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Abstract Atmospheric nitrogen (N) deposition and climate change are transforming the way N moves

through dryland watersheds. For example, N deposition is increasing N export to streams, which may be

exacerbated by changes in the magnitude, timing, and intensity of precipitation (i.e., the precipitation regime).

While deposition can control the amount of N entering a watershed, the precipitation regime influences rates of

internal cycling; when and where soil N, plant roots, and microbes are hydrologically coupled via diffusion; how

quickly plants and microbes assimilate N; and rates of denitrification, runoff, and leaching. We used the

ecohydrological model RHESSys to investigate (a) how N dynamics differ between N‐limited and N‐saturated

conditions in a dryland watershed, and (b) how total precipitation and its intra‐annual intermittency (i.e., the

time between storms in a year), interannual intermittency (i.e., the duration of dry months across multiple years),

and interannual variability (i.e., variance in the amount of precipitation among years) modify N dynamics and

export. Streamflow nitrate (NO3
−) export was more sensitive to increasing rainfall intermittency (both intra‐

annual and interannual) and variability in N‐limited than in N‐saturated model scenarios, particularly when total

precipitation was lower—the opposite was true for denitrification which is more sensitive in N‐saturated than N‐

limited scenarios. N export and denitrification increased or decreased more with increasing interannual

intermittency than with other changes in precipitation amount. This suggests that under future climate change,

prolonged droughts that are followed by more intense storms may pose a major threat to water quality in dryland

watersheds.

Plain Language Summary Fossil fuel combustion and industrial agriculture have increased

atmospheric nitrogen (N) pollution. Atmospheric N can travel with prevailing winds and be deposited on soil

surfaces in terrestrial ecosystems. This can in turn increase N cycling and export to aquatic ecosystems, where

excess N acts as a pollutant. The timing and amount of rainfall can influence how much N is transported from

terrestrial to aquatic ecosystems, but it remains unclear how future N deposition and precipitation patterns will

interact to influence stream water quality and drinking water security. To address this, we used a simulation

model to investigate (a) how changes in the timing and/or amount of precipitation influence N export from

watersheds, and (b) how the effects of precipitation change with increased atmospheric N deposition. We found

that N export to streams increases with precipitation intermittency and variability, particularly when N

deposition is low. Under high N deposition, export to streams is substantially elevated, regardless of

precipitation timing. Our findings suggest that under future climate change, prolonged droughts that are

followed by more intense storms may increase hydrologic N export and pose a major threat to water quality in

dryland watersheds.

1. Introduction

Atmospheric N deposition has been increasing in dryland watersheds of the western US since the 1860s, largely

due to human population growth and concomitant increases in both fossil fuel combustion and industrial agri-

culture (Galloway et al., 2008; Kanakidou et al., 2016). In many populated regions around the globe, N deposition

is already around 20 times higher than the natural (non‐anthropogenic) rate of 0.05 g N g m−2 year−1 (Dentener

et al., 2006; Galloway et al., 2008). While N deposition has decreased in many places over recent decades, it

remains high in many ecosystems near urban areas (Du, 2016; Du et al., 2014), and will likely further increase in
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the future (Decina et al., 2020). For example, in dryland chaparral watersheds near Los Angeles, California, the N

deposition rate is more than 3 g N m−2 year −1 (Benish et al., 2022), and by 2050, rates are likely to reach

5 g Nm−2 year−1 near urban areas (Bettez & Groffman, 2013; Sutton et al., 2007). Given these dramatic increases

in N inputs, there is an urgent need to understand (a) the point at which dryland watersheds will no longer be able

to assimilate additional N (i.e., the threshold of N deposition at which they become N‐saturated) and (b) how

deposited N will be transformed and exported from watersheds through both hydrologic and gaseous pathways (i.

e., stream export and denitrification, respectively) under both N saturated and unsaturated conditions. Precipi-

tation plays an important role in driving N cycling, uptake, and export (Homyak et al., 2017; Schimel, 2018).

However, in drylands, these processes can act on different timescales and high precipitation variability can

complicate our ability to predict the fate of atmospherically deposited N (Homyak et al., 2014; Howarth

et al., 2006; Krichels et al., 2022; Ren et al., 2024a).

Conceptual models used to assess N saturation and N export were developed in temperate systems where

relatively high and consistent rainfall helps maintain hydrologically connected soils, allowing substrates to

diffuse to plant roots and be taken up (Homyak et al., 2014). As a result, these models assume that N export

occurs once a watershed becomes N‐saturated (Aber et al., 1989). In drylands, however, summer aridity can

keep soils dry for months without rain, limiting diffusive N transport and allowing it to accumulate in hy-

drologically disconnected microsites (i.e., hotspots; Parker & Schimel, 2011). At the onset of the wet season

when rains return, N can be rapidly exported before plants and soil microbes can assimilate it—this can produce

large stream N losses (known as “pulses”) that under traditional conceptual models would suggest N saturation

(Zhu et al., 2018). However, such hydrologic losses regularly occur in drylands even when plants remain N‐

limited (Homyak et al., 2014).

To better account for asynchronies between N availability and uptake, Lovett & Goodale. (2011) introduced the

concept of kinetic N saturation, where available N can exceed demand over short timescales (e.g., when a storm

follows a long dry period). This contrasts with capacity N‐saturation, where an ecosystem or watershed can no

longer assimilate N over longer timescales, resulting in consistent increases in N export that correspond with

increasing atmospheric N inputs. Because both kinetic and capacity N saturation statuses can increase N export, it

is difficult to identify the threshold at which dryland watersheds shift from kinetic to capacity saturation. As a

result, it also remains difficult to predict the fate of atmospherically deposited N and how it changes along a

gradient from kinetic to capacity saturation.

Further complicating our understanding of N saturation and export, general circulation models project changes in

both the total amount and timing of precipitation in drylands (Fischer et al., 2013). These changes can occur on

both intra‐ and interannual scales (Knapp et al., 2002; Trenberth et al., 2003). On intra‐annual time scales, a higher

water‐holding capacity in a warming atmosphere can give rise to larger precipitation events with longer dry

periods between storms (i.e., higher intra‐annual intermittency, Allen & Ingram, 2002). At interannual scales,

climate change can alter atmospheric circulation and moisture transport to promote extreme wet months with a

longer duration of dry months across multiple years (i.e., higher interannual intermittency (Allen & Ingram, 2002;

Trenberth et al., 2003)). Alternatively, some models project that climate change will enhance interannual vari-

ability, making dry years drier and wet years wetter, while still retaining the intra‐annual storm event charac-

teristics (Pörtner et al., 2022). Higher precipitation intermittency and variability can both affect N export, but

increases in intermittency, which change both the timing and magnitude of storms (i.e., fewer, more intense

storms), may have a different effect than changes in variability alone (which only influences storm size without

changing timing (Homyak et al., 2017; Winter et al., 2023)). Recent studies have shown that enhanced precip-

itation variability and intermittency can increase both nitric oxide (NO) and nitrous oxide (N2O) emissions from

soils and streams, as well as stream nitrate export (Krichels et al., 2022; Winter et al., 2023; Xiao et al., 2019).

