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the C2-topology. We obtain estimates for spectral stability of the Kohn Laplacian 
on smooth compact hypersurfaces that satisfy uniform subelliptic estimate, 
in particular for strictly pseudoconvex hypersurfaces in Cn and pseudoconvex 
hypersurfaces of finite type in C2.
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1. Introduction

In physical sciences, exact values are oftentimes impossible to obtain and approximations are used instead. 
It is then important to understand whether the observed quantity remains stable when other parameters 
are slightly perturbed. Stability of the spectrum for the classical Laplace operator with the Dirichlet or 
Neumann boundary condition on bounded domains in Rn has been studied extensively in the literature (see, 
e.g., [14,7,8,2] and references therein). In [13], the first and third authors initiated a systematic study of 
spectral stability of the ∂-Neumann Laplacian on a bounded domain in Cn when the underlying domains are 
perturbed and established upper semi-continuity properties for the variational eigenvalues of the ∂̄-Neumann 
Laplacian on bounded pseudoconvex domains in Cn, lower semi-continuity properties on pseudoconvex 
domains that satisfy property (P ), and quantitative estimates on smooth bounded pseudoconvex domains 
of finite D’Angelo type in Cn.

In this paper, we study spectral stability of the Kohn Laplacian on the boundary of a smoothly bounded 
domain in Cn when the boundary is perturbed. Our main result can be stated as follows:
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Theorem 1.1. Let Ω and Ωt, −1 ≤ t ≤ 1, be bounded pseudoconvex domains in Cn with smooth boundaries 
M and M t respectively in Cn, such that M0 = M . Let ρ and ρt be the signed distance functions for M

and M t respectively. Assume that there exists a neighborhood U of M such that ρ and ρt are smooth with 
uniformly bounded C∞-norms on U .

(1) Let n ≥ 3. Suppose 1 ≤ q ≤ n − 2 and the Kohn Laplacian for (0, q)-forms on M t satisfies a uniform 
subelliptic estimate. Let λq

k(M) and λq
k(M t) be the kth eigenvalues for the Kohn Laplacian on (0, q)-

forms on M and M t respectively. Then there exists a positive constant Ck independent of t such that

|λq
k(M t) − λq

k(M)| ≤ Ckδt, (1.1)

provided that δt = ‖ρ − ρt‖C2,U is sufficiently small. In particular, the above estimate holds if M is 
strictly pseudoconvex in Cn.

(2) Let n ≥ 3. Suppose a uniform subelliptic estimate holds for the Kohn Laplacian on M t for (0, 1)-forms. 
Let λ0

k(M) and λ0
k(M t) be the kth non-zero eigenvalues for the Kohn Laplacian for functions on M and 

M t respectively. Then (1.1) holds for q = 0. Analogously, suppose a uniform subelliptic estimate holds 
for the Kohn Laplacian on M t for (0, n − 2)-forms. Then (1.1) holds for q = n − 1.

(3) Let n = 2. If M is pseudoconvex of finite type, then (1.1) holds for q = 0, 1 provided δt = ‖ρt − ρ‖C∞,U

is sufficiently small.

Let n ≥ 3 and 1 ≤ q ≤ n − 2. Recall that the Kohn Laplacian �b is said to satisfy a subelliptic estimate
for (0, q)-forms on a smooth compact hypersurface M if there exist constants 0 < ε ≤ 1/2 and C > 0 such 
that

‖u‖2
ε ≤ C(Qb(u, u) + ‖u‖2) (1.2)

for every u ∈ Dom(Qb) such that u ⊥ Ker(Qb), where ‖ · ‖ε denotes the L2-Sobolev norm of order ε and 
Qb(u, u) the quadratic form associated with the Kohn Laplacian (see Section 2 for detail). We say that a 
uniform subelliptic estimate holds on M t if estimate (1.2) holds on M t and the constants ε and C in (1.2)
can be chosen to be independent of the parameter t. Note that a subelliptic estimate (1.2) implies that 
the Kohn Laplacian �b has compact resolvent and its spectrum consists of discrete eigenvalues of finite 
multiplicity.

It follows from the works of D’Angelo ([6]) and Catlin ([3,4]) that the ∂-Neumann Laplacian satisfies 
a subelliptic estimate for (0, q)-forms on a smooth bounded pseudoconvex domain Ω in Cn if and only 
if its boundary M is of finite D’Angelo q-type (i.e., the order of contact of M with any q-dimensional 
complex analytic variety is finite). Furthermore, we know from the work of Kohn that the ∂-Neumann 
Laplacian satisfies the subelliptic estimate on a smooth bounded pseudoconvex domain Ω if and only if 
the Kohn Laplacian satisfies the subelliptic estimate on its boundary bΩ ([15, Theorem 8.2]). Since strict 
pseudoconvexity of M is preserved under a sufficiently small perturbation in the C2-topology, a uniform 
subelliptic estimate holds on M t when M is strictly pseudoconvex. Similarly, for a smooth pseudoconvex 
hypersurface in C2, the finite type condition in the sense of D’Angelo is equivalent to the finite commutator 
type in the sense of Hörmander which is stable under a sufficiently small C∞-perturbation. Thus a uniform 
subelliptic estimate holds on M t when M is a pseudoconvex hypersurface of finite type in C2, provided M t

is a sufficiently small perturbation of M in the C∞-topology.
Our paper is organized as follows. In Section 2, we recall the necessary definitions and set up the problem. 

In Section 3, we define the transition operator which plays an important role in the analysis. In Section 4, 
we establish an upper semicontinuity property for the eigenvalues under the assumption that the subelliptic 
estimate holds on M . In Section 5, we establish the lower semicontinuity property when a uniform subelliptic 
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estimate holds. In Section 6, we study spectral stability of the Kohn Laplacian on functions and top degree 
(0, n − 1)-forms. The last section contains further remarks.

2. Preliminaries

Let (M, T 1,0M) be an orientable CR manifold of real dimensional 2n − 1, equipped with a Hermitian 
metric on CTM so that T 1,0M is orthogonal to T 0,1M := T 0,1M . Let T be the orthogonal complement 
of T 1,0M ⊕ T 0,1M in CTM . Denote by T ∗1,0M , T ∗0,1M and θ the dual bundles of T 1,0M , T 0,1M and T , 
respectively. For 0 ≤ p, q ≤ n − 1, let Λp,qM be the vector bundle defined by

Λp,qM = ΛpT ∗1,0M ⊗ ΛqT ∗0,1M.

