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Biologically detailed models of brain circuitry are challenging to build and simulate due
to the large number of neurons, their complex interactions, and the many unknown
physiological parameters. Simplified mathematical models are more tractable, but
harder to evaluate when too far removed from neuroanatomy/physiology. We propose
that a multiscale model, coarse-grained (CG) while preserving local biological details,
offers the best balance between biological realism and computability. This paper
presents such a model. Generally, CG models focus on the interaction between groups
of neurons—here termed “pixels”—rather than individual cells. In our case, dynamics
are alternately updated at intra- and interpixel scales, with one informing the other,
until convergence to equilibrium is achieved on both scales. An innovation is how we
exploit the underlying biology: Taking advantage of the similarity in local anatomical
structures across large regions of the cortex, we model intrapixel dynamics as a single
dynamical system driven by “external” inputs. These inputs vary with events external
to the pixel, but their ranges can be estimated a priori. Precomputing and tabulating
all potential local responses speed up the updating procedure significantly compared
to direct multiscale simulation. We illustrate our methodology using a model of the
primate visual cortex. Except for local neuron-to-neuron variability (necessarily lost in
any CG approximation) our model reproduces various features of large-scale network
models at a tiny fraction of the computational cost. These include neuronal responses
as a consequence of their orientation selectivity, a primary function of visual neurons.

neuronal networks | coarse-graining | visual cortex | multiscale modeling

1. Introduction

Biology-based models of brain circuitry, i.e., models that incorporate relevant neu-
roanatomy and physiology, have the potential to capture emergent behaviors and
offer insights into mechanisms; they also have predictive power, an ultimate goal of
neurobiological modeling (1–6). These benefits, however, come at considerable costs:
Network models that involve hundreds of thousands of neurons and large numbers
of parameters are costly—sometimes prohibitively so—to build, to tune, and to run,
limiting their scalability and scope. Idealized models, e.g., phenomenological, reduced,
or mean-field models, are more tractable. But inferences from such models can be hard
to evaluate: The farther removed a model is from detailed anatomical structures, the
less directly connected its outputs will be to the underlying biological substrate and
to empirical observations. There is a trade-off between computational tractability and
biological realism.

Imagine the following two-step approach to neuronal network modeling: First, design
a “premodel” focusing on the relevant neurobiology without regard for computational
cost. Then, in a second step, deal with practical issues of implementation by simplifying as
needed but striving to retain as much of the realism of the premodel as is computationally
feasible. This paper aims to systematize the second step for modeling cortical networks in
mammals: We propose a general coarse-graining strategy aimed at significantly reducing
the computational cost of large-scale cortical models and illustrate the ideas proposed
using a previously constructed model of the primate visual cortex (7).

In the rest of the Section 1, we present an overview of our proposed strategy, postponing
discussion of related work to Section 3.

1.1. Proposed Coarse-Graining (CG) Strategy. Assuming that a premodel of cortical
dynamics in the form of a large-scale, biologically detailed network has been designed,
our aim is a feasible and efficient implementation that minimizes information loss.
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We propose to do this by tracking cortical dynamics on two
spatial scales, and to take advantage of the underlying biology to
gain computational speed.
1.1.1. Proposed procedure. In the context of neuronal networks,
coarse-graining typically means subdividing the cortical region
of interest into blocks of nearby neurons and treating each
block as a point in an abstract “neural space.” At issue is how
to define the dynamics of such a reduced model. Instead of
relying on best guesses or favoring explicit interaction kernels
that are amenable to mathematical analysis (as is often done in
mathematical neuroscience), our CG dynamics will be informed
by the premodel.

To track simultaneously the dynamics of the CG system and
dynamical interactions within blocks, a general approach well-
accepted in multiscale modeling is to alternate between “fine” and
“coarse” scales (8, 9): (a) compute local responses of each block
to its surroundings, and (b) integrate outputs from the previous
step(s) to form new input signals for each block, thus propagating
signals across the network. Both (a) and (b) follow interaction
rules deduced from anatomical and physiological measurements
in the premodel.

A crucial observation—one that allows us to exploit the
underlying biology to speed up the computation significantly—is
that in many cortical systems such as the visual cortex, the set
of all potential local responses can be computed in advance—
without knowledge of the specific stimulus or CG dynamics.
Precomputing potential local responses and storing them in a
library, we reduce step (a) to lookup and interpolation.
1.1.2. Biological justification. While the mammalian brain as a
whole is highly heterogeneous, network architecture (including
cell types, local circuits, and longer-range connections) tends to
be structurally similar within a specific layer of a specific cortical
region. These anatomical facts are well documented in the visual
cortex, especially in V1 (primary visual cortex); see e.g., refs.
10–15. Though network architectures differ, there are many
examples showing that a similar picture holds in other regions of
cortex (16–19).

Mathematically, layers of V1 are described by 2D networks
with translationally invariant structures across the cortical surface.
But because long-range connections between brain regions have
specific targets, structural similarity does not imply that V1
responses to visual stimuli will be similar across the surface.
For example, the optic nerve conveys signals from specific
locations of the retina to specific locations of the lateral geniculate
nucleus, and from there signals are transmitted to specific cortical
locations. When a visual scene is presented to the eye, it stimulates
different regions of the retina differently, eliciting different
responses at different locations in the visual cortex (20).

With this picture in mind, and focusing on a single layer, we
now explain why potential local responses can be precomputed.

(i) As local neuronal populations are anatomically similar and
their differing responses are due to the different inputs
they receive, we posit that local dynamics can be described
by a single dynamical system driven by variable “external”
inputs; “external” here means from sources outside of the
local system.

(ii) It is a basic fact that cortical neurons primarily communicate
by electrical spikes, and the impact of a spike depends largely
on the presynaptic cell (the cell sending the signal), such
as whether it is excitatory or inhibitory, and on the signal
transduction properties of the synapse. The exact identity
or physical location of the presynaptic neuron is not, in and
of itself, relevant to neuronal computation. Thus if there

are n different input sources, then external inputs to a local
population—from all presynaptic cells combined—can be
described by an n-tuple (X1(t), X2(t), · · · , Xn(t)), where
Xi(t) is the incoming spike rate from source i at time t.

(iii) The Xi(t) vary with time and with events in and outside of
the local population, but one can estimate a viable range,
i.e., a finite interval containing all biologically reasonable
rates. The set of viable input rates forms a bounded set in
Rn, and “potential local responses” are responses of the local
dynamical system in (i) to all n-tuples of input rates in this
bounded set. See Section 2.2.

1.2. Relation to Nonequilibrium Statistical Physics, Balanced
State Ideas in Neuroscience, and Multiscale Simulations. Con-
sider the following very rough analogy with the physical phe-
nomenon of heat conduction: Take a large, spatially homoge-
neous interacting particle system and couple it to heat baths. If the
baths are at different temperatures, the system will be driven out
of thermal equilibrium and settle into a nonequilibrium steady
state (NESS). As discussed above, when suitably restricted, e.g.,
to a layer of V1, neuronal networks are spatially homogeneous
in their anatomical structure, driven out of equilibrium by visual
stimuli that vary with spatial location and with time. When the
stimulus is time-stationary, such a system also tends to a NESS.

