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Abstract— Extracellular electrical recordings capture the
spiking activity of multiple neurons in the vicinity of a
probe. Typically, the features of interest in these recordings
are action potentials and their timing. However, for planar
probes that span tens or hundreds of neurons, it is possible
to identify relative spatial locations of neurons. Such spatial
information may be useful for reconstructing local network
structure or for improving the quality of spike sorting. We
propose a Bayesian modification of a dipole-based method
for estimating neural positions from waveforms recorded
on multicontact probes and investigate how sensitive it
is to prior knowledge about the equivalent dipole sizes
of neurons and the geometry of the recording probe. In
addition, we determine the probe spacing and number of
contacts which produce optimal localization accuracy within
the class of planar, circularly symmetric contact configurations.

I. INTRODUCTION

Extracellular electrical recordings allow the spiking ac-
tivity of multiple neurons in the vicinity of a probe to
be recorded in awake, behaving animals. Typically, one is
interested in extracting the waveforms of individual units
and estimating spike timing and rates. However, it has been
shown that extracellular recordings also contain information
about the spatial position of neurons relative to the probe
[1]. Such information can give a more complete picture of
local neural activity, though taking advantage of this fact
is challenging as it involves estimating parameters of an
underlying physical model of the signal generation process,
in effect solving an inverse problem.

One cannot hope to use a model that captures all the
variables of this process in complete detail, as extracellular
recordings simply do not capture nearly enough data to make
this feasible. Fortunately, owing to the much higher channel
density in the somatic region, it is often the case that much
of the recorded signal actually originates from this relatively
small area, in addition to the local dendritic arbor in which
the probe is nested [2]. Since dendrites contain a larger
fraction of passive (leak) channels, their contribution tends to
have the opposite sign from that of the active somatic region:
when current flows into the somatic region during the initial
phase of the spike, current flows out from the dendrites, and
vice versa during the return phase. This suggests a dipole
model of the neuron, in which the current distribution at
each point in time is modeled as a single source and sink of
equal magnitude [2] [3]. Mathematically, we can express this
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via a dipole moment vector d, the second term in a multipole
expansion [4].

Mechler and Victor have shown that using a dipole genera-
tive model in combination with a 4-contact (“tetrode”) probe-
stepping technique enables relatively consistent localization
to be performed on presorted spike data [2]. However, their
study focused on carefully moving the probe in small incre-
ments and taking recordings at half a dozen or more sites, and
their particular approach may be challenging to incorporate
into typical experiments. It has now become relatively com-
mon to use electrodes which have many more contacts, and
by modifying the Mechler-Victor approach to use the entire
waveform via a time-varying dipole, we have developed a
probabilistic method for neuron localization that does not
require probe stepping, provided the probe has 8 or more
contacts. In addition, we have developed a computational
test bed for simulating the generation and propagation of
extracellular signals which we use to investigate how neuron
position relative to the probe affects localization accuracy
as well as how robust our method is to errors in probe
contact position and different assumptions on the dipole prior
distribution. Finally, we use our model to compare different
probe designs within the class of planar, circularly symmetric
contact configurations to determine the optimal configuration
for localization.

II. METHODS

A. Computational model of extracellular recording

Due to the difficulty of determining the true position of
neurons relative to the probe in in-vivo experiments, we
construct a computational model of extracellular recording
which we use to generate realistic simulated data where
the ground truth positions are known. We use this to test
our localization method across different probe types. The
extracellular recording model consists of a simplified probe
model surrounded by compartmental models of neurons
embedded within a conducting medium with background
noise. We describe each of these components in more detail
below.

1) Neurons: Individual neurons within the 100 micron
recording radius of the probe were modeled by a three-
dimensional compartmental model with realistic channel
types and densities, taken from [1], in which the neuron
was a rat CA1 pyramidal cell. Single spikes were generated
using the NEURON simulation software, and the current flux
through each of the compartments was recorded at each time
step [5].
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2) Probe model: We used a simple analytical model of
radially symmetric contact geometries, similar to what one
would see on a bundled wire probe or silicon hexagonal
array. The body of the probe was ignored, and the contacts
were modeled as disks with a 12.7 µm diameter. We follow
[6] in approximating the signal by averaging over the surface
of the disk.