Denote by Ep,q(M) the space of smooth sections of Λp,qM over M . Let ∂b be the tangential Cauchy-Riemann 
operator defined intrinsically by

∂
p,q

b = P p,q+1 ◦ dM : Ep,q(M) → Ep,q+1(M)

where dM is the exterior differential operator on M and P p,q+1
M : Λp+q+1(M) → Λp,q+1(M) the orthogonal 

projection. (We will drop the superscripts from ∂
p,q

b when they are clear from the contexts.) We also use ∂b

to denote the maximal extension of ∂b on L2
(p,q)(M), the space of (p, q)-forms with L2-coefficients. As such, 

the domain Dom(∂b) of

∂
p,q

b : L2
(p,q)(M) → L2

(p,q+1)(M)

consists of forms u ∈ L2
(p,q)(M) such that ∂bu ∈ L2

(p,q+1)(M) in the sense of distribution. Thus ∂b is a linear, 
closed, and densely defined operator on L2

(p,q)(M). Let

∂
p,q∗
b : L2

(p,q+1)(M) → L2
(p,q)(M)

be the adjoint of ∂b with

Dom(∂∗
b) =

{
u ∈ L2

(p,q+1)(M) | ∃C > 0 such that |(u, ∂bφ)| ≤ C‖φ‖, ∀φ ∈ Dom(∂b)
}

.

For 0 ≤ p ≤ n and 1 ≤ q ≤ n − 2, the Kohn-Laplacian on L2
(p,q)(M) is given by

�p,q
b = ∂

p,q−1
b ∂

p,q−1∗
b + ∂

p,q∗
b ∂

p,q

b : L2
(p,q)(M) → L2

(p,q)(M)

with

Dom(�p,q
b ) =

{
u ∈ L2

(p,q)(M) | u ∈ Dom(∂b) ∩ Dom(∂∗
b),

∂bu ∈ Dom(∂∗
b), ∂

∗
bu ∈ Dom(∂b)

}
.

It follows that �b is a linear, closed, and densely defined self-adjoint operator on L2
(p,q)(M) (see [12] for a 

spectral theoretic proof of this fact). Let

Qb(u, v) = (∂bu, ∂bv) + (∂∗
bu, ∂

∗
bv), u, v ∈ Dom(Qb) = Dom(∂b) ∩ Dom(∂∗

b)

be the sesquilinear form associated with the Kohn Laplacian �b. Write
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Ker(Qb) = Dom(∂b) ∩ Dom(∂∗
b).

For q = 0, the Kohn Laplacian is given by

�p,0
b = ∂

p,0∗
b ∂

p,0
b : L2

(p,0)(M) → L2
(p,0)(M)

with the associated sesquilinear form

Qb(u, v) = (∂bu, ∂bv) u, v ∈ Dom(Qb) = Dom(∂b).

Similarly, for q = n − 1, the Kohn Laplacian is

�p,n−1
b = ∂

p,n−1
b ∂

p,n−1∗
b : L2

(p,n−1)(M) → L2
(p,n−1)(M)

with the associated sesquilinear form

Qb(u, v) = (∂∗
bu, ∂

∗
bv), u, v ∈ Dom(Qb) = Dom(∂∗

b).

We now recall the extrinsic definition of the tangential Cauchy-Riemann operator when M is a smooth 
hypersurface in Cn with the inherited CR structure. Consider a neighborhood U of M in Cn and let 
r ∈ C∞(U) be a defining function of M such that r = 0 and |dr| = 1 on M . Let Ep,q(U) be the space of 
smooth sections of Λp,qU over U and let ∂̄ : Ep,q(U) → Ep,q+1(U) be the Cauchy-Riemann operator. Let 
Λp,q(U)|M be the restriction of the bundle Λp,q(U) to M . More precisely, if

f =
∑′

I,J

fI,JdzI ∧ dz̄J ∈ Ep,q(U),

then f |M ∈ Λp,q(U)|M is obtained by restricting the coefficients fI,J to M . Let

Ip,q(U) = {rf + ∂r ∧ g | f ∈ Λp,q(U), g ∈ Λp,q−1(U)} (2.1)

be the ideal in Λp,q(U) locally generated by r and ∂r. Let Λp,q(M) be the orthogonal complement of Ip,q|M
in Λp,q(U)|M Let

τM : Λp,q(U)|M → Λp,q(M)

be the orthogonal projection. For any f ∈ Λp,q(U)|M , we refer to τM (f) as the tangential part of f . Since 
|dr| = 1 on M , it is easy to see that

τM (f) = (∂r)∗�(∂r ∧ f), (2.2)

where

(∂r)∗ = 4
n∑

k=1

∂r

∂zk

∂

∂z̄k

is the dual vector to the form ∂r and � denotes the contraction operator of a vector with a form.
For an open set W ⊂ M , denote by Ep,q

M (W ) the space of smooth sections of Λp,q(M) over W and Dp,q
M (W )

the space of compactly supported forms in Ep,q
M (W ). The (extrinsic) tangential Cauchy-Riemann operator 



S. Fu et al. / J. Math. Anal. Appl. 535 (2024) 128129 5
∂M : Ep,q
M (W ) → Ep,q+1

M (W ) is defined as follows: For f ∈ Ep,q
M (W ), let f̃ ∈ Ep,q

M (W̃ ) be an extension of f to 
some open set W̃ in Cn such that W̃ ∩ M = W and τM (f̃ |M ) = f on W . Then

∂M f = τM ((∂f̃)|M ).

Evidently, the definition of ∂M is independent of the ambient extension. In the case when M is an embedded 
hypersurface in Cn, the extrinsic and intrinsic approaches lead to different but isomorphic tangential Cauchy-
Riemann complexes (see [1] for details). Since p plays no role in our analysis, hereafter we consider only the 
tangential Cauchy-Riemann operator on (0, q)-forms. We will also use ∂b and ∂M interchangeably to denote 
the tangential Cauchy-Riemann operator on M .

