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Abstract

The application of machine learning and deep learning techniques, including the wide use of non-ensemble, conventional neural net-
works (CoNN), for predicting various phenomena has become very popular in recent years thanks to the efficiencies and the abilities of
these techniques to find relationships in data without human intervention. However, certain CoNN setups may not work on some data-
sets, especially if the parameters passed to it, including model parameters and hyperparameters, are arguably arbitrary in nature and need
to continuously be updated with the need to retrain the model, especially if the additions of new features render old models obsolete. This
concern can be partially alleviated by employing committees of neural networks that are identical in terms of input features and initial-
ized randomly and ‘“‘vote” on the decisions made by the committees as a whole. Yet, members of the committee have similar architectures
and features passed to them, making it possible for the committee members to “agree” on identical sets of weights and biases for all
nodes and edges. Members of these committees also cannot be expanded to accommodate new features and entire committees must
therefore be retrained in order to do so. We propose the Random Hivemind (RH) approach, which helps to alleviate this concern by
having multiple neural network estimators make decisions based on random permutations of features and prescribing a method to deter-
mine the weight of the decision of each individual estimator. The effectiveness of RH is demonstrated through experimentation in the
predictions of hazardous Solar Energetic Particle (SEP) events by comparing it to that of using both CoNNs and the aforementioned
setup of committees identical in input features in this application. Our results demonstrate that RH, while having a comparable or better
performance than the CoNN and a Committee-based approach, demonstrates a lesser score spread for the individual experiments, and
shows promising results with respect to capturing almost every single flare instance leading to SEPs.
© 2024 COSPAR. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The prediction of Solar Energetic Particle (SEP) events

and the understanding of their precursors represent major
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fluxes of SEPs are of interest to various users, from govern-
mental and private space weather agencies to airlines and
power grid operators. Routine daily forecasting and
short-term warning and alert systems for Solar Proton
Events (SPEs) were implemented by the Space Weather
Prediction Center (SWPC) at the National Oceanic and
Atmospheric Administration (NOAA, Balch, 1999; Balch,
2008). The performance of the operational forecasting sys-
tems is still far from predicting every single SEP event
(Bain et al., 2021).

SEP events are initiated by solar flares and coronal mass
ejections (CMEs, Reames, 2021). Statistical relations
between the flare soft X-ray properties (such as the peak
ratios of the 1-8A and 0.5-4A fluxes, which is proportional
to the flare temperature computed in a single-temperature
approximation, Ryan et al., 2012; Sadykov et al., 2019)
and the consequent CMEs and SEPs have been known
for a long time. Solar flares are classified in terms of the
maximum soft X-ray (SXR) flux observed by the NOAA
Geostationary  Operational Environmental  Satellite
(GOES) Network in the 1-8A wavelength range. In this
classification, the A-class flares have the maximum soft
X-ray flux greater than 10~ W/m?; for the B, C, M, and
X-class flares, the SXR is greater than 107,107,107,
and 107" W/m? correspondingly. In particular, it was
found that the lower the soft X-ray class, the greater the
difference in the peak temperatures between the SEP-
associated and non-SEP flares, with lower temperatures
corresponding to the SEP-associated flares (Garcia,
1994). These relations were quantified and utilized for fore-
casting SEPs using a larger number of flare events (Garcia,
2004). The results were also reproduced later (Kahler and
Ling, 2018), where the authors attempted to predict the
SEP-associated flares using the k-nearest neighbors
machine learning algorithm and neural networks separately
for the Western and Eastern hemispheres of the Sun.
Although the observed relationships are clear, the exact
reason why the lower-temperature flares are more associ-
ated with SEPs remains largely unknown (Kahler and
Ling, 2018). In addition, the durations and temperatures
of the flares were found to be related statistically to the
properties of CMEs (Ling and Kahler, 2020; Kahler and
Ling, 2022). Thus, the flare duration and temperature can
be used to constrain SEP parameters (Kahler and
Vourlidas, 2013) or serve as a basis for establishing empir-
ical models for SEP forecasting (Richardson et al., 2018).
The Empirical model for Solar Proton Event Real-Time
Alert (ESPERTA) forecasting tool (Laurenza et al., 2009;
Laurenza et al., 2018) also utilizes the integrated SXR
intensities and integrated radio intensities at | MHz to pro-
vide short-term predictions of SPEs with proton energy
higher than 10 MeV and 100 MeV.

The extension of these works is the employment of
machine learning (ML) and deep learning techniques, in
particular, for forecasting SEPs based on the properties
of the preceding (parental) solar flares. For example,
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Aminalragia-Giamini et al. (2021) employed neural net-
works trained on the time series of the SXR fluxes observed
during the solar flares directly. The authors found that the
model can predict a large majority of SEP-associated flares
(higher than 85%) during the period of 1988-2013 while
maintaining a low false-positive rate. Boubrahimi et al.
(2017) analyzed the correlations among the GOES soft
X-ray and proton flux time series and employed the classi-
fication decision tree model for predicting the 100 MeV
SPEs. Lavasa et al. (2021) analyzed a variety of ML algo-
rithms such as random forest, neural networks, extremely
randomized trees, and extreme gradient boosting. They
concluded that, among the soft X-ray parameters, fluence
is the most important for predicting SEPs.