However, most of these studies are event‐based and the longer‐term effects of altered precipitation regimes and

their interactions with N deposition remain poorly understood.

A simulation modeling approach should be useful for identifying the threshold of atmospheric N deposition at

which a watershed transitions from kinetic to capacity saturation, which would enable us to better project future N

export. With this approach, we can directly investigate how N export responds to temporal asynchrony between N

availability and uptake; for example, when the first rain event of a wet season flushes N while plants are not

actively growing (in a Mediterranean climate) versus when activation of the rainy season overlaps with the peak

growing season in early spring (in a continental climate). We expect that when a watershed only experiences
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kinetic saturation, there will be pronounced differences between these two scenarios because N is flushed to

streams before plant uptake in the Mediterranean climate scenario. Conversely, when a watershed is capacity N‐

saturated due to high N‐deposition, total N export will not change in response to the timing of precipitation.

We aim to understand how N saturation status, precipitation intermittency, variability, and total amount of

precipitation can interact to influence N export in a dryland watershed in California. Using a simulation modeling

approach, we first developed and tested our proposed metric for identifying when a dryland watershed becomes

“capacity N‐saturated.” Then using the new metric, we developed N‐limited and N‐saturated scenarios to address

two questions: (a) How do changes in the precipitation regime, including the total amount of precipitation, its

intra‐annual intermittency, interannual intermittency, and interannual variability influence watershed‐scale N

export, and (b) How do these responses differ between N‐limited and N‐saturated watersheds? These scenarios

were conducted using the coupled ecohydrological‐biogeochemical model RHESSys (Tague & Band, 2004) in a

dryland, chaparral‐dominated watershed downwind of Los Angeles, California that experiences high rates of N

deposition.

2. Methods

2.1. Study Site

We developed modeling scenarios for the chaparral‐dominated Bell 4 watershed in the San Dimas Experimental

Forest, located 50 km northeast of Los Angeles, California (34°12´N, 117°47´W). This is a small watershed

(0.14 km2) with elevations ranging from 700 to 1,024 m. The soils are shallow, coarse‐textured sandy loams

weathered from granitic parent material (Chaney et al., 2016; Dunn et al., 1988); they are classified as Typic or

Lithic Xerorthents (Hubbert et al., 2006; Ryan, 1991a, 1991b). The climate is characterized by hot and dry

summers and cool‐humid winters. Mean annual precipitation is approximately 700 mm. Mean annual air tem-

perature is 15.5°C with daily temperatures ranging from−8°C in winter to 40°C in summer. Vegetation on south‐

facing slopes includes chamise (Adenostoma fasciculatum), California lilac (Ceanothus spp.), and black sage

(Salvia mellifera), while north‐facing slopes are covered by ceanothus spp. and California laurel (Umbellularia

californica). Riparian areas are dominated by live oak (Quercus agrifolia). Being downwind from a major

metropolitan area, Bell 4 experiences high N deposition rates, which exceed 30 kg ha−1 year−1 (Benish

et al., 2022; Bytnerowicz & Fenn, 1996).

2.2. RHESSys Model

To investigate how precipitation regime changes affect N cycling and export in drylands and how they are

different between N‐limited and N‐saturated watersheds, we used the regional hydro‐ecologic simulation system

(RHESSys). RHESSys is a spatially distributed model that fully couples hydrological processes with biogeo-

chemical processes, allowing it to simulate the effects of climate and environmental change on C and N cycling

and hydrologic conditions (Garcia et al., 2016; Lin et al., 2015; Tague & Band, 2004). Recent model improve-

ments have enabled RHESSys to better represent N cycling and transport in dryland watersheds (Burke

et al., 2021; Hanan et al., 2017; Ren et al., 2024a) This includes refining nitrification processes after wildfire in

chaparral (Hanan et al., 2017), and representing biogeochemical hotspots explicitly across a landscape (Ren

et al., 2024a). RHESSys has been extensively evaluated in several dryland watersheds across the western US, for

processes including N leaching (Chen et al., 2020; Hanan et al., 2017; Stephens et al., 2022); C dynamics (Burke

et al., 2021; Garcia et al., 2016; Hanan et al., 2021; Ren et al., 2022; Reyes et al., 2017), and hydrologic responses

to climate change and forest disturbances (Garcia & Tague, 2015; Hanan et al., 2021).

C and N cycling among vegetation, litter, and soil layers are simulated at a patch scale (the smallest spatial unit; 3‐

m resolution in this study). Photosynthesis is calculated using the Farquhar model which is a function of stomatal

conductance, radiation, nitrogen and carbon dioxide concentration, air temperature, and atmospheric pressure

(Farquhar & von Caemmerer, 1982). Plant respiration includes maintenance and growth respiration, which is

estimated using Ryan (1991a, 1991b) model. Carbon is then allocated to roots, stems, and leaves using an ar-

chitecture (or age) based method (Dickinson et al., 1998). RHESSys has four litter pools and four soil pools with

different C:N ratios and decomposition rates. Decomposition is estimated based on a defined maximum

decomposition rate and constrained by soil moisture, soil temperature, and nitrogen availability. N mineralization

and immobilization are estimated using the C:N ratios of the litter and soil pools when materials decompose from

one pool to another (Hanan et al., 2017; Tague & Band, 2004).
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RHESSys calculates nitrification rates based on the CENTURYNGAS model which is a function of soil pH, soil

moisture, soil temperature, and available soil ammonium (Parton, 1996). A maximum denitrification rate is

calculated as a function of the total available nitrate in soil, and total soil carbon and nitrogen, and then the

maximum rate is modified based on soil moisture and soil respiration as a proxy for microbial abundance.

Soil moisture processes include four vertical layers, a surface detention store, a root zone store, an unsaturated

store, and a saturated store. At a daily timestep, the surface detention store receives water from canopy throughfall

and snowmelt (when present), and infiltrates into the soil based on the Phillip (1957) infiltration equation.

Overland flow is generated when the ponded water is above the detention storage capacity. Water can percolate

into a deeper ground water store through bypass flow. Water drains from the unsaturated zone or root zone to the

saturated zone based on hydraulic conductivity and moves from the saturated zone to the unsaturated zone or root

zone based on the Eagleson (1978) equation. Subsurface lateral flow between patches follows topographic

gradients and soil hydraulic parameters such as saturation deficit and transmissivity. Nitrate moves with these

water fluxes based on its concentration (Tague & Band, 2004). Atmospherically deposited N enters the soil

through infiltration from the surface detention store. In the unsaturated zone, soil nitrate decreases exponentially

with depth. In the saturated zone, nitrate export follows a flushing hypothesis, where more soil nitrate becomes

available for flushing to streams as the water table rises (Chen et al., 2020).