Let λq
k(M) be the kth-variational eigenvalue of �b on L2

(0,q)(M), given by the following min-max principle:

λq
k(M) = inf

L⊂Dom(Qb)
dim L=k

sup
u∈L\{0}

Qb(u, u)/‖u‖2 (2.3)

where the infimum takes over all linear k-dimension subspaces of Dom(Qb). Recall that the spectrum of a 
non-negative self-adjoint operator S is purely discrete if and only if the variational eigenvalues λk(S) defined 
as above go to ∞ as k → ∞. In this case, λk(S) is the kth-eigenvalue of S when the eigenvalues are arranged 
in increasing order and repeated according to multiplicity (see [7, Chapter 4]). Note that in the cases when 
q = 0 and q = n − 1, the kernel Ker(Qb) of Qb is always infinite dimensional when M is embedded. In 
these cases, when we say kth-variational eigenvalue of �b, we refer to the kth-variational eigenvalue of �b

restricted to the orthogonal complement of Ker(Qb). For example, in the case when q = 0,

λ0
k(M) = inf

L⊂Dom(∂b)∩Ker(∂b)⊥

dim L=k

sup
u∈L\{0}

‖∂bu‖2/‖u‖2.

Let Si, i = 1, 2, be non-negative self-adjoint operators on Hilbert space H with associated quadratic forms 
Qi. One way to estimate the difference between variational eigenvalues λk(S1) of S1 and λk(S2) of S2 is to 
construct a transition operator T : Dom(Q1) → Dom(Q2) and estimate the difference between 〈f, g〉1 and 
〈Tf, Tg〉2 and between Q1(f, g) and Q2(Tf, Tg) for f and g in any k-dimensional subspace of Dom(Q1). 
The following lemma is a simple consequence of the min-max principle (2.3) (compare [13, Lemma 2.1] and 
the subsequent remark).

Lemma 2.1. Let Si, i = 1, 2, be non-negative self-adjoint operators on Hilbert spaces Hi with associated 
quadratic forms Qi. Let T : Dom(Q1) → Dom(Q2) be a linear transformation from the domain of Q1 to 
that of Q2. Suppose there exist constants 0 < a < 1 and b > 0 such that for any k-dimensional subspace Xk

of Dom(Q1) and any u ∈ Xk,

‖Tu‖2
2 ≥ (1 − a)‖u‖2

1 and Q2(Tu, Tu) ≤ (1 + b)Q1(u, u)

for any u ∈ Dom(Q1). Then

λk(S2) ≤ 1 + b

1 − a
λk(S1).

Proof. Let Xk be any k-dimensional subspace of Dom(Q1). Since T is one-to-one, T (Xk) is a k-dimensional 
subspace of Dom(Q2). Hence

λk(S2) ≤ sup
{Q2(Tu, Tu)

‖Tu‖2
2

| u ∈ Xk, u �= 0
}

≤ sup
{ (1 + b)Q1(u, u)

2 | u ∈ Xk, u �= 0
}

.
(1 − a)‖u‖1
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Taking infimum over all k-dimensional subspaces of Dom(Q1), we then obtain the desired inequality. �
3. Transition operator

Let Ω be a bounded domain in Cn and let M = bΩ. For any σ > 0, set Uσ(M) = {z ∈ Cn | dist(z, M) <
σ}, where dist(z, M) is the Euclidean distance from z to M . The hypersurface M is said to be of positive 
reach if there is a σ > 0 such that each z ∈ Uσ(M) has a unique nearest point on M . Denote by Reach(M)
the largest such σ. It follows from [9, Theorem 4.12] that when Ω is C2-smooth, Reach(M) > 0. Assume 
now that M is C2-smooth. Let σ0 = Reach(M) and U0 = Uσ0(M). Let ρ(z) be the signed distance from z
to M such that ρ(z) = − dist(z, M) for z ∈ Ω and ρ(z) = dist(z, M) for z ∈ Cn \ Ω. Then ρ ∈ C2(U0) and 
|dρ| ≡ 1 on U0. We will also use ρ to denote a C2-extension of the signed distance function to Cn. Let Ωt

be a family of bounded domains with C2-smooth boundary M t for t ∈ (−1, 1) such that Ω0 = Ω, M t ⊂ U0
and dt = dH(M t, M) → 0 as t → 0, where

dH(M t, M) = max
z∈M

dist(z, M t) = max
w∈Mt

dist(w, M)

is the Hausdorff distance between M and M t. Let ρt be the signed distance defining function for Ωt, extended 
to be C2 on Cn. Let

δt = ‖ρt − ρ‖C2,U0

be the C2-norm over U0. Evidently, dt ≤ δt. Let

π : U0 → M

be the projection onto M along the real normal direction such that dist(z, M) = dist(z, π(z)). Then π is C2

on U0. Let

πt : M t → M

be the restriction of π to M t.
We can now define the transition operator. Let P p,q denote the natural orthogonal projection from 

Λp+q(U0) onto Λp,q(U0). The transition operator is then defined as follows:

T t = τMt ◦ P 0,q|Mt ◦ π∗ : Λ0,q(M) → Λ0,q(M t), (3.1)

where π∗ : Λ0,q(M) → Λq(U0) is the pull-back operator and P p,q|Mt(u) denotes the form obtained by re-
stricting the coefficients of P p,q(u) to M t. It is easy to see that T t extends to a bounded linear transformation 
from L2

(0,q)(M) into L2
(0,q)(M t) and it maps Dom(Qb) into Dom(Qt,b).

In the remainder of this section, we will show that the L2-norm of a (0, q)-form on M is stable under this 
transition operator. The following lemma is well known. We provide a proof for the reader’s convenience.

Lemma 3.1. πt is a C2-diffeomorphism between M t and M , provided δt is sufficiently small.

Proof. We first observe that πt is surjective when δt is sufficiently small. In fact, for every z ∈ M , we have

ρt(z + s�n(z)) = ρt(z) + ∇ρt(z) · �n(z)s + O(s2),

where �n(z) = ∇ρ(z) is the outward normal direction of M at z. Thus for any sufficiently small s > 0,
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ρt(z − s�n(z)) ≤ ρt(z) − s/2 < 0 and ρt(z + s�n(z)) ≥ ρt(z) + s/2 > 0,

provided δt is sufficiently small. Thus by the intermediate value theorem, there exists a s0 ∈ (−s, s) such 
that ρt(z + s0�n(z)) = 0 and π(z + s0�n(z)) = z.