The utilization of Conventional Neural Networks (here-
after CoNNs, defined in this work as a single, i.e., non-
ensemble, neural network of any architecture) for space
weather prediction purposes is very common in literature
(e.g., Torres et al., 2022; Nishizuka et al., 2020, etc.). While
CoNNs are very flexible and malleable in how they train on
new data, the parameters they provide for the aspects, such
as the size and shape of a given model, hyperparameters,
and model selection, may need to be adjusted to be used
on other data sets. This comes with the consequence of a
requirement to continuously retrain models as data
becomes increasingly outdated or if new features are to
be added. A model’s number of epochs and learning rate
ideally need to be also adjusted based on the features fed
into the model. In particular, the number of epochs low
enough and the learning rate high enough can help to avoid
overfitting the model to noise data (Afaq and Rao, 2020;
You et al., 2019), yet one needs to make sure that the
model is trained to a sufficient extent in general to learn
the patterns in the data. This conflict may lead to a partic-
ular combination of an epoch count and learning rate for
an entire model being sub-optimal, as a single combination
may not work for all features, especially if some are more
deterministic of the true labels of a given data set than
others. Compromises could be made to adjust these param-
eters, but said compromises may, again, cause a given
model to underfit based on some parameters and overfit
based on others. One of the strategies to counter overfit-
ting, in general, is to employ ensemble learning
(Cunningham, 2000).

Another challenge related to the SEP prediction is that
these events are rare and will represent minority-class
events for the classification problem. For example, the
ratio of the number of days with the enhanced proton flux
with the energy greater than 10MeV and the particle flux
greater than 10pfu (one particle flux unit, pfu, is equal to
one particle per cm? per second per steradian) to the num-
ber of days with no enhanced flux is ~ 1/23 for Solar
Cycles 22-24 (Ali et al., 2023). This ratio is even smaller
(~ 1/34) for Solar Cycle 24 alone (Sadykov et al., 2021).
It was concluded for the ESPERTA model (Stumpo
et al., 2021) that the performance of the algorithm
(specifically, the False Alarm Rate, FAR) depends on the
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class-imbalance ratio in the train data set. Various tech-
niques can be implemented to deal with class-imbalanced
data, such as oversampling, undersampling, and misclassi-
fication weights (Ahmadzadeh et al., 2021), and using syn-
thetic data (Chen et al., 2021). In addition to the traditional
data-centric approaches to dealing with class imbalance,
ensemble classifiers can be employed in such problems
(Galar et al., 2012). With respect to the problem of the pre-
diction of SEPs, promising results were previously obtained
employing neural network-based Committee ensembles
(Aminalragia-Giamini et al., 2021) and random forest
ensemble algorithms (Lavasa et al., 2021).

In our previous work, we presented the application of
the random forest ML algorithm for predicting SEPs and
tested various class-imbalance treatment techniques
(O’Keefe et al., 2022). In this work, we expand our investi-
gation to new types of ML algorithms, including Conven-
tional Neural Networks (CoNN), an ensemble of CoNNs
following a voting approach (Committee, Aminalragia-
Giamini et al., 2021), and introduce a weighted consensus
that we call a Random Hivemind (RH). Both considered
ensemble approaches are so-called “bagging” ensemble
classifiers when individual ensemble members do not
depend on each other and deterministically contribute to
the classification decision. Investigation of the relative per-
formance of the algorithms on the given data set of flares
associated with SEPs is the primary focus of this paper.
The paper is structured as follows. Section 2 describes the
data preparation employed in this paper, namely the pro-
cessing of the soft X-ray data, the association of flares
and SEPs, and the preparation of data sets ready for
machine learning (ML) analyses. Section 3 describes the
ML algorithms tested in this work. The results and discus-
sion are presented in Section 4 and followed by the conclu-
sion in Section 5.

2. Data preparation

The solar soft X-ray (SXR) emission observed by the
GOES satellites in 0.54 A and 1-8 A wavelength channels
can be represented under a single-temperature plasma
approximation by two parameters, namely the plasma tem-
perature (7) and its emission measure (EM). We utilize the
legacy data set of the 7 and EM values estimated using the
Temperature and Emission Measure Based Background
Subtraction algorithm (TEBBS, Ryan et al., 2012;
Sadykov et al.,, 2017) and collected in the Interactive
Multi-Instrument Database of Solar Flares (IMIDSF',
Sadykov et al., 2017) for the 2002-2017 time period. In
addition to peak values of the temperature and emission
measure, T, and EM,,., we utilize the background-
subtracted flare classes (SXR,..), flare durations, the times
of the peaks of T, EM x, and SXR,,,, relative to the flare
start and end times, and the observed disk X- and Y-

! https://data.nas.nasa.gov/helio/portals/solarflares/
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coordinates of the host flare. In total, this data processing
gives 12 parameters for every solar flare. For some flares,
due to the complexity of the X-ray emission variations
and high background noise, this algorithm failed (produc-
ing unrealistic 7, = 100MK, and negative time differ-
ences), and such flares were excluded from our data set.
The total number of flares included in our analysis is
18311. Among these are: 5 A-class, 6919 B-class, 10074
C-class, 1207 M-class, and 106 X-class flares according
to the SXR classification. These flare classes were calcu-
lated after subtracting the SXR background. As illustrated
in Fig. 4c of Sadykov et al. (2019), the background subtrac-
tion mostly affects the flare class of the weak BC-class
flares, yet leading to more reliable behaviors of T and
EM curves.