To account for sub‐grid scale heterogeneity in vegetation cover, RHESSys can be run using a new aspatial

framework (Burke et al., 2021). In this new framework, “patch families” are the smallest spatially explicit model

unit, and “aspatial patches” nested within a patch family are the smallest aspatial model unit. Aspatial patches do

not have physical locations, but instead represent a distribution of vegetation types based on observed or hy-

pothetical distributions. Local routing of water between aspatial patches within a patch family is based on the

relative moisture differences among aspatial patches in the rooting and unsaturated zones and mediated by user‐

defined gaining and losing coefficients for each patch type (Burke et al., 2021). Local routing in the saturated zone

is based on the differences in the groundwater table and it carries nitrate when exchanging water.

We also recently expanded the aspatial patch framework to incorporate the role of fine‐scale biogeochemical

“hotspots,” represented as aspatial patches within each patch family—these represent a distribution of microsites

(e.g., soil aggregates) where biogeochemical cycling can be hydrologically disconnected, as soils dry out, from

other aspatial patches that contain plant roots (Ren et al., 2024a). Hotspots help drive kinetic N saturation by

enabling N to accumulate and subsequently be flushed from the system when soils are rewetted. To model hotspot

dynamics, the framework includes: (a) model algorithms that enable hotspots to access soil and litter C and N

from neighboring non‐hotspot patches for decomposition and biogeochemical cycling, and (b) algorithms and

parameters that control the moisture conditions under which hotspots are hydrologically disconnected from other

aspatial patches in the saturated zone, (c) parameters that control water diffusion in the unsaturated and/or root

zone between hotspot and non‐hotspot patches as soils dry out. For detailed descriptions of the RHESSys model

and the new hotspot framework, refer to Tague and Band (2004) and Ren et al. (2024a).

2.3. Data

To represent topography across the watershed, we used a 1‐m resolution digital elevation model (DEM) from

LiDAR aggregated to 10‐m (Ren et al., 2024a). Soil texture was delineated across the watershed using the

POLARIS database (Chaney et al., 2016). To map landcover across Bell 4, we aggregated 1‐m resolution land

cover data from the National Agriculture Imagery Program (NAIP; collected on 5 June 2016) to 3‐m. We then

classified three land cover types across the watershed: chaparral, live oak, and bare ground (Maxwell et al., 2017).

RHESSys patch families were established based on the 10‐m DEM, while the aspatial patch vegetation distri-

butions were classified based on the 3‐m NAIP data (Ren et al., 2024a). The Bell 4 basin contained 1,259 patch

families, with each patch family having approximately 11 aspatial patches. We acquired meteorological forcing

data from 1979 to 2020 from the gridMET, including daily maximum and minimum temperatures, precipitation,

relative humidity, radiation, and wind speed (Abatzoglou, 2013). Daily streamflow data from 1980 to 2002 and

streamflow nitrate data from 1988 to 2000 were provided by U.S. Forest Service (USFS).

2.4. Model Initialization and Calibration

To establish the soil C and N pools at a steady state, we spun RHESSys up for around three hundred years starting

with quasi‐equilibrium state values. Then to initialize vegetation C and N pools, we used a target‐driven spin‐up
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approach, which leverages remotely sensed LAI calculated from NAIP (at 24 April 2010) to set target values for

each patch across the watershed; this enables us to spin the model up mechanistically while still capturing

landscape heterogeneity (Hanan et al., 2018). We then calibrated six soil parameters using observed streamflow

data: saturated hydraulic conductivity (Ksat), the decay of Ksat with depth (m), pore size index (b), air entry

pressure (ϕ), bypass flow to deeper groundwater storage (gw1), and deep groundwater drainage rates to stream

(gw2). We selected the best parameters by comparing the observed and modeled streamflow using the monthly

Nash‐Sutcliffe efficiency (NSE; Nash & Sutcliffe, 1970) and percent error of annual streamflow.We used 8 years

of streamflow data from 1993 to 2002 for calibration and 3 years from 1980 to 1983 for validation. Following

calibration, we designated one aspatial patch in each patch family to represent hotspots, assuming that hotspots

were evenly distributed across the landscape. We then optimized the hotspot‐related parameters (i.e., the water

sharing coefficient between aspatial patches and subsurface flow threshold) by comparing modeled and observed

streamflow nitrate from 1988 to 2000. A more detailed description of initialization and calibration results can be

found in Texts S1–S3 and Figures S1–S2 in Supporting Information S1.

2.5. Scenarios

2.5.1. Developing Better Metrics for N‐Saturation in Dryland Watersheds

Conventional methods that focus on streamflow N as an indicator of capacity N saturation often fail in dryland

watersheds where seasonal N export occurs even when watersheds are N‐limited (i.e., due to kinetic saturation;

Homyak et al., 2014). Thus, we need a better metric for identifying when a watershed shifts from kinetic to

capacity N saturation (Lovett & Goodale, 2011). This requires understanding how N deposition interacts with the

timing of precipitation. To determine the N deposition threshold at which a watershed becomes N‐saturated, we

built scenarios considering interactions between the N deposition rate and precipitation seasonality over a period

of 60 years. Because the observed meteorological forcing data spans only 40 years (water years 1980–2020), we

repeated this data to construct the additional 20 years. This included three scenarios for precipitation seasonality: a

dry summer scenario (to match observations), a wet summer scenario (to represent a more continental climate),

and an evenly distributed scenario (Figure 1a). The wet summer and evenly distributed scenarios were recon-

structed from the observed precipitation data by manipulating the duration of dry days and the timing of pre-

cipitation using a method from Rodriguez‐Iturbe et al. (1999) which will be introduced in detail in Section 2.5.2.

We also included 12 dry N deposition scenarios (including 0.05, 0.25, and 0.5–5 g m−2 year−1 at an increment of

0.5 g m−2 year−1). This range assumes that N deposition rate of 0.05 g m−2 year−1 is the natural rate which

indicates a N‐limited system, and 5 g m−2 year−1 makes the system heavily polluted (Dentener et al., 2006;

Galloway et al., 2008). This resulted in 36 scenarios for precipitation and N deposition in a factorial design.

To determine the level of N deposition at which our watershed becomes N‐saturated, we examined N export for

each scenario and determined the magnitude of N deposition where export no longer varied under different

precipitation seasonality scenarios. This approach assumes that under kinetic saturation, dry summers would

promote more N export because rainfall occurs when plants are less active. We define the N deposition threshold

above which the watershed is capacity N saturated as the amount of N deposition required for mean normalized

streamflow N (i.e., annual streamflow N divided by the N deposition rate) in both the dry summer and the evenly

distributed scenarios to be above 90% of the mean normalized streamflow in the dry winter scenario. Using this

threshold, we then built two scenarios for N saturation status: N‐saturated and N‐limited. This involved scaling N

deposition up or down such that the N saturated scenario had 100 times higher N deposition than the N‐limited

scenario. We then used these scenarios for the sensitivity analysis of the following sections to examine how

precipitation intermittency and variability influence N export under saturated and unsaturated conditions. In our

study, our primary focus is on dry atmospheric N deposition, and in the following sections any mention of N

deposition specifically pertains to dry N deposition.

