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1. Introduction

In physical sciences, exact values are oftentimes impossible to obtain and approximations are used instead.
It is then important to understand whether the observed quantity remains stable when other parameters
are slightly perturbed. Stability of the spectrum for the classical Laplace operator with the Dirichlet or
Neumann boundary condition on bounded domains in R™ has been studied extensively in the literature (see,
e.g., [14,7,8,2] and references therein). In [13], the first and third authors initiated a systematic study of
spectral stability of the 9-Neumann Laplacian on a bounded domain in C™ when the underlying domains are
perturbed and established upper semi-continuity properties for the variational eigenvalues of the 9-Neumann
Laplacian on bounded pseudoconvex domains in C™, lower semi-continuity properties on pseudoconvex
domains that satisfy property (P), and quantitative estimates on smooth bounded pseudoconvex domains
of finite D’Angelo type in C™.

In this paper, we study spectral stability of the Kohn Laplacian on the boundary of a smoothly bounded
domain in C™ when the boundary is perturbed. Our main result can be stated as follows:
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Theorem 1.1. Let Q and QF, —1 <t < 1, be bounded pseudoconver domains in C™ with smooth boundaries
M and M! respectively in C™, such that M° = M. Let p and p' be the signed distance functions for M
and M? respectively. Assume that there exists a neighborhood U of M such that p and pt are smooth with
uniformly bounded C'*°-norms on U.

(1) Let n > 3. Suppose 1 < q < n — 2 and the Kohn Laplacian for (0,q)-forms on M" satisfies a uniform
subelliptic estimate. Let A} (M) and A} (M") be the k'™ eigenvalues for the Kohn Laplacian on (0,q)-
forms on M and M? respectively. Then there exists a positive constant Cy, independent of t such that

IAL(MT) = NL(M)] < Cyd", (1.1)

provided that 6* = ||p — p'||c2.u is sufficiently small. In particular, the above estimate holds if M is
strictly pseudoconvex in C™.

(2) Letn > 3. Suppose a uniform subelliptic estimate holds for the Kohn Laplacian on M* for (0,1)-forms.
Let A\Q(M) and XQ(M?) be the k'™ non-zero eigenvalues for the Kohn Laplacian for functions on M and
M respectively. Then (1.1) holds for ¢ = 0. Analogously, suppose a uniform subelliptic estimate holds
for the Kohn Laplacian on M*" for (0,n — 2)-forms. Then (1.1) holds for ¢ =n — 1.

(3) Let n=2. If M is pseudoconvez of finite type, then (1.1) holds for ¢ = 0,1 provided §' = ||p* — p||lce.v
1s sufficiently small.

Let n >3 and 1 < ¢ < n — 2. Recall that the Kohn Laplacian [J, is said to satisfy a subelliptic estimate
for (0, ¢)-forms on a smooth compact hypersurface M if there exist constants 0 < ¢ < 1/2 and C' > 0 such
that

[ull2 < C(Qb(u,u) + |[ul®) (1.2)

for every u € Dom(Qy) such that u L Ker(Qy), where | - || denotes the L?-Sobolev norm of order £ and
Qb (u, u) the quadratic form associated with the Kohn Laplacian (see Section 2 for detail). We say that a
uniform subelliptic estimate holds on M? if estimate (1.2) holds on M* and the constants € and C in (1.2)
can be chosen to be independent of the parameter ¢. Note that a subelliptic estimate (1.2) implies that
the Kohn Laplacian [, has compact resolvent and its spectrum consists of discrete eigenvalues of finite
multiplicity.

It follows from the works of D’Angelo ([6]) and Catlin ([3,4]) that the 9-Neumann Laplacian satisfies
a subelliptic estimate for (0, ¢)-forms on a smooth bounded pseudoconvex domain  in C™ if and only
if its boundary M is of finite D’Angelo ¢-type (i.e., the order of contact of M with any ¢-dimensional
complex analytic variety is finite). Furthermore, we know from the work of Kohn that the 0-Neumann
Laplacian satisfies the subelliptic estimate on a smooth bounded pseudoconvex domain ) if and only if
the Kohn Laplacian satisfies the subelliptic estimate on its boundary bQ ([15, Theorem 8.2]). Since strict
pseudoconvexity of M is preserved under a sufficiently small perturbation in the C2-topology, a uniform
subelliptic estimate holds on M? when M is strictly pseudoconvex. Similarly, for a smooth pseudoconvex
hypersurface in C2, the finite type condition in the sense of D’Angelo is equivalent to the finite commutator
type in the sense of Hérmander which is stable under a sufficiently small C*°-perturbation. Thus a uniform
subelliptic estimate holds on M* when M is a pseudoconvex hypersurface of finite type in C2, provided M?
is a sufficiently small perturbation of M in the C*°-topology.