To associate the flares with the SEP records, we utilize
the list of the Solar Proton Events Affecting the Earth
Environment” provided by the NOAA Space Environment
Services Center. This data set represents the SEP events
with the peak flux of >10MeV protons higher than
10pfu. A total of 64 flares from our list were associated
with the SEP events and 18247 flares were without SEPs
(non-SEP flares), providing an extreme class-imbalance
ratio of 1/285. In terms of the SXR,,. parameter, 8 of the
SEPs correspond to the C—class flares, 36 — to M-class,
and 20 — to X-class flares. The list of the studied flares
is publicly available at the Solar Energetic Particle Predic-
tion Portal (SEP?) website’. We note here, that the number
of SEP events considered in some other works on the SEP
prediction problem (e.g., Papaioannou et al., 2016; Lavasa
et al., 2021) was significantly larger (314 and 257, corre-
spondingly) than in the current work. Both of these studies
consider a longer time span (events detected during 1984—
2013 and 1988-2013) which led to larger statistics of SEP
events. Also, in the current work, we omit from considera-
tion the SEP events which (1) do not have an association
with the flare event, and (2) do not have the coordinates
of the host flare event identified according to the GOES
flare catalog. Both restrictions are leading to the loss of
15 SEP event records, leaving us with 64 events in total.
Fig. 1 illustrates the locations of the SEP and non-SEP
flares on the solar disk. It is evident that the SEP flares
have a preference to originate in the Western hemisphere,
which has a more direct magnetic connectivity to Earth,
although some SEP flares have originated close to the East-
ern limb as well.

The distribution of the SEP-associated and non-SEP
solar flares in the diagrams of the flare temperature vs.
the soft X-ray peak flux, the flare duration vs. the emission
measure, and the flare rise time vs. the flare decay time are
presented in Fig. 2. Here, the flare rise time is determined
as the time of SXR,... minus the flare start time, and the
flare decay time is determined as the flare end time minus

2 https://umbra.nascom.nasa.gov/SEP/
3 https://sun.njit.edu/SEP3/datasets.html
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Fig. 1. The locations of the SEP and non-SEP flares in the data set on the solar disk. Gray dots mark the solar flares that did not produce SEP events, and
red dots mark the flares that resulted in the SEP events. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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Fig. 2. (a) Distribution of the SEP and non-SEP flares in the soft X-ray flux at 1-8 A and flare peak temperatures diagram, (b) the flare duration and the
peak emission measure diagram, and (c) the flare rise time and flare decay time diagram. Black dots mark the solar flares that did not produce SEP events,
and red dots mark the flares that resulted in the SEP events. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

the time of SXR,,.... One can see that the flares that resulted
in SEPs are not distributed randomly, even among the
flares of the same SXR peak fluxes. Specifically, Fig. 2a
indicates that SEP-associated flares are colder on average
among the flares with the same SXR peak flux (or the flare
class). A similar dependence was found by Garcia (1994,
2004). While no obvious pattern is observed for the param-
eters presented in Figs. 2b and 2c¢, a more detailed investi-
gation is required to understand their relations to SEP-
associated flares. For the ML analysis, we subdivide the
data set into training and testing subsets; the latter contains
30% of the full dataset. The train-test separation is ran-

domly repeated ten times for every machine-learning exper-
iment presented in this paper.

3. Machine learning methodology

Three neural network-based approaches are considered
in this paper for the problem of prediction of SEP events.
The first is the conventional neural network (hereafter
CoNN), which represents a single fully connected neural
network architecture. For ensemble deep learners, two
more neural network-based approaches are constructed.
The first ensemble approach is the Committee scheme
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employed by Aminalragia-Giamini et al. (2021), which
involves several neural network estimators with the same
input features and input layer shapes. The second ensemble
approach is a Random Hivemind (RH) built using random
down-selection of the flare characteristics from the training
data as input features.

There are several motivations to consider the develop-
ment of the RH approach. First, the RH allows for individ-
ual estimators to be grown individually to accommodate
additional features without the need to retrain the entire
ensemble. By requiring some, but not all, of the estimators
to be retrained, this may reduce the amount of time it takes
to retrain deep learning models. Second, the RH not only
takes advantage of the ability of ensemble learning to coun-
ter overfitting in general (Cunningham, 2000), but also
adjusts the training epoch counts, learning rates, and vot-
ing weights of individual estimators depending on the
importance of the features used in these estimators. This
allows RH to accommodate the risk of overfitting by
reducing the chances of less important features being
included or influencing the prediction.