3) Extracellular space: We modeled the extracellular
space as an ohmic volume conductor. We assumed that it
was homogeneous and isotropic, with a conductivity of 3.5×
10−4 S/mm [1] [7] [3]. When localizing, the algorithm was
given a conductivity 10% different from the true conductivity
used to generate the data in order to simulate some of the
natural discrepancy that arise in real recordings.

4) Noise model: In order to generate physically realistic
background noise, we use the technique introduced in [6] of
assigning positions, prerecorded waveforms and spike times
to distant neurons and scaling their waveforms according to
their distance from the probe. This allows us to generate
background noise from thousands of neurons without having
to simulate each of them individually. Other sources of noise
such as thermal and electrical noise were lumped together
and modeled as random gaussian-distributed input with 0
mean and 1 µV standard deviation.

B. Localization method

1) Observed voltage produced by a dipole: Let vn(x)
be the extracellular voltage field produced by a neuron at
position x in the presence of the probe. In particular, vn(xcont)
is the voltage that we measure at one of the probe’s contacts.
Let ṽ(x) be the voltage at x that would be produced if we
were to inject current Iin j (in amps) at xcont . Separately, let
In(x) (in amps/mm3) be the current per unit volume produced
by the neuron at x at some given time (non-zero only at points
where the neuron has an ion channel). If we assume that the
extracellular medium is an ohmic conductor, the Helmholtz
reciprocity theorem tells us that

vn(xcont) =
1

Iin j

∫
ṽ(x) In(x) dx (1)

where the integral is taken over the volume containing the
neuron. Eq. (1) simplifies source localization in that instead
of considering the signal detected by the probe for varying
source positions, we need only consider the voltage induced
in the medium by a current injected at the probe. If the
neuron were truly a dipole, then In(x) is further simplified:
rather than the current flow from every ion channel, it is
now just two point sources (a source at x1 and a sink at
x2), which we represent by delta functions with strength a:
In(x) = aδ (x−x1)−aδ (x−x2). Substituting this into Eq. 1,
we obtain

vn(xcont) =
a

Iin j
(ṽ(x1)− ṽ(x2)) (2)

Replacing ṽ(x2) with its first-order Taylor expansion about
x1, and taking the limit as x2 → x1 while increasing a such

that d is held constant, we obtain

vn(xcont) =
∇ṽ(x1)

Iin j
·d (3)

where ℓ(x) = ∇ṽ(x)
Iin j

is called the lead field (for a particular
contact) and d is called a point dipole vector [8].

Note that the lead field takes into account the geometry
of the probe and conductivity properties of the surrounding
tissue through ṽ. If we know these, we can calculate ℓ
by solving the Laplace equation ∇ · (σ(x)∇ṽ(x)) = 0 with
appropriate boundary conditions, where σ is the conductivity
of the extracellular medium.

2) Localization algorithm: Assume that we have a set of
spikes {Yi}i=1...N which come from the same neuron, where
each Yi is a long vector consisting of the voltage on all
probe contacts for each time step within a spike concatenated
together, so that if there are s contacts and j time steps, Yi has
length s× j (assume the spikes have been cut and centered
into some standard length window, as is typically the output
of spike sorting algorithms). Suppose also that we have either
calculated or approximated the lead field function ℓs(x) for
each contact s on the probe. The spikes are corrupted by
background noise, which we approximate as gaussian with
zero mean and some unknown covariance across contacts
and time steps represented by the matrix Σ.

Because current outflow during a spike spreads from prox-
imal to distal dendrites while current inflow stays roughly
around the soma, if we approximate the source by a point
dipole its orientation will change over the course of a spike.
Our generative model for an observed waveform is thus a
time-varying point dipole whose orientation and size is al-
lowed to change over the course of a spike but whose position
is not, plus the gaussian background noise described above.
To reduce the number of parameters we need to estimate and
enforce some degree of temporal smoothness on the dipole
orientation, we parametrize each of the three components of
the dipole vector over time by a set of coefficient vectors
c = {cx,cy,cz} (where cx,cy,cz are vectors) which multiply a
set of gaussian basis functions evaluated at time j to produce
the dipole d j. We thus have that Yi =Concat j(L(x) ·d j(c))+ε

where L(x) is the lead field matrix at some point x formed
by row stacking the lead field vectors ℓs(x) for each contact,
d j(c) is the point dipole vector at time j located at x
(the product of the coefficients c and the basis functions),
Concat j() is the function that concatenates the arguments
over all time steps j, and ε ∼ N(0,Σ) is a random noise
vector of the same length as Yi. For simplicity, we assume
that all spikes are independent.