Our paper is organized as follows. In Section 2, we recall the necessary definitions and set up the problem.
In Section 3, we define the transition operator which plays an important role in the analysis. In Section 4,
we establish an upper semicontinuity property for the eigenvalues under the assumption that the subelliptic
estimate holds on M. In Section 5, we establish the lower semicontinuity property when a uniform subelliptic
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estimate holds. In Section 6, we study spectral stability of the Kohn Laplacian on functions and top degree
(0,n — 1)-forms. The last section contains further remarks.

2. Preliminaries

Let (M, T*°M) be an orientable CR manifold of real dimensional 2n — 1, equipped with a Hermitian
metric on CTM so that TH0M is orthogonal to T%'M := TO1M. Let T be the orthogonal complement
of TVOM @ T M in CTM. Denote by T*V'OM, T*%1 M and € the dual bundles of TV°M, T% M and T,
respectively. For 0 < p,q <n — 1, let A»"?M be the vector bundle defined by

APIM = APT*LON @ AIT*O1 M.

Denote by £P+9(M) the space of smooth sections of AP*?M over M. Let 0, be the tangential Cauchy-Riemann
operator defined intrinsically by

5:” = PPatlo gy, EPI(M) — EPIHL(M)

where dy is the exterior differential operator on M and PE4t! . AP+a+1(M) — AP4+1(M) the orthogonal
projection. (We will drop the superscripts from gf’q when they are clear from the contexts.) We also use 0,
to denote the maximal extension of 0, on L%p_ q)(M ), the space of (p, q)-forms with L2-coefficients. As such,

the domain Dom(dy) of

APd . 2 2
% L(p,q)(M) - L(p,qul)(M)

consists of forms u € L%pﬂ)(M) such that dpu € L?p,q_H) (M) in the sense of distribution. Thus d is a linear,

closed, and densely defined operator on pr,q)(M ). Let

JPa* | 12 2
% L(p7q+1)(M) - L(p,q)(M)

be the adjoint of 9, with
Dom(éZ) = {u € L%p7q+1)(M) | 3C > 0 such that |(u, 9y0)| < C||9||, Y € Dom(gb)}.

For 0 <p <nand1<qg<n-—2, the Kohn-Laplacian on L%p q)(M) is given by

—=p,q—1=p,q—1% 7P,a* /P
Oy = 32) ! ai - ai ! 55 K L%p,q)(M) - L%P»q)(M)

with
Dom(C87) = {u € L%pyq)(M) | u € Dom(8,) N Dom(dy,),

dyu € Dom(dy), Oyu € Dom(8y) }.

It follows that O is a linear, closed, and densely defined self-adjoint operator on L%p,q)(M ) (see [12] for a

spectral theoretic proof of this fact). Let
Qu(u,v) = (Byu, Opv) + (Byu, yv), u,v € Dom(Qp) = Dom(d,) N Dom (D)

be the sesquilinear form associated with the Kohn Laplacian [,. Write
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Ker(Q,) = Dom(d,) N Dom(dy,).

For ¢ = 0, the Kohn Laplacian is given by

0 —=p,0%=p,0 .

with the associated sesquilinear form
Qu(u,v) = (Opu, Opv) u,v € Dom(Qp) = Dom ().

Similarly, for ¢ = n — 1, the Kohn Laplacian is

n— =p,n—1=p,n—1x%
ot =9, 9, . L2 (M) = L7, (M)

(p,n—1

with the associated sesquilinear form
Qp(u,v) = (EZu,EZv), u,v € Dom(Qp) = Dom(&t).

We now recall the extrinsic definition of the tangential Cauchy-Riemann operator when M is a smooth
hypersurface in C™ with the inherited CR structure. Consider a neighborhood U of M in C™ and let
r € C®(U) be a defining function of M such that » = 0 and |dr| = 1 on M. Let EP9(U) be the space of
smooth sections of AP4U over U and let 0 : EP4(U) — EP4F1(U) be the Cauchy-Riemann operator. Let
AP 9(U)|pr be the restriction of the bundle A”9(U) to M. More precisely, if

f=3 fradz Adzy € E70(U),
I1,J

then f|yr € AP9(U)|ps is obtained by restricting the coeflicients fr ; to M. Let
PUU) ={rf+drng| feAI(U),gec AP (U)} (2.1)

be the ideal in AP9(U) locally generated by r and dr. Let A”?(M) be the orthogonal complement of 17+
in AP9(U)|pr Let

M

™ - Ap’q(U)|]u — Ap’q(M)

be the orthogonal projection. For any f € AP9(U)|ps, we refer to mp7(f) as the tangential part of f. Since
|dr| =1 on M, it is easy to see that

™ (f) = (@r)"a(0r A f), (2.2)

where

= e " or 0
(37‘) _4;:1 0z, 0z,

is the dual vector to the form Or and _ denotes the contraction operator of a vector with a form.
For an open set W C M, denote by EV/? (W) the space of smooth sections of AP4(M) over W and D/ (W)
the space of compactly supported forms in EY/?(W). The (extrinsic) tangential Cauchy-Riemann operator
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Anr : EVUW) — EXITH(W) is defined as follows: For f € ER9(W), let f € qu( ) be an extension of f to
some open set W in C™ such that W N M = W and 2 (flar) = f on W. Then

o f =1u((0f) ).