We now show π is injective. Proving by contradiction, we assume that there are two distinct points z1
and z2 on M t that project to the same point z on M . Write zi = z + si�n(z), i = 1, 2, where s1 and s2 are 
two distinct real numbers in (−σ0, σ0). Set g(s) = ρt(z + s�n(z)). Then g(s1) = g(s2). This contradicts the 
fact that

g′(s) = ∇ρt(z + s�n(z)) · �n(z) ≥ 1/2,

when δt is sufficiently small. Then both πt and its inverse are C2-smooth is a consequence of the implicit 
function theorem. �
Proposition 3.2. Let ιt : M → M t be the inverse of πt. Then there exists a constant C > 0 such that

∣∣|T tu|2(ιt(z))| Jac ιt
∗z| − |u|2(z)

∣∣ ≤ Cδt|u|2(z) (3.2)

for any u ∈ Λ0,q(M), where | · | denotes the pointwise norm of a form and Jac ιt
∗z the Jacobian determinant 

of ιt at z. Furthermore,

∣∣‖T tu‖2
Mt − ‖u‖2

M

∣∣ ≤ Cδt‖u‖2
M (3.3)

for any u ∈ L2
(0,q)(M).

We do some preparations before proving this proposition. Let p ∈ U0 and let p0 = π(p). After a unitary 
transformation, we might assume p0 is the origin and the negative Re zn-direction is the outward normal 
direction at p0. In this coordinate, p = (0, . . . , 0, d) and there exists a neighborhood U of the origin such 
that

M ∩ U = {(x̃, x2n) ∈ U | x2n = f(x̃)},

where f(x̃) is a C3 function in the form f(x̃) =
∑2n−1

k,l=1 aklxkxl + O(|x̃|3). Here we identify Cn with R2n

and use the notations zj = x2j−1 +
√

−1x2j , j = 1, · · · , n, and x̃ = (x1, . . . , x2n−1).
For (x̃, x2n) near p0, we write π(x̃, x2n) = (ỹ, f(ỹ)) where ỹ = (y1, . . . , y2n−1) and yj = yj(x1, . . . , x2n)

are C3-smooth near the origin. The following lemma is well known. We provide a proof, following the proof 
of Theorem 1.1 in [11] (compare also [16]) for the reader’s convenience.

Lemma 3.3. With the above notations, for sufficiently small d, we have:

∂ρ

∂xk
(p) = 0,

∂ρ

∂x2n
(p) = −1; (3.4)

∂2ρ

∂xj∂xk
(p) = ajk + O(d), ∂2ρ

∂xj∂x2n
(p) = 0; (3.5)

∂yj

∂xk
(p) = δjk + ajkd + O(d2), ∂yj

∂x2n
(p) = 0; (3.6)

and
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∂2yj

∂xk∂xh
(p) = O(d), ∂2yj

∂xk∂x2n
(p) = ajk + O(d), ∂2yj

∂x2
2n

(p) = O(d), (3.7)

for all 1 ≤ h, j, k ≤ 2n − 1, where the constant depends on the C3-norm of ρ.

Proof. Estimates (3.4) and (3.5) were given in [11, Theorem 1.1]. For completeness, we provide a detailed 
proof for (3.6) and (3.7). Given (x̃, x2n) near p0, observe that for s̃ = (s1, . . . , s2n−1) near the origin,

A(s̃) =
2n−1∑
j=1

(xj − sj)2 + (x2n − f(s̃))2

attains a local minimum when s̃ = ỹ. Differentiating both sides with respect to sj and then evaluating at 
s̃ = ỹ, we have

(xj − yj) + (x2n − f(ỹ)) ∂f

∂yj
(ỹ) = 0, 1 ≤ j ≤ 2n − 1. (3.8)

By taking ∂/∂xk, 1 ≤ k ≤ 2n − 1, to both sides of (3.8), we have

δjk − ∂yj

∂xk
−

( 2n−1∑
l=1

∂f

∂yl

∂yl

∂xk

) ∂f

∂yj
(ỹ) + (x2n − f(ỹ))

2n−1∑
l=1

∂2f(ỹ)
∂yj∂yl

∂yl

∂xk
= 0. (3.9)

Similarly, by taking ∂/∂x2n to both sides of (3.8), we have

− ∂yj

∂x2n
+

(
1 −

2n−1∑
l=1

∂f

∂yl

∂yl

∂x2n

) ∂f

∂yj
(ỹ) + (x2n − f(ỹ))

2n−1∑
l=1

∂2f(ỹ)
∂yj∂yl

∂yl

∂x2n
= 0. (3.10)

Evaluating (3.9) and (3.10) at p = (0, . . . , 0, d), we obtain

δjk − ∂yj

∂xk
+ d

2n−1∑
l=1

ajl
∂yl

∂xk
= 0 (3.11)

and

− ∂yj

∂x2n
+ d

2n−1∑
l=1

ajl
∂yl

∂x2n
= 0. (3.12)

Applying Cramer’s rule to the linear system (3.11), 1 ≤ j, k ≤ 2n − 1, we obtain

∂yj

∂xk
(p) = δjk + ajkd + O(d2).

Similarly, from (3.12), we obtain

∂yj

∂x2n
(p) = 0.

We thus establish (3.6).
We now proceed to prove (3.7). Taking ∂/∂xh, 1 ≤ h ≤ 2n − 1 to (3.9) and then evaluating at p, we 

obtain
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− ∂2yj

∂xk∂xh
(p) + d

∂

∂xh

2n−1∑
l=1

∂2f(ỹ)
∂yj∂yl

∂yl

∂xk
= 0. (3.13)

Thus

∂2yj

∂xk∂xh
(p) = O(d)

with the constant depending on the C3-norm of f . Similarly, applying ∂/∂x2n to (3.9), we obtain

− ∂2yj

∂xk∂x2n
(p) +

2n−1∑
l=1

∂2f

∂yj∂yl

∂yl

∂xk
(p) + d

∂

∂x2n

2n−1∑
l=1

∂2f

∂yj∂yl

∂yl

∂xk
= 0. (3.14)

Together with (3.6), we then have

∂2yj

∂xk∂x2n
(p) = ajk + O(d). (3.15)

Moreover, applying ∂/∂x2n to (3.10) and then evaluating at p, we have

− ∂2yj

∂x2
2n

(p) +
2n−1∑
l=1

∂2f

∂yj∂yl

∂yl

∂x2n
(p) + d

∂

∂x2n

2n−1∑
l=1

∂2f

∂yj∂yl

∂yl

∂xk
= 0. (3.16)

It follows that

∂2yj

∂x2
2n

(p) = O(d). � (3.17)

As a consequence of this lemma, we have:

Lemma 3.4. With the notation above, we have that

Jac π∗p = 1 + O(d) and Jac ιt
∗p0

= 1 + O(dt) (3.18)

for any p ∈ M t and p0 ∈ M respectively.