For the series of tests presented in this paper, we con-
sider two RH realizations that have several differences.
First, the realizations are using a different number of input
features. The first RH implementation (hereafter RH.v1)
uses the square root of the total number of features,
rounded up, as the number of input features for each neu-
ral network within an RH. The second implementation
(hereafter RH v2) uses half of the features as input. The
layout between estimators remains unchanged within each
Committee. In some sense, the semi-random selection of
features (the probability of selection is yet proportional
to their weight; see below) is inspired by the Random For-
est ensemble learning algorithm (Breiman, 2001). Corre-
spondingly, one has 12 features entering the CoNN or
each committee member, and 4 or 6 features selected using
the procedure described below entering the RH classifier.
Each ensemble setup (i.e. Committee, RH vl, and RH
v2) has 10 neural network estimators. The architectures
of the utilized ML methods are schematically illustrated
in Fig. 3.

The random permutations of features are chosen by first
computing the y-squared and mutual information gain
statistics between the features and the SEP presence to
assign scores to each feature based on how significant each
is in determining whether or not a given flare caused a SEP
event. Each feature’s score is calculated using this formula:

S = Xiz—‘rKi (1)

Here, s; is a given feature’s total score, y7 is the y-squared
statistic between a given feature and SEP presence, and x; is
the mutual information gain statistic between a given fea-
ture and SEP presence. After each feature is scored based
on this formula, the scores are normalized so that the
sum of these scores (“feature weights”) equals one. The fea-
ture weights are then used as the probabilities that given
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features with their respective weights will be chosen for a
given RH estimator.

Each neural network, including CoNNs, Committee
estimators, and RH estimators, has an input layer equal
to the number of features being tested by the estimator, a
dense layer with an input and output shape of 10, a drop-
out layer with a probability of 0.2, and an output layer with
an output shape equal to the number of predicted features.
The networks are implemented using the Skorch library
(Tietz et al., 2017). The numbers of epochs and learning
rates for all CoNN and Committee setups are
Hepochs = 500 and o = 0.001 following the hyperparameter
optimization discussed later. In addition, RH boosts its
epoch counts and learning rates using these formulae:

Hepochs =500 X (2 —x) (2)
ori =0.001 x {1 +In (%+ 1” (3)
ORHvV2 =0.001 x (05 +x) (4)

Here, x is the total sum of feature weights for a given esti-
mator, 7epochs 15 the number of epochs during the training
process, o is the learning rate, and e is the base of the nat-
ural logarithm. The parameter n = -, where Agetures 1S

N >
Nfeatures

the number of features selected for the given estimator,
and Xx is the total weight of all features in all estimators
within the ensemble. The RH classifier is tested twice, with
o equal to oy in the first test and o, in the second. Outcomes
are predicted by putting prediction data through each of
the estimators constructed during the training phase and
seeing what each estimator chooses as a predicted result.
Each committee considers all results by all estimators as
equal, using a simple plurality vote to determine which
class a given datum belongs to. Each RH considers each
estimator’s value in a classification vote as equal to the
sum of the feature weights said estimator’s input features
have. For all neural networks, including CoNNs, Commit-
tee estimators, and RH estimators, the Adam optimizer
(Kingma and Ba, 2015) is used, the cross-entropy loss func-
tion is used with balanced class weights, and overfit preven-
tion measures including dropout layers with probabilities
of 0.2 and data shuffling are used.

Let us consider an example of feature weights in more
detail. If a given flare’s SXR peak flux had a feature weight
of 0.25, its emission measure peak value had one of 0.1, its
temperature peak value had one of 0.05, and its duration
had one of 0.01, and the total sum of all the feature weights
was 1, the peak SXR flux would have a probability of 0.25
of being chosen to be in an RH estimator, the emission
measure peak flux would have one of 0.1, etc. A CoNN
and a Committee, however, would consider all available
features equally as input features. During training, an
RH estimator that uses all four of these parameters would
go through 15 epochs with learning rates of approximately
oruyvi = 0.00162 in the first test and arpyo = 0.00186 in the
second. A CoNN and a Committee estimator in this exam-
ple, however, would each only go through 10 epochs with a
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Fig. 3. The schematic representation of the layouts of the Conventional Neural Network (CoNN), Committee Network, and Random Hivemind Network
(RH). The numbers in parentheses for the linear layers indicate the number of neurons in the layer, and the number in parentheses for the dropout layer
indicates the probability of each connection/weight being dropped from the training procedure.

learning rate of o = 0.001, since they cannot automatically
calculate these parameters based on feature selection.
When deciding, each RH estimator would use the sums
of its feature weights as values, so an estimator with these
four parameters would have a value of 0.5 when voting.
Each Committee estimator would have a value of 1, since,
again, no mechanism exists to determine how to calculate
these figures based on feature selection.

Tuning of hyperparameters is of known importance for
machine learning. For the neural network-based
approaches, hyperparameters may include those related
to the network architecture (number of hidden layers, neu-
rons in each layer, activation functions, etc.) and the train-
ing process (number of epochs, learning rate, optimizer,
and regularization parameters, etc.). The parameter space
increases even further if considering ensemble approaches.
Exploring the entire parameter space is very costly. There-

fore, in this work, we restrict the model architectures to
those illustrated in Fig. 3, leaving only the training
process-related parameters for optimization. We also
notice that the ensemble approaches used in this work have
the common CoNN structure as their basis; therefore, opti-
mizing the training for CoNN should deliver the optimal
training for the ensemble approaches as well. We explore
a grid of the learning rates of
a = {0.01,0.0025,0.001,0.0005}, and epoch counts up to
Hepochs = 2000, with 10 experiments per each parameter
pair, to find the optimal, yet not relatively costly, CoNN
training procedure.