Evidently, the definition of 0,/ is independent of the ambient extension. In the case when M is an embedded
hypersurface in C™, the extrinsic and intrinsic approaches lead to different but isomorphic tangential Cauchy-
Riemann complexes (see [1] for details). Since p plays no role in our analysis, hereafter we consider only the
tangential Cauchy-Riemann operator on (0, g)-forms. We will also use 0, and 9 interchangeably to denote
the tangential Cauchy-Riemann operator on M.

Let A\{ (M) be the kth-variational eigenvalue of [, on L?O, 2 (M), given by the following min-max principle:

(M inf su w, )/ ||ul? 2.3
0=, s @l (23

where the infimum takes over all linear k-dimension subspaces of Dom(Qy). Recall that the spectrum of a
non-negative self-adjoint operator S is purely discrete if and only if the variational eigenvalues A, (.S) defined
as above go to 0o as k — co. In this case, A\, (S) is the k*P-eigenvalue of S when the eigenvalues are arranged
in increasing order and repeated according to multiplicity (see [7, Chapter 4]). Note that in the cases when
g = 0 and ¢ = n — 1, the kernel Ker(Q,) of @ is always infinite dimensional when M is embedded. In
these cases, when we say k*P-variational eigenvalue of [, we refer to the k*P-variational eigenvalue of [J,
restricted to the orthogonal complement of Ker(Qy). For example, in the case when ¢ = 0,

Ne(M) = LcDom(albI)lfmer<ab)L ervo) Bl
dim L=F

Let S;, 7 = 1, 2, be non-negative self-adjoint operators on Hilbert space H with associated quadratic forms
Q;. One way to estimate the difference between variational eigenvalues A;(S1) of S7 and Ag(S2) of Sy is to
construct a transition operator T: Dom(Q;) — Dom(Q2) and estimate the difference between (f, ¢)1 and
(Tf, Tg)2 and between Q1(f,g) and Q2(Tf,Tg) for f and g in any k-dimensional subspace of Dom(Q1).
The following lemma is a simple consequence of the min-max principle (2.3) (compare [13, Lemma 2.1] and
the subsequent remark).

Lemma 2.1. Let S;, ¢ = 1,2, be non-negative self-adjoint operators on Hilbert spaces H; with associated
quadratic forms Q;. Let T: Dom(Q1) — Dom(Q2) be a linear transformation from the domain of Q1 to
that of Q2. Suppose there exist constants 0 < a < 1 and b > 0 such that for any k-dimensional subspace Xj,
of Dom(Q1) and any u € X,

[Tul3 > (1 —a)llull] and Q2(Tu,Tu) < (1+b)Q1(u,u)

for any u € Dom(Q1). Then

1+0b

Ak(82) < — a)\k(Sl)-

Proof. Let &} be any k-dimensional subspace of Dom(Q1). Since T is one-to-one, T'(X}) is a k-dimensional
subspace of Dom(Qs). Hence

Q2(Tu, Tu
Ak(82) < Sup{%
2

{ (1+0)Q1(u,u)
(1 —a)|ull?

|u€Xk,u7é0}

< sup |u€Xk,u7é0}.
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Taking infimum over all k-dimensional subspaces of Dom(Q1), we then obtain the desired inequality. O
3. Transition operator

Let Q be a bounded domain in C™ and let M = bQ2. For any o > 0, set U,(M) = {z € C" | dist(z, M) <
o}, where dist(z, M) is the Euclidean distance from z to M. The hypersurface M is said to be of positive
reach if there is a ¢ > 0 such that each z € U,(M) has a unique nearest point on M. Denote by Reach(M)
the largest such o. It follows from [9, Theorem 4.12] that when 2 is C2?-smooth, Reach(M) > 0. Assume
now that M is C?-smooth. Let og = Reach(M) and Uy = U,,(M). Let p(z) be the signed distance from z
to M such that p(z) = —dist(z, M) for z € Q and p(z) = dist(z, M) for = € C™ \ Q. Then p € C%(Up) and
|dp| = 1 on Uy. We will also use p to denote a C?-extension of the signed distance function to C™. Let Qf
be a family of bounded domains with C?-smooth boundary M! for t € (—1, 1) such that Q° = Q, M* C Uy
and d* = dy (Mt M) — 0 as t — 0, where

dg (M, M) = dist(z, M*) = dist (w, M
#(M*, M) = max dist(z, M*) = max dist(w, M)

is the Hausdorff distance between M and M?. Let p! be the signed distance defining function for Qf, extended
to be C? on C™. Let

5" =o' = plle>,u,
be the C2-norm over Uy. Evidently, d* < 6°. Let
m: Uy —> M

be the projection onto M along the real normal direction such that dist(z, M) = dist(z,7(z)). Then 7 is C?
on Up. Let

s Mt > M

be the restriction of 7 to M.
We can now define the transition operator. Let PP? denote the natural orthogonal projection from
APT9(Uy) onto AP2(Up). The transition operator is then defined as follows:

T = 700 0 PO ppe o 0 A%9(M) — A9(MY), (3.1)

where 7 : A%9(M) — A%(Up) is the pull-back operator and PP:9|ys:(u) denotes the form obtained by re-
stricting the coefficients of PP4(u) to M. Tt is easy to see that T extends to a bounded linear transformation

from L%OH)(M) into L?Oﬂ)(Mt) and it maps Dom(Q;) into Dom(Qy ).