2.5.2. Effects of Intra‐Annual Precipitation Intermittency on N Export

To understand how intra‐annual precipitation intermittency influences N export, we used a stochastic precipi-

tation generator, based on Rodriguez‐Iturbe et al. (1999). Within a given year, the occurrence and amount of total

daily precipitation can be viewed as a stochastic process. Specifically, the occurrence of rainfall is modeled as a

Poisson process with a rate λ (average rainfall frequency), and the amount of rainfall for each event is determined
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by a random exponential distribution. As our model operates on a daily timestep, we did not consider the temporal

structure of rainfall within each event and instead assumed the precipitation occurred instantaneously.

Based on these assumptions, the distribution of the length of dry days (τ) between precipitation events is an

exponential distribution with a mean 1/λ (the unit of λ is 1/day).

fτ(τ) = λ e−λτ,for τ≥ 0 (1)

The amount of precipitation is an independent random variable h (mm/day), calculated by an exponential

probability density function:

fH(h) =
1

α
e−

h
α,f or h≥ 0 (2)

Where α is the mean of daily rainfall amount (mm/day) when precipitation occurs for a certain year and can be

estimated from the observed data.

The total amount of precipitation R (mm year−1) for a given year can therefore be calculated as

R = h × T/τ (3)

Where T is the total days for a rainy season.

We estimated the two parameters (λ_0 and α) for the stochastic model based on observed precipitation. Then we

adjusted the rainfall frequency parameter 1/λ_0 by a factor of 2–4 to increase the duration of dry days between

Figure 1. A summary of reconstructed precipitation data used. Panel (a) represents the precipitation seasonality scenarios: dry summer, evenly distributed across the

year, and wet summer. The dry summer scenarios used observed precipitation data. Total precipitation and inter‐annual intermittency over the 40 years were consistent

across three scenarios. Panel (b) represents the reconstructed precipitation data with different intra‐annual intermittencies for a period of 40 years, including the

distribution of daily precipitation and dry days duration. The total amount of precipitation over 40 years was the same for all four precipitation intermittency scenarios.

Lambda (λ_0) is the frequency of observed rain events, and the x‐axis shows an increase in intermittency. The comparison between observed and reconstructed

precipitation of 1/λ_0 is shown in Figure S3 in Supporting Information S1. Panel (c) represents reconstructed and observed precipitation for different levels of

interannual variability. The green horizontal line is the mean annual precipitation from the observation data and the black dots are the observed annual precipitation.

Blue lines correspond with lower variability relative to observation, red lines correspond with higher variability relative to observation. Panel d represents reconstructed

precipitation data with different interannual intermittencies for a period of 40 years, including the distribution of daily precipitation amounts and the distribution of

duration of dry days. The total amount of precipitation over 40 years was the same for all five precipitation scenarios at a given precipitation scaling factor. Lambda

(λ_0) is the frequency of reconstructed baseline rain events, and the x‐axis shows an increase in intermittency. Note that the y axis is in log2 scale to better show extreme

values.
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rainfall events. Additionally, we adjusted the mean daily rainfall amount α to maintain consistent total precipi-

tation amounts across different scenarios. In total, we developed four distinct intra‐annual intermittency scenarios

(Figure 1b).

To summarize, within 1 year, this method determines the number of dry days across a rainy season and uses

rainfall intensity and the number of days with precipitation (from observations) to determine the size and timing of

storms that occur between dry days. This enables us to vary rainfall intermittency, while maintaining a fixed

amount of precipitation for each year. Then, to examine how precipitation intermittency interacts with the total

amount of precipitation (e.g., under drier vs. wetter futures), we developed five precipitation scalers for each

intermittency scenario (ranging from 0.6 to 1.4 at an increment of 0.2). Hereafter, we refer to scenarios with

precipitation scaling factors less than one as “drier future” scenarios and greater than one as “wetter future”

scenarios. By combining five precipitation scaling factor scenarios, two N saturation scenarios, and four intra‐

annual intermittency scenarios, we generated a total of 40 different scenarios in a factorial design and ran the

model for 60 years (Figure 2).

2.5.3. The Effect of Interannual Intermittency on N Export

To investigate the effects of interannual precipitation intermittency on N export, we used a stochastic precipitation

generator that was similar to the one used for the intra‐annual precipitation intermittency analysis. Specifically,

we examined monthly precipitation data for a period of 40 years (in total 480 months) and modeled both the

amount of monthly precipitation and duration of dry months as stochastic processes. We initially ignored the

temporal structure of precipitation within each month and calculated the two parameters λ_0 (unit is 1/month) and

α (mm/month). We first calculated a scaling factor by dividing modeled monthly precipitation by observed

precipitation. We then downscaled the monthly precipitation to a daily timestep by multiplying each observed

rainfall event by the scaling factor to preserve the temporal structure of rainfall events within a month. To increase

the interannual intermittency, we then manipulated the two parameters (λ and α) to increase both the duration and

the mean amount of monthly precipitation while maintaining consistent total precipitation levels over the 40‐year

period (Figure 1d). Again, we built 40 scenarios by combining the four interannual intermittency scenarios with

the previous five precipitation scaling factors and the two N saturation scenarios and ran RHESSys for 60 years by

looping the 40 years reconstructed data.

Figure 2. Summary of the scenarios developed to examine how interactions between N deposition and changes in precipitation regime affect N export. The number

inside the parenthesis indicates the number of corresponding scenarios.
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2.5.4. Effect of Interannual Precipitation Variability on N Export

To understand the effects of interannual precipitation variability on N export, we adapted methodology proposed

by Gherardi and Sala (2015). We generated different scenarios for interannual precipitation variability by

manipulating the observed precipitation data. To increase variability, we increased the annual precipitation

amount in wet years and decreased it in dry years (by 20%, 40%, 60% relative to the observed amounts). To

decrease variability, we lessened the amount of annual precipitation in wet years and increased it in dry years (by

20%, 40%, 60%, and 80%). This approach enabled us to create scenarios with varying coefficients of variation

(CV) while keeping the total precipitation the same throughout the simulation period. This resulted in eight

interannual variability scenarios including a baseline scenario (Figure 1c). By combining them with five total

precipitation scaling factors, and two levels of N saturation (N‐limited vs. N‐saturated), we generated 80 factorial

scenarios.

To summarize, we developed two scenarios for N saturation status (N‐saturated vs. N‐limited), five precipitation

scaling factors (0.6, 0.8, 1, 1.2, 1.4), and three sets of scenarios for changes in precipitation timing. These changes

include four intra‐annual intermittency scenarios, four interannual intermittency scenarios, and eight interannual

variability scenarios. This resulted in 160 factorial scenarios (Figure 2). We then calculated the normalized

differences in N fluxes for each precipitation regime relative to its baseline, defined as the lowest variability or

intermittency scenario for each precipitation scaling factor and N saturation status. For example, in the N‐limited

scenarios, to compare N export among intra‐annual intermittency scenarios at a given precipitation scaling factor,

we calculated differences between a given intermittency scenario and the baseline (1/λ_0). This resulted in five

baseline intermittency scenarios (two drier, two wetter, and a scenario with the baseline precipitation intermit-

tency and total amount). The combination of high precipitation scaling factors and high intermittency/variability

can interact to create some extreme storms that are historically unprecedented, though within the range of possible

future projections (Knapp et al., 2015). However, median storm sizes are well within the range of historical

variability for these semiarid systems; we focus on median values in our discussion.

