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Abstract. Digital voice recordings can offer affordable, accessible ways to evaluate behavior and function. We assessed how
combining different low-level voice descriptors can evaluate cognitive status. Using voice recordings from neuropsychological
exams at the Framingham Heart Study, we developed a machine learning framework fusing spectral, prosodic, and sound
quality measures early in the training cycle. The model’s area under the receiver operating characteristic curve was 0.832
(£0.034) in differentiating persons with dementia from those who had normal cognition. This offers a data-driven framework
for analyzing minimally processed voice recordings for cognitive assessment, highlighting the value of digital technologies

in disease detection and intervention.
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Digital technologies provide an unparalleled
platform for health-related data acquisition and com-
munication [1]. The recent viewpoint by the National
Academy of Medicine underscores the potential of
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digital technologies in their ability to reduce inef-
ficiencies, improve access, reduce costs, increase
quality, and create individualized treatment plans [2].
For example, voice recordings offer an attractive
modality to assess an individual’s cognitive status. As
such, voice signature reflects an individual’s speaking
ability, which is in and of itself a complex cognitive
skill. Several studies have explored the utilization of
an individual’s voice and correlated it with cognitive
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deficits by extracting essential speech and language
features. Most of these methods involve manual
derivation of voice-derived measures, often using
manual transcription or voice-to-text transcription
tools as a precursor to derivation of text-based linguis-
tic features related to fluency, word-finding ability,
or grammaticality. The process for deriving such fea-
tures can be tedious and prone to error [3]. Moreover,
quality control of the transcribed text needs to be doc-
umented before using them for analysis, and expertise
required to perform such a task is not readily avail-
able at all locations. Finally, reliance on text-based
features limits the generalizability of any solution
across multiple languages/cultures. Development of
a computational framework that could process voice
recordings with minimal manual effort and involv-
ing features that are more universal can be useful for
dementia screening in low-resource areas, where cul-
turally appropriate assessment tools are inadequate,
and in settings where large volumes of data would
otherwise need to be manually processed.

Machine learning approaches offer powerful
decision-making potential due to their ability to
process different modalities of data and derive pat-
terns that can map to specific outcomes. Several
machine learning-based studies have reported high
model performance in classifying the cognitive sta-
tus of individuals based on their voice. A study by
Konig and colleagues recorded voices while individ-
uals were performing a controlled semantic fluency
task, and trained machine learning classifiers to iden-
tify those with normal cognition (NC), mild cognitive
impairment (MCI), and Alzheimer’s disease (AD)
[4]. Although overall model accuracy was high, input
features to the authors’ models were based on manual
annotation, followed by auto-extraction of linguis-
tic features. Shimoda and colleagues developed a
machine learning prediction model to identify AD
risk using voice data collected from daily conver-
sations to derive vocal variables related to silent
interval, pitch, intensity, and center of gravity [5]. Our
group recently developed interpretable deep learn-
ing approaches for dementia detection by computing
cepstral features such as Mel-frequency cepstral coef-
ficients (MFCCs) directly on the voice recordings
of neuropsychological (NP) test sessions obtained
from the Framingham Heart Study (FHS) [6]. This
work was a proof-of-concept study that motivated
the inclusion of MFCCs as one of the feature types
included in the current analysis. We also lever-
aged natural language processing to identify various
stages of dementia based on automated transcrip-

tion of digital voice recordings [7]. Recently, in
another work, we extracted multiple acoustic pertur-
bation measures—including some of those included
as features in the current study—from FHS voice
recordings and developed a classifier to predict inci-
dent dementia [8]. Tavabi and co-workers compared
acoustic (e.g., MFCCs, perturbation measures), lin-
guistic (e.g., phrase complexity), and (para)linguistic
(e.g., talk time) variables from low- and high-quality
automated transcriptions of neuropsychological test-
ing sessions and trained a logistic regression classifier
to predict cognitive status [9]. Study results showed
improved model performance when acoustic and lin-
guistic features were included as inputs, compared to
ademographics-only model. Another important set of
findings in the literature has associated abnormalities
in low-level acoustic descriptors with higher-order
cognitive dysfunction (e.g., reduced scores on tests
of global cognitive function, episodic memory, ver-
bal fluency, and attention switching) [10, 11]. Taken
together, prior findings cumulatively underscore
voice as a strong resource of valuable information to
assess an individual’s cognitive status and help iden-
tify early signs of cognitive impairment and dementia.
The added value of the current study lies in its use of
minimally processed voice recordings and fusing of
spectral, prosodic, and sound quality metrics as inputs
to a convolutional neural network model for dementia
classification.

