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ABSTRACT

By super-localizing the positions of millions of single molecules over many camera frames, a class of
super-resolution fluorescence microscopy methods known as single-molecule localization microscopy
(SMLM) has revolutionized how we understand subcellular structures over the past decade. In this review,
we highlight emerging studies that transcend the outstanding structural (shape) information offered by
SMLM to extract and map physicochemical parameters in the living mammalian cell at single-molecule
and super-resolution levels. By encoding-decoding high-dimensional information such as emission and
excitation spectra, motion, polarization, fluorescence lifetime, and beyond, for every molecule, and mass-
accumulating these measurements for millions of molecules, such multidimensional and multifunctional
super-resolution approaches open new windows to intracellular architectures and dynamics, as well as
their underlying biophysical rules, far beyond the diffraction limit.

1. Introduction

Recent advances in super-resolution fluorescence microscopy (SRM) based on the massive accumulation
of the super-localized positions of single molecules that stochastically switch between emitting and dark
states over different camera frames, i.e., single-molecule localization microscopy (SMLM), have led to
exciting scientific discoveries and technical developments (1-6). Many existing reviews on SMLM and
SRM focus on the ever-increasing spatiotemporal resolutions, aiming to elucidate subcellular structural
(shape) information to the best possible extent.

In this review, we focus on emerging work that transcends the outstanding structural information
offered by SMLM to extract and map functional (7) physicochemical parameters in the living mammalian
cell at single-molecule and super-resolution levels. While such experiments are often enabled by
encoding-decoding new dimensions of single-molecule signal, they are also distinct from earlier single-
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molecule studies in which isolated events are recorded (8-11). Instead, to achieve mapping at the nanoscale,
single-molecule spectroscopies of various forms are mass-accumulated, often for millions of individual
molecules, to be integrated with the super-localized positions of the same molecules. Below we categorize
our discussion by the different single-molecule signal spaces being probed, including fluorescence
intensity, spectra, motion, polarization, lifetime, and non-fluorescence methods. Together, these rising
multidimensional SRM approaches afford rich spatial and functional information and hence exciting new
insights into the dynamic processes and behaviors of the living cell.

2. Single-molecule fluorescence intensity

Fluorescence intensity remains the most straightforward parameter to analyze in single-molecule data.
However, owing to the inherently large molecule-to-molecule variation in emission intensity in SMLM,
small changes in intensity are difficult to discriminate. Fluorescence turn-on of initially dark probes offers
a strategy to map physical parameters or chemical activities by counting the locally activated molecules.
Still, such approaches leave ambiguities between the local level of activation and concentration of probes,
hence a blurred boundary between functional and structural readouts. This issue may be overcome with
fluorescence spectrum and lifetime detections, which are discussed later in Sections 3 and 6.

2.1. Fluorescence turn-on owing to specific local environments and protein conformations

A class of fluorogenic probes turn on when entering specific physical environments (12). For example,
the solvatochromic dye Nile Red is non-fluorescent in aqueous solutions but becomes highly emitting in
hydrophobic environments. This effect provides a mechanism in which dynamic single-molecule
fluorescence on-off switching is maintained over long periods as probe molecules stochastically enter and
exit the hydrophobic phase (Figure 1a), hence enabling SMLM for in vitro and cellular lipid membranes
(Figure 1b) (13-16) and in vitro protein aggregates (15; 17-19). The fluorescence quantum yield of
rotatable molecules can be strongly enhanced by conformation locking. For functional SMLM, such
effects have enabled the detection and SRM imaging of specific protein conformations, e.g., B-sheet
aggregates in amyloid fibrils (19-24). Beyond the passive binding of fluorogenic probes, Liu ef al. devised
biosensors in which, upon protein conformation changes, a concealed small tag is exposed to bind with a
fluorescent reporter. They thus detected single active proteins and tracked their motion in the live-cell
plasma membrane (25).

2.2. Reaction-triggered fluorescence turn-on

Initially caged or quenched fluorophores may be turned on by chemical or enzymatic reactions (26), thus
opening a window into local activities. For SMLM, Halabi ef al. devised a fluorogenic probe that was
activated by carboxylesterases (Figure 1¢), and thus reconstructed SRM images of esterase activity in live
cells (Figure 1d) (27). Chai et al. developed a [B-galactosidase (B-Gal)-responsive photochromic
fluorescent probe, enabling SMLM mapping of the subcellular distribution of -Gal activity (28).