3. Results

3.1. A Better Metric for N Saturation in Drylands

In scenarios with relatively low atmospheric N deposition (i.e., smaller than 1 g m−2 year−1), the mean and

distribution of annual streamflow N (over 60 years) varied depending on the seasonality of precipitation, with the

dry summer scenario resulting in the highest export and the wet summer scenario resulting in the lowest (Figure 3

Figure 3. Ratio of the normalized mean annual streamflow nitrate export between scenarios (calculated as wet summer/dry

summer (blue line) or even/dry summer (green line); values are normalized by the N deposition rate). We selected an N

saturated threshold where normalized streamflow N in the wet summer scenario was no smaller than 90% of that observed in

the dry summer scenario. We used mean, rather than median values to account for extreme values.
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and Figure S4 in Supporting Information S1). However, as N deposition increased, the watershed became less N‐

limited, leading to similar mean values and streamflow N distributions across different precipitation seasonality

scenarios. This can be attributed to the fact that in a watershed with dry summers, the wet winter period can flush

N to streams before plants begin to take it up, whereas in watersheds with wet summers, N is consumed by plants

prior to leaching, resulting in less streamflow nitrate export. Consequently, it can be inferred that when the

watershed is N‐limited, the dry summer scenario would yield higher streamflow nitrate export than the dry winter

scenario. Conversely, in an N‐saturated watershed, the consumption of N by plants and microbes would have a

much smaller effect on streamflow nitrate export. Using this logic, we identify an N deposition threshold of

approximately 2 g m−2 year−1 above which the watershed becomes N‐saturated. At this threshold, the ratio of the

normalized mean annual streamflow N for the wet summer:dry summer scenarios was no smaller than 0.9 (the

same was true for the evenly distributed scenario; Figure 3). For the following scenarios, we selected

0.05 g m−2 year−1 and 5 g m−2 year−1 to represent extremes of N‐limited and N‐saturated systems, respectively.

3.2. The Effect of Changing Precipitation Regimes on N Export

3.2.1. The Effect of Intra‐Annual Precipitation Intermittency on N Export

Streamflow nitrate export increased with higher intra‐annual intermittency, which alters both the timing and

magnitude of storms (Figure 4). Moreover, in N‐limited scenarios, a higher total precipitation scaling factor

generally increased streamflow nitrate export (Figure 4). However, in N‐saturated scenarios, baseline conditions

can lead to more streamflow nitrate export (Figure 4a). Higher intermittency implies longer dry periods and

greater differences in precipitation amount between dry and wet periods, despite the same total precipitation

among scenarios over the 60‐year simulation. This can increase soil N accumulation during dry periods while

reducing denitrification and N uptake (model estimates of plant carbon declined from 6 kg m−2 to around

4 kg m−2 between the highest and lowest intermittency scenario, Figure S5b in Supporting Information S1). As a

result, more nitrate is flushed to streams during the wet periods. For both N‐limited and N‐saturated scenarios,

denitrification decreased with higher levels of intermittency (Figures 4b and 4e), primarily due to slower rates of

decomposition caused by decreases in plant growth and litter production (Figure S5a in Supporting

Information S1).

Figure 4. Sensitivity of cumulative N fluxes over 60 years (absolute value) to intra‐annual precipitation intermittency for N‐saturated and N‐limited scenarios. The x axis

is the duration of dry days between rainfall events, larger values represent higher intra‐annual intermittencies.
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Streamflow nitrate export and denitrification were more sensitive to intra‐annual precipitation intermittency in N‐

limited scenarios than in N‐saturated scenarios, while plant N uptake was more sensitive to intra‐annual inter-

mittency in N saturated scenarios (Figure 5). For example, plant C declined 12% (from 3.9 to 3.4 kg m−2) in N‐

limited scenarios but declined 27.5% (from 5.8 to 4.2 kg m−2) in N‐saturated ones (Figure S5a in Supporting

Information S1). The declines in plant carbon with higher intra‐annual intermittency were smaller in N‐limited

scenarios because plants can be limited by both N and water, and changing water availability does not matter

as much in N‐limited as it does in N saturated scenarios, where once N limitation was alleviated, vegetation

growth became more limited by water availability. In addition, streamflow nitrate export increased with higher

levels of intra‐annual intermittency, while denitrification decreased (Figures 5a and 5b). This suggests increases

in intra‐annual intermittency can increase nitrate export to streams while decreasing N losses to the atmosphere.

In N‐saturated scenarios, streamflow nitrate export was most sensitive to variation in intra‐annual intermittency

under a precipitation scaling factor of 0.8, while in N‐limited scenarios, scaling factors of 0.6 or 1 were the most

sensitive (Figures 5a and 5b). In N‐limited scenarios, the 0.6 scaling factor showed the strongest exponential

increases in streamflow nitrate export with increasing intermittency, indicating that the drier future scenarios have

the largest sensitivity to intermittency changes.

Denitrification in the wetter future scenarios decreased more with increasing intra‐annual precipitation variability

than in the drier future scenarios because total denitrification was higher in wetter baseline intermittency sce-

narios (1/λ_0). With greater intra‐annual intermittency, these decreases were larger (Figures 5b and 5e). By

contrast, in dry scenarios, plant N uptake decreased slightly more with increasing intra‐annual intermittency than

in wetter scenarios, but the magnitude was relatively small compared to streamflow nitrate export and denitri-

fication (Figures 5c and 5f).

3.2.2. The Effects of Interannual Precipitation Intermittency on N Export

Greater interannual intermittency and higher levels of precipitation increased streamflow nitrate export and this

effect was consistent across both N‐limited and N‐saturated scenarios (Figure 6). Denitrification exhibited two

Figure 5. Sensitivity of cumulative N fluxes over 60 years to intra‐annual precipitation intermittency for N‐saturated and N‐limited scenarios (normalized differences

relative to baseline; 1/λ_0). The x‐axis is intermittency, the y‐axis is normalized change of other intermittencies relative to their baseline intermittency scenarios

(1/λ_0) for every precipitation scaling factor (different precipitation scaling factor scenarios have different baseline intermittency scenarios). The normalized change is

calculated as (Nhigher–Nbaseline)/Nbaseline, where Nhigher is the N flux at higher intermittency and Nbaseline is the N flux at baseline intermittency which is (1/λ_0). The top

panels are N‐saturated and bottom panels are N‐limited scenarios.
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distinct responses to interannual intermittency. First, when the intermittency exceeded 2/λ_0, there was a sig-

nificant increase in denitrification, which occurred because higher interannual intermittency corresponded with

more precipitation per rainfall event, resulting in higher soil moisture levels across the landscape and triggering

denitrification in non‐hotspot patches (Figures 6b and 6e). However, denitrification started decreasing once

interannual intermittency was larger than 3/λ_0. At the highest interannual intermittency levels, increasing the

duration of dry months decreased denitrification to a greater extent than larger storms increased it. Plant uptake

generally decreased with higher levels of interannual intermittency, which occurred because long‐term drought

slowed plant growth (Figure S5b in Supporting Information S1). It is worth noting that the magnitude of

streamflow nitrate and denitrification in interannual intermittency scenarios is much larger than that of the

scenarios for intra‐annual intermittency (Figures 4 and 6).