In this work, we developed a computational
framework that combines a set of temporally vary-
ing low-level descriptors characterizing spectral,
prosodic as well as sound quality measures and
learns from the combination of these patterns to
assess an individual’s cognitive status. To meet
this objective, we leveraged digital voice record-
ings of the NP test sessions conducted on the
FHS participants and their cognitive status at the
time of the recording and constructed classification
models. The NP examinations consist of multiple
tests that assess memory, attention, executive func-
tion, language, reasoning, visuoperceptual skills, and
premorbid intelligence. Typically, each participant
undergoes a battery of NP tests at FHS, encompassing
assessments such as Demographics, Logical Memory
Immediate Recall, Visual Reproduction Immedi-
ate Recall, Verbal Paired Associates, Digit Span
Forward, Digit Span Backward, Logical Memory
Delayed Recall and Multiple Choice, Visual Repro-
ductions Delayed Recall and Multiple Choice, Verbal
Paired Associates Recall and Recognition, Similari-
ties, Clock Drawing to Command, Verbal Fluency
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Table 1
Study population

Cohort N Female APOE4+ NC Recordings MCI Recordings DE Recordings Age (y) Mean MMSE
Generation One 157 110 30 78 88 100 91.5+3.1 24.6 4.7
Generation Two 576 321 131 544 419 235 77.2+£8.1 26.9+3.5
New Offspring Spouses 5 2 0 0 6 4 82.7+5.0 0.0+0.0
Generation Three 5 1 0 7 1 1 61.0£10.1 0.0+£0.0
Omni Generation One 16 5 4 10 9 7 729489 253426
Omni Generation Two 1 1 1 0 1 1 75.5+2.1 0.0£0.0
Total 760 440 166 639 524 348 79.6+9.4 26.5+3.8

For each participant, digital voice recordings of neuropsychological examinations were collected. Here, N represents the number of unique
participants. A unique participant may have more than one recording. The mean age (£standard deviation) is reported at the time of the
recordings. Mean MMSE scores (fstandard deviation) were computed closest to the time of the voice recording. APOE data was unavailable
for 6 Generation One participants, 17 Generation Two participants, and 1 New Offspring Spouses participant. MMSE data was not available

for New Offspring Spouses and Generation Three participants.

(FAS), Boston Naming Test, Clock Drawing to Copy,
Trails A, Trails B, WRAT-3 READING, Finger Tap-
ping, Block Design (WAIS), Information (WAIS-R),
Cookie Theft, Hooper Visual Organization Test, Digit
Coding, Digit Symbol Incidental Learning Pairing
and Free Recall, Clock Drawing Number Placement,
Clock Drawing Time Setting, Math Fluency, Bal-
ance Physical Function Test, and Spiral Test. It is
important to note that not all tests are administered
during every exam visit due to factors such as time
constraints or participant limitations. Furthermore,
the voice recordings lack annotations, precluding the
availability of timestamped information indicating
the timing of each test administration in each record-
ing. For further insights into our NP protocol, please
refer to our published work [12].

The cognitive status of the participants over time
was diagnosed via the FHS dementia diagnostic
review panel. The panel consists of at least one neu-
ropsychologist and at least one neurologist. The panel
reviews NP and neurological exams, medical records,
and family interviews for each participant. Selection
for dementia review is based on whether partic-
ipants have shown evidence of cognitive decline,
as has been previously described [13]. A cognitive
timeline is created for each participant by using avail-
able information to determine a given date for each
stage of cognition (e.g., NC/MCI/dementia (DE)).
To assign cognitive statuses to the participants at
the time of each recording, we identified the near-
est diagnosis date that occurred either on or prior
to the recording date, or within 180 days after the
recording. If the nearest assessment date exceeded
180 days following the recording, but the participant’s
cognitive status was confirmed as normal on that
date, we classified them as cognitively normal. The
diagnosis of dementia was determined using criteria
outlined in the Diagnostic and Statistical Manual of

Mental Disorders, fourth edition (DSM-IV) and the
NINCDS-ADRDA criteria for Alzheimer’s dementia
[14].