For a given point p0 ∈ M , since |dρ| = 1 on M , we may assume without loss of generality that ∂ρ/∂zn �= 0
on a neighborhood U of p0. Let

L̄j = ∂

∂z̄j
− ∂ρ

∂z̄j

( ∂ρ

∂z̄n

)−1 ∂

∂z̄n
, 1 ≤ j ≤ n − 1. (3.19)

Then {L̄1, . . . , L̄n−1} forms basis for T (0,1)(M) on U . Let

ω̄α = dz̄α − 4 ∂ρ

∂zα
∂ρ, 1 ≤ α ≤ n, and θ = ∂ρ. (3.20)

Then {ω̄1, . . . , ω̄n−1} is a dual basis to {L̄1, . . . , L̄n−1} for Λ0,1(M) on U . Note that θ is orthogonal to 
ω̄j , 1 ≤ j ≤ n − 1, and {ω̄1, . . . , ω̄n−1, θ} is a local frame for Λ0,1(Cn) on U . Furthermore, ω̄n is linearly 
dependent on ω̄1, . . . , ω̄n−1 in Λ0,1(M). Indeed,
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ω̄n = −ρ−1
n̄

n−1∑
k=1

ρk̄ω̄k. (3.21)

Hereafter, to simplify the notations, we write ∂ρ
∂zj

and ∂ρ
∂z̄j

as ρj and ρj̄ respectively. Also, lowercase roman 
indices will run from 1 to n − 1, whereas lowercase Greek indices will run from 1 to n. Observe that

τM (dz̄α) = (∂ρ)∗�(∂ρ ∧ dz̄α) = ω̄α, α = 1, · · · , n. (3.22)

Moreover,

τM (dz̄K) = ω̄K , (3.23)

where K is any tuple of integers from 1 to n. We define L̄t
j and ω̄t

α similarly by replacing ρ by ρt in (3.19)
and (3.20) respectively. The identities (3.22) and (3.23) remain true when M is replaced by M t, ρ by ρt, 
and ω̄α by ω̄t

α.
Write π(z) = (π1(z), . . . , πn(z)), we have

π∗ω̄j =
n∑

α=1

( ∂π̄j

∂z̄α
dz̄α + ∂π̄j

∂zα
dzα

)
− 4

n∑
α=1

(ρjρᾱ ◦ π)
n∑

β=1

(∂π̄α

∂z̄β
dz̄β + ∂π̄α

∂zβ
dzβ

)
. (3.24)

Thus

P 0,1 ◦ π∗ω̄j =
n∑

α=1

∂π̄j

∂z̄α
dz̄α − 4

n∑
α=1

(ρjρᾱ ◦ π)
n∑

β=1

∂π̄α

∂z̄β
dz̄β . (3.25)

Restricting the coefficients to M t and applying τMt , we then obtain

T t(ω̄j) =
n∑

α=1

∂π̄j

∂z̄α
ω̄t

α − 4
n∑

α=1
(ρjρᾱ ◦ π)

n∑
β=1

∂π̄α

∂z̄β
ω̄t

β . (3.26)

Let p be any point on M t and let p0 = π(p) ∈ M . After a unitary transformation, we assume p0 is 
the origin and the negative Re zn-axis is the outward normal direction at p0. It follows from (3.26) and 
Lemma 3.3 that

T t(ω̄j)(p) = ω̄t
j(p) + O(dt), (3.27)

where O(dt) denotes a form whose pointwise norm is dominated by a constant multiple of dt, the Hausdorff 
distance between M and M t. More generally, when dt is sufficiently small, we have

T t(ω̄J) = ω̄t
J + O(dt), (3.28)

where ω̄J = ω̄j1 ∧ · · · ∧ ω̄jq
.

We are now in position to prove Proposition 3.2. Let u ∈ Λ0,q(M). Using the local frame defined by 
(3.20), we write

u =
∑′

J

uJ ω̄J .

Here the summation is taken over strictly increasing q-tuples of integers from {1, . . . , n − 1}. By (3.28), we 
have
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T t(u)(z) =
∑′

J

u(π(z))T t(ω̄J) =
∑′

J

u(π(z))(ω̄t
J + O(dt)),

for z ∈ M t ∩ U . Hence∣∣∣|T t(u)|2(ιt(z)) −
∑′

J,K

uJ(z)ūK(z)〈ω̄t
J , ω̄t

K〉(ιt(z))
∣∣∣ ≤ Cdt|u(z)|2 (3.29)

for any z ∈ M ∩ U . (Throughout this paper, we will use C to denote a positive constant, independent of u
and t, which might be different in different appearances.) Note that

|ρj(z) − ρt
j(ιt(z))| ≤ |ρj(z) − ρj(ιt(z))| + |ρj(ιt(z)) − ρt

j(ιt(z))| ≤ Cδt

for z ∈ M . It follows that for any q-tuples J and K,
∣∣〈ω̄J , ω̄K〉(z) − 〈ω̄t

J , ω̄t
K〉(ιt(z))

∣∣ ≤ Cδt. (3.30)

Combining (3.29) and (3.30) with (3.18), we then obtain (3.2). Moreover,

∣∣∣‖T tu‖2
Mt − ‖u‖2

M

∣∣∣ =
∣∣∣ ∫
M

(
|T tu|2(ιt(z))| Jac ιt

∗z| − |u|2(z)
)
dS

∣∣∣ ≤ Cδt‖u‖2
M .

This concludes the proof of Proposition 3.2.

4. Upper semi-continuity

In this section, we establish an upper semi-continuity property for the variational eigenvalues of the Kohn 
Laplacian as the underlying boundaries vary in the C2-topology. We have shown in the previous section that 
the difference between ‖T t(u)‖2

Mt and ‖u‖2
M is under control (see Proposition 3.2). To obtain the desirable 

estimate for the variational eigenvalues, we need to show that both differences between ‖∂MtT t(u)‖2
Mt and 

‖∂M u‖2
M and between ‖∂

∗
MtT t(u)‖2

Mt and ‖∂
∗
M u‖2

M are under control. This is how the subelliptic estimate 
comes into play. The following lemma is a direct consequence of the subelliptic estimate and the Sobolev 
embedding theorem.