In the remainder of this section, we will show that the L?-norm of a (0, ¢)-form on M is stable under this
transition operator. The following lemma is well known. We provide a proof for the reader’s convenience.

Lemma 3.1. 7! is a C2-diffeomorphism between M' and M, provided 8! is sufficiently small.
Proof. We first observe that 7! is surjective when ¢ is sufficiently small. In fact, for every z € M, we have
p'(z + s7i(2)) = p'(2) + Vp' (2) - 7i(2)s + O(s?),

where 7i(z) = Vp(z) is the outward normal direction of M at z. Thus for any sufficiently small s > 0,
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pl(z—si(2) < p'(z) —s/2<0 and p'(z+sii(z)) > p'(2) +5/2 >0,

provided & is sufficiently small. Thus by the intermediate value theorem, there exists a sop € (—s, s) such
that p'(z + so7i(2)) = 0 and 7(z + so7i(2)) = 2.

We now show 7 is injective. Proving by contradiction, we assume that there are two distinct points z;
and zz on M? that project to the same point z on M. Write z; = z + s;7(z), i = 1,2, where s; and s, are
two distinct real numbers in (—og, 0p). Set g(s) = p'(z + s7i(z)). Then g(s1) = g(s2). This contradicts the
fact that

g'(s) = Vpl(z + sii(2)) - 7i(z) > 1/2,

when & is sufficiently small. Then both 7* and its inverse are C2-smooth is a consequence of the implicit
function theorem. 0O

Proposition 3.2. Let «': M — M! be the inverse of wt. Then there exists a constant C > 0 such that
1T u? (¢ (2))] Jac o] = [ul*(2)| < C8'[ul?(2) (3.2)

for any u € A%9(M), where | -| denotes the pointwise norm of a form and Jac i\, the Jacobian determinant
of it at z. Furthermore,

T ullse = llull] < C8Jlull3, (3-3)
for any u € LY, (M).

We do some preparations before proving this proposition. Let p € Uy and let pg = 7(p). After a unitary
transformation, we might assume pq is the origin and the negative Re z,-direction is the outward normal
direction at pg. In this coordinate, p = (0,...,0,d) and there exists a neighborhood U of the origin such
that

MNU={(Z,22,) €U | 22, = f(2)},

where f(Z) is a C? function in the form f(%) = Zinl; apizrz; + O(|Z]3). Here we identify C™ with R?"
and use the notations z; = xa;_1 + vV—12g;, j =1, ,n, and & = (z1,...,T2p—1).

For (Z,x2y) near pg, we write 7(Z, x2n) = (7, f(9)) where § = (y1,...,%2n—1) and y; = y;(x1,...,22n)
are C3-smooth near the origin. The following lemma is well known. We provide a proof, following the proof
of Theorem 1.1 in [11] (compare also [16]) for the reader’s convenience.

Lemma 3.3. With the above notations, for sufficiently small d, we have:

ap B ap .

o2, (p) =0, pr. (p) =-1 (3.4)
9?p 9?p

a%,jaxk (p) = ajk + O(d), m(p) = 0; (3.5)

6yj(>_ e+ aipd + O(d? 6yj =0 3.6

3—l‘kp — 95k Ajk + ( )7 %(p =Y ( . )

and
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O () — Py %y;
Tardm, P = 0@, Fa—(p) = aji + O(d), 52 (p) = O(d), (3.7)

n

or all 1 < h,j, k < 2n — 1, where the constant depends on the C®-norm of p.
[ 3 Js ; P p

Proof. Estimates (3.4) and (3.5) were given in [11, Theorem 1.1]. For completeness, we provide a detailed

proof for (3.6) and (3.7). Given (Z, x2,) near pg, observe that for § = (sq,..., S2,—1) near the origin,
2n—1
AB) = Y (w5 — 55)" + (w20 — f(5))°
j=1

attains a local minimum when § = §. Differentiating both sides with respect to s; and then evaluating at
5 =g, we have

(25 — ) + (2n — f(z?))g—jj(ﬂ) 0, 1<j<om- L. (3.8)

By taking 0/0xy, 1 < k < 2n — 1, to both sides of (3.8), we have
dy; (X~ Of Oy @) o
Sjk — ot — n— =0. 3.9
T D ( Z o 8xk) () + (22 Z ay]ayl orr (39)
Similarly, by taking 9/0x2, to both sides of (3.8), we have
2n—1

dy; 8f oy \ Of nly _
 O2an ( Z 8yl 8x2n> 0y, (9) + (w20 = Z 5’%5’241 31;% =0. (3.10)

Evaluating (3.9) and (3.10) at p = (0,...,0,d), we obtain

ay 2n—1 a
8k — 0—3 +d Z i g, =0 (3.11)
and
ay 2n—1
N J
- +d Z Jla o =0 (3.12)

Applying Cramer’s rule to the linear system (3.11), 1 < j, k < 2n — 1, we obtain

9y;

Dy P) = O ajid + o(d?).