By Bayes’s rule, we can thus write the joint posterior
distribution of the dipole position x, dipole basis coefficients
c, and noise covariance Σ as

P(x,c,Σ|{Yi}) ∝ P(x)P(c)P(Σ)P({Yi}|x,c,Σ)
=U(x)N(c|0,Σc)W (Σ|Ω,ν)·

∏
i

N(Yi|Concat j(L(x) ·d j(c)),Σ)
(4)
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where N(Yi|Concat j(L(x) ·d j(c)),Σ) represents the gaussian
density function (pdf) with mean Concat j(L(x) · d j(c)) and
covariance Σ, evaluated at Yi, U(x) is the pdf of the uniform
prior distribution on neuron positions which has support
within the 100 micron recording radius, N(c|0,Σc) is the pdf
of the normal prior on dipole basis coefficients which has
mean 0 and covariance Σc, evaluated at c, and W (Σ|Ω,ν)
is the pdf of the Wishart prior on the noise covariance with
parameters Ω,ν , evaluated at Σ.

The purpose of the dipole basis coefficient prior is to
incorporate the biological fact that neurons form relatively
small equivalent dipoles because their current inflows and
outflows are small, and that the apparent orientation of the
dipole should change smoothly over time. We use Σc = 105I
where I is the identity matrix. Similarly, the purpose of the
Wishart prior on Σ is to help regularize the noise covariance
estimate by shrinking it towards a diagonal dominant matrix.
This enforces the fact that extracellular noise is much less
correlated between distant contacts and between time steps
that are far apart. We set ν = 1000 and Ω = 1

ν
I.

By maximizing the right hand side of Eq. 4 with respect
to x, c, and Σ, we find the estimated position and dipole pair
which is most likely to have produced the observed spikes.
This is a high dimensional optimization problem. However,
we note that when the position x and noise covariance Σ

are fixed, the lead field matrix is constant, and thus the
optimal dipole parameters c can be efficiently computed via
weighted least squares thanks to the gaussianity assumptions
on the noise and the dipole prior (cf. [2]). We therefore do
the optimization via a nested, iterative process:

(i) Given initial x and Σ, calculate the most likely dipole
parameters c via weighted least squares.
(ii) Subtract the estimated waveform from each noisy spike
Yi and re-estimate the noise covariance Σ.
(iii) Update the position estimates by maximizing the right
hand side of Eq. 4 with respect to x.
(iv) Return to step (i) and repeat until the position estimates
have converged.

The maximization in step (iii) must be done using a gra-
dient descent method because the lead field matrix changes
non-linearly with respect to x. However, it generally con-
verges within a few seconds because the optimization is only
over the three-dimensional position vector.

C. Localization test set

We construct the following localization test set: using the
CA1 pyramidal cell model from [1], we position the cell
at 158 different points within the positive octant below the
probe. All test points are within 100 microns of the center
of the probe, as this contains the outer limit of the detectable
region for this particular neuron. The test points are arranged
in a rectangular grid, with 16.66 micron spacing between
points in the x, y, and z directions. Since neurons typically
have soma diameters of 15 - 25 microns (and as we will
see the minimal localization errors are in approximately the

10 20 30 40 50 60 70 80 90 100
Probe radius ( )m

30

35

40

45

50

55

60

65

Av
er

ag
e 

er
ro

r (
)

m

4 wires
8 wires
12 wires

10 20 30 40 50 60 70 80 90 100
Probe radius ( )m

45

50

55

60

65

70

75

80

85

Av
er

ag
e 

er
ro

r (
)

m

4 wires
8 wires
12 wires

No central wire Central wire

Fig. 1. Average localization accuracy as a function of probe radius, number
of contacts, and presence or absence of a central contact. Left) Localization
accuracy as a function of probe radius for 4, 8, and 12 contact probes
without a central contact. For these probes, all N contacts were located on
the perimeter of a circle with the given radius. Right) Localization accuracy
for probes with a central contact. For these probes, one contact was located
in the center, and the remaining N-1 contacts were equally spaced around
the perimeter.

same range), this level of grid spacing is sufficiently dense
to obtain good estimates of localization accuracy throughout
the recording domain. We then proceed to localize each test
point separately. At a given test point, a waveform generated
from the neuron at that position is placed at 10 different
times within simulated background noise.