Lemma 4.1. Let M be the boundary of a smooth bounded domain in Cn such that a subelliptic estimate 
(1.2) holds. Let u be an eigenform of �q

b with associated eigenvalue λ(M). Then for every l ∈ N, there exist 
positive constant Cl such that

‖u‖Cl ≤ Cl(1 + λ(M))
2(n+l)+1

4ε ‖u‖. (4.1)

Proof. We provide a proof for completeness. Subelliptic estimate (1.2) implies that there exists a constant 
Cs > 0 such that

‖(�b + I)−1u‖s+2ε ≤ Cs‖u‖s. (4.2)

(See the proof of Theorem 5.4.12 in [10].) Starting with s = 0 and repeatedly applying (4.2) to (�b + I)u =
(λ(M) + 1)u, we then have

‖u‖2mε ≤ C(1 + λ(M))m‖u‖, m ∈ N. (4.3)

The desired estimates (4.1) are then an immediate consequence of the Sobolev embedding theorem. �
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Note that the constant Cl in (4.1) depends only on l, the constant C in (1.2), and the derivatives of the 
defining function. We are now in a position to state and prove the main result in this section:

Theorem 4.2. Let M and M t be boundaries of smooth bounded domains in Cn, n ≥ 3. Suppose a subelliptic 
estimate holds on M for the Kohn Laplacian on (0, q)-forms, 1 ≤ q ≤ n − 2. Then there exists a positive 
constant Ck independent of t such that

λq
k(M t) ≤ λq

k(M) + Ckδt, (4.4)

provided that δt = ‖ρ − ρt‖C2 is sufficiently small.

We will keep the notations as in the previous section. Let L̄j, 1 ≤ j ≤ n − 1, be the local frame for 
T 0,1(M) over a neighborhood U of a point p0 on M defined by (3.19) and let ω̄α, 1 ≤ α ≤ n, be the 
(0, 1)-forms defined by (3.20). Note that

∂M ω̄j = τM (∂ω̄j) = τM

(
− ∂ρj ∧ ∂ρ

)
= 0. (4.5)

Let u =
∑′

J uJ ω̄J ∈ Λ0,q(M ∩ U). We have

∂M u =
∑′

J

(
∂M uJ ∧ ω̄J + uJ∂M ω̄J

)

=
∑′

J

n−1∑
j=1

(L̄juJ) ω̄j ∧ ω̄J .

(4.6)

We first compare the norms of ∂MtT t(u) and ∂M u. From Proposition 3.2 applied to ∂M u, we have
∣∣‖T t(∂M u)‖2

Mt − ‖∂M u‖2
M

∣∣ ≤ Cδt‖∂M u‖2
M . (4.7)

It remains to estimate the difference of the norms of ∂MtT t(u) and T t(∂M u) on M t. We have the following:

Lemma 4.3. Let u ∈ Dom(Qb). Then
∣∣∂MtT t(u) − T t(∂M u)

∣∣ ≤ Cδt
(
|u| + |∇u|

)
. (4.8)

Proof. From (4.6), we have

T t(∂M u)(z) = T t
( ∑′

J

n−1∑
j=1

(L̄juJ) ω̄j ∧ ω̄J

)
(z)

=
∑′

J

n−1∑
j=1

(
L̄juJ

)
(π(z))

(
ω̄t

j ∧ ω̄t
J + O(dt)

)
,

(4.9)

for z ∈ M t ∩ U . It follows from (3.26) and (3.21) that

T t(ω̄j) =
n∑

α=1

∂π̄j

∂z̄α
ω̄t

α − 4
n∑

α=1
(ρjρᾱ ◦ π)

n∑
β=1

∂π̄α

∂z̄β
ω̄t

β

=
n−1∑

gjk(z)ω̄t
k,

(4.10)
k=1
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where

gjk(z) = ∂π̄j

∂z̄k
− ∂π̄j

∂z̄n

ρt
k̄

ρt
n̄

− 4
n∑

α=1
(ρjρᾱ ◦ π)

(∂π̄α

∂z̄k
− ∂π̄α

∂z̄n

ρt
k̄

ρt
n̄

)
.

Hence

∂MtT t(ω̄j) =
n−1∑

l,k=1
L̄t

lgjk(z) ω̄t
l ∧ ω̄t

k. (4.11)

Let p ∈ M t and p0 = π(p) ∈ M . After a unitary transformation, we assume as before that p0 is the origin 
and the negative Im zn-axis is the outward normal direction at p0. It follows from Lemma 3.3 that

ρt
k̄
(p), ρj(p0), ∂π̄j

∂z̄n
(p), ∂π̄n

∂z̄k
(p), and ∂2π̄j

∂z̄l∂z̄k
(p), 1 ≤ j, k, l ≤ n − 1,

are all dominated by a constant times δt. (Recall that δt = ‖ρt − ρ‖C2,U where U is a neighborhood of M .) 
We then have

L̄t
lgjk(p) = O(δt),

and as a consequence

∂MtT t(ω̄j)(p) = O(δt), (4.12)

where as before O(δt) denotes a function or form whose pointwise norm is dominated by a constant multiple 
of δt. Therefore,

∂MtT t(u)(z) = ∂Mt

∑′

J

uJ(π(z))T t(ω̄J)

=
∑′

J

n−1∑
j=1

L̄t
j

(
uJ (π(z))

)(
ω̄t

j ∧ ω̄t
J + O(δt)

)
+

∑′

J

uJ (π(z))O(δt)
(4.13)

on z ∈ M t ∩ U . Combining (4.9) with (4.13), we then obtain (4.8). �
In comparing the norms of ∂∗

MtT t(u) and ∂
∗
M u, we likewise have

Lemma 4.4. Let u ∈ Dom(Qq
b). Then

∣∣∂∗
MtT t(u) − T t(∂∗

M u)
∣∣ ≤ Cδt(|u| + |∇u|). (4.14)

Proof. Let v =
∑′

|K|=q−1 vK ω̄K be a smooth (0, q − 1)-form, compactly supported on M ∩ U . We have

(u, ∂M v)M =
∑′

J,K

n−1∑
j=1

∫
M

uJ · L̄jvK · 〈ω̄J , ω̄j ∧ ω̄K〉dS. (4.15)

Note that

〈ω̄J , ω̄j ∧ ω̄K〉 = δJ
jK + R1(ρ),
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where

R1(ρ) = P1(ρj , ρk̄)

is a polynomial of first order partial derivative of ρ. Applying integration by parts to (4.15), we obtain

∂
∗
M u =

∑′

K

n−1∑
j=1

(−Lj + R2(ρ))ujK ω̄K , (4.16)

where R2(ρ) is a rational function where both the numerator and denominator are composed of up to 
second-order partial derivatives of ρ.