Denitrification and plant N uptake were slightly more sensitive to interannual intermittency in N‐saturated

scenarios than in N‐limited scenarios (Figure 7). This occurred because changes in denitrification and plant

growth were constrained by N availability in N‐limited scenarios and therefore less responsive to precipitation

changes. Streamflow nitrate export was more sensitive to interannual intermittency in N‐limited scenarios

compared to N‐saturated scenarios (Figures 7a and 7d). In N‐limited scenarios, drier scenarios showed greater

changes to interannual intermittency than wetter scenarios, while in N‐saturated scenarios wetter scenarios

showed greater changes. This occurred because in N‐limited scenarios, drier scenarios had less denitrification and

plant uptake, resulting in more nitrate available to be flushed to the stream. It is worth noting that in the N‐limited

scenario, interannual precipitation intermittency caused the largest changes in streamflow N export compared to

intra‐annual intermittency and interannual variability.

3.2.3. The Effect of Interannual Precipitation Variability on N Export

In general, scenarios with higher precipitation variance and wetter scaling factors resulted in more streamflow

nitrate export (Figure 8). However, for wetter future scenarios, a precipitation scaling factor of 1.2 (rather than

1.4) resulted in the highest streamflow nitrate export (Figures 8a and 8d). This suggests there is a threshold of

precipitation increase above which higher flushing capacity is compensated by less available N for flushing with

higher denitrification and plant uptake. This can occur because more precipitation can cause higher denitrification

and plant N uptake, which can reduce the amount of N available for flushing. Moreover, denitrification rates

Figure 6. Sensitivity of cumulative N fluxes over 60 years (absolute value) to interannual precipitation intermittency for N‐saturated and N‐limited scenarios. The x‐axis

is the duration of dry days between rainfall events. Interannual intermittency increases from left to right.
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Figure 7. Sensitivity of cumulative N fluxes over 60 years to interannual precipitation intermittency for N‐saturated and N‐limited scenarios (differences are relative to

baseline intermittency; 1/λ_0). The x‐axis is intermittency, the y‐axis is normalized change of other intermittencies relative to their baseline intermittency scenarios (1/

λ_0) for every precipitation scaling factor. The top panels are N limited and the bottom panels are N saturated scenarios. Note that the scale of y‐axis for changes in

streamflow N is different for N‐saturated and N‐limited scenarios.

Figure 8. Cumulative N fluxes over 60 years (absolute value) relative to interannual precipitation variability and scaling factors for N‐limited and N‐saturated scenarios.

The x axis is the coefficient of variation for annual precipitation, the y axis is the cumulative N fluxes over 60 years.
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increased with higher precipitation variance and a higher precipitation scaling factor (Figures 8b and 8e). Notably,

both streamflow nitrate export and denitrification rates were higher in N‐saturated compared to N‐limited sce-

narios, due to greater nitrate inputs in N‐saturated scenarios.

The sensitivity of N fluxes to precipitation variability differed between N‐limited and N‐saturated scenarios and

was also affected by the precipitation scaling factors (i.e., drier vs. wetter futures; Figure 9). Streamflow N export

was more sensitive to precipitation variability in N‐limited than in N‐saturated scenarios, particularly for the drier

future scenarios (Figures 9a and 9d), while denitrification showed the opposite trend (Figures 9b and 9e). The

magnitude of sensitivity for plant N uptake was similar between N‐limited and N‐saturated scenarios, but the

direction of effects (i.e., increases or decreases) differed and was affected by the precipitation scaling factor. In the

N‐limited scenarios, plant N uptake decreased with precipitation variability in drier future scenarios but increased

in wetter future scenarios, suggesting that higher precipitation variability can increase plant growth when there is

more water available, even if the watershed is N‐limited. On the other hand, higher precipitation variability and

water stress will suppress plant growth. In N‐saturated scenarios, plant N uptake generally decreased with higher

precipitation variability, except in some drier scenarios with smaller variability. This suggests that in N‐saturated

watersheds, less precipitation combined with moderately higher variability can promote plant growth to some

extent.

4. Discussion

We investigated how N saturation status, precipitation intermittency, variability, and the total amount of pre-

cipitation can interact to influence N export in a dryland watershed in California. We found that streamflow Nwas

more sensitive to intensification of the precipitation regime in N‐limited than N‐saturated scenarios, whereas the

opposite was true for denitrification. Furthermore, changes in interannual precipitation intermittency had the

largest effect on streamflow N and denitrification, suggesting that N export may become an even greater threat to

water quality when prolonged drought is followed by more intense storm events.

Figure 9. Sensitivity of cumulative N fluxes over 60 years to interannual precipitation variability for N‐saturated and N‐limited scenarios (differences are relative to the

baseline variability scenario which is 0.11). The x axis is the coefficient of variation for annual precipitation. The y axis is the normalized change in other variances

relative to the baseline variability scenario (CV is 0.11) for every precipitation scaling factor (different precipitation scaling factor scenarios have different 0.1 variance

baseline scenarios). The top panels are N‐saturated and the bottom panels are N‐limited scenarios.
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4.1. Identifying N Deposition Thresholds for Capacity Saturation

To distinguish between kinetic (i.e., seasonal) and capacity (i.e., long‐term) N saturation (Lovett & Good-

ale, 2011), we developed a simulation modeling approach that quantifies watershed responses to N deposition

under different rainfall seasonality regimes. By identifying the amount of N deposition required for precipitation

regimes to no longer modify N export, we can approximate when N deposition has exceeded the capacity for

plants andmicrobes to take it up. This approach assumes that kinetic N saturation is more sensitive to precipitation

seasonality and timing, which affects plant and microbial N assimilation, while capacity N saturation is less

sensitive.