III. RESULTS

1) Probe Geometry: In this section we consider the
overall probe design and its effect on localization accuracy.
Within the class of planar, circularly symmetric probes, we
examine the effect of changing the probe radius, the number
of contacts, and whether or not the probe has a central
contact. The reason for restricting ourselves to planar probes
is that two of the most common types of probes used in
electrophysiology - bundled wire probes and silicon poly-
trodes - are both planar. We calculate the average accuracy
over 158 test positions as described above for 60 different
probe geometries. Each probe has a radius between 10 and
100 microns (in steps of 10 microns); 4, 8, or 12 contacts;
and either has or is lacking a central contact. For example,
a 20 micron radius, 8 contact probe with a central contact
would have one contact at the origin (the central contact)
and 7 contacts equally spaced (at angular increments of 2π

7 )
on the perimeter of a circle surrounding the central contact
with radius 20 microns. For an 8 contact probe lacking a
central contact, all 8 contacts would be on the perimeter of
the circle. The results are shown in Fig. 1.

The figure makes clear that probes with a central contact
produce significantly better localization results than probes
without (note the difference in the y axis). This is due to
better localization in the region directly underneath the probe,
where the central contact provides an additional observation
point that more than makes up for the slight loss of angular
resolution due to not having all contacts on the perimeter.
This result indicates that layouts such as that used by
some silicon probes, where each central recording surface
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Fig. 2. True and estimated test point positions for the optimal probe.
Neuron positions were estimated one at a time from each of the 158 test
points shown. Test points were arranged in a rectangular grid in the positive
octant below the probe, with all points lying within a 100 µm radius of the
probe tip. Spacing between test points was 16.66 µm in each direction. A)
X-Y projection of the initial test points. B) X-Y projection of the estimated
positions after localization. C) X-Z projection of the initial test points. D)
X-Z projection of the estimated positions.

is surrounded by 6 others in a hexagonal array, ought to
work well for localization.

The exception to the general good performance of probes
with a central contact was the tetrode, whose localization er-
ror grew rapidly for probe diameters larger than 40 microns.
In contrast, both 8 and 12 contact probes work well over a
range of probe radii, delivering comparable results. We find
the 8 contact, 50 micron radius probe with central contact
to be optimal for localization within the family of probes
tested.

Fig. 2 shows the initial test points and their estimated
positions. Although the grid structure of the initial points
is lost, the estimated positions generally remain inside their
initial quadrant. In the z coordinate perpendicular to the plane
of the probe tip, we see that the accuracy is much worse, with
most test points moving up towards the probe. This decrease
in accuracy is due to the fact that there is no z separation
between any of the contacts (they all lie in the same plane),
so a neuron with large spikes that is far away from the probe
is difficult to distinguish between a neuron with smaller
spikes that has the same x-y coordinates but lies closer in
the z direction. Because the signals are nearly the same, the
algorithm prefers to explain things by positioning a smaller
dipole closer to the probe, since this is more consistent with
the prior on dipole size.

Fig. 3 shows in more detail how localization accuracy
varies with position for the optimal probe. In the x-y plane,
we obtain best accuracy along a radial band corresponding to
the contact positions, with decreasing accuracy as we move
out towards the edge of the recording radius. This is as
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Fig. 3. Localization accuracy as a function of neuron position for the
optimal probe. Localization accuracy at each point was calculated as the
difference between the true and estimated soma position for a neuron placed
at that point. A) X-Y slice of localization error immediately below the plane
of the probe. The positions of the nearest contacts are shown as black x’s.
B) X-Z slice of localization error in the Y=0 plane (extending downwards
away from the plane of the probe).

expected, since as one moves further away from the probe,
both angular resolution and signal to noise ratio decrease.
In the z direction, the results reflect the previous discussion,
and accuracy steadily drops off as we move perpendicularly
to the recording surface.