Similarly, from (3.12), we obtain

9yj

We thus establish (3.6).
We now proceed to prove (3.7). Taking 0/0zp, 1 < h < 2n — 1 to (3.9) and then evaluating at p, we
obtain
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323/1’ = 0 9) Oy
_ =0. 1
8$ka$h Z 8y]ayl (9.Z‘k (3 3)
Thus
02%—
=0(d
S (1) = O(d)

with the constant depending on the C3-norm of f. Similarly, applying 9/9z2,, to (3.9), we obtain

82 ) 2n—1 82 a a 2n—1 82 a
S TN TR (3.14)
0x10Toy, — Oy;0y; Oxy, O0xan, — 0y;0y; Oxy,
Together with (3.6), we then have
62yj
——(p) = a;x + O(d). 3.15
8$ka$2n (p) aﬂk+ ( ) ( )
Moreover, applying 9/0z, to (3.10) and then evaluating at p, we have
2n—1 2n—1
O*f Ou 0 Pf oy
d — =0. 3.16
aan Z ayjayl 81‘271 p Ozap, =1 8yj8yl oxy, ( )
It follows that
Py,
= 0(d). 3.17
520 () =0ld). O (317)
As a consequence of this lemma, we have:
Lemma 3.4. With the notation above, we have that
Jac mpy, =14 0(d) and Jac i, =1+0(d") (3.18)

for any p € Mt and pg € M respectively.

For a given point pg € M, since |dp| = 1 on M, we may assume without loss of generality that 9p/0z, # 0
on a neighborhood U of pg. Let

- 0 Op s Op\—1 0O .
Li=———|=— —, 1 <53 <n—-1. 3.19
179z 0z (azn) oz, —7=" (8.19)
Then {Li,...,L,_1} forms basis for T(%V (M) on U. Let
_ _ 0p = _
W = dZo — 4 dp, 1<a<n, and 6=09p. (3.20)

020

Then {@1,...,w, 1} is a dual basis to {L1,...,L,_1} for A%'(M) on U. Note that 6 is orthogonal to
wj, 1 <j<n-—1,and {@1,...,@,_1,0} is a local frame for A%(C™) on U. Furthermore, @, is linearly
dependent on @y, ...,w, 1 in A%Y(M). Indeed,
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n—1
k=1

Hereafter, to simplify the notations, we write ap and 8” as p; and p; respectively. Also, lowercase roman
indices will run from 1 to n — 1, whereas lowercase Greek indices will run from 1 to n. Observe that

v (dze) = (0p)* 2(0p Ndzy) = Do, a=1,--- n. (3.22)
Moreover,
T (dZK) = Wk, (3.23)

where K is any tuple of integers from 1 to n. We define E; and w!, similarly by replacing p by p' in (3.19)
and (3.20) respectively. The identities (3.22) and (3.23) remain true when M is replaced by M*, p by p',
and w, by wf,.

Write 7(z) = (71(2),...,m (%)), we have

Ty = Z (g:id + gT(idza> - Z piPa o™ BZ (g;r; dzg + %dzﬁ). (3.24)
=1

a=1

Thus
879 87ra
Olor*e; = E dza — E (pjpa o) E d25 (3.25)

Restricting the coefficients to M*? and applying 7as¢, we then obtain

_ (971' _ - " 97,
Tt(wj>= oLl — 4 Z pipacT Za— (3.26)

Let p be any point on M! and let pg = w(p) € M. After a unitary transformation, we assume pq is
the origin and the negative Re z,-axis is the outward normal direction at py. It follows from (3.26) and
Lemma 3.3 that

T'(w;)(p) = wj(p) + O(d"), (3.27)

where O(d!) denotes a form whose pointwise norm is dominated by a constant multiple of d?, the Hausdorff
distance between M and M?. More generally, when d' is sufficiently small, we have

T (@) =@ +0(d"), (3.28)
where wy = w;, Ao Awj, .