Likewise,

〈ω̄t
J , ω̄t

j ∧ ω̄t
K〉 = δJ

jK + R1(ρt).

Moreover, for f ∈ E0,q(M t ∩ U), we have

∂
∗
Mtf =

∑′

K

n−1∑
j=1

(−Lt
j + R2(ρt))fjK ω̄t

K .

Note that Rk(ρt), k = 1, 2, can be obtained by replacing the derivatives of ρ in Rk(ρ) by the corresponding 
derivatives of ρt. Hence

‖Rk(ρ) − Rk(ρt)‖ � δt, k = 1, 2.

From (3.28) and (4.16), we see that

T t(∂∗
M u)(z) =

∑′

K

n−1∑
j=1

[((
− Lj + R2(ρ)

)
ujK

)
(π(z))

](
ω̄t

K + O(δt)
)
. (4.17)

Similar to the proof of (4.12), it follows from (4.10) and Lemma 3.3 that

∂
∗
MtT t(ω̄j) =

n−1∑
k=1

(−Lt
k + R2(ρt))gjk = O(δt). (4.18)

Therefore,

∂
∗
MtT t(u)(z) =

∑′

K

n−1∑
j=1

(
− Lt

j + R2(ρt)
)
(ujK(π(z)))(1 + O(δt)) ω̄t

K (4.19)

for z ∈ M t ∩ U . Hence we have (4.14). �
Theorem 4.2 is then a consequence of Lemmas 2.1, 4.3, and 4.4. We sketch the proof as follows. Let Xk

be the linear span of the normalized eigenforms uj, 1 ≤ j ≤ k, associated with the first k eigenvalues λq
j(M)

for the Kohn Laplacian for (0, q)-forms on M . It then follows from Lemma 4.1 that for any u ∈ Xk,

‖u‖C1 ≤ Ck‖u‖.

From Lemmas 4.3 and 4.4, we have
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∣∣QM (u, u) − QMt(T tu, T tu)
∣∣ ≤ Ckδt‖u‖2.

Theorem 4.2 then follows from Lemma 2.1.

5. Lower semi-continuity

The proof of lower semi-continuity of the eigenvalues is similar. We provide details for the reader’s 
convenience.

Theorem 5.1. Let M be the boundary of a smooth pseudoconvex domain in Cn with normalized defining 
functions ρ. Let M t be a family of boundaries of smooth pseudoconvex domains that satisfies the uniform 
subelliptic estimate. Let 1 ≤ q ≤ n − 2 and k ∈ N. Then there exists a constant Ck which is independent of 
t, such that

λq
k(M t) ≥ λq

k(M) − Ckδt, (5.1)

provided δt = ‖ρ − ρt‖C2 is sufficiently small.

Proof. The proof is similar in some respects to Theorem 4.2. The difference here is we use Lemma 4.1 to 
establish estimates that are uniform with regard to t.

We define T̂ t : Dom(Qt
b) → Dom(Qb) by

T̂ t = τM ◦ P 0,q ◦ (ιt)∗.

For ut ∈ Dom(Qt
b), note that

‖T̂ t(ut)‖2
M − ‖ut‖2

Mt =
∫
M

〈T̂ t(ut), T̂ t(ut)〉dS −
∫

Mt

〈ut, ut〉dSt

=
∫
M

(∣∣T̂ t(ut)
∣∣2(z) − |ut|2(ιt(z))|Jac ιt

∗z|
)

dS.

(5.2)

As in the proof of (3.3), it is sufficient to estimate 
∣∣T̂ t(ut)

∣∣2(z) − |ut|2(ιt(z))|Jac ιt
∗z| pointwise. We prove 

the case q = 1, and the general case follows from the same argument. Let z ∈ M t ∩ U , write ut(z) =∑n−1
j=1 ut

j(z)ω̄j(z). From (3.24) and (3.27), we have

T̂ t(ut)(z) =
n−1∑
j=1

ut
j ◦ ιt(z)

(
ω̄j(z) + O(δt)

)
(5.3)

and

|ut|2(ιt(z)) =
n−1∑

j,k=1

〈ut
j ◦ ιt, ut

k ◦ ιt〉(δjk(1 − 8|ρt
j |2 ◦ ιt) + 4(ρt

jρt
k̄
) ◦ ιt + O(δt)

)
. (5.4)

From Lemma 3.3, we see that
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∣∣T̂ t(ut)
∣∣2(z) − |ut|2(ιt(z))|Jac ιt

∗z| = 8
n−1∑
j=1

|ut
j ◦ ιt|2(−|ρj |2 + |ρt

j |2 ◦ ιt)

+ 4
n−1∑

j,k=1

〈ut
j ◦ ιt, ut

k ◦ ιt〉
(
ρjρk̄ − (ρt

jρt
k̄
) ◦ ιt

)
+ O(δt)|ut ◦ ιt|2

(5.5)

on z ∈ M ∩ U . Hence we obtain

∣∣‖T̂ t(ut)‖2
M − ‖ut‖2

Mt

∣∣ � δt‖ut‖2. (5.6)

We now assume that ut is the normalized eigenform of �t
b associated with eigenvalue λt. As in the proof 

of Theorem 4.2, it suffices to prove estimates ‖∂M T̂ t(ut) − T̂ t(∂Mtut)‖M and ‖∂
∗
M T̂ t(ut) − T̂ t(∂∗

Mtut)‖M

that are uniform with respect to t. Suppose u ∈ D0,q(U ∩ M) and write u =
∑′

J uJ ω̄J . It is not difficult to 
obtain that

T̂ t(∂Mtut) =
∑′

J

n−1∑
j=1

(
L̄t

jut
J ◦ ιt

)
(ω̄j ∧ ω̄J + O(δt)) (5.7)

and

∂M T̂ t(ut) =
∑′

J

n−1∑
j=1

L̄j(ut
J ◦ ιt)ω̄j ∧ (ω̄J + O(δt)) +

∑′

J

(ut
J ◦ ιt)O(δt). (5.8)

