profiles (gray curves) presented in Figure 5. The two SAXS curves 

in each panel were offset for easy visualization. 
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Figure S2 The evolution of values of each term in the goal function as a function of the number of 

iterations during the fitting procedure presented in Figure 6. 

 

Figure S3 (a) The recovered 𝑃𝑃�0(𝑟𝑟/𝐷𝐷max) (𝐷𝐷max = 80 Å) of dimer particle ensembles presented in 

Figure 5(a) at different falsely given conditions: orange - 5% perturbation (noise) added to 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟); 

pink - given a 𝜎𝜎 = 0.30 (~30%) log-normal size distribution; blue: given a 𝜎𝜎 = 0.20 (~20%) log-normal 

size distribution; green - given a 𝜎𝜎 = 0.25 (25%) Gaussian size distribution. Gray curve represents the 

reference curve calculated by the voxel model. (b) The corresponding SAXS intensity profiles 

calculated from the PDDF profiles presented in (a). The curves were offset for easy visualization. 

 

Figure S4 Refocusing the PDDF of spherical nanoparticle from a bimodal Gaussian size distribution. 

(a) Simulated size distribution consisting of two Gaussian distributions, with mean diameters of 30 Å 

and 90 Å, both exhibiting a standard deviation of 15%. The ratio of the respective particle numbers was 

set to 1:1000 to ensure comparable contributions of these two groups of nanoparticles to the PDDF. (b) 

The PDDF spherical nanoparticle ensembles with a bimodal Gaussian size distribution (c) The 

deconvoluted, size-refocused PDDF with the characteristic one-peak, symmetric feature of the spherical 

particle, compared to the reference.  