Fluorophore intensity may also be modulated by ion binding-unbinding. Fluorescent indicators
have thus been employed to visualize local bursts of pH and Ca?" signals in live cells. Treating individual



bursts, presumably owing to the collective responses of indicator molecules to individual sub-diffraction-
limit events, e.g., synaptic vesicle activities, analogous to single-molecule images in SMLM, thus allowed
the super-resolution visualization of activity hotspots (29-31).

2.3. Fluorescence turn-on and fluctuation via interactions between biomolecules

Fluorescence turn-on and fluctuation may also be engineered via interactions between biomolecules.
Based on the tension-induced unzipping of DNA structures, two recent studies employed fluorescent
probes that were activated by the piconewton traction forces between single integrin proteins at the cell
surface and the substrate, and so achieved SMLM force mapping (e.g., Figure 1ef) (32; 33). With split
fluorescent proteins (FPs), bimolecular fluorescence complementation (BiFC) has been successfully
integrated with SMLM to map protein-protein interactions in live cells (34; 35). Meanwhile, fluorescence
fluctuation increase by contact (FLINC) capitalizes on the elevated fluctuations in fluorescence intensity
when two FPs are brought into proximity, thus achieving SRM of enzyme activities in live cells (36; 37).

3. Single-molecule spectral responses

Spectral responses provide a robust way to encode functional information that is decoupled from the
fluorescence intensity and count of single molecules. Although it has been technically demanding to
extract the spectral characteristics of single molecules, recent years have seen the emergence of new
approaches that well suit the unique operational schemes of SMLM.

3.1. Wavelength-split detection

A facile method to detect single-molecule spectral responses is wavelength-split detection, in which a
dichroic mirror splits (wide-field) fluorescence into two views for the separate, parallel recording of long-
and short-wavelength components (Figure 2a). For SMLM, this approach enables the identification of
single molecules based on the ratio of the detected photon counts in the two views (Figure 2b). With a
single excitation laser, multicolor SMLM 1is thus concurrently performed for 2-4 fluorophores of
overlapping spectra (e.g., Figure 2¢) (38-40). For imaging functional parameters, local pH has been
examined in gel and silica systems through the two-wavelength ratiometric single-molecule detection of
SNARF-1, a fluorescent pH indicator that exhibits substantially different emission spectra in its protonated
and deprotonated states, so far limited to sparse molecules (41; 42).

Wavelength-split detection schemes have also been vital to Forster resonance energy transfer
(FRET) experiments, in which the relative emission intensities of donor and acceptor fluorophores serve
as a molecular ruler for quantifying interactions and conformational dynamics at sub-10 nm length scales
(43; 44). Chemically synthesized and genetically encoded FRET-based biosensors have elucidated vital
functional parameters inside the living cell, including ion and small-molecule concentrations, cellular
microenvironments, and enzymatic activities (45; 46).

Single-molecule FRET (smFRET) offers powerful insights into parameters obscured in ensemble
averaging, e.g., multiple states and their interconversions, and so has become an indispensable tool for
studying biomolecular conformations and dynamics in vitro (44; 47; 48). However, smFRET has seen



limited applications in live cells (44; 49). The relatively low brightness and large size of fluorescent
proteins make them unfavorable for snFRET; various approaches have thus been devised to introduce
organic dye-based smFRET probes into mammalian and bacterial cells, including microinjection (50-52),
heat shock (53), and electroporation (54), or combining FPs with self-labeling tags and fluorogenic
membrane-permeable dyes (55). Separately, dye tagging can be more readily achieved for targets at the
cell surface (56-58).

With the labeling issues addressed, live-cell smFRET is so far still limited in spatial mapping
capabilities. For example, the formation of SNARE protein complexes in the live cell has been examined
with wide-field smFRET, but only for ~100 sparsely distributed molecules (51). With confocal smFRET,
Konig et al. monitored the compaction of the intrinsically disorder protein ProTa in live cells, but only
discussed limited spatial information by distinguishing molecules located in the nucleus, cytosol, and
outside the cell (52). For studying the dimerization of G protein-coupled receptors (GPCRs) at the cell
surface, Asher et al. recorded long time traces to monitor dimer conformations and intra-membrane
diffusion, but under either low expression levels or after photobleaching to ensure sparse single molecules
(58). Utilizing the dynamic binding-unbinding of epidermal growth factor (EGF) labeled by donor or
acceptor dyes to EGF receptors (EGFRs) at the cell surface, Winckler et al. recorded high-density
smFRET in the wide field over ~10* frames, and so obtained SMLM maps of EGFR dimers, showing
preferential localization to the cell edge (Figure 2d) (57). However, quantification of such smFRET data
is difficult, as the stochastic labeling leads to only a small proportion of the dimers containing both the
donor and acceptor dyes.