It has been proposed in statistical mechanics (21) that a NESS
can be viewed as a continuum of mesoscopic-sized local systems in
local thermal equilibrium, with well-defined local temperatures
that reflect the balance of energy and other fluxes across the
system. In the same spirit, we propose that for a neuronal system
in a NESS, local populations are in local dynamic equilibrium
(LDE), their firing rates determined by excitation and inhibition
both within the local circuit and among nearby circuits (22). It
can be shown that internally, local systems that are in LDE are
in approximate balanced states, a concept developed originally
for systems with homogeneous connection probabilities and
inputs (23, 24). For a network subjected to spatially varying
external input, a NESS can thus be seen as a collection of LDEs, or
approximate balanced states, connected to one another through
excitatory and inhibitory currents.

In terms of computational strategy, the NESS point of view
leads naturally to a multiscale approach (8, 9). However, most
neuronal systems do not exhibit the sharp timescale separation
between local dynamics and larger-scale interactions upon which
most multiscale methods depend for speedup (Section 2.5). The
application of such methods at the level of biological realism con-
sidered in this paper is thus untested and not without challenges.
A modification that gives satisfactory results is proposed.

1.3. Primary Visual Cortex As an Illustrative Example. In this
paper, we demonstrate our proposed computational strategy
using a previously constructed premodel. In this proof-of-concept
paper, using an existing network allows us to focus on the
proposed CG ideas and evaluate how well the algorithm works
by comparing CG model outputs with those from the premodel.

The biologically detailed network that will serve as premodel
for us is that of an input layer of the primary visual cortex (V1) of
monkeys (7). One of the most important functions of V1 is the
identification of orientations of edges at specific spatial locations,
edges that the cortex eventually puts together to form contours of
the objects we see. This visual capability of neurons is known as
orientation selectivity (OS). Hubel and Wiesel made some very
insightful observations more than half a century ago (25), but
neural mechanisms for OS are subtle and not fully understood.
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They pose a nontrivial challenge to mean-field or coarse-graining
approaches, and we believe it is an appropriate first test for our
CG strategy to correctly reproduce this phenomenon.

2. Results

2.1. Premodel: A Large-Scale Network of the Monkey Primary
V1. As explained in Section 1, this paper introduces a method for
deriving an efficient multiscale model from a premodel that can be
as detailed biologically as one sees fit. To illustrate the procedure,
we will use as premodel a previously constructed network of the
visual cortex.

This section introduces the premodel. The material is taken
from ref. 7, with modifications from refs. 26 and 27. The
description below and in SI Appendix are not intended to be
complete: Our aim here is to provide enough information so
that readers who are not experts in visual neuroscience could—
without delving into the references above—appreciate the major
differences between the biologically detailed model described in
this section and the representation we propose in the next.
2.1.1. The LGN-L4-L6 circuit. In the first stages of visual information
processing, signals received by the retina are passed by the optic
nerve to the Lateral Geniculate Nuclei (LGN) in the thalamus,
which relay the signals to the primary V1, and from there to
higher visual cortical areas. This basic information is discussed
in standard neuroscience texts. For a general, nontechnical intro
to the primate visual system, see ref. 28; for a concise summary
of V1 properties, see ref. 29. V1, the largest and most complex
of all the visual cortical areas, is further subdivided into layers
(11, 30). Of primary interest to us is layer 4C�: This is the input
layer in the Magnocellular (“Magno”) pathway, one of the two
major pathways from the retina to V1.

There are three components in the premodel: layer 4C�
(henceforth abbreviated as “L4”), LGN, and layer 6 (“L6”) of
V1. L4 receives feedforward input from LGN, and feedback from
L6. A schematic diagram of this LGN-L4-L6 circuit is shown in
Fig. 1A.

There is a continuous point-to-point map, called the retino-
topic map, from one’s (2D) visual field to the retina. As cells
from LGN, L4, and L6 receive feedforward signals from specific,
highly localized regions of the retina (31), we can coordinatize
these components according to their points of origin in the retina,
i.e., the retinotopic map can be extended to LGN, L4, and L6.
Our premodel is about a small patch of LGN and cortex targeted
by projections from the retina in one eye, a few degrees from the
fovea or “center of gaze.”

Below, we describe the network architecture and a few of the
most salient features in the three components of the premodel.
The exposition here, together with what we provide in SI
Appendix, sections 1A and B, should suffice for understanding the
present work. For further details and for references to anatomical
and physiological papers that support the premodel, we refer the
reader to the original publication (7).

2.1.1.1. LGN (feedforward input to L4). For our purposes, LGN
cells relay information from the retina to the cortex: They receive
input from retinal ganglion cells and output to cells in L4 (and
to a lesser extent L6); LGN relay cells do not interact among
themselves. They come in two kinds, ON and OFF, forming
two fairly regular mosaics on an essentially 2D surface. A striking
feature of LGN is that it is very sparse. In the Magno layers at
the eccentricity modeled, there are on the order of 10 cells (5
ON and 5 OFF) in a region of area 0.25◦ × 0.25◦, compared to
about 4,000 cells in a similar size region in L4.

In the Magno pathway, LGN cells are detectors of changes in
luminance in their relatively small receptive fields (RF). In the
absence of visual input, they fire about 20 spikes/s. ON-LGN
cells are excited, firing vigorously up to over 100 spikes/s, when
the luminance in their RF changes from dark to light, and are
silent when it goes from light to dark. OFF cells do the reverse,
spiking vigorously when their RF change from light to dark.

2.1.1.2. L4 (the principal component in the premodel). About
80% of the neurons are Excitatory (E); the rest are Inhibitory
(I). (These percentages differ slightly from ref. 7 but are quite
standard.) Cells communicate by firing action potentials, or
“spikes,” and sending them along axons. The sending cell is
called presynaptic; the receiving cell postsynaptic. Signals from
excitatory presynaptic cells bring a postsynaptic cell closer to its
spiking threshold; signals from inhibitory presynaptic cells bring
a postsynaptic cell farther from its spiking threshold. See Section
2.1.2 below.

As a mathematical idealization, it is assumed in ref. 7 that E
and I-neurons are located on two square lattices on a 2D surface.
Anatomical facts of the following type are incorporated. The
probability of connection among model cells is dependent on
cell types (i.e. E or I) and drops off with distance following a
truncated Gaussian. E-neurons have longer axons, hence longer
reach, compared to I-cells. Peak connection probability among
E-cells is ∼15%, while peak connection probabilities for E→I,
I→E, and I→I are much higher, at about 60%. The connection
strength also depends on cell type but is independent of the
distance between pre- and postsynaptic cells.

There are two somewhat distinct populations of E-cells: simple
and complex. Simple cells follow detailed spiking patterns of

A

B C

Fig. 1. (A) LGN-L4-L6 network in the premodel, with modeling of
L6 following ref. 7. Signals mostly (but not necessarily) in the form
of drifting gratings are sent to LGN, then passed to L4 which also
receives feedback from L6. LGN is represented schematically by a
lattice of ON (white) and OFF (black) cells. L4 is subdivided into
squares called hypercolumns (HCs). Each HC consists of neurons
sharing similar receptive fields. Roughly, cells in the red, center
square in the LGN panel project to the red, center square in L4. Each
HC is further subdivided into orientation domains (ODs); wiring to
LGN is determined by the orientation of the three bars indicating the
intended preferred orientation. (B) Sample LGN configurations to
which cells in vertical-preferring ODs (those marked by vertical bars
in panel A) are wired. (C) Pooled LGN spike trains received by a V1 cell
wired to the given LGN configuration. Two spike trains, elicited by two
different grating orientations, are shown. The alignment of the top
grating with LGN cells causes the pooled LGN spike train (formed
from the four LGN spike trains) to concentrate in half-cycles. This
firing pattern produces higher firing in the recipient L4 cell than the
more evenly spaced LGN spikes produced by the orthogonal grating.
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LGN cells; complex cells do not. In ref. 7, simple cells typically
receive 4 to 6 LGN inputs, while the corresponding numbers for
complex cells are 0 to 2. Complex cells, on the other hand, have
significantly higher firing rates than simple cells. In ref. 7, this is
achieved by giving them a larger number of presynaptic E-cells.