Our results for optimization of CoNN with the
o = 0.001 are illustrated in Fig. 4. We note here that the
further decrease of the learning rate to o = 0.0005 did
not lead to an increase in the HSS and TSS scores. As
one can see, the CoNN performance roughly increases with
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Fig. 4. Median (red) and median absolute deviation (orange) performance of the CoNN for the different number of the training epochs and the learning
rate of o = 0.001. Panel (a) corresponds to the TSS score, and panel (b) corresponds to the HSS score. Gray points indicate the results of individual
experiments. black dotted line indicates the number of epochs considered as optimal and is used for the study.

the increase in the number of epochs. We decided to select
Hepochs = J00 for the prediction experiments: as evident, at
this number of epochs trained, the classifier’s TSS score
starts to decrease significantly for the first time. It is also
a relatively low number of epoch counts which provides a
possibility to perform a massive number of runs for CONN
and ensemble approaches while evaluating their perfor-
mance. However, we note here that further fine-tuning of
the hyperparameters is possible for this problem.

Overall, the hyperparameters of the RH algorithm
include the architectures of the individual estimators, the
implementation of the particular weighting scheme, feature
importance estimation, the number of features to use in
each estimator, and the adjustment of the RH training
parameters, etc. The RH implementations considered here
were only constructed to demonstrate a proof-of-concept
for RH. In particular, we show further that RH v2 is per-
forming better compared to RH vl on the problem of SEP
prediction. This illustrates that different realizations of the
RH algorithm may work differently on the same data set
and that a careful tuning of RH parameters and options
is required to construct the most optimal model for the par-
ticular task.

The CoNN and each ensemble member have two output
channels predicting the likelihood of the entry belonging to
the positive (SEP-associated) or the negative (non-SEP)
class. For the binary classification, the class of the larger
likelihood is chosen as the prediction. To issue the ensem-
ble prediction, an RH classifier chooses the result that
receives the highest number of weighted votes. We demon-
strate the individual elements of the confusion matrix (true
positive predictions, TP, true negative predictions, TN,
false positive predictions, FP, and false negative predic-
tions, FN) for each approach averaged over 50 random
train-test splits. We also use various metrics to compare

binary classification predictions including accuracy, true
skill score (TSS), Heidke skill score 2 (HSS), precision,
and recall. For a definition of these metrics, see, for exam-
ple, Bobra and Couvidat (2015) and references therein. TSS
and HSS scores are also discussed in more detail in Sec-
tion 4. In order to mitigate the susceptibility of the accu-
racy metric to the high-class imbalance of the data set,
we consider in addition the balanced accuracy, defined here
as:

1/ 1P ™
BA =~ + .
2\7P+FN "IN + FP

(5)

We also construct the Receiver Operating Characteristic
curves for each classifier and calculate the area under the
curve (ROC_AUQ) as a prediction metric. The probabili-
ties of classes for the individual estimators are obtained
from likelihoods using a softmax function. The positive
class probabilities (which are to construct the ROCs) for
the RH tests are calculated by taking weighted averages
of the probability predictions of each estimator, with each
weight being the total sum weight for each estimator fol-
lowing the normalizations of all weight sums.

4. Results and discussion

The results of the classification algorithms employed in
this study in terms of confusion matrix elements and vari-
ous prediction scores are presented in Table 1 (summary
results for all classifiers as the average scores and standard
deviations) and Table 2 (summary results for all classifiers
as the median scores and median absolute deviations). The
statistics of the results are also illustrated in the box-and-
whisker plot presented in Fig. 5 and the Receiver Operating
Characteristic (ROC) curves averaged over 50 experiments
in Fig. 6. One of the indicators of the sufficiency of 50
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Table 1
Average values and standard deviations of the performances of the classifiers considered in this paper.
Algorithm/ Metrics CoNN Committee RH vl RH v2
TN 5233.0 +£ 744 52509 + 18.9 52442 £ 255 52452 +£22.8
FP 237.0 £ 744 219.0 £ 18.9 225.7 £ 25.5 224.8 £ 22.8
FN 12+£13 0.8 £0.9 1.1 £0.7 04 £+ 0.6
TP 228+ 1.3 232+ 0.9 229 +£0.7 23.6 £ 0.6
Precision 0.094 + 0.022 0.096 + 0.005 0.093 £ 0.009 0.096 £ 0.008
Recall 0.945 + 0.053 0.966 + 0.038 0.956 + 0.031 0.985 + 0.025
Accuracy 0.957 + 0.013 0.960 + 0.003 0.959 + 0.005 0.959 + 0.004
Balanced Accuracy 0.953 + 0.021 0.963 + 0.018 0.957 £ 0.014 0.972 + 0.011
TSS 0.906 £ 0.043 0.926 £+ 0.035 0.915 £ 0.029 0.944 + 0.023
HSS 0.163 £ 0.036 0.168 + 0.009 0.163 £ 0.014 0.168 + 0.013
ROC_AUC 0.9903 £ 0.0005 0.9907 £+ 0.0001 0.9901 £ 0.0005 0.9906 + 0.0003

Table 2

Median values and median absolute deviations (computed as median values of the absolute deviations of the individual scores from the median) of the

performances of the classifiers considered in this paper.