We found that the Bell 4 watershed can become capacity saturated when N deposition reaches 2 g m−2 year−1 over

about 40 years (Figure 3 and Figure S6 in Supporting Information S1). This suggests that the watershed—which

has a current mean N deposition rate greater than 2 g m−2 year−1—has already approached capacity saturation. It

is important to note that the threshold we identified is location‐specific and is likely to vary with the size,

vegetation cover, and climate of a given watershed (Dijkstra et al., 2004; Yu et al., 2018). On average, N

deposition is around 0.7 g m−2 year−1 in dryland watersheds globally and rates are expected to double by 2050

(Benish et al., 2022; Galloway et al., 2008; Kanakidou et al., 2016). Given these increases, many other dryland

watersheds could begin to exceed the N deposition thresholds required to shift from a kinetic to capacity satu-

ration in the coming decades. These shifts can pose a major threat to water quality, aquatic ecosystems, and human

health. This may be further exacerbated in basins subject to additional sources of N pollution, such as agricultural

runoff, sewage discharge, or aquaculture. In such basins, the timing and composition of N loading may differ, and

should also be considered when developing N pollution scenarios. Our study provides a useful modeling approach

that can be applied to other watersheds to determine N deposition thresholds for establishing capacity N

saturation.

4.2. Does an Increase in N Deposition Lead to Greater N Export or N Uptake?

It is essential to distinguish between N‐saturated and N‐limited watersheds to unravel how changes in the total

amount of precipitation and its intermittency or variability will influence watershed processes (Rudgers

et al., 2023). In our model setup, N deposition was 100 times higher in N‐saturated (5 g m−2 year−1) than in N‐

limited scenarios (0.05 g m−2 year−1). However, the N‐saturated/N‐limited ratios for various N fluxes (i.e.,

streamflow nitrate, denitrification, N uptake) were all smaller than 100 (the N deposition rate between N‐saturated

and N‐limited scenarios) and varied among scenarios (Figure S7 in Supporting Information S1). This suggests

that N partitioning and soil N storage also changed in response to N‐deposition. Not surprisingly, streamflow

nitrate had the highest N‐saturated/N‐limited ratios, ranging from 15 to 80. Denitrification and N uptake, on the

other hand, only experienced modest 1‐2‐fold increases in response to N saturation (Figure S7 in Supporting

Information S1). Because most atmospherically deposited N is exported to streams, projected decreases in

streamflow (Ficklin et al., 2022; Stephens et al., 2020) could lead to even higher streamflow nitrate concentra-

tions, particularly under increased interannual precipitation variability (Gallo et al., 2015; Ye & Grimm, 2013).

As precipitation regimes become more intermittent and/or variable, N‐limited watersheds can retain less N in soil

(Winter et al., 2023). In N‐limited scenarios, total N export was 25 times higher than the rate of atmospheric N

deposition over the 60‐year simulation period. This occurred in large part due to declines in plant productivity and

N uptake. In N‐saturated scenarios, on the other hand, the ratio between N inputs and outputs was consistently less

than one, with approximately 20%–60% of the atmospheric N deposition being exported over the 60‐year

simulation period (Figure 10). The highest N export transfer efficiencies (calculated as the ratio between total

N export and N deposition) occurred with high interannual intermittency, while high intra‐annual intermittency

produced the lowest. Additionally, transfer efficiency can become even higher in a wetter future due to increases

in streamflow. Thus, in N‐limited scenarios (particularly in a wetter future), increases in precipitation interannual

intermittency can increase N export efficiency, thereby reducing N retention capacity in soil. However, our result

should be interpreted with care since 25 times higher N transfer efficiency will eventually deplete the N in soil.

Conversely, in N‐saturated scenarios, a drier future will have lower transfer efficiencies, which can intensify N

saturation. This is corroborated by a recent global meta‐analysis, which found that reduced precipitation can

increase soil N storage over long‐term studies, particularly precipitation decreases by more than 25% (Wu

et al., 2022).
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4.3. The Role of Changing Precipitation Regimes

Recent studies have found that precipitation amount and variability both play an important role in driving

ecosystem responses to climate change (Gherardi & Sala, 2015, 2019; Jiang et al., 2019; Rudgers et al., 2023).

Here we extend those studies to also examine the role of precipitation intermittency and focus on how it affects

streamflow nitrate export. In our experimental setup, we ensured water balance among all scenarios (e.g., sce-

narios with high vs. low interannual intermittency at a given amount of total precipitation had the same total

rainfall over the 60‐year simulation period). Thus, longer droughts were followed by more precipitation after the

drought. Consequently, interannual intermittency scenarios varied both the timing of storms and their magnitude,

whereas interannual precipitation variability scenarios only varied the relative magnitude of storms (e.g., some

become larger, and some become smaller with increasing variability; Figure 1c). We found that increases in

interannual intermittency produced the largest increases (with the greatest variance) in streamflow nitrate among

precipitation regime scenarios (Figure 11a). Conversely, interannual variability had the smallest effect on

streamflow nitrate. These findings suggest that prolonged drought followed by larger, more intense storms can

have the strongest effect on streamflow nitrate. This occurs because multi‐year droughts that occur with greater

intermittency can reduce N uptake by plants and enable N to accumulate in soils (Krichels et al., 2022; Winter

et al., 2023). Subsequent storms then flush accumulated nitrate to streams before plants can take it up.

Denitrification exhibited the most substantial increases with increasing interannual intermittency, whereas it

slightly decreased with increasing intra‐annual intermittency (Figure 11b). This pattern arose because denitrifi-

cation is strongly influenced by soil moisture and therefore the amount of precipitation in storm events (Homyak

et al., 2016). Increases in both interannual intermittency and variability had large effects on the size of individual

storms, while increases in intra‐annual intermittency had relatively smaller effects.

Higher intra‐annual and interannual precipitation intermittency and variability can all reduce plant growth and

corresponding N uptake, but increases in interannual intermittency, which lead to fewer, more intense storms,

exert a stronger influence than changes in variability alone (which only affects the relative size of storms without

changing their timing). This may occur because longer dry periods can increase soil N accumulation when plants

are not active, and that N is subject to leaching or denitrification when more intense rainfall occurs. These findings

have important implications for designing field and laboratory experiments aimed at understanding plant

Figure 10. The ratio of total N export (streamflow N and denitrification) to N deposition and its response to precipitation regime changes. For N‐saturated scenarios, the

N deposition rate was 5 g m−2 year−1, for N‐limited scenarios, it was 0.05 g m−2 year−1. Ratios larger than 1 indicate N outputs are larger than N inputs and vice versa.
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responses to changing precipitation regimes. Such experiments should not only consider the important roles of

storm size and variance (as identified by Gherardi and Sala (2015) and Rudgers et al. (2023)), but should also

incorporate intermittency as a key driver.

4.4. Does More Total Precipitation Result in Higher N Export?

Along a gradient from drier to wetter future scenarios, denitrification was the most sensitive flux to increases in

total precipitation, followed by streamflow nitrate, while plant N uptake was least affected (Figures 12d–12f).