3.2. Spectrally resolved SMLM

Although wavelength-split detection is simple in implementation, it achieves limited spectral sensitivity.
The ratiometric readouts calculated from the two split views depend on the spectral characteristics of the
dichroic mirror used, and so are difficult to compare between studies and vulnerable to operational
conditions, including backgrounds.

To resolve the actual emission spectra of single molecules, typical approaches spatially confine
the illumination and/or detection (e.g., to a single spot in a confocal setting) to ensure fluorescence is
spectrally dispersed from only one single molecule at a time (9; 59). Scanning across the sample then
maps out the spectra of different molecules. Although good spectra are recorded, such single-spot
detection schemes afford low throughput and limit samples to sparse molecules that are resolvable with
diffraction-limited optics.

These limitations are overcome by a new detection scheme in which single-molecule fluorescence
is dispersed in the wide field (60; 61). For molecules sparsely distributed in each frame, as encountered in
SMLM, it is noted that their images are self-confined into individual emission spots. Concurrent spectral
dispersion of these point sources in the wide field thus enables the parallel recording of tens of single-
molecule spectra with a ~10 ms camera snapshot (Figure 3ab). Next, utilizing single-molecule
fluorescence on-off switching to visit different molecules over consecutive camera frames, a key strategy



of SMLM, the spectra of millions of single molecules are thus acquired in minutes, hence affording
ultrahigh-throughput single-molecule spectroscopy.

The massively accumulated single-molecule spectra, alongside the concurrently super-localized
positions of the same molecules, are synthesized into spectrally resolved SMLM (SR-SMLM) data
affording local emission spectra at nanoscale spatial resolution (15; 60-63). When applied to multiplexed
imaging (60; 62-64), such approaches achieved crosstalk-free three-dimensional (3D) SRM for four
fluorophores with heavily overlapping spectra (60) and the simultaneous tracking of different single
molecules and quantum dots (64; 65).

Integration with fluorescent probes that exhibit spectral changes in response to local
physicochemical parameters next enabled super-resolution functional mapping. With the solvatochromic
dye Nile Red, SR-SMLM thus resolved nanoscale heterogeneities in the membranes of live mammalian
cells, showing the intracellular organelle membranes as chemically more polar than the plasm membrane
owing to less ordered lipid packing (Figure 3cd), and noting the formation of low-polarity, raft-like
nanodomains in the plasma membrane upon cholesterol addition or cholera-toxin treatment (16). For in
vitro systems, Nile Red-based SR-SMLM has similarly resolved chemical polarities for model lipid
bilayer membranes and vesicles (15; 16; 66), protein aggregates (Figure 3ef) (15; 17; 19), surface adlayers
(67), and polymeric nanoparticles (68). A tailor-made Nile Red derivative further enabled the specific
probing of the live-cell plasma membrane, unveiling nanoscopic protrusions and invaginations of reduced
lipid order (Figure 3g) (69). Future SR-SMLM developments may harness the genetic targeting of Nile
Red (70; 71) to probe specific subcellular targets.

3.3. Excitation-based spectral imaging

Although spectral fluorescence microscopy methods (72; 73), including SR-SMLM, provide powerful
paths toward multiplexed and functional imaging, typical approaches of dispersing the local emission are
difficult to implement and limit the time resolution.

Recent work highlights the power of excitation-based spectral microscopy (74-76). By collecting
fluorescence with a fixed emission band but scanning the excitation wavelength for the entire imaging
field, such schemes remove the need to disperse the emission signal over many detector pixels, as required
in typical emission-based spectral microscopy, yet achieve comparable spectral unmixing capabilities.
Thus, with camera frame-synchronized fast scanning of the excitation wavelength (Figure 4a), six
subcellular targets, labeled by fluorophores substantially overlapping in spectrum, were simultaneously
imaged in the wide field using a single filter cube at low crosstalk and high speeds (76). Combining
different filter cubes enabled multiplexing with more fluorophores (77). The ability to quantify the
abundances of different species via the excitation spectra (Figure 4b) further enabled the fast, quantitative
imaging of intracellular physicochemical parameters, such as pH (Figure 4c¢) and macromolecular
crowding, with bi-state and FRET-based biosensors (76).