Algorithm/ Metrics CoNN Committee RH vl RH v2
TN 5233.0 £+ 46.5 5250.9 + 10.0 5244.2 + 20.0 52452 + 15.5
FP 237.0 + 46.5 219.0 + 10.0 225.7 £+ 20.0 2248 + 15.5
FN 1.2+ 1.5 0.8 +0.5 1.1 £0.0 04 +0.0
TP 228 + 1.5 232+ 0.5 229 + 0.0 23.6 £ 0.0
Precision 0.094 + 0.016 0.096 + 0.003 0.093 £ 0.006 0.096 + 0.005
Recall 0.949 + 0.063 0.966 + 0.021 0.956 + 0.0 0.985 + 0.0
Accuracy 0.957 + 0.008 0.960 + 0.002 0.959 + 0.004 0.959 + 0.003
Balanced Accuracy 0.953 £ 0.021 0.963 £ 0.011 0.957 £ 0.005 0.972 £ 0.002
TSS 0.906 + 0.042 0.926 + 0.023 0.915 + 0.010 0.944 + 0.005
HSS 0.163 + 0.026 0.168 + 0.005 0.163 £+ 0.010 0.168 + 0.008
ROC_AUC 0.9903 + 0.0002 0.9907 £+ 0.0001 0.9901 £ 0.0003 0.9906 + 0.0001
(a) TSS scores (b) HSS scores
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Fig. 5. Box-and-whiskers plots summarizing the performances of the CoNN, Committee, and two considered versions of RH, over the 50 experiments in
terms of the TSS and HSS scores. Each colored rectangle spans through the second and third quartiles of the scores, with the horizontal bar marking the
median. The whiskers indicate the locations of the last individual test results within the interquartile range from the boxes. The rhombus points mark

outliers outside the interquartile range from the boxes.

experiments for the statistical robustness of the conclusions
is that the mean and median values agree with each other
to the last significant digit for almost every single metric
and classifier considered.

Tables 1 and 2 indicate that the ensemble approaches
are performing better, in general, than the CoNN classifiers
with respect to the measures typically used in space weather

forecasting, HSS and 7'SS, both in terms of the mean and
median values. For example, the 7SS score had its median
value of T'SS = 0.906 £ 0.042 for the CoNN classifier and
increased to 7SS = 0.926 + 0.023, 7SS = 0.915 £ 0.010,
and 7SS = 0.944 + 0.005 (RH v2) for the Committee
and two RH ensemble classifiers. Although the HSS scores
were relatively low, they still demonstrated either no drop
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Fig. 6. (a) Receiver Operating Characteristic (ROC) curves averaged over 50 experiments for the classifiers considered in the current work. (b) The same

curves zoomed in for the small False Positive Rates only.

or increase from HSS 0.163 £+ 0.026 to
HSS 0.168 + 0.005, HSS = 0.163 + 0.010, and
HSS = 0.168 £+ 0.008 when transitioning from the CoONN
to ensembles. This demonstrates that the ensemble
approaches are performing better, on average, with respect
to the CoNN classifier. On the other hand, we point out
here that both the TSS and HSS scores for all classifiers
almost always intersected within the uncertainties (either
the standard deviation or the median absolution deviation)
arising from the results of individual experiments. The
overall closeness of the performance of the classifiers is evi-
dent as well from the ROC curves presented in Fig. 6 which
experience a significant overlap. The good performance of
the ensemble classifiers was previously noticed in the works
of Aminalragia-Giamini et al. (2021) for the Committee
approach and Lavasa et al. (2021) for the random forest
classifier. Interestingly, the case performances of the CoNN
classifier may even outperform the individual ensemble
classifier tests (as evident from the upper boundary for
interquartile ranges for CoNN in Fig. 5), which reveals
the importance of evaluation of the methods on several
train-test splits and demonstration of its robustness with
respect to the random splitting.

Another pattern evident from Tables 1 and 2 is the
noticeable differences between the standard deviations or
median absolute deviations for the CoNN and ensemble
classifiers. For example, the mean T'SS score and its stan-
dard deviation for CoNN is 7SS = 0.906 + 0.043 com-
pared to the 7SS 0.926 + 0.035 (Committee),
7SS = 0.915 £+ 0.029 (RH vl), and 7SS = 0.944 + 0.023
(RH v2). The tendency is even sharper for the medians
and median absolute deviations (compare

an

TSS 0906 + 0.042 for CoNN with
7SS = 0.926 + 0.023, 7SS = 0915 + 0.010, and
7SS = 0944 + 0.005 for aforementioned ensemble
approaches). The tendency of lower spread remains the
same for all other scores considered in the tables. Fig. 5
also indicates that the interquartile range and the span of
whiskers (indicating the spread of individual experiments
outside of the interquartile range) is typically larger for
CoNN, especially in the case of HSS skill score. Overall,
such behavior indicates the relative robustness of the
ensemble approaches with respect to the random train-
test splits for the data set and the training process, while
the training of the individual classifiers may fail. Therefore,
the increase in the complexity of these ensemble algorithms
is justified by their robust performance on the imbalanced
data sets (Galar et al., 2012).