FHS began to digitally record the audio of NP
examinations in 2005. The dataset for this study
includes digital voice recordings from September
2005 to March 2020 from the subset of FHS partici-
pants who were flagged for dementia review. For this
study, we selected only those participants with dated
cognitive status (NC/MCI/DE) (Table 1). On each
recording, we extracted various low-level descriptors
including MFCCs, FO, Log HNR litter (local), Jitter
(delta) and Shimmer (local). MFCCs are the coeffi-
cients that collectively make up the Mel-frequency
cepstrum, which serves as an important acoustic fea-
ture in many speech processing applications. The
MEFCCs were generated from 16,000 Hz voice record-
ings, with a sliding window length of 60 ms, a window
step of 10 ms, 26 Mel-filterbank filters, and an FFT
length of 512. MFCCs provide information about
the spectral envelope of the speech signal and are
widely used in automatic speech and speaker recog-
nition. The other descriptors including F0O, log HNR,
jitter, and shimmer are additional acoustic features
that have shown relevance in voice analysis, particu-
larly in the contexts of aging and dementia [15-17].
HNR reflects added noise in the signal (i.e., the
proportion of periodic as compared to non-periodic
components). Jitter and Shimmer are micro-prosodic
variations of fundamental frequency and amplitude
(respectively) for harmonic sounds. These descriptors
were generated via the openSMILE package from the
ComParE 2016 low level descriptors dataset [18].

We designed a one-dimensional convolutional neu-
ral network (CNN) model for dementia classification
(Fig. 1). The model’s primary architecture comprised
seven convolutional blocks, with each encompassing
two convolutional layers, a max-pooling layer, and
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Fig. 1. Convolutional neural network. The input to the neural network is a set of vectors representing temporally varying features of an
entire voice recording. Early feature fusion is performed such that the convolutional operator processes the features together during the entire
training cycle. After a series of convolutional steps, the learned features are fed into a multilayer perceptron followed by associating it with

the output label of interest to estimate class-level probabilities.

an activation function based on the exponential lin-
ear unit. The convolutional layers were defined by a
filter size of 3, a stride size of 1, and a padding size
of 1, while max-pooling layers within the first six
blocks were characterized by a filter and stride size
of 4. The final block uniquely employed global aver-
age pooling to handle audio recordings of varying
lengths. By transforming all input into a fixed-length
feature vector, this approach streamlined the classifi-
cation process. Subsequently, we introduced a linear
classifier composed of a convolutional and softmax
layer. To facilitate a unified CNN input, we amal-
gamated multiple acoustic features by concatenating
their temporal sequences along an extra, channel-
corresponding dimension. All convolutional blocks
within the CNN’s main structure shared identical ker-
nel and stride sizes, preserving the output size due
to the convolution operation with stride 1. There-
fore, downsampling relied solely on max pooling

layers, each reducing the input length by a factor
of 4. To enhance the overall model performance,
we applied batch normalization directly to the input,
replacing z-score normalization and enabling linear
remapping of the input to a distribution with non-
zero mean and non-zero standard deviation. The final
stages of our model involved a global average pool-
ing layer to convert the output into a fixed-length,
temporally invariant feature vector, and a linear clas-
sifier that generated prediction logits. The models
were implemented using PyTorch and constructed on
a workstation with a GeForce RTX 2080 Ti graphics
processing unit. The Adam optimizer with learning
rate = le—4 and betas =(0.99, 0.999) was applied to
train the CNN model. The models were trained using
5-fold cross-validation. Data was split at the par-
ticipant level for each fold and then all of a given
participant’s recordings were included in each fold.
We generated receiver operating characteristic (ROC)
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Fig. 2. Model performance. Receiver operating characteristic (ROC) and precision-recall (PR) curves of the convolutional network trained to
perform classification of persons with normal cognition from those with cognitive impairment, classification of persons with mild cognitive
impairment from those with dementia, and classification of persons with dementia from those who do not have dementia. On each model, a
5-fold cross-validation was performed and the model predictions (mean =+ standard deviation) were generated on the test data, followed by
the creation of the ROC and PR curves. The plots A and B denote the ROC and PR curves for the model that performed classification of NC
versus DE cases. The plots C and D denote the ROC and PR curves for the model for the classification of MCI versus DE cases. The plots
E and F denote the ROC and PR curves for the model that performed classification of NDE versus DE cases.