Applying Lemma 4.1, we get

‖∂M T̂ t(ut) − T̂ t(∂Mtut)‖2
M =

m∑
l=1

∫
M

ψ2
l

∣∣∣ ∑′

J

n−1∑
j=1

(
L̄j(ut

J ◦ ιt) − L̄t
jut

J ◦ ιt
)
ω̄l

j ∧ ω̄l
J

+
∑′

J

n−1∑
j=1

(
L̄j(ut

J ◦ ιt) − L̄t
jut

J ◦ ιt + ut
J ◦ ιt

)
O(δt)

∣∣∣2
dS

≤ C(δt‖ut‖C1)2 ≤ C(δt(1 + λt)
n+2

2ε ‖ut‖)2,

(5.9)

where {ψl}m
l=1 denotes a partition of unity and here constant C is independent of t. The estimate ‖∂

∗
M T̂ t(ut) −

T̂ t(∂Mtut)‖M � δt can be obtained similarly. It follows that

|Qt
b(ut, ut) − Qb(T̂ t(ut), T̂ t(ut))| ≤ Cδt. (5.10)

The desired inequality (5.1) then follows from Lemma 2.1 and the subsequent remark. �
6. Bottom and top degree cases

In this section, we prove Theorem 1.1, Parts (2) and (3). We first establish stability of eigenvalues for 
bottom (0, 0)-degree and top (0, n − 1)-degree forms.

Write λ0
k(M) as the kth-positive eigenvalue of �0

b . Since a subelliptic estimate for (0, 1)-form holds on 
M , ∂∗

M has close range in L2 (M). Hence N (∂M )⊥ = R (∂∗
M ). Therefore
(0,0)
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λ0
k(M) = inf

L⊂Dom(∂M )∩N (∂M )⊥

dim L=k

sup
u∈L\{0}

‖∂M u‖2

‖u‖2

= inf
L⊂R (∂

∗
M )

dim L=k

sup
u∈L\{0}

‖∂M u‖2

‖u‖2

= inf
K⊂Dom(∂

∗
M )∩N (∂

∗
M )⊥

dim K=k

sup
f∈K\{0}

‖∂M ∂
∗
M f‖2

‖∂
∗
M f‖2

.

(6.1)

A similar identity also holds for M t.
Recall that

T t = τMt ◦ P 0,1|Mt ◦ π∗ : Λ0,1(M) → Λ0,1(M t). (6.2)

We now use the same argument as in the cases 1 ≤ q ≤ n − 2 to demonstrate that λ0
k(M t) satisfies 

upper-semicontinuity estimates. Letting u = ∂
∗
M f in (3.3) and u = f in (4.14), we have

∣∣‖∂
∗
MtT t(f)‖2

Mt − ‖∂
∗
M f‖2

M

∣∣ ≤ Cδt‖∂
∗
M f‖2

C1 . (6.3)

We claim that

∣∣‖∂Mt∂
∗
MtT t(f)‖2

Mt − ‖∂M ∂
∗
M f‖2

M

∣∣ ≤ Cδt‖∂
∗
M f‖2

C2 (6.4)

With u = ∂
∗
M f in (4.8), we obtain the following pointwise estimate

∣∣∂MtT t(∂∗
M f) − T t(∂M ∂

∗
M f)

∣∣ ≤ Cδt
(
|∂∗

M f | + |∇∂
∗
M f |

)
(6.5)

on M t. Substituting u = ∂M ∂
∗
M f into (3.3), we get

∣∣‖T t(∂M ∂
∗
M f)‖2

Mt − ‖∂M ∂
∗
M f‖2

M

∣∣ ≤ Cδt‖∂M ∂
∗
M f‖2

M , (6.6)

which gives

∣∣‖∂MtT t(∂∗
M f)‖2

Mt − ‖∂M ∂
∗
M f‖2

M

∣∣ ≤ Cδt‖∂M ∂
∗
M f‖2

M . (6.7)

In order to prove the claim, it is sufficient to show that

∣∣∂MtT t(∂∗
M f) − ∂Mt∂

∗
MtT t(f)

∣∣ ≤ Cδt
(
|∂∗

M f | + |∇∂
∗
M f | + |∇2∂

∗
M f |

)
. (6.8)

Indeed, this follows directly from (4.17) and (4.19). Since a uniform subelliptic estimate holds on M t, we 
have

‖f‖2
ε/2 ≤ C‖∂

∗
Mtf‖2, f ∈ N (∂∗

Mt)⊥.

(See the proofs of Theorem 8.4.10 and Theorem 8.4.14 in [5].) We then conclude the proof of the bottom 
degree case by applying the arguments of Lemma 4.1. The proof for the top degree case is similar and is 
left to the reader.

To prove Theorem 1.1 (3), we just need to apply Kohn’s subelliptic estimate on the pseudoconvex 
hypersurface M of finite type in C2 and use the fact that these estimates are uniform on M t provided 
‖ρt − ρ‖C∞(U) → 0.
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7. Further remarks

(1) Our main result assumes that subelliptic estimate (1.2) with constants ε and C independent of t

holds on M t. It is of interest to know whether the subelliptic estimate remains stable under perturbations 
of the boundary in the C∞-topology. More precisely, let M t, −1 ≤ t ≤ 1, be a family of smooth compact 
pseudoconvex hypersurfaces in Cn. Assume that the defining function ρt of M t depends smoothly on t. 
Suppose subelliptic estimate (1.2) holds on M0. Does it follow that a uniform subelliptic estimate holds on 
M t (with possibly different constants ε and C that are independent of t) when t is sufficiently small? As 
we note in Section 1, this is the case if M0 is strictly pseudoconvex in Cn or of finite type in C2. D’Angelo 
showed that if M0 is of finite 1-type, then M t is also of finite 1-type with a uniform bound on the type 
when t is sufficiently small ([6, Theorem 6.9]). Thus a subelliptic estimate holds on each M t. However, it is 
not known to us whether the constants ε and C can be chosen to be both independent of t.

(2) Our method makes no use of the assumption that the defining function ρt of the hypersurface M t

depends smoothly on t. In fact, it is easy to see that the main results can be reformulated for a sequence of 
hypersurfaces M tj whose defining functions converge to that of M in C2-norms.
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