2.1.1.3. L6 (feedback to L4). In the real cortex, L6 receives some
input from LGN and interacts with multiple other layers of V1,
including L4. As there is no way to systematically model such
feedback dynamics without modeling all the layers involved, as
well as the regions with which these layers interact, the authors of
ref. 7 made the simplifying assumption that L6 activity followed
LGN alone; its neurons were modeled as spike trains providing
excitatory input to L4.
2.1.2. Equations of neuronal dynamics.

2.1.2.1. LGNdynamics. Inputs to LGN cells are time-dependent
light intensity maps L(x, t) giving the luminance of the visual
stimulus at location x at time t, filtered through certain spatial
and temporal kernels. Since our main focus is L4 and we will not
be working directly with LGN dynamics, we will omit discussion
of this topic, referring the interested reader to ref. 7 or to Section
4 of ref. 27.

2.1.2.2. Dynamics of L4 neurons. L4 neurons are modeled as
conductance-based, leaky integrate-and-fire (LIF) point neurons,
the dynamics of which can be summarized as follows: The
membrane potentialV of a neuron of typeQ ∈ {E, I} is described
by

dV
dt

= −
1

�QL
V − gQE (t)(V − V E)− gQI (t)(V − V I ) . [1]

The three terms on the right side of [1] are the Leak, Excitatory,
and Inhibitory currents, respectively. In rescaled units (following
ref. 32), the spiking threshold is V = 1; upon spiking, V is
immediately reset to 0 and remains there for a refractory period
of 2 ms for E-cells and 1 ms for I-cells. When the refractory period
is over, the evolution of V resumes according to Eq. 1. The time
constants are �QL = 20 ms for Q = E and 15 ms for Q = I ;
V E = 14/3 andV I = −2/3 are the E and I “reversal potentials,”
and gQE (t) and gQI (t) are E and I-conductances, which we now
describe.

The I-conductance of a neuron of type-Q , gQI (t), is driven by
the spiking activity of presynaptic I-cells from within L4 and has
the form

gQI (t) = SQI
∞∑
i=1

GI (t − tIi ),

where GI : [0,∞) → [0,∞) describes the time course of the
conductance: It rises quickly from 0, decays exponentially after
5 to 10 ms, and satisfies

∫
GI dt = 1. The tIi are the arrival

times of incoming I-spikes, and SQI is the synaptic coupling
strength from I-neurons to neurons of type Q. That is, each spike
fired by a presynaptic I-cell elevates the inhibitory conductance
of a postsynaptic cell of type Q for ∼10 ms by an amount
proportional to SQI . See SI Appendix, section 1E.

E-conductance is defined similarly, but there are four sources
of excitatory input, so the right side of the equation for gQE (t)
is the sum of 4 terms. Three of the sources are synaptic: They
are LGN, L4, and L6, with coupling strengths SQLGN, SQE ,
and SQL6, respectively. These inputs have different time courses:
E-spikes from L4 and L6 have an AMPA (�-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid) component that is fast-acting,

decaying exponentially after a few ms, and a much longer-
acting NMDA (N -methyl-D-aspartic acid) part that lasts for
∼80 ms. LGN spikes have AMPA only. The fourth source,
called “ambient,” represents modulatory influences not explicitly
modeled; it is depicted by Poisson spike trains. See SI Appendix,
section 1D for more detail.

We remark that while Eq. 1 governing single-neuron dynamics
is exceedingly simple, the coupling among neurons leads to very
complex interactions. When stimulated, a neuron receives bar-
rages of E and I-spikes, producing a great deal of fluctuations in its
membrane potential. Even as the mean drift is upward, it is gener-
ally hard to predict when spiking threshold is crossed. Exact firing
rates of LIF neurons cannot be expressed in closed form in terms
of the parameters above; they depend on input patterns (as we
will see momentarily) as well as recurrent interactions. See ref. 33.
2.1.3. Orientation selectivity. Nearly all V1 neurons have a
preferred orientation: it is most excited when an edge in this
orientation is detected in its receptive field, less so as the angle
between the edge and the neuron’s preferred orientation is
increased, and shows little to no increase in firing when the edge
is orthogonal to its preferred orientation (25, 34). This response
property is known as orientation selectivity, abbreviated OS in
the rest of this paper. OS is of central importance as a visual
function, and it comes about in a rather subtle way as we will
explain, making it a challenge for CG strategies.

Below, we outline some facts and conjectures related to the
origin of OS. These ideas were made precise and implemented
in ref. 7, which confirmed that they produced model outputs
consistent with experimental data.

2.1.3.1. LGN-to-V1wiring: Fromempirical observations tomodel.
Of relevance are the following two empirical facts:

(a) Based on their electrophysiology experiments half a century
ago, Hubel and Wiesel proposed that OS is derived from
feedforward convergence of LGN cells. Specifically, they
hypothesized that V1 simple cells are connected to two or
three spatially aligned rows of LGN cells that alternate in
polarity, i.e., a row of ON and a parallel row of OFF, or three
rows in parallel alternating in ON/OFF (25). Receptive field
mappings from many authors (35, 36) have since provided
evidence in favor of this hypothesis.

(b) Imaging results show that V1 cells with like orientation
preference tend to be grouped together in what are called
orientation domains and that these domains appear to form
“pinwheel” structures around certain “singularities” (37).

Following (b), the authors of ref. 7 divided L4 into hypercolumns
(HCs) representing cells with nearly identical receptive fields;
each HC is subdivided into OD, and each OD is assigned
an intended orientation preference. See Fig. 1A. Following the
suggestion that the alignment of a V1 cell’s LGN afferents may
be connected to its preferred orientation, E-cells in each OD are
wired to a group of LGN cells with a configuration as proposed
in (a) and an orientation following its assigned preference. As
noted earlier, LGN cells in the Magno layers are very sparse, and
there are constraints on how far LGN cells can project. Based on
these and other restrictions, it was concluded in ref. 7 that the
number of LGN cells connected to a V1 cell is likely quite small
(Section 2.1.1). Examples of LGN configurations presynaptic to
a V1 cell are shown in Fig. 1B. I-cells are given similar numbers
of LGN inputs but they are chosen randomly.

2.1.3.2. Model validation. Drifting gratings, visual stimuli that
are periodic in space and in time, have been widely used to
calibrate properties of visual neurons in experiments. In real V1,
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cellular responses vary with grating orientation. A V1 neuron is
said to be optimally driven when the grating is aligned with its
preferred orientation, orthogonally driven when the grating is
orthogonal to the preferred orientation. Tuning curves, graphs
of firing rates plotted against the orientation of the grating,
summarize the OS of neurons; notably, they peak at preferred
orientations. See, e.g., ref. 34.

Model outputs in ref. 7 are in strong agreement with data:
Nearly all V1 cells have OS with realistic tuning curves. More-
over, most cells prefer orientations not far from those of their
assigned intended orientations, with most preferred orientations
varying continuously as a result of recurrent interactions.