and precision-recall (PR) curves based on the cross-
validated model predictions, and reported various
model performance metrics over the model runs.
Additionally, we trained random forest (RF) models
on fixed-length features to serve as a baseline. The
RF models were trained via 5-fold cross-validation
and were split at the participant-level.

Our fusion framework CNN that was trained and
validated on the FHS voice recordings demonstrated
consistent performance across the different data splits
used for 5-fold cross-validation (Fig. 2). The model
achieved an accuracy of 76.6% (42.6%) for classi-
fying NC versus DE and 65.8% (£3.1%) for MCI
versus DE classification and 77.4% (+3.5%) for
non-demented (NDE) (NC+MCI) versus DE classi-
fication. The balanced accuracy for NC versus DE
was 73.9% (£3.3%) and 62.3% (4+4.1%) for MCI
versus DE and 66.7% (44.3%) for NDE versus DE.
Sensitivity, which measures the ability to correctly
identify positive cases, was 64.1% (+=10.2%) for NC
versus DE and was 46.1% (4+15.9%) for MCI versus

DE and was 46.5% (+12.8%) for NDE versus DE.
Specificity, indicating the ability to correctly identify
negative cases, was 83.7% (£6.2%) for NC versus
DE and 78.5% (£10.9%) for MCI versus DE and
was 86.9% (£7.1%) for NDE versus DE. Precision,
representing the proportion of true positive predic-
tions, was 69.1% (£8.7%) for NC versus DE and
was 61.4% (£9.4%) for MCI versus DE and was
53.5% (£10.5%) for NDE versus DE. The F1 score,
defined as the harmonic mean of precision and sen-
sitivity, was 65.4% (£5.4%) for NC versus DE and
was 50.0% (£+11.8%) for MCI versus DE and was
47.9% (£8.0%) for NDE versus DE. The weighted
F1 score, considering class imbalance, was 76.3%
(£2.8%) for NC versus DE and was 64.0% (£4.1%)
for MCI versus DE and was 76.8% (42.8%) for
NDE versus DE. The Matthews correlation coeffi-
cient (MCC) was 0.489 (40.059) for NC versus DE
and was 0.270 (£0.069) for MCI versus DE and was
0.352 (£0.075) for NDE versus DE. The precision-
recall AUC was 0.732 (£0.081) for NC versus DE
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and was 0.614 (£0.057) for MCI versus DE and
was 0.522 (+0.097) for NDE versus DE. The ROC
AUC was 0.832 (£0.034) for NC versus DE and
was 0.692 (£0.031) for MCI versus DE and was
0.765 (£0.054) for NDE versus DE, demonstrating
the overall performance of the computational frame-
work in dementia classification (Fig. 2). The full
performance metrics of the fusion framework CNN
models on the low-level descriptors are also listed
in Supplementary Table 1. Additional fusion models
were trained on both low-level descriptors and demo-
graphics (age, sex, education). The full performance
results for the additional models have been reported
for all three tasks: NC versus DE (Supplementary
Table 2), MCI versus DE (Supplementary Table 3),
and NDE versus DE (Supplementary Table 4). Sev-
eral random forest (RF) models were trained on
openSMILE functionals data (ComParE 2016 fea-
ture set) [19, 20], which consist of 6373 features that
summarize windowed low-level descriptors into sev-
eral values for each descriptor. The full performance
results for the RF models are reported for all three
tasks: NC versus DE (Supplementary Table 5), MCI
versus DE (Supplementary Table 6), and NDE versus
DE (Supplementary Table 7). The top ten important
features in the RF models are reported across all
three tasks: openSMILE functionals (Supplementary
Table 8), openSMILE functionals and age (Sup-
plementary Table 9), openSMILE functionals and
demographics (Supplementary Table 10). The feature
importance for the RF models that were trained on
demographics is as such: NC versus DE (age 83.9%),
education 12.2%, sex 3.9%), MCI versus DE (age
84.3%, education 12.0%, sex 3.7%), and NDE versus
DE (age 82.6%, education 14.3% and sex 3.1%).
Using a series of energy-, spectral-, and voicing-
related low-level descriptors that describe the
prosodic, spectral, and sound quality related features
of voice, we trained our convolutional framework so
that features were learned early in the training cycle to
assess an individual’s cognitive status. These features
were obtained by applying a large set of statisti-
cal functions to acoustic low-level descriptors. The
low-level descriptors cover a broad set of descrip-
tors from the fields of speech processing, information
retrieval, and general sound analysis [21]. For exam-
ple, MFCCs are frequently used in automatic speech
recognition and speaker identification [22]. Spectral
statistical descriptors, such as spectral variance and
spectral flux, are often used in multimedia analysis,
and are part of the descriptor set proposed in the
MPEG-7 multimedia content description standard.