The application of excitation-based spectral microscopy to SMLM, however, is non-trivial. As the
excitation spectrum is collected by monitoring the emission intensity when the excitation wavelength is
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scanned, the frequent on-off switching of single-molecule emission in SMLM makes it unreliable, if not
impossible, to determine how the emission intensity responses to excitation wavelengths scanned over
consecutive camera frames. Wu et al. provided an elegant solution in which a resonant mirror rapidly
switched the wide-field image back and forth between three recording positions for many rounds within
each camera frame (Figure 4d) (78). With three synchronized excitation lasers, they thus well
discriminated four spectrally overlapped fluorophores for the tetra-color SMLM of fixed cells (Figure 4e-
g). The potential application of related approaches to living cells and to the functional readouts of
fluorescent biosensors presents exciting perspectives.

4. Single-molecule motions

Motions provide yet another great window into molecular behaviors and interactions. Resolving the
intracellular movement of biomolecules may enable the spatial mapping of biophysical parameters
including diffusion modes and constants, viscosity, binding kinetics, and conformational states (79-86).

4.1. Fluorescence correlation spectroscopy

Fluorescence correlation spectroscopy (FCS) measures fluorescence fluctuations as single molecules
transiently enter and leave the detection spot, e.g., in a confocal setting. Through time-correlating the
detected fluctuations, FCS provides valuable insights into intracellular diffusions, concentrations, and
intermolecular interactions (80; 87; 88). Recent integration with STED (stimulated emission depletion)
SRM has further pushed FCS beyond the diffraction limit (89). However, single-molecule events are not
isolated, and FCS generally achieves limited spatial mapping capabilities (88; 90).

4.2. Single-particle tracking

To access motions at the true single-molecule level, single-particle tracking (SPT) has found wide use in
living cells and been the subject of many reviews (79; 81; 82; 91). Super-localizing single molecules
enables motion quantification at the nanoscale. Recent advances in MINFLUX, a method that modulates
the illumination pattern to achieve photon-efficient localization of single molecules with exceptional
spatiotemporal resolutions (92), have permitted the direct observation of a dye-tagged motor protein
stepping on intracellular microtubules with <5 nm spatial resolution at few-millisecond temporal
resolutions (93). Monitoring the motion of a single molecule over long trajectories further allows the
observation of asynchronous dynamics, e.g., transient intermolecular interactions, and the extraction of
diverse biophysical parameters such as binding kinetics, non-Brownian diffusion modes, and directional
transport (81; 84).

While SPT is traditionally applied to sparse molecules to avoid trajectory overlapping, recent
developments integrating SMLM-inspired photoactivation and fluorophore-exchange schemes have
permitted the high-density tracking of single-molecule trajectories (57; 91; 94-97). However, the focus is
often on obtaining long trajectories to assign a diffusion coefficient value to each molecule, thus yielding
limited spatial mapping and restricting applications to slow diffusion in membranes, where the bound
molecules stay in focus over many frames.



4.3. Single-molecule displacement/diffusivity mapping

To overcome SPT’s limited spatial mapping capabilities and access the fast diffusion of unbound
molecules, an emerging approach, single-molecule displacement/diffusivity mapping (SMdM) (98; 99),
forgoes trajectories but focuses on transient displacements. Thus, rather than following how each molecule
behaves as it randomly visits different, potentially heterogeneous locations, SMdM flips the question to
survey, for each fixed location, how different (yet identical) single molecules move locally. This location-
centered strategy is naturally powerful for spatial mapping. Moreover, by focusing on transient
displacements, each molecule only needs to be localized twice within a short time window. For fast-
diffusing molecules, a tandem excitation scheme is thus devised to apply a pair of closely timed
stroboscopic pulses across two camera frames to capture single-molecule images over time separations
substantially shorter than the camera frame time, from which single-molecule displacements are extracted
(Figure 5ab) (98). This tandem excitation scheme further leaves ample time between the anti-paired
pulses (Figure Sab) to allow efficient probe exchanges through diffusion, thus enabling SMdM for non-
photoswitchable fluorophores (98; 100). Repeating the above scheme ~10* times next accumulates
millions of single-molecule displacements to be spatially binned for individual fitting to extract local
diffusion coefficient D (Figure Scd) and generate its super-resolved map (Figure 5e) (98). Local
displacement direction analysis is further developed to elucidate diffusion anisotropy (Figure 5f) (99;
101).