2.1.3.3. Mechanism behind OS. How OS is acquired by V1
cells requires an explanation because it is a well-established fact
that LGN cells, which supply the sole feedforward input to V1 in
monkeys, are not orientation-selective (38–41). We give below an
explanation for how OS is conferred on V1 cells. The modeling
in ref. 7 is based on this explanation, various versions of which
are known within the neuroscience community.

Consider an LGN configuration as proposed by Hubel and
Wiesel projecting to a V1 cell. When optimally driven, all the
LGN cells are simultaneously excited during roughly half of
the cycle, and none are excited during the other half. For an
orthogonal grating, most of the time about half of the LGN cells
are excited, and they send to V1 spike trains that are more evenly
distributed in time. See Fig. 1C ; for further illustration, see SI
Appendix, section 1B. One way to understand why a concentrated
LGN spike volley produces a stronger V1 response is that a strong,
persistent, net-positive current leaves the leak term in Eq. 1 with
less time to act before the threshold is reached.

The discussion above explains how simple E-cells acquire their
OS, but complex E-cells (which have at most one or two LGN
inputs) and I-cells (which have random LGN configurations)
enjoy OS as well. In ref. 7, complex cells and I-cells inherit the
orientation preference of nearby simple E-cells.

2.1.3.4. Why OS is a challenge to theorists attempting model
reduction. OS means a cell fires preferentially in response to
certain grating orientations. One might naively assume that this
has to do with differentials in input firing rates, i.e., more LGN
spikes are received when the stimulus is aligned with the cell’s
preferred orientation. But that is not the case: Because the set of
LGN afferents to a V1 cell is fixed and LGN cells are not OS, the
number of incoming LGN spikes per sec is independent of grating
orientation. For a simple cell wired to LGN as hypothesized (see
above), the pooled spike trains of its LGN afferents exhibit certain
temporal patterns (Fig. 1C ), patterns that depend on the wiring
and vary with grating orientation. The challenge in performing
CG is to capture how such a cell integrates these input patterns
with recurrent cortical interaction to produce a suitable firing
rate response.
2.1.4. Outlook. To motivate the need for a different computational
strategy, we examine some of the numbers in the biologically
detailed models (7, 26, 27): These models covered 9 HCs; each
HC has ∼4,000 cells in L4, is driven by 10 LGN cells and has
feedback from ∼300 cells from L6. This adds up to a total of
about 40,000 cells in the entire model. L4 cells were modeled
with integrate-and-fire neurons, as were LGN cells, and L6 cells
were modeled as spike trains. The dynamics were updated at
0.1 ms intervals to capture the order in which the interactions
take place. Simulation time was about 2 min for each second of
neuronal activity. Parameter determination was challenging and
labor-intensive, though manageable.

Note, however, that 9 HCs represent a rather small visual area
of 0.75◦ × 0.75◦, and this LGN-L4-L6 circuit is only a small

part of V1. A rough estimate suggests that a similarly detailed
depiction of a multilayer model of V1 covering say a 10◦ × 10◦
area in parafovea will involve scaling up the number of neurons by
factors upward of 103, and simulation cost scales at least linearly
with network size. These challenges caused us to consider CG
models as an alternative.

2.2. A Coarse Graining Strategy. Recall that we view a cortical
network presented with a stationary visual stimulus as being in a
NESS if the system is in local dynamic equilibrium and excitatory
and inhibitory forces across the cortical surface are in balance.
Motivated by these ideas, we propose in this section an iterative
scheme that, if and when it converges, would lead to a NESS of
the CG system.

As is typical in CG strategies, we divide cortical space into
blocks of local populations which we will refer to as “pixels,”
associate to each pixel a finite set of relevant statistics, and track
the time evolution of these statistics. In the example we use for
illustration, pixels are local populations of L4 in V1 (Section 2.1),
and the statistics we track are firing rates. Two distinguishing
features of our proposal are

(i) interaction kernels and local responses of our CG system
are derived carefully from a biologically detailed premodel;

(ii) potential local responses are precomputed.

With (i) we seek to retain biological realism from the premodel;
(ii) speeds up the computation significantly.
2.2.1. Setup. We consider a patch of 4 × 4 HCs of layer L4
in V1. Following ref. 27, we divide each HC into four ODs
with intended orientation preferences 0, 45, 90, and 135◦.
Keeping in mind that pixels should be small enough to justify the
assumption of homogeneity in neuronal activity (see “working
hypothesis” below), and at the same time large enough to reduce
the computational cost, we subdivide each HC into 10×10 pixels
(Fig. 2A). With this subdivision, each OD in a HC corresponds
to ∼25 pixels, and each pixel contains, following cell densities
in the premodel, ∼32 E-cells and ∼8 I-cells on average. The E-
population is further subdivided into simple (S) and complex (C)
cells, with∼70% of the E-population being simple. It is necessary
to treat S- and C-cells separately as they receive different LGN
and cortical inputs.

Our main working hypothesis is this: we assume in our CG
model that (a) cells of the same type (S, C, or I) within each pixel
have the same firing rates, and (b) the inputs they receive all have
identical firing rates. This is obviously a simplification of what
goes on in the premodel, where there is much neuron-to-neuron
variability, but a necessary assumption in any coarse-graining.

Accepting this hypothesis, the problem can now be framed
mathematically as follows: For each p ∈ P , where P is the set of
all 40× 40 pixels in the patch, let (f Sp , f

C
p , f Ip ) denote the mean

firing rates of simple-E, complex-E, and I-cells in pixel p. We refer
to f = {(f Sp , f

C
p , f Ip ), p ∈ P} as a firing rate configuration, and

let F denote the set of all such configurations. In our illustrative
example, visual stimuli are drifting gratings at high contrast,
at fixed spatial and temporal frequencies. We vary only their
orientation �, where � = 0 is equated with vertical. Given �, we
seek a mapping

Φ� : F → F

that describes how each pixel p equilibrates to the stimulus and
to its surroundings, i.e., Φ�(f ) tells us how each pixel responds
to LGN, L6, and ambient inputs when L4 inputs are computed
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Fig. 2. (A) Left: A single hypercolumn (center square) divided into four
ODs with solid red bars indicating intended orientation preferences; finer,
green mesh shows subdivision into pixels. Middle: black bar represents
grating orientation. Right: the peak LGN input rate to simple cells, i.e.,
nSLGN+
� (�)/NSLGN , as a function of �−�. (B) Poisson rates for LGN feedforward

input received by simple cells, when the intended preferred angle � and angle
of grating � differ by 0,30,60, and 90◦. Here � denotes the temporal period
of the grating.

from a configuration frozen at f . A fixed point of Φ� , if it exists,
would be a NESS of the CG system.
2.2.2. Local responses: Main computation. There are two steps in
the computation of Φ�(f ). First, we identify all the inputs from
lateral and external sources received by cells of type Q ∈ {S, C, I }
in each pixel p. Then, we propose new firing rates in response to
these inputs. The goal of this subsection is to explain these two
steps under the following

“No-mixture” assumptions:

1. each pixel is contained entirely in a single OD, and
2. inputs from LGN and from L6 are identical for all cells of

type-Q on each OD.

These assumptions are only partially valid in the premodel (LGN
and L6 inputs do cross OD boundaries), but they allow us to
present the CG procedure in its entirety with few distractions. In
Section 2.3, we will modify the procedure to allow “mixtures.”