We are now in position to prove Proposition 3.2. Let u € A%9(M). Using the local frame defined by
(3.20), we write

/
u = E UJ(:}J.
J

Here the summation is taken over strictly increasing g-tuples of integers from {1,...,n — 1}. By (3.28), we
have
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/ /
THu)(z) = Y u(m(2)T (@) = Y uln(2)(@5 +O(d")),
J J

for z € M*NU. Hence

T PG E) — 3 o) (2) @, @) (4(2)| < Calu=) P (3:29)
JK

for any z € M NU. (Throughout this paper, we will use C' to denote a positive constant, independent of u
and t, which might be different in different appearances.) Note that

1pi (2) = P ()] < 1pj(2) = i ((2))] + lps (' (2)) = p (¢ (2))] < O
for z € M. It follows that for any ¢-tuples J and K,
(@7, 05)(2) — (@5, @k) (' (2))] < C6". (3.30)

Combining (3.29) and (3.30) with (3.18), we then obtain (3.2). Moreover,

Tl = Nl = | [ (") gae k] = P (2))ds| < €8l
M

This concludes the proof of Proposition 3.2.
4. Upper semi-continuity

In this section, we establish an upper semi-continuity property for the variational eigenvalues of the Kohn
Laplacian as the underlying boundaries vary in the C?-topology. We have shown in the previous section that
the difference between ||7%(u)||3,. and ||ul|3; is under control (see Proposition 3.2). To obtain the desirable
estimate for the variational eigenvalues, we need to show that both differences between [|0pT%(u)||3,. and
|0arul|?, and between Hg}kWTt(u)H?W and ||5Lu||?w are under control. This is how the subelliptic estimate
comes into play. The following lemma is a direct consequence of the subelliptic estimate and the Sobolev
embedding theorem.

Lemma 4.1. Let M be the boundary of a smooth bounded domain in C™ such that a subelliptic estimate
(1.2) holds. Let u be an eigenform of O} with associated eigenvalue N\(M). Then for every |l € N, there exist
positive constant C; such that

2(n+1)+1

[uller < i1+ A(M))™ 5= Jul]. (4.1)

Proof. We provide a proof for completeness. Subelliptic estimate (1.2) implies that there exists a constant
Cs > 0 such that

1O + 1) ullsr2e < Clulls. (4.2)

(See the proof of Theorem 5.4.12 in [10].) Starting with s = 0 and repeatedly applying (4.2) to (Qp + [)u =
(A(M) + 1)u, we then have

[ull2me < C(L+AM))"[|ull, m eN. (4.3)

The desired estimates (4.1) are then an immediate consequence of the Sobolev embedding theorem. O
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Note that the constant C; in (4.1) depends only on [, the constant C in (1.2), and the derivatives of the
defining function. We are now in a position to state and prove the main result in this section:

Theorem 4.2. Let M and M? be boundaries of smooth bounded domains in C™, n > 3. Suppose a subelliptic
estimate holds on M for the Kohn Laplacian on (0,q)-forms, 1 < q < n — 2. Then there exists a positive
constant Cy, independent of t such that

MM < X(M) + G, (4.4)
provided that §' = ||p — p'||c2 is sufficiently small.

We will keep the notations as in the previous section. Let Ej, 1 <7 < n—1, be the local frame for
TOY(M) over a neighborhood U of a point pg on M defined by (3.19) and let W, 1 < a < n, be the
(0, 1)-forms defined by (3.20). Note that

EMLD]' = TM(ECDJ') = TM(— 5pj /\5,0) = 0. (4.5)
Let u =Y usw; € A%(MNU). We have

Opu = Z/ (5MUJ Nwy + UJEJVI‘DJ)

(4.6)

We first compare the norms of 97+ T*(u) and 9;u. From Proposition 3.2 applied to dpu, we have
T @) 3ge = 119nrull3s| < CO*|Onrull3s- (4.7)
It remains to estimate the difference of the norms of 9,7 T*(u) and T*(d 1) on M. We have the following:

Lemma 4.3. Let u € Dom(Qy). Then

|One T () = TH(Oaru)| < C (Ju] + [Vul). (4.8)
Proof. From (4.6), we have
n—1
Tt (Baru)(2) = Tt(z > (L) @ A w) (2)
n‘] 1]:1 (4.9)

(4.10)
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where
or;  Om; Py - Ota _ Oa P
j =— - ———4 i Pa (7,* ,7)-
Hence
— n71 —
e T (@) = > Lign(2) &f Aok (4.11)
Lk=1

Let p € M* and pg = 7(p) € M. After a unitary transformation, we assume as before that p is the origin
and the negative Im z,-axis is the outward normal direction at pg. It follows from Lemma 3.3 that

om; on 0*7;
t . J n J 1< <n_
pk<p)7 p]<p0)7 82” (p)a 85k (p)a and ﬁélﬁik (p)> _]akal <n-1,

are all dominated by a constant times ¢*. (Recall that 6* = ||p’ — p||c2, where U is a neighborhood of M.)
We then have

Efﬂjk(?) = O(5t)»
and as a consequence
D T'(@;)(p) = O(8"), (4.12)

where as before O(6") denotes a function or form whose pointwise norm is dominated by a constant multiple
of 6'. Therefore,