With ~30 kDa FPs, SMdM thus uncovered nanoscale diffusion heterogeneities in the mammalian
cytoplasm (Figure 5e), nucleus (Figure 5g), and organelles, and identified the protein net charge as a key
determinant of intracellular diffusion (Figure Sh) (98; 101). By squeezing the tandem-pulse time
separation to 400 pus and incorporating graphene-based electroporation for probe delivery (102), SMdM
further quantified the very fast diffusion of small (<1 kDa) solutes, unveiling their unhindered diffusion
in the mammalian cell (Figure 5i) (100). For cellular membranes, integration of SMdM with Nile Red-
based SR-SMLM resolved diffusion heterogeneities of different origins (99). For in vitro FUS condensates
formed through liquid-liquid phase separation, SMdM unveiled substantial diffusion slowdowns at surface
nanoaggregates (19).

The massively accumulated single-molecule displacements in SMdM further enable D-value
determination to =1% precisions (103), which has been utilized to establish a universal dependency of D
on molecular weight for proteins and small molecules (102; 103), show no changes in D in enzyme
reactions (103), and determine how D scales with meshwork sizes in expandable hydrogels (104).

While SMdM of FPs in mammalian cells has so far focused on elucidating nonspecific charge
interactions, tagging FPs to specific intracellular proteins could employ SMdM to map intracellular
protein conformation, oligomerization, and interactions; recent SMdM work on bacteria has pointed to
such directions (105; 106). The compatibility of SMdM with non-photoswitchable fluorophores (98; 100)
and the demonstrated successful intracellular probe delivery for SMdM (100) further imply the possible
integration of SMdM with the above-discussed dye-based smFRET for functional readouts. Meanwhile,



while SMdM has unveiled rich diffusion heterogeneity by just analyzing single-step displacements
between tandem frames, future developments may expand on this concept to enable the detection of few-
step short tracks, from which one may garner information on nonlinear diffusion and dynamic transition
between states.

5. Single-molecule fluorescence polarization and anisotropy

Fluorescence polarization and anisotropy offer valuable information about molecular orientations and
dynamics (107; 108). Splitting the fluorescence emission into orthogonal polarizations and/or modulating
the polarization orientation of the excitation laser enable the encoding-decoding of single-molecule
polarization and anisotropy in SMLM (109-112).

Biological filaments are often assembled from oriented subunits. For in vitro samples, the fixed
binding orientations of fluorogenic probes to filaments have thus yielded clear molecular orientations for
DNA strands (111-113) and amyloid fibrils (18; 21) in polarization-resolved SMLM data. For imaging in
the mammalian cell, early studies examined fluorescence anisotropy in the SMLM data of FP-tagged actin
to detect local heterogeneity in rotational mobility (109; 110). Valades Cruz et al. compared polarization-
resolved SMLM data for differently labeled microtubule and actin cytoskeletons in fixed cells, and
identified Alexa Fluor 488-phalloidin as a good probe to resolve the orientation of the latter (112). By
delivering the same probe into live mammalian cells at low concentrations, Mehta et al. resolved actin
filament orientations in SPT to compare with the retrograde flow direction at the leading edge (114).
Rimoli et al. recently developed strategies to determine single molecules’ orientation in 2D and infer their
3D orientations, which they applied to the SMLM of Alexa Fluor 488-phalloidin-labeled dense actin
structures in fixed cells (Figure 6a-d) (115).

Polarization-based functional SMLM has also shed new light on the structure of lipid membranes.
Integrating polarized beam-splitting and a spatial light modulator, Lu et el. encoded 3D orientation and
wobbling into the single-molecule point spread function, and thus analyzed the ordering and packing
effects of cholesterol in supported lipid bilayers and resolved nanoscale domains with different ordering
parameters (116). A recent study constructed a radially and azimuthally polarized multi-view reflector to
image single-molecule fluorescence across eight polarization channels to simultaneously determine
molecular location and orientation in three dimensions each, and the resultant 6D SMLM resolved dye
orientations in fixed-cell membranes (Figure 6e-f) (117).

6. Single-molecule fluorescence lifetime

By detecting the exponential decay rate of emission at the nanosecond time scale, fluorescence lifetime
imaging microscopy (FLIM) provides a powerful, probe concentration-insensitive handle for the
functional imaging of biological samples (118-120), with diverse probes developed for chemical polarity,
viscosity, temperature, and different analytes.

Fluorescence lifetime-resolved SMLM (FL-SMLM) has been achieved with both confocal and
wide-field experimental setups (Figure 7a-d), utilizing a single-element single-photon avalanche diode



detector or an array detector based on a microchannel-plate photomultiplier tube, respectively (121; 122).
Whereas confocal setups can only image a relatively small field of view with reasonable imaging speeds,
the currently available array detectors suffer from low (~5%) quantum efficiencies. Lifetime estimations
can also be made for the wide field with conventional high-sensitivity cameras by time-gating the signal
electro-optically with a Pockels cell (Figure 7ef) (123), but with limitations on sensitivity.