2.2.2.1. Inputs to pixels. Let � and (f S , f C , f I ) be given. We
fix a pixel p, assumed to be in an OD with intended preference �
for some � ∈ {0◦, 45◦, 90◦, 135◦}. We state below how the spike
rate from each input source is computed from (f S , f C , f I ) and �;
see SI Appendix, sections 1A and B for details on parameters and
how various relevant quantities are extracted from the premodel.

From within L4: Let nQEp and nQIp denote the number of E
and I spikes per second received by each cell of type Q in pixel
p. To ensure that interactions among pixels follow closely those
between the corresponding groups of neurons in the premodel,
we set

nQEp =
∑
p′∈P

[
cQSp←p′ · f

S
p′ + cQCp←p′ · f

C
p′

]
, nQIp =

∑
p′∈P

cQIp←p′ · f
I
p′ ,

[2]

where cQRp←p′ is the mean number of type-R cells in pixel p′ in the
premodel presynaptic to a cell of type-Q in pixel p, averaged over
all cells of type-Q in pixel p.

From LGN: For simplicity, we omit LGN dynamics from
the CG model, modeling only LGN feedforward inputs to V1

cells. Our proposed LGN inputs are idealizations of LGN firing
patterns observed experimentally as well as those produced by
model LGN cells in ref. 7. See Fig. 1C.

Following average values in the premodel, we assume that
NQLGN, the numbers of LGN inputs to neurons of type Q , are
4.5, 1.5, and 4 for Q = S, C, and I, respectively; these numbers
do not depend on the pixel index p. Each LGN cell is assumed
to fire 45 spikes/s when (strongly) driven, so the mean number
of LGN spikes/s received by each type-Q neuron is

nQLGN = 45× NQLGN. [3]

However, knowing the mean rate nQLGN is not enough: As
explained in Section 2.1.3, simple E-cells in L4 derive their OS
not from mean LGN firing rates (averaged over time), but from
the temporal firing patterns of their LGN afferents. This means
we need to know not just the mean LGN-to-L4 rate, but how it
varies in time.

When optimally driven, i.e., when � = �, the LGN spikes
received by an S-cell are concentrated on half of the grating
cycle; they become less concentrated as |� − �| increases from
0◦, and are roughly evenly distributed when � − � = ±90◦ (see
Fig. 1C ). To simulate the spike patterns above, we assume as
an idealization that the summed LGN input to each S-cell has
the following form: As a function of time, it is a square wave,
with rates nSLGN+

� and nSLGN−
� sp/s occurring at the peaks and

troughs, which alternate at half-cycles. These rates satisfy

nSLGN+
� + nSLGN−

� = 90× N SLGN ,

nSLGN+
� (�) =

{
67.5 + 22.5 · cos[2(� − �)]

}
× N SLGN . [4]

See Fig. 2B; more details are given in SI Appendix, section 1B.
From L6: Following ref. 7, we assume a phenomenological

L6-to-L4 feedback term proportional to the mean LGN input
received by L4, with

nQL6
� (�) =

{
32 + 28 · cos[2(� − �)]

}
× NQL6 . [5]

Following the premodel, the constants in Eq. 5 (including the
number NQL6 of presynaptic cells L6) are chosen to ensure the
firing rate of a single L6 cell lies in the 4-60 Hz range as the grating
angle varies.

2.2.2.2. Local response functions. We now define Φ� under the
no-mixture assumption. Since all cells of type Q in a pixel p
are assumed to be identical and to receive identical inputs (see
Working Hypothesis), it suffices to compute the response of a
single cell. To reduce computational cost, we work with a single,
stand-alone neuron (i.e., not embedded in a network) and supply
it with inputs from the various sources as estimated above, thereby
simulating the inputs it receives in the premodel.

Let (f̃ S , f̃ C , f̃ I ) = Φ�(f S , f C , f I ). For each pixel p and
each cell type Q , we compute f̃ Qp as follows: We assume our
representative neuron is governed by an LIF model (Section
2.1.2) with the same time constants and synaptic weights as in
the premodel. Incoming spike rates for the various input sources
are estimated as above, and except for f̃ Sp (where LGN input
rates are oscillatory, as explained above), spike arrival times are
assumed to be homogeneous Poisson processes. The mean firing
rate of the LIF neuron in response to these inputs is f̃ Qp .

With all the emphasis on the role of oscillations in LGN
inputs to S-cells, a natural question is why f̃ Sp is treated as a single
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number. Indeed, in the premodel, spike patterns of individual
S-cells can have pronounced phases, but phases among nearby
neurons are mixed as a result of different spatial offsets in their
LGN afferents. When averaged across local populations, such
patterns become mild to nonexistent; see ref. 7.

Having explained how f̃ Qp can be computed in terms of �
and (f S , f C , f I ), we now propose a further simplification: Since
pixels interact only through the terms nQEp and nQIp defined in
Eq. 2, and inputs from LGN and from L6 can be deduced from
� and �, our working hypothesis implies there are well-defined
response functions ΨS ,ΨC , and ΨI with the property that

f̃ Qp = ΨQ(nQEp , nQIp , �(p), �) , Q ∈ {S, C, I }. [6]

The significance of Eq. 6 is this: Whereas f̃ Qp depends, a
priori, on the previous firing rate configuration (f S , f C , f I ), this
reformulation shows f̃ Qp is really a function of �(p), nQEp , and
nQIp . This suggests we can precompute potential values of f̃ Qp
without simulating the full premodel.
2.2.3. The Full Iterative Scheme. We now remove the “no-mixture”
assumptions, proposing a simple approximation that we have
found to be reasonably accurate in practice.

2.2.3.1. Averaging of local responses. In the premodel, it is
assumed that alignments of LGN afferents for L4 simple cells
come in a finite number of angles denoted by �, but not all
simple cells in each pixel share the same alignment. For pixels
that lie on the boundary between two ODs, half of the cells
have one alignment and half the other; though strongly biased,
angles are still mixed in pixels adjacent to the boundary. If we
want to make LGN inputs identical for all cells in a pixel—
as one would in CG models—then these inputs should be
weighted averages of those in Section 2.2.2. Such a strategy
would lead to a family of input rates parameterized by grating
angle � and pixel position p, i.e., {nSLGN+

p (�), p ∈ P}, instead
of {nSLGN+

� (�), � = 0, 45, 90, 135◦}. Similar considerations
are required for L6 inputs, for which there is more substantial
averaging across ODs as L6 cells have a sizable reach.

Allowing the LGN and L6 inputs to depend on p and not
just on � increases dimension of the domain of local response
functions, an increase in computation cost we can afford in
this relatively simple illustrative example. However, anticipating
greater complexity in future uses of the CG strategy, we propose
to average outputs instead of inputs. More precisely, for each p,
we fix weights

{(wLGN
p (�1), wL6

p (�2)) | �1, �2 = 0, 45, 90, 135◦}

with wR
p (·) ≥ 0 and

∑
�1
wLGN
p (�1) =

∑
�2
wL6
p (�2) = 1 for

each p. Roughly—though not literally—these weights represent
the proportion of influence from the different ODs for each
p, for LGN and for L6, as deduced from the premodel. (See
SI Appendix, section 1C for details.) We then modify the
computation of ΨS in the last subsection to

ΨS(nSEp , nSIp , �1, �2, �) [7]

defined to be the response when the LGN input to the LIF neuron
oscillates between nSLGN±

�1
(�) and the L6 input is nQL6

�2 (�), and
then set

f̃ Sp =
∑
�1,�2

wLGN
p (�1)wL6

p (�2)ΨS(nSEp , nSIp , �1, �2, �) . [8]

For Q ∈ {C, I}, LGN inputs are assumed to be identical for all
C and I-cells (Section 2.2.2), and f̃ Q is averaged over �2 only.