Loudness and energy-related features are important
for various tasks such as speech and speaker recogni-
tion and emotion recognition. The same holds true for
the sound quality descriptors (which are used to dis-
criminate between harmonic and noise-like sounds)
and the fundamental frequency and psychoacoustic
sharpness. The latter is a well-known feature in sound
analysis. Jitter and shimmer are used in voice pathol-
ogy analysis but are also good descriptors of general
sound quality. Both jitter and shimmer are sensitive
to subtle variations in vocal fold vibrations, provid-
ing objective measures of irregularities in timing and
amplitude. Importantly, low-level descriptors such as
MEFCCs, FO, HNR, jitter, and shimmer metrics have
been successfully used in prior AD literature to differ-
entiate MCI and dementia states from normal aging
[15-17]. Furthermore, our results demonstrated that
within CNN models, the addition of age and other
demographic features (e.g., sex) only marginally
improved the performance in comparison to the CNN
models that utilized only the low-level voice descrip-
tors, lending confidence in the importance of such
features as markers of cognitive decline.

Our approach has the following advantages.
Our early fusion strategy allows us to combine
any number of temporally varying features with
variable lengths, thereby enabling hierarchical learn-
ing of disease-specific patterns during the training
process. Moreover, our model does not require
voice-to-text translators or manually derived fea-
tures, both of which are time-consuming and need
additional software tools and/or subject matter exper-
tise. These aspects uniquely position our framework
in contrast to other analytic models attempting to
assess cognitive status using derived measures of
voice. Importantly, the flexibility of our framework
allows researchers to incorporate additional low-level
descriptors of voice as they become available.

Our study has a few limitations. FHS is a controlled
research environment wherein an expert clinical team
follows curated protocols and engages the cohort par-
ticipants. Specifically, the voice data are based on
recordings of neuropsychological test sessions, and
they do not necessarily represent conversations in a
routine living environment. Also, we acknowledge
that the minimal manual editing in our automated
pipeline may make it difficult to distinguish whether
the classifier diagnosis is solely influenced by the
participant’s voice characteristics or if the clinician’s
characteristics also play a role. Another limitation of
the current study is the possibility that the input fea-
tures to the model may be sensitive to a generalized
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disease state rather than to dementia per se. Thus, it is
important not to overgeneralize results to imply that
these same features would aid classification of AD
compared to other DE types or non-dementia disease
states. Nonetheless, these conversations exemplify
natural speech and the data that we collected enabled
us to test our hypotheses and build novel frame-
works for dementia assessment. We believe such
studies are necessary precursors before touting the
value of voice technologies for monitoring brain
health.

In conclusion, our proposed deep learning
approach can perform early fusion of temporally
varying features of voice and accurately classify an
individual’s cognitive status. Such approaches that
rely minimally on technical or clinical expertise as
well as eliminate the need of manual translation of
voice recordings to derived measures can facilitate
the development of assistive tools for dementia care,
especially in resource-limited settings.
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