Thus far, the application of FL-SMLM has been limited to in vitro samples and fixed cells, with
an initial focus on separating labels for multiplexed imaging (Figure 7bcf) (121; 122; 124). Recent work
detected FRET (125) and metal/graphene-induced energy transfer (122; 126; 127), the latter further
enabling 3D-SMLM by providing an interesting way to determine the fluorophore’s distance to the
substrate (Figure 7d). Possible future FL-SMLM applications to live cells and to the super-resolution
mapping of local environments and intermolecular interactions hold great potential.

7. Non-fluorescence methods

The above success of SMLM for functional SRM imaging raises the question of whether related
approaches could be applied to non-fluorescence methods, which may overcome the limited number of
photons that can be extracted from individual fluorophores, enable label-free imaging, or access new
spectroscopy insights for decoding physicochemical parameters (128-130).

Microspheres and nanoparticles have long served as unbleachable probes for live-cell SPT (91;
131). Recent advances in photothermal microscopy (91; 128; 132) and interferometric scattering
microscopy (133-136) have further enabled the SPT of small gold nanoparticles in live cells, as well as
the room-temperature detection and analysis of single molecules in vitro. It, however, remains a challenge
to resolve single molecules in the crowded cell, or to detect many molecules within the diffraction limit.

Nonlinear optical methods such as nonlinear Raman, harmonic generation, multiphoton
fluorescence, and transient absorption offer intriguing prospects for functional SRM for their outstanding
chemical and structural contrasts (130; 137-139). Super-resolution nonlinear optical microscopy has been
achieved with expansion microscopy (140; 141), STED-based imaging (142), and interferometric
excitation (143), among other approaches (129; 130). Application to SMLM is limited by the relatively
low probability of nonlinear optical processes and the need for a scalable approach to signal modulation
for the isolation of single molecules. Plasmonic amplification of light-matter interactions (144) provides
a viable path; surface-enhanced Raman spectroscopy (SERS) has achieved single-molecule sensitivity
(145; 146), and its local blinking has enabled SMLM-type imaging of dried samples (147; 148). However,
the patterned plasmonic substrates distort the resultant image, and their required proximity to the sample
limits applicability.

8. Conclusion

In conclusion, while the outstanding spatial resolution of SMLM has attracted wide attention, in this
review we have showcased how, by extending mass-accumulated single-molecule measurements to higher
dimensions, including emission and excitation spectra, motion, polarization, and fluorescence lifetime,



the resultant multidimensional SRM approaches provide fascinating new insights into physicochemical
parameters in the living cell.

Future developments call for a synergy of continued innovations in optics on both the excitation
and detection fronts, fluorescent probe design, synthesis, and delivery methods, as well as algorithm and
analysis tools. The need to detect single molecules and invoke fluorescence on-off switching poses
significant challenges: optimal results thus demand bright probes with high fluorescence quantum yields,
while on-off mechanisms such as photoswitching or reversible binding often need to be built in. Yet, the
uniqueness of sparse molecules across the camera frame, as often achieved in SMLM, offers new
possibilities, so that single-molecule images may be directly stretched/dispersed in the wide field for high-
throughput recording, and the recorded signal from each molecule is guaranteed a single identity,
removing the need of unmixing. New illumination sequences further enable SMLM/SMdM for constantly
bright fluorophores via diffusion-based probe exchange. Integrations between different SMLM modules,
as well as correlative approaches with other microscopy and spectroscopy techniques (149), provide
additional opportunities.
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Figure Captions

Figure 1. SMLM via fluorescence turn-on from specific local environments, reactions, and engineered
biomolecular interactions. (a) Fluorescence intensity time trace for a lipid vesicle, showing bursts due to
the stochastic entering of single Nile Red molecules into the lipid phase from the aqueous medium. (b)
SMLM image of a supported lipid bilayer obtained by localizing 2,778 single Nile Red molecules over
4,095 frames due to the above fluorescence turn-on process. Panels a-b adapted from Reference (13);
copyright 2006 National Academy of Sciences. (¢) Schematic: A caged (initially dark) probe (1) that can
be photoactivated into a fluorescent state after removal of the acetyl group by carboxylesterases (2). (d)
SMLM image of esterase activity based on 1 in a live mammalian cell. Panels c-d adapted with permission
from Reference (27); copyright 2017 American Chemical Society. (¢) Schematic: Cellular force SMLM
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based on force-activatable emitters in which the unzipping of a DNA/PNA (peptide nucleic acid) hybrid
leads to fluorescence dequenching and single-molecule emission. (f) Resultant integrin molecular tension
SMLM of a migrating keratocyte from 20 frames of recording. Panels e-f adapted with permission from
Reference (32); copyright 2020 American Chemical Society.