Hereafter, we will refer to the mapping (f S , f C , f I ) 7→
(f̃ S , f̃ C , f̃ I ), defined via the averaging above, as Φ� .

2.2.3.2. Precomputation of local response functions. Our
proposal is to tabulate the values of the local response functions
ΨS ,ΨC , and ΨI in advance for use in the iterative scheme below.
Once this library of local responses is built, it can be used any
number of times, for simulations with a wide range of initial
conditions and grating stimuli. The arguments of the ΨQ are as
in Eq. 7.

We remark briefly on the domains of these functions: For
nQEp and nQIp , we estimate—using the premodel as a guide—a
large enough region of E and I-inputs from L4 that contains all
values one may encounter under reasonable conditions. Notice
that this region should include not just values from steady-state
responses to drifting gratings, but also a wide range of initial
conditions and visual stimuli (SI Appendix, section 2B). As for
�, recall that LGN and L6 inputs depend only on |� − �|, and
consecutive values of � are 45◦ apart. Taking advantage of the
symmetries in the OD organization, we note that it suffices to
consider � ∈ [0, 22.5◦] (more details in SI Appendix, section 1C).
In fact, we consider only � ∈ {0, 7.5, 15, 22.5◦}, interpolating
linearly for intermediate values of �.

Technical details of the precomputation of ΨQ , including
the set of input values, grid densities, how each data point
is produced, interpolation methods, etc., are discussed in SI
Appendix, section 2.

2.2.3.3. Iterative scheme. We now describe a scheme that,
given a grating orientation �, stepsize h ∈ (0, 1), and initial
firing rate configuration f (0), produces a sequence of firing rate
configurations f (1), f (2), · · · . First, we carry out Steps 1 to 3
below for each pixel p:

(1) compute nQEp and nQIp , the lateral L4E/I inputs, from f (k)
following Eq. 2;

(2) look up the precomputed values of ΨQ , for nQEp , nQIp and all
pairs (�1, �2), interpolating as needed; and

(3) use Eq. 8 to estimate the new value of Φ�(f (k)).

Then

(4) update f (k) by the stepping scheme

f (k + 1) = (1− h)f (k) + hΦ�(f (k)) , [9]

(5) repeat Steps 1 to 4 until convergence.

Step 4, including the need to consider stepsizes <1, is discussed
in Section 2.5, where we demonstrate numerically that given a
drifting grating, there is a unique configuration f∗ = (f S∗ , f

C
∗ , f I∗ )

to which all initial conditions tested converge. This configuration
is therefore the sought-after NESS for the stimulus presented.

2.4. Demonstration of Algorithm. We now present some simula-
tions to illustrate the proposed iterative scheme. In the examples
shown, h = 1/3 in Eq. 9; see Section 2.5 for more detailed
analysis. We continue to use f = (f S , f C , f I ) to denote firing
rate configurations in pixel space, using f (k), etc., when referring
specifically to the state of the iterative scheme.
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2.4.1. First examples. To evaluate the performance of the iterative
scheme, we start with different initial firing rate configurations
f (0) and observe the convergence of the f (k) to a NESS in
response to drifting gratings. The NESS with respect to a stimulus
is defined operationally to be f∗ = (f S∗ , f

C
∗ , f I∗ ) , where

f∗ =
1

100

350∑
k=251

f (k) , [10]

and f (k) is the firing rate configuration after k iterations. (As
we will see, convergence happens long before k = 250, to a
NESS that does not depend on f (0); see Section 2.5). For
simplicity, here we focus only on the E configurations and
measure convergence by the L2 norms of E-firing rates, i.e.,

∣∣f − f∗
∣∣
E :=

 1
|P|

∑
p∈P
|f Ep − (f E∗ )p|2

1/2

,

where f is an arbitrary firing rate configuration and f Ep is the
average of S- and C-rates in pixel p (weighted by the proportions
of S- and C-cells present); (f E∗ )p is defined similarly.

Results for two examples are presented in Fig. 3. In the first
example (Fig. 3A), we started from the background and drove the
system with a vertical (� = 0◦) grating. The algorithm produced
abrupt and drastic changes, with firing rates rising rapidly in
the first two iterations from a few spikes/s to ∼70 spikes/s in
certain locations. From there, it began to relax, settling into an
activity pattern with |f − f∗|E < 1 by step 9. Observe that
the activity pattern in the last panel shown is consistent with
theoretical expectations of NESS responses to vertical gratings:
ODs designated as vertical-preferring (Fig. 2A) have the highest
firing rates, and ODs designated as horizontal-preferring have
the lowest firing rates.

In Fig. 3B, we started from the (computed) NESS for � = 0◦,
then presented the � = 60◦ grating to demonstrate the type of
transition that occurs in local circuits when the eye makes saccadic
movements. Here, we see an abrupt shift in firing patterns in the
very first iteration; convergence was achieved quickly as before.

2.4.2. Orientation selectivity in the CG model. As the firing rate
response of a simple cell is determined not by the magnitude
of its feedforward input current but by the temporal patterns of
LGN spikes it receives (see Section 2.1), we view OS as a major
proof of concept for the proposed algorithm. Below, we offer
two views of the model’s computed NESS in response to drifting
gratings in the full range of orientations: activity level across the
cortical surface, and tuning curves for individual pixels.

Fig. 4A shows NESS profiles of E-activity in our 16-HC coarse-
grained model. As the grating orientation varies from 0◦ to 90◦,
the “hot spots” (where spiking is strongest) morph from one
cortical location to another. Recall that there are only four ODs
corresponding to four distinct sets of LGN inputs. That the
NESSes vary essentially continuously with grating orientation is
largely the result of recurrent interaction among pixels. Observe
that the hot spots are consistent with the designated ODs in
Fig. 2A.

The ultimate test of the model’s ability to capture OS is
whether or not individual pixels in the CG model have reasonable
tuning curves, i.e., f Ep (�) as a function of grating orientation �
for a fixed pixel p. This is a tough test because no attempt was
made in the algorithm proposed to ensure OS for individual
pixels. Fig. 4B shows tuning curves for several pixels marked in
the panel on the Left. Viewed as averaged measures of orientation
tuning, these graphs possess the right quantitative characteristics,
though they lack the variability of tuning curves for real neurons
(see, e.g., ref. 34). The preferred orientation, i.e., the � at which
f Ep peaks, is consistent with the location of the pixel.