With a 2.3 fold increase of precipitation (from a 0.6 to a 1.4 scaling factor), median denitrification increased

approximately 5–7 fold, and this response was slightly greater in N saturated scenarios compared to N‐limited

scenarios (Figure 12e). This finding aligns with the fact that denitrification is strongly influenced by soil

moisture and available nitrate (Poblador et al., 2017). Denitrification is also strongly influenced by soil C

(represented as a function of soil respiration in RHESSys), which was higher in wetter future and N‐saturated

scenarios. Conversely, streamflow nitrate in N‐limited scenarios was more responsive to changes in the pre-

cipitation scaling factor than in N‐saturated scenarios (Figure 12d). In N‐limited scenarios, streamflow N

increased the precipitation scaling factor, reaching approximately 3.5 times higher than baseline in scenarios with

a scaling factor of 1.2. However, it reached an asymptote once the scaling factor exceeded 1.2. This suggests that,

for N‐limited scenarios, increases in total precipitation do not necessarily translate into higher streamflow nitrate

because additional water can enhance denitrification, plant N uptake, and reduce nitrification. Because the effects

of total precipitation on streamflow N export are non‐linear, it can be challenging to predict N export as pre-

cipitation regimes continue to change, particularly in N‐limited watersheds (Harms & Grimm, 2008; Homyak

et al., 2016).

Changes in the amount of precipitation can also interact with N saturation status to modify various N fluxes. For

example, a higher precipitation scaling factor enhanced the N saturation effect on denitrification and its variability

(Figure 12h). Alternatively, in drier future scenarios the ratio between N‐saturated to N‐limited denitrification

was smaller than 1 (Figure 12h), suggesting that a drier future can largely inhibit (or even reverse) the N saturation

effect, even with 100 times higher N deposition (Wu et al., 2022). With respect to streamflow nitrate, a higher

precipitation scaling factor reduced the effects of N saturation and its variability (Figure 12g). This aligns with

predictions that a drier future would lead to greater nitrate export to streams and a lower flux to the atmosphere

through denitrification (Cregger et al., 2014). Our findings also corroborate recent studies showing that in-

teractions between N deposition and the total amount of precipitation drive N export in drylands (Li et al., 2022).

Figure 11. The distribution of ratios of highest intermittency/variability to lowest for different N fluxes. For intermittency this is the ratio between 4/lambda_0 and

1/lambda_0, for variability this is the ratio between 0.89 CV and 0.11 CV. The distribution consists of outputs from all N saturation and precipitation scaling factor

scenarios and the variance of distribution indicates how sensitive these N fluxes were to intra‐annual intermittency, interannual intermittency, and interannual

variability. Note that the y‐axis for panel (a) is on a different scale than for panels (b and c). The red dashed line represents a ratio of 1, above which N fluxes increase

with an intensified precipitation regime and below 1 indicates a decrease.
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Although increases or decreases in the total amount of precipitation had smaller effects on N fluxes than increases

in intermittency and/or variability, they interacted with precipitation timing to amplify or attenuate their effects.

In N‐limited scenarios, streamflow N export increased with higher intermittency and variability, but a drier future

exaggerated this response whereas a wetter future dampened it (e.g., Figures 5d, 7d, and 9d). Furthermore, even

minor decreases in the precipitation scaling factor could substantially increase streamflow nitrate (e.g., Figures 9d

and 12g; 0.8 and 0.6 precipitation scaling factors). Thus, the total amount of precipitation can play a critical

threshold role in driving how N fluxes respond to increases in precipitation variability and timing (Ficklin

et al., 2022).

Figure 12. The effect of drier or wetter conditions on N fluxes. The top panels (a–c) represent how cumulative N fluxes over 60 years change with precipitation scaling

factor. Each distribution contains both N saturation statuses and all precipitation regime changes. The middle panels of (d–f) represent the ratio of fluxes between

precipitation scaling factors larger than 0.6 and the driest scaling factor (i.e., 0.6). The bottom panels g, h and i represent the ratio of fluxes in N‐saturated and N‐limited

conditions and how they vary with the precipitation scaling factor. The dashed blue line denotes a ratio equal to 1.
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4.5. Study Implications

Predicting future N export in drylands requires considering interaction between hotspots (defined as wetter

microsites in the soil that have disproportionately high rates of biogeochemical cycling) and hot moments

(defined as wet periods after a prolonged dry spell), rather than treating them as separate entities (Groffman

et al., 2009; Kuzyakov & Blagodatskaya, 2015; Pinay et al., 2015). We found that streamflow nitrate and

denitrification rates were most sensitive to increases in interannual intermittency. Interannual intermittency

scenarios incorporated increases in both the duration of dry periods and the size of storms. In these scenarios,

large storms that followed prolonged dry periods can be viewed as hot moments and when these storms sur-

passed a threshold size (e.g., 2/λ_0 in Figure 7e), denitrification was activated across the basin. Thus, the

distribution of “hotspots” can change in response to the timing of hot moments. To better account for the

interdependence between hotspots and hot moments, Bernhardt et al. (2017) proposed a new and more

comprehensive term: “ecosystem control points.” Our research in a dryland chaparral watershed illustrates how

ecosystem control points drive N export under a range of future scenarios.

Our modeling framework considered interactions between N saturation status and several ways that precipitation

regimes can change. This can serve as a tool for understanding the specific mechanisms driving future N

export under climate change. For example, our research highlights the importance of considering the role of

interannual intermittency (not just variability) when examining how future precipitation will influence N fluxes.

This approach can also help researchers determine the interannual intermittency thresholds that trigger substantial

increases in denitrification, which can in turn help them design precipitation manipulation experiments with

appropriate intermittency levels.

5. Conclusion

Over the last century, atmospheric N deposition and climate change have increased both greenhouse gas emis-

sions (e.g., NO and N2O) and stream nitrate export from many dryland watersheds in western North America

(Groffman, 2012; Homyak et al., 2016; Krichels et al., 2022). Because these gaseous and hydrologic N fluxes can

exacerbate global climate change, decrease aquatic biodiversity, and harm human health (Galloway et al., 2003;

Gustine et al., 2022; Meyer et al., 2022), it is important to be able to predict how they will change in the future.

We developed a set of modeling scenarios to examine how N deposition and intensification of the precipitation

regime (i.e., the total amount, intermittency, and variability) influence N export in dryland watersheds. To

develop these scenarios, we first identified a critical N deposition threshold (>2 g m−2 year−1) beyond which the

watershed shifts from N‐limited to N‐saturated. Subsequent modeling scenarios revealed that streamflow nitrate

export was more sensitive to changes in the timing of precipitation when the watershed was N‐limited, whereas

denitrification was more sensitive under N‐saturation. We also found that drier future scenarios exaggerated the

effects of precipitation timing on N export, while there was no uniform response under wetter future scenarios.

Notably, among the various ways that precipitation regimes can intensify (i.e., increases in intra‐annual inter-

mittency, interannual intermittency, and interannual variability), we found that increases in interannual inter-

mittency caused the largest spikes in N export. High interannual rainfall intermittency enabled solutes like nitrate

to build up in hotspots and then be flushed to streams with subsequent intense storms—thus as rainfall inter-

mittency and associated droughts continue to increase, N export will become an increasingly greater threat to

water security.

Data Availability Statement

The data sets used to run simulations for this study can be found in Ren et al. (2024b), and the model code is

available in Ren et al. (2024c).
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