Figure 2. Split-wavelength detection for multicolor SMLM and smFRET in living cells. (a) Schematic:
A dichroic mirror (DCM) separates long- and short-wavelength components of single-molecule emission
for simultaneous imaging on two areas of a CCD. (b) Distribution of photon counts in the long- and short-
wavelength channels for single molecules detected in SMLM, for four dyes with overlapping emission
spectra (inset) (c¢) Simultaneous four-color SMLM of a fixed cell by separating the single-molecule
emission of four dyes based on b. Panels b-c adapted with permission from Reference (39); copyright
2010 Elsevier. (d) SMLM images due to the binding-unbinding of a mixture of donor- and acceptor-
labeled EGF molecules to EGFR in the plasma membrane of a live mammalian cell, for the donor (top)
and acceptor (bottom) channels when exciting the donor. Insets: Zoom-ins of the boxed regions. Single-
molecule emission in the acceptor channel is attributed to smFRET between single donor- and acceptor-
labeled EGFs bound to an EGFR dimer. Panel d adapted from Reference (57) (CC BY-NC-ND).

Figure 3. SR-SMLM and super-resolution mapping of chemical polarity for live-cell membranes and in
vitro protein aggregates. (a) Schematic: Fluorescence is dispersed in the wide field, so the emission spectra
of many single molecules are concurrently captured in a camera frame. Single-molecule fluorescence on-
off switching next enables the sampling of different molecules over consecutive frames. (b) Example
spectra of single Alexa Fluor 647 molecules recorded in a 9-ms camera frame. Panel b adapted from
Reference (60). (c¢) SR-SMLM image of Nile Red-highlighted lipid-membrane system in a live
mammalian cell. Color presents the single-molecule spectral mean; longer emission wavelengths
correspond to higher local chemical polarities. (d) Averaged single-molecule spectra at the plasma
membrane versus the internal nanoscale organelle membranes, compared to that at supported lipid bilayers
with and without the packing-order promoter cholesterol (Chol). Panels c-d adapted with permission from
Reference (16); copyright 2017 American Chemical Society. (¢) SR-SMLM images of Nile Red at the
surfaces of in vitro amyloid-f oligomers (left) and fibrils (right). (f) Frequency histogram of fluorescence
emission peaks for individual Nile Red molecules at the amyloid-f oligomers and fibrils. Panels e-f
adapted from Reference (15) (CC BY). (g) SR-SMLM image for the plasma membrane of a live
mammalian cell labeled by NR4A, a Nile Red derivative. Arrows point to higher local chemical polarities
at endocytic sites due to reduced lipid order. Panel g adapted with permission from Reference (69).

Figure 4. Excitation-based spectral microscopy and application to SMLM. (a) Schematic: the excitation
wavelength is varied in consecutive frames through the frame-synchronized modulation of the acousto-
optic tunable filter (AOTF). P polarizer, L lens, F bandpass filter, DM dichroic mirror. (b) 8-wavelength
excitation spectrum recorded with the setup in a, for pHRed FP expressed in a mammalian cell that was
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equilibrated to pH = 8.0 (black solid line), and its linear unmixing into the deprotonated (A”) and
protonated (HA) components (dash lines). (¢) Color-coded absolute pH map series for pHRed expressed
in the mitochondrial matrix in a living mammalian cell, as obtained through the linear unmixing of the
excitation spectrum as in b, showing concurrent fast changes in both the mitochondrial shape and matrix
pH at 0.8 s time resolution. Panels a-c adapted from Reference (76) (CC BY 4.0). (d) Schematic for
excitation-resolved SMLM: A resonant mirror fast-switches the wide-field image back and forth between
three recording positions with synchronized excitation of three lasers of different wavelengths. (e) Scatter
plot of the photon counts for individual Alexa Fluor 647 molecules when excited by the three lasers. (f)
Tetra-color SMLM by separating the excitation characteristics of four dyes based on their three-excitation-
wavelength single-molecule photon counts as shown in e. (g) Separated channels for the box in f, showing
minimal crosstalk. Panels d-g adapted from Reference (78) (CC BY 4.0).