For comparison with the premodel, we include in Fig. 4C a
set of simulation results from ref. 26. This panel, which shows
E-firing rates in response to the 0◦ grating averaged over a 1-
s period over groups of neurons the same size as our pixels, is
analogous to the Upper Left panel in Fig. 4A (except that the
premodel had only 9 HC). The overall firing patterns are entirely
similar, confirming that our algorithm reproduces premodel
activity reasonably accurately. It is also evident that E-activity
of the premodel shows a great deal more variability from pixel
to pixel: The premodel is a network of 40,000 neurons with
connectivity, LGN, L6 inputs, coupling strengths, and spiking
thresholds varying from neuron to neuron—all these quantities

A

B

Fig. 3. Computing NESS using the
proposed iterative scheme. Shown
are E firing rates, i.e., a weighted
sum of S and C rates; see Sec-
tion 2.4.1. In (A), the initial condi-
tion is f (0) = (f S(0), f C (0), f I(0)) ≡
(2.5,8,18), uniform for all pixels,
and the stimulus is the � = 0◦
(vertical) grating. Distance to NESS
(in | · |E norm; see text) is indicated
below each panel. Note the change
in color scale in the second row.
In (B), the initial condition is the
computed NESS in response to the
� = 0◦ grating, and the stimulus is
the � = 60◦ grating.
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A

B C

Fig. 4. Demonstration of OS in the
CG model. (A) NESS in response to
gratings from vertical (� = 0◦) to
horizontal (� = 90◦); shown are E-
firing rates. (B) Tuning curves for
five pixels a to e corresponding to
crosses counterclockwise in the Left
panel (which shows the firing rates
for � = 0◦). (C) E-firing rates in
the premodel in response to verti-
cal grating; this is Fig. 7A from ref.
26. Shown are E firing rates, i.e.,
a weighted sum of S and C rates
(Section 2.4.1). More details are in
Section 2.4.2.

are replaced in the CG model by single numbers that correspond
to statistical means. On the other hand, producing the data for
Fig. 4A using the CG model (not counting precomputation time)
was ≳103

× faster than running the equivalent premodel for
Fig. 4C, taking only a fraction of a second on our computer using
our (not optimized) implementation. These differences highlight
the expected trade-off between fine-scale variability in detailed
network models versus the computation speed of coarse-grained
systems.
2.4.3. Stress tests. Since neuronal responses to stimuli are known
to be complex (see, e.g., ref. 42), we performed an additional
∼3,500 tests to challenge the algorithm using a variety of
initial configurations designed to identify situations where the
algorithm may fail (SI Appendix, section 4). The tests included
normal conditions, random noise, as well as stress tests, by
which we mean initial conditions that occur rarely but that
may potentially pose a threat to convergence. The algorithm
converged in almost all cases. In a small number (4 out of 3,500)
of runs, transients led to arguments (nSEp , nSIp ) (Eq. 7) that fell
outside the precomputation domain. This could (presumably) be
handled by enlarging the domain, but for simplicity, we discarded
those runs. The results show that initial conditions for which the
E-I balance is significantly disrupted tended to place great stress
on the algorithm. An example is shown in Fig. 5; see also SI
Appendix, section 3.

2.5. Analysis of Proposed Algorithm. The numerical results of
the previous section suggest that the iteration scheme [9] has
an attractive fixed point for stepsize h = 1/3. Here we examine
convergence behavior, then compare computed local responses
to firing rates in the model.

First, we introduce a slight simplification.
2.5.1. Symmetrization. Observe the following organization of
hypercolumns (HC) and OD in our model: Between any two
HCs, there is an isometry that carries each OD to one with
matching intended preferred orientation. Let us refer to a firing
rate configuration as “symmetric” when it is invariant under these
isometries, and call a stimulus “symmetric” when it is represented
by an LGN input that is invariant under these isometries. Drifting
gratings are symmetric, and when a stimulus is symmetric, we

expect the NESS to also be symmetric (Figs. 3–5). Indeed, the
subspace of all symmetric firing rate configurations is invariant
under the map Φ� (Section 2.2). Numerical evidence (see, e.g.,
SI Appendix, section 3) suggests that this subspace is attracting:
Trajectories converge quickly to it before moving more slowly
toward the fixed point. For this reason, we focus on dynamics
within this subspace. Throughout this section, we use symmetric
initial conditions, symmetrize the firing rate configuration at each
step, and measure distances using an L2 norm of the E and I firing
rates in one HC, denoted | · |HC (SI Appendix, section 4A).
2.5.2. Stepsize analysis. We first explain the need to consider
h < 1, i.e., the reason for averaging f (k) and Φ�(f (k)) in
Eq. 9. In precomputations of local responses as functions of
inputs to a pixel, it is the pixel’s steady-state firing rates that
are computed (otherwise the result would depend on initial
conditions). Thus h = 1 is equivalent to allowing the local
system representing dynamics within pixels to equilibrate fully
to (fixed) external inputs before updating the set of external
inputs. In dynamical systems with sharp scale separation, this is
often a good approximation, but neuronal dynamics do not have
such timescale separation: In the real cortex as in the premodel,

Fig. 5. Example stress test. The initial configuration was constructed by
taking the NESS for the 22.5◦ grating and increasing E-firing rate on the Left
half of the model by 60% while decreasing it by 60% on the Right half; I-firing
rates are untouched. The stimulus is the � = 60◦ grating. Note different color
scales for iterations 2 to 7.
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Fig. 6. Local convergence with different stepsizes h in the iteration
scheme [9]. To compute a putative fixed point f∗, we fix the grating to � = 0◦
(vertical) and sample 500 random initial conditions, evolving each until they
are within " = 10−12 of each other in the |·|HC norm. These are then averaged
to form f∗. We then choose 500 new random initial conditions f (i)(0) with
|f (i)(0)− f∗|HC = 0.1. Each f (i)(0) is run for 350 steps with h ∈ {1, 1/2, 1/3, 1/5}
and |f (i)(n) − f∗|HC are computed. Shown are the max, min, and median
distances. For h = 1, the scheme is unstable, and all orbits “blow up” in nine
steps, meaning for at least one pixel p the L4 rates (nEp , nIp) fall out of the
domain of the precomputed local responses. The remaining plots have slow
convergence for h = 1/2 and exponential convergence for h = 1/3 and 1/5.

timescales of interaction among neurons within a pixel are similar
to those with neurons in surrounding pixels. Thus one cannot,
a priori, expect h = 1 in the iteration scheme to work. Indeed,
for initial conditions near f∗, h = 1 usually leads to firing rates
oscillating with larger and larger amplitudes: Locations that are
overly suppressed tend to be overexcited in the next step, and
vice versa. See SI Appendix, section 4B.

We found numerically that the scheme [9] converges for h ≲
1/2. Moreover, fixed points computed using a range of h ∈ (0, 1/2)
are insensitive to the choice of h, differing from each other by
<10−11 in the HC norm |·|HC . For h away from 1/2, e.g. h = 1/3,
convergence appears to be exponential, with a slower rate as h
decreases. See Fig. 6.

We hypothesize that the map Φ� has a fixed point, though
not a stable one. For a configuration f , let Gh(f ) := (1− h)f +
hΦ�(f ) be the map implied in Eq. 9. Then G1(f ) = f if and
only ifGh(f ) = f for all h > 0. Moreover, ifΦ� can be linearized
at a fixed point f , then � is an eigenvalue of DΦ�(f ) if and only
if (1 − h) + h� is an eigenvalue of DGh(f ). Since exponential
convergence forGh is guaranteed when the spectral radius ofDGh
is <1, the results in Fig. 6 give an upper bound on the spectral
radius of DΦ� .
2.5.3. Global convergence. We sampled from a group of ∼3,500
randomly chosen initial conditions designed to be far from the
steady state f∗ (see SI Appendix, section 4C for details), ran the
scheme [9] with the � = 0◦ grating and computed distances to
the fixed point f∗ in the HC-norm as before. As can be seen from
Fig. 7, following some initial transients, all trajectories appear to
converge at the same exponential rate, consistent with the fixed
point hypothesized in the previous paragraph.
2.5.4. Comparisonwithnetworkdynamics. Next, we compare local
responses given by Φ� (Section 2.2) with firing rates from the
premodel. A priori, the two can be quite different because

network interactions typically result in structured spiking with
partial synchronization, whereas spike arrival times in the local
response computation are Poissonian.