Dare T () (2) = Dnge S 10 (m(2)) T (@)

no1 (4.13)

on z € M*NU. Combining (4.9) with (4.13), we then obtain (4.8). O
In comparing the norms of gjw T*(u) and g}kwu, we likewise have

Lemma 4.4. Let u € Dom(Qj). Then
|9 T (w) — T (@ ppu)| < C8(Ju] + [Vul). (4.14)

Proof. Let v = ZTK\:q—l vgWg be a smooth (0,g — 1)-form, compactly supported on M NU. We have

_ /n—l _
(u,(?Mv)M = Z Z/UJ . LjUK . <(I)J,(I}j /\(I}K>d5. (415)

JK j=13;

Note that

<@J7@j /\O_'}K> = 67]K +R1(p)7
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where

Ri(p) = Pr(pj, pip)
is a polynomial of first order partial derivative of p. Applying integration by parts to (4.15), we obtain
n—1

—x / B
Opu = Z (=Lj + Ra(p))ujx Wi, (4.16)
K j=1

<.
Il

where Ry(p) is a rational function where both the numerator and denominator are composed of up to
second-order partial derivatives of p.
Likewise,

Inpef = Z (=L + Ra(p") fix 0 -
K

Note that Rg(pt), k = 1,2, can be obtained by replacing the derivatives of p in Ri(p) by the corresponding
derivatives of p’. Hence

|Ri(p) — Ri(p)]| S 6, k=1,2.

From (3.28) and (4.16), we see that

(= L + Ralp))usrc ) (m(2))] (@ + 0(6")). (4.17)

Similar to the proof of (4.12), it follows from (4.10) and Lemma 3.3 that

TyyeTH(@5) = SO (-LL + Ralp gz = O(6"). (1.18)
k=1
Therefore,
Ty )(2) = 30 (= Lt + Raloh)) (s (m(2))) (1 + O(51)) (119)
K j=1

for z € M* N U. Hence we have (4.14). O

Theorem 4.2 is then a consequence of Lemmas 2.1, 4.3, and 4.4. We sketch the proof as follows. Let X}
be the linear span of the normalized eigenforms u;, 1 < j <k, associated with the first k eigenvalues )\g(M )
for the Kohn Laplacian for (0, ¢)-forms on M. It then follows from Lemma 4.1 that for any v € X},

[ullcr < Crllull-

From Lemmas 4.3 and 4.4, we have
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| Qs (u, u) — Qupe (Thu, THu)| < C6*[|u|.
Theorem 4.2 then follows from Lemma 2.1.
5. Lower semi-continuity

The proof of lower semi-continuity of the eigenvalues is similar. We provide details for the reader’s
convenience.

Theorem 5.1. Let M be the boundary of a smooth pseudoconver domain in C™ with normalized defining
functions p. Let M? be a family of boundaries of smooth pseudoconver domains that satisfies the uniform
subelliptic estimate. Let 1 < q <n —2 and k € N. Then there exists a constant Cy which is independent of
t, such that

NMY) 2 X (M) — G, (5.1)
provided 6* = ||p — p*||c2 is sufficiently small.

Proof. The proof is similar in some respects to Theorem 4.2. The difference here is we use Lemma 4.1 to
establish estimates that are uniform with regard to t.
We define 7" : Dom(Q}) — Dom(Qy) by

Tt = 700 0 P%9 0 (i1)*.

For u* € Dom(Q}), note that

17 )12, — a2 = / (T (ut), T (ul))dS — / (! u)dS!

M M (5.2)

_ / (174 @) () = Jut P4 (=) Tac L] )ds.

M

As in the proof of (3.3), it is sufficient to estimate |Tt(ut)|2(z) — |ut]2(:1(2))|Jac it | pointwise. We prove
the case ¢ = 1, and the general case follows from the same argument. Let 2 € M! N U, write u'(z) =

Z;:ll uf(2)w;j(2). From (3.24) and (3.27), we have

Tt(ut)(z) = i: “E o Lt(z)(@j (z) + O(5t)) (5.3)

and
n—1
W' P(H(2) = Y (uh ot uf 0 )Gk (1 = 8lpS|% 0 ') + 4(pfpk) o i + O(8")). (5.4)

k=1

From Lemma 3.3, we see that
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- 2
T (u")]"(2) = [u' P (! (2)) [ Jac el 8Z|u o ! *(=lpsl* +1p5l? 0 t)

o (5.5)
+4) (b ol uf o) (pipr — (pipk) 0 f) + O(8")|ul o o'
J,k=1
on z € M NU. Hence we obtain
T )3 = (3] S 0 lut 1>, (5.6)