2) Sensitivity to choice of dipole prior: As described
above, the time-varying dipole that produces the waveform
in the algorithm’s generative model is represented by a set
of coefficients c multiplying a set of fixed basis functions in
each of the x, y, and z coordinate directions. The coefficients
are subject to a biologically motivated shrinkage prior whose
distribution is gaussian with mean 0 and diagonal covariance
matrix. The covariance matrix is constant on its diagonal be-
cause we assume the dipole has no preferred orientation. The
size of the diagonal entries then determines how strongly we
constrain the magnitude of dipole coefficients: the smaller the
diagonal values, the more the algorithm prefers coefficients
near zero. If the prior is too strong, one risks biasing the
algorithm towards estimated waveforms that are too small,
and positions that compensate by being closer to the probe
than the true position. On the other hand, a prior that is too
weak will tend to allow many, distant positions with large
dipoles to be almost equally likely, so that small amounts of
noise dramatically affect the estimated position.

Using the same localization test set described above,
Fig. 4A shows the effect of varying the prior on localization
accuracy. We find that, for the particular CA1 neuron model
chosen, the optimal prior precision value is 10−4. (The
precision is the inverse of the covariance matrix, so 104 is
the optimal covariance diagonal value.) More importantly,
the prior can be varied over more than an order of magnitude
in either direction without significantly affecting localization
accuracy. This means that the algorithm should perform
well across a wide range of different neuron types with
different intrinsic dipole sizes. Furthermore, this shows that
the effects of probe geometry shown previously are not
highly dependent on our choice of dipole prior size.

3) Sensitivity to probe perturbations: Our algorithm de-
pends on knowing the lead field for a given probe, which
is approximated analytically by summing the electric field
from point current sources located at the contact positions
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Fig. 4. A) Robustness of localization estimate to choice of dipole prior
precision (inverse of variance). B) Sensitivity of localization estimate to
probe perturbations. Each of the contacts was perturbed in the plane by the
given percentage of the straight-line distance between contacts (43.39 µm
for the optimal probe). Average localization accuracyd was were computed
across the 158 test points for 5 sets of random perturbations across all
contacts.

and scaling the resulting field by the current. Close to the
probe, the lead field depends heavily on the specific contact
positions. Given that the recording radius of the probe is only
a few multiples of the distance between contacts, we expect
that contact perturbations which are unaccounted for in the
algorithm’s internal forward model will have a significant
deleterious effect on localization accuracy.

In order to test sensitivity to probe perturbations, we
construct 25 test sets, each with 158 test points, 10 spikes,
and background noise as described above. Each test set
is generated from a randomly perturbed version of the 8
contact, 50 µm radius probe, while internally the algorithm
uses the non-perturbed version to localize. A particular
perturbation involves moving all the contacts in random,
independent directions in the plane by the given amount. The
perturbations range in size from 10% to 50% of the straight
line distance between contacts. We stop at 50% since this is
the point at which neighboring contacts would cross if their
perturbations were towards each other in opposite directions.
For the probe used, this distance was 43.39 µm for contacts
on the perimeter, so that for example, a 10% perturbation
is 4.339 microns on every contact, in a random direction
for each contact. Five random test sets were constructed
for each of the five perturbation amounts. The results are
shown in Fig. 4B. We see that the localization error increases
approximately linearly with the perturbation percentage.

IV. CONCLUSIONS

In this paper, we introduced a statistical method for esti-
mating neuron positions from extracellular recordings via a
time-varying dipole approximation, and examined a number
of different factors which affected how well our algorithm
was able localize. These included the radius and number of
contacts of the recording probe, our choice of the dipole
prior distribution, and how accurately the probe contact
positions were known. Combined with the contact width and
extracellular conductivity perturbations that were implicit in
all tests, we can conclude that our algorithm requires the
positions of the recording contacts to be known relatively

accurately, but is otherwise fairly robust in the presence of
most other perturbations. Further, we have found that not
all probe designs with the same number of contacts are
equal, as some arrangements lend themselves to significantly
better localization accuracy than others. This information
may help researchers make decisions about how to construct
their probes - for example by using octrodes over tetrodes.

The methods developed may also improve the accuracy
of spike sorting; this work is described elsewhere [9], [10].
Future work could potentially address the issue of unknown
or misspecified contact positions in cases where the probe
contacts are not rigidly fixed relative to one another. Perhaps
by injecting current at each of the contacts in turn and
recording the resulting signal on the others, one can obtain
an estimate for the contact positions that is accurate enough
to give useful localization results.
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