We simulate a spiking network to obtain mean steady-state
firing rates, then use these as inputs to compute the local
responses given by Φ� . If Φ� were a perfect representation of
local network dynamics, then the predicted responses should
be equal to network firing rates. As one can see in Fig. 8, the
local response functions give a reasonable estimate though they
systematically overestimate a little the firing rates of both E- and
I-cells. A phenomenon that may contribute to the discrepancy is
that when spiking is partially synchronized, a larger fraction of
spikes arrive just before or during refractory making them less
effective; see ref. 43.

3. Discussion

3.1. Remarks on Proposed Computational Strategy. We seek an
alternative to large-scale simulations of anatomically detailed
neuronal networks, one that would allow us to speed up the
computation while retaining as much of the biological realism
as possible. We propose to track the dynamics on two different
levels: a CG level and local dynamics. Upon presentation of
a stimulus, we alternately update the CG and local dynamics,
viewing the system as having converged to a NESS when i) the
pixels in the CG model are in equilibrium with one another, and
ii) the local dynamics are in equilibrium with the pixel’s external
environment. To ensure that our CG model mimics the full
network, we draw connectivity data directly from the network;
and to ensure that local information is not lost, simulated local
dynamics are used to determine interaction among pixels.

An innovation of this paper is the way we take advantage
of the underlying biology to represent local systems as small
dynamical systems driven by a finite number of external forces,
a representation that enables us to precompute potential local
responses without reference to the global landscape. The benefits
of precomputing such responses once and for all are clear: First,
they are relatively easy to compute, typically varying smoothly
and monotonically with individual parameters; and second,
maintaining a library of precomputed responses obviates the

Fig. 7. Testing the global convergence of the iteration scheme for h = 1/3.
This figure plots the trajectories of distances of∼3,500 tests to the fixed point
f∗ in the HC-norm. The Inset shows the initial segments for five randomly
selected trajectories.
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Fig. 8. Comparison between the firing rates from network simulations and
local response functions. For � ∈ {0,7.5,15,22.5◦}, we simulate a version
of the premodel (timestep = 0.1 ms) and compute its firing rates. Then
for each pixel, we compute local responses using the network firing rates
as input into the precomputed map Φ� , and randomly select 25% to plot
against corresponding results from the premodel. Thick dashed lines indicate
a relative error of 33%. For E firing rates, 80.4% fall within the 33% bound; for
I, 92.7%.

need to simulate the local dynamics at each spatial location in
each time step, for each visual stimulus, and for each initial
condition, simulations that are quite similar but are duplicated
over and over in usual iterative schemes. The reduction in
computation costs was evident: e.g., it took <1 s for the examples
in Fig. 3 to converge, compared to several minutes for the
premodel in ref. 7.

Another notable feature is our use of multiscale ideas in
a setting without timescale separation. In this setting, the
convergence of our iteration scheme cannot be taken for granted.
Analyses of the iteration scheme’s convergence properties and its
justification on the basis of network dynamics are beyond the
scope of the present paper and will be explored in future work.

3.2. Related Work. What we propose is the use of rate models
as coarse-grained descriptions of network dynamics. There is an
extensive literature on this topic, beginning with the seminal
work of Knight on population coding (44) and that of Wilson,
Cowan, and coworkers on rate models (45–47), continuing to
more recent work on neural fields (see, e.g., refs. 48 and 49),
density-based methods (50, 51), diagrammatic expansions (52,
53), and equation-free modeling (54). With some exceptions,
much of this body of work has focused on analyzing “universal”
or generic phenomena, e.g., bifurcation and pattern formation,
with the apparent goal of building general mathematical theories
of neuroscience. In contrast, we seek to build a model of the cortex
that is simple enough to be understood yet realistic enough to
shed light on specific biological mechanisms—to be queried and
to offer guidance for future experiments. These differences in
aims have resulted in different model choices.

Closest in spirit to our work are (55, 56). To our knowledge,
these are the first papers that sought to produce coarse-grained
models of large-scale biologically realistic networks. Starting also
from a network model of the visual cortex, the authors derived
CG equations using analytic approximations valid in a mean-
driven, high-conductance regime that is consistent with a weak-
coupling,∞-population limit (51).

We have employed a different computational strategy as local
populations—in V1 as in our premodel—are finite in size,
neurons respond to both mean and fluctuating stimuli, and
they are not weakly coupled. Indeed, aside from E-to-E (for
which connection probabilities are lower), each neuron in our
premodel is coupled to ∼50% of nearby E and I neurons, with

synapses strong enough that each incoming spike can drive a
neuron’s membrane potential a few percent toward or away from
its spiking threshold; see SI Appendix, section 1. In the absence of
good analytic approximations for such regimes, we have chosen
to compute our local responses by direct simulation, a procedure
made practical by the observation that such responses can be
precomputed.

Our scheme bears some similarity to multiscale methods origi-
nally developed for computational physics and engineering (8, 9).
However, these methods typically rerun local dynamics at each
step, requiring timescale separation for speedup, whereas our
system does not exhibit sharp scale separation (see above) and we
precompute local responses only once.

3.3. Potential Applications and Extensions of CG Methodology.
The monkey visual cortex, which is very similar to that of
humans, is rich in data and offers a window into the rest
of the cerebral cortex. It is an ideal brain region for the
development of mathematical modeling techniques and a viable
starting point for a quantitative approach to the neurobiology
of cortical computation. The primary visual cortex, or V1,
consists of multiple interconnected layers, of which one (layer
4C�) was studied in the present paper. We envision using the
principal layers of V1 as our next proving grounds for the
modeling strategy proposed, with a longer-term goal of building
a semirealistic multilayer model of V1. Such a model could be a
major contribution to neuroscience.

Extensions of the techniques developed in this paper will be
needed to carry out these next steps. Going beyond the input
layer 4C�, network architecture becomes more complex, but
we expect the computation of potential local responses to remain
tractable: Local populations are generally driven by no more than
a handful of “external” sources, with respect to which firing rates
tend to vary in relatively simple ways.

A major challenge in building cortical models is to locate
viable physiological parameters, e.g., synaptic coupling weights
and connection probabilities. (We avoided parameter tuning in
this paper by starting from an existing model.) For parameter
exploration, the significantly higher speed of our CG computa-
tion is an advantage over direct network simulations. Also, being
mathematically cleaner, CG frameworks are better set up for
machine learning (ML) techniques.

When complexity is high, the number of unconstrained
parameters is large, or experimental guidance is inadequate,
we anticipate that ML will be used to fill in the gaps (57).
Techniques to “learn” dynamical models using ML methods
are being developed; see, e.g., refs. 58–62 for some that have
been found promising in physical applications. Such tools can
potentially be combined with our approach to improve the
predictive power of CG models.

4. Materials and Methods

All algorithms were implemented in MATLAB (2022a) from MathWorks, Inc. The
CG and premodel were run on a 16-core machine (Advanced Micro Devices Ryzen
9; Ubuntu 20.04 LTS. Precomputations were done on Lenovo SD650 nodes at
the New York University’s Greene High Performance Computing Cluster.

Data, Materials, and Software Availability. Software source code has been
made publicly available (63).
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