Tables 1 and 2 also demonstrate that the RH classifier
(1) does not necessarily outperform the Committee
approach, and (2) depends on the selection of its parame-
ters. This is concluded from the fact that the performance
of the RH v2 is, on average, the same or better, with
respect to almost any metrics than that of the Committee
or RH vl. Another noticeable difference between the Com-
mittee and RH classifiers is the step-wise behavior of the
ROC curve for the Committee compared to a smoother
curve for the RH, evident in Fig. 6. The key difference
between the RH and the Committee classifier is in the selec-
tion of features used for each individual ensemble member.
While the committee members use all features available,
RH members use the down-selected number of features (ei-
ther 4 or 6 out of 12 in our case) and use the deterministic
algorithm of the contribution of each Committee member
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to the final result. We may assume that the down-selection
of features for each member increases the forecasting
scores because it helps to filter out the attention of the indi-
vidual committee member to the noisy or irrelevant fea-
tures and prevents its members from “agreeing” on
identical sets of model parameters (weights and biases).
This confirms the importance of the feature selection pro-
cess, which remains an active topic in predicting solar tran-
sient events (Bobra and Couvidat, 2015; Sadykov and
Kosovichev, 2017; Yeolekar et al., 2021). Also, although
the Committee approach (Aminalragia-Giamini et al.,
2021) helps to reduce the “reliance on chance” in terms
of the convergence of the network parameters (weights
and biases) to the local or global minima, it still contains
similarly-structured CoNNs as ensemble members. The
RH introduces a more diverse population of ensemble
members with the variable down-selected set of features
as an input, which can be more beneficial than having
full-scale but nearly identical learners.

As noted earlier, the results in Tables 1 and 2 indicate
relatively low values for the precision and HSS scores for
all classifiers tested, including the RH classifiers. At the
same time, the corresponding TSS scores are high. To
understand the reason behind this behavior of the models,
let us indicate some patterns in our SEP prediction. Look-
ing at the median confusion matrix elements, one can
notice the RH classifiers that, arranged by larger to smal-
ler, TN = 5244 > FP ~ 226 > TP ~ 229 > FN ~ 1.1 and
that IN ~ 5245 > FP ~ 225> TP ~ 23.6 > FN ~ 0.4.
Assuming that one can neglect the term of the next order
of smallness, one can rewrite the metrics of interest as:

TP TP

~

(6)
(7)

Precision =

At i
HSS = (TP+FN)(FN+1N)+(TP~FP)(FP+IN)

~ 2.-TP-TN ~ 2.TP
B TP-T]N};FPTN TPF»PFP -
" TP+FN FP+ 1IN

~
~

= 2 - Precision
N FP

" TP+FN FP+ 1IN
(8)

188

Both the precision and HSS scores, under the conditions
for the confusion matrix elements indicated above, are
determined by the 7P/FP ratio, which is of the order of
~1/10 for the models implemented in this study. At the
same time, the TSS score is very close to 1 because both
subtrahends are small: FN/TP ~1/20 or smaller, and
FP/TN ~1/23. While capturing almost every single SEP
flare in the test data set (which is 24 events on average),
the models produce almost ten times larger number of false
alarms than the number of SEP flares (with the median val-
ues of FP = 225.7 +£20.0 and FP = 224.8 + 15.5 for RH vl
and RH v2, correspondingly). The considered data set is
also highly imbalanced given that the ratio of the positive
to negative samples is ~1/285. The conditions above limit
the HSS score to HSS ~ 2 x TP/FP < 2 x P/FP. They also
make the HSS scores to be very susceptible to the change in
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the number of false alarms. For example, if one manages to
decrease the number of false alarms twice
(FP=2248 — FP=1124 and
TN = 5245.2 — TN = 5357.6 for RH v2), the correspond-
ing HSS score would increase almost twice, to
HSS ~ 0.290. At the same time, the TSS score would
increase from 7SS = 0.944 to 7SS ~ 0.963, experiencing a
mild relative change. One can conclude that for highly
imbalanced data sets the small HSS scores are related to
the large number of false alarms produced by the model
(with respect to the number of positive samples in the test
data set) and may still be accompanied by TSS scores very
close to one.

Also, we note that while the Heidke Skill Score 2 (HSS)
is often annotated as a measure of the performance with
respect to a random chance forecast, the forecast presented
here is definitely far from being random: with RH vl1, the
missed event rate FN/(FN + TP) = 0.046 is low (almost
every SEP event is hit for each trial) and the false alarm
rate FP/(FP 4+ TN) ~ 0.041 is low as well, while with RH
v2, the missed event rate is even more promising
FN/(FN + TP) ~ 0.017 and the false alarm rate is at the
still the same value of approximately 0.041. Nevertheless,
the HSS scores are not so strongly deviating from 0 (on
average, HSS =0.1634+0.014 with RH vl and
HSS =0.168 £ 0.013 with RH v2). Therefore, we argue
that it is not correct to associate low HSS scores with the
forecast being close to a random chance forecast. More-
over, the example in the previous paragraph demonstrates
that it is very beneficial to consider the HSS scores comple-
mentary to the 7SS scores for forecasting purposes. The
HSS score is much more sensitive to the decrease of the
false alarms, FP, if compared to the TSS. Therefore, it
would allow one to better differentiate between the models
with approximately the same number of missed events
based on the number of false alarms they produce.