We now assume that u' is the normalized eigenform of O} associated with eigenvalue A*. As in the proof
of Theorem 4.2, it suffices to prove estimates || (ut) — T (Dpseut)||ar and (|83, (ut) — TH(Dyp0ut)| as
that are uniform with respect to ¢. Suppose u € D*4(U N M) and write u = >, usw;. It is not difficult to
obtain that

n—1
/Z Liul 0 ') (w; Awy 4 O(6")) (5.7)
j=1

Tt(thut) = Z
T

and

n—1
— A~ !/ — i
onT (u') = Z Z Lj(u' o )a; A (@5 4+ O(8Y)) + Z (u; 0 HO(3"). (5.8)
J  j=1 J
Applying Lemma 4.1, we get
_ . Ny — S Pt S _
00T (u?) — THBpreut)|3, = Z/ﬁ’ Z (Lj(ul ot — Lhuby o Lt)@j. A &Y
1=1}, J =1
,nol _ 2 (5.9)
+ Z (Lj(ufy0d') = Liuly ot +uly 0')O(8")| dS
J =1

< C(8"Jutfler)? < CAH(1+ A3 [[ul[])2,

where {¢;}]”, denotes a partition of unity and here constant C is independent of t. The estimate 10,7 (ut)—
Tt (@preut)||ar < 6 can be obtained similarly. Tt follows that

Qb (u', ') = Qu(T'(u), T"(u))| < O (5.10)
The desired inequality (5.1) then follows from Lemma 2.1 and the subsequent remark. O
6. Bottom and top degree cases

In this section, we prove Theorem 1.1, Parts (2) and (3). We first establish stability of eigenvalues for
bottom (0, 0)-degree and top (0,n — 1)-degree forms.

Write A2(M) as the k*'-positive eigenvalue of O0Y). Since a subelliptic estimate for (0,1)-form holds on
M, 3, has close range in L?o,o)(M)- Hence N (9p) = R (8,;). Therefore
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5 2
LCDom(dp)NN (Oar)t ueL\{0} ]
dim L=k
LCR @3) uer\foy  [ull® (6.1)
dim L=k
= =% g
o 02T 12
KCDom (83, )N (030" fer\{0} || f]|?
dim K=k
A similar identity also holds for M?.
Recall that
T = 70 0 PO ppe om0 AT (M) — AL (). (6.2)

We now use the same argument as in the cases 1 < ¢ < n — 2 to demonstrate that A\)(M?) satisfies
upper-semicontinuity estimates. Letting u = gLf in (3.3) and u = f in (4.14), we have

103 T (D 3re = 100 fl13e| < CODpg f 12 (6.3)
We claim that
1003 T (N 3re = 190001 fll3s] < CO'[O0r f 1122 (6.4)
With u = 8,,f in (4.8), we obtain the following pointwise estimate
|00 T @pr f) = THOrs0ar f)| < CO' (|00 1 + |V Drr £1) (6.5)
on M?. Substituting u = 83,0, f into (3.3), we get
T @O ) 3e = 10mDar f3s| < CONONDN S Ir (6.6)
which gives
190 T @ae N 3re = 1980900 13| < COM[Ons s f 13- (6.7)
In order to prove the claim, it is sufficient to show that
(0800 T (O31f) = ag:Dpe T ()] < CO (1031 f1 + [V 1 + V203 1) (6.8)

Indeed, this follows directly from (4.17) and (4.19). Since a uniform subelliptic estimate holds on M, we
have

IF122 < ClOMSIP, fEN@r)™

(See the proofs of Theorem 8.4.10 and Theorem 8.4.14 in [5].) We then conclude the proof of the bottom
degree case by applying the arguments of Lemma 4.1. The proof for the top degree case is similar and is
left to the reader.

To prove Theorem 1.1 (3), we just need to apply Kohn’s subelliptic estimate on the pseudoconvex
hypersurface M of finite type in C? and use the fact that these estimates are uniform on M? provided

p* = pllcoe @y — 0.
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7. Further remarks

(1) Our main result assumes that subelliptic estimate (1.2) with constants e and C' independent of ¢
holds on M. It is of interest to know whether the subelliptic estimate remains stable under perturbations
of the boundary in the C°°-topology. More precisely, let Mt —1 <t < 1, be a family of smooth compact
pseudoconvex hypersurfaces in C™. Assume that the defining function p* of M? depends smoothly on t.
Suppose subelliptic estimate (1.2) holds on M. Does it follow that a uniform subelliptic estimate holds on
M?* (with possibly different constants ¢ and C that are independent of ¢) when ¢ is sufficiently small? As
we note in Section 1, this is the case if M? is strictly pseudoconvex in C™ or of finite type in C2. D’Angelo
showed that if M? is of finite 1-type, then M? is also of finite 1-type with a uniform bound on the type
when ¢ is sufficiently small ([6, Theorem 6.9]). Thus a subelliptic estimate holds on each M*. However, it is
not known to us whether the constants € and C' can be chosen to be both independent of .

(2) Our method makes no use of the assumption that the defining function p' of the hypersurface M?*
depends smoothly on ¢. In fact, it is easy to see that the main results can be reformulated for a sequence of
hypersurfaces M* whose defining functions converge to that of M in C2-norms.
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