Figure 5. SMdM: Super-resolution mapping of fast intracellular diffusion. (a) Schematic: A pair of closely
timed stroboscopic excitation pulses are applied across two tandem camera frames, so that the two
recorded images correspond to the short time separation A¢ between the paired pulses. This paired
excitation scheme is repeated ~10* times to enable statistics. (b) Example single-molecule images of
sulforhodamine-101 molecules diffusing in a living rat astrocyte, recorded in four consecutive frames with
the above tandem excitation scheme. Here, each pulse lasted 200 us, the center-to-center separation
between paired pulses was At = 500 us, and the camera frame time was 9.15 ms. Insets: comparison of
the localized single-molecule positions across the tandem frames, from which single-molecule
displacements are extracted. Panel b adapted with permission from Reference (100); copyright 2023
American Chemical Society. (c,d) Distributions of displacements in Az =1 ms for single mEos3.2 FP
molecules in a living mammalian cell, for two adjacent 300x300 nm? areas marked with orange and red
boxes in e. Blue curves: fits to a diffusion model, with resultant D values labeled. (e) Color-coded SMdM
D map for the intracellular diffusion of mEos3.2, obtained by spatially binning the accumulated single-
molecule displacements onto 100 x 100 nm? grids for local fitting as in c,d. Panels c-e adapted from
Reference (98). (f) Color map presenting the SMdM-determined local principal direction of diffusion for
BDP-TMR-alkyne in cellular membranes, showing anisotropic diffusion along the endoplasmic-reticulum
tubules. Panel f adapted with permission from Reference (99) ; copyright 2020 American Chemical
Society. (g) SMdM D map for mEos3.2 FP in the nuclear region of a living mammalian cell (left) versus
SMLM of the same region with a DNA stain (right), showing reduced D in the nucleolus (asterisk) and
fast and slow diffusion regions correlating to low and high local DNA densities (red and orange arrows).
(h) SMdM-determined mean D values for mEos3.2 FPs of different net charges in different subcellular
environments. Panels g-# adapted from Reference (98). (i) SMdM D map of Cy3B dye in a living
mammalian cell, obtained with Az =400 ps. Panel i adapted with permission from Reference (100);
copyright 2023 American Chemical Society.

Figure 6. Polarization-resolved SMLM and its applications to cytoskeleton and membrane in fixed cells.
(a) Schematic: fluorescence polarization behavior of Alexa Fluor 488-phalloidin labeling an actin filament.
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(b) Schematic: extracting single-molecule fluorescence polarization orientation and wobbling by
combining a half-wave plate (HWP) and two polarizing beamsplitters (PBS) and applying diaphragms (D)
to reduce the detection numerical aperture. (c-d) Resultant SMLM images resolving the mean orientation
(c) and wobbling angle (d) of Alexa Fluor 488-phalloidin labeling the actin cytoskeleton in a fixed cell.
Panels a-d adapted from Reference (115) (CC BY). (e,f) 6D (3D spatial and 3D orientational) SMLM
imaging of merocyanine 540 molecules bound to the membrane of a fixed cell: (e) In plane (x-y) view,
colored by the single-molecule azimuthal angle ¢. (f) Vertical (y-z) view of the boxed region, colored by
the single-molecule polar angle 6. Panels e-f adapted with permission from Reference (117).

Figure 7. Fluorescence lifetime-resolved SMLM. (a) Comparison of the fluorescence lifetime of single
molecules of five dyes measured with confocal and wide-field SMLM setups. (b) Top: Wide-field
lifetime-resolved SMLM image of a fixed cell double labeled with Cy3B against peroxisomes and Atto
550 against mitochondria, with color presenting the measured lifetime. Bottom: Zoom-in of the boxed
region and separation of the two dyes based on lifetime. (c) Lifetime histograms corresponding to b. Panels
a-c adapted from Reference (122) (CC-BY-NC-ND 4.0). (d) Fluorescence lifetime curves for AF647-
DNA molecules on glass and on gold substrates with 10-50 nm thick SiO» spacers measured with confocal
lifetime imaging, demonstrating distance-dependence decreases in fluorescence lifetime owing to metal-
induced energy transfer. Panel d adapted from Reference (126) (CC BY-NC). (e) Schematic: Time-gated
electro-optic imaging for wide-field lifetime-resolved SMLM using a resonantly driven Pockels cell and
a polarizing beamsplitter. (f) Resultant lifetime-resolved SMLM image of DNA origamis labeled with
Cy3B and Atto 565. Panels e,f adapted with permission from Reference (123); copyright 2021 American
Chemical Society.
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