Although not tested for the all-clear forecasting explic-
itly, the classification approaches implemented here
demonstrate usefulness with respect to the all-clear setting.
We note here that the all-clear SEP forecasting is typically
defined as the whole-disk endeavor which also has to be
accompanied by the specification of the time window for
which the forecast is issued. Here we discuss a related,
but not identical, problem when one would like to predict
very reliably every SEP-active flare (with the missed events
being very undesirable) yet maintaining a low false alarm
rate. Here the very low rate of missed events (the average
rate of the missed events is FN/(FN + TP) ~ 0.05 even
for CoNN) is what is typically desirable for such a type
of forecast (Sadykov et al., 2021). For the RH v2 classifier,
the  wvirtually zero rate of missed events
(FN/(FN + TP) ~ 0.017) renders the RH viable for this
task. Although the median number of the FN was still rel-
atively low for the CoNN classifier (FN = 1.2+ 1.5, see
Table 2) and the Committee approach (FN = 0.8 +0.5),
the RH v2 has even lower FN = 0.4+ 0.0. The median
absolute deviation of 0.0 indicates that more than half
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(i.e., more than 25 out of 50) trials of RH v2 had zero false
negative predictions as an outcome. Overall, we can also
potentially expect, that certain configurations of the RH
approach can be useful in delivering near-zero missed event
forecasting with low false-alarm rates for other machine-
learning problems, including those involving highly imbal-
anced classes.

5. Conclusion

In this work, we have introduced an ensemble algorithm
— a Random Hivemind (RH) — and compared two
selected implementations of it with respect to the Conven-
tional Neural Network (CoNN) and a Committee ensem-
ble approach for CoNNs. The comparison was done for
the problem of the prediction of Solar Energetic Particle
(SEP) events based on the properties of the host soft X-
ray flares. The key outcomes of our work are as follows:

e The performance of the RH algorithm depends on the
implementation and training parameters (which may
include the number of input features, their weighting
schemes, learning rate boosting strategies, etc.). The cor-
responding TSS and HSS scores for the RH vl and RH
v2 implementations are 7SS =0.915+0.010 and
7SS = 0.944 + 0.005, and HSS =0.163 +0.010 and
HSS = 0.168 + 0.008, correspondingly.

e Both ensemble approaches (Committee and RH)
demonstrate the robustness of their performance with
respect to the random train-test splits for the data set,
which was reflected in the low standard deviations or
median absolute deviations. Although often performing
comparably to the committee approach in terms of the
forecasting metrics, CoONN demonstrated much higher
standard deviations (and often higher median absolute
deviations).

e Both ensemble approaches demonstrated similar or bet-
ter performance in terms of mean and median values
compared to the metrics typically used in space weather
forecasting, HSS and T'SS. One can compare the med-
ian 78S = 0.906 + 0.042 for CoNN with
78S = 0.926 + 0.023, 7SS = 0.915 £+ 0.010, and
7SS = 0.944 £ 0.005 for the committee, RH vl, and
RH v2 correspondingly, and HSS = 0.163 4+ 0.026 with
HSS = 0.168 £ 0.005, HSS = 0.163 £ 0.010, and
HSS = 0.168 £ 0.008.

e The RH v2 ensemble classifier performs better, on aver-
age, than the Committee, CoNN, and RH vl
approaches in terms of almost every metric and delivers
consistent results over the ten random train-test split
experiments.

e The performance of all classifiers, including RH,
demonstrated relatively low precision and HSS scores
for the SEP prediction problem. Nevertheless, it is very
beneficial to consider the HSS as a complementary met-
ric for the forecast as it is more susceptible to a decrease
in the false alarm rate than the 7'SS. This leads to a bet-
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ter differentiation between the models with approxi-
mately the same number of missed events based on the
number of false alarms they produce.

e All classifiers had a very low number of false negative
predictions. Median values of
FN=12+15FN=08+0.5FNV=1.1+0.0, and
FN = 0.4 4+ 0.0, were measured for the CoNN, Commit-
tee, RH vl, and RH v2 classifiers, respectively. How-
ever, the robustness of the RH classifiers noted
previously, especially for the case of RH v2, makes it
the viable candidate for employment in solving the
“all-clear”-like forecasting problem for SEP-active
flares.

From the results above, we can conclude that RH is a
valid machine learning algorithm that can perform well
despite class imbalance. RH is performing, on average,
comparably or better to CoNNs and unweighted, identical
CoNN committee machines. Further studies of the RH
approach (including different implementations for the fea-
ture weights and handling, learning rate and epoch number
adjustments, and the flare class boundaries considered for
RH training) are required to understand its potential in
general and specifically for space weather prediction pur-
poses, including ““all-clear” forecasting of SEPs.
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