
Citation: Zhong, H.; Feng, X. An

Efficient and Fast Sparse Grid

Algorithm for High-Dimensional

Numerical Integration. Mathematics

2023, 11, 4191. https://doi.org/

10.3390/math11194191

Academic Editors: Ioannis K.

Argyros and Theodore E. Simos

Received: 19 August 2023

Revised: 1 October 2023

Accepted: 6 October 2023

Published: 7 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Efficient and Fast Sparse Grid Algorithm for
High-Dimensional Numerical Integration
Huicong Zhong 1,† and Xiaobing Feng 2,*,†

1 School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710129, China;
huicongzhong@mail.nwpu.edu.cn

2 Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, USA
* Correspondence: xfeng@utk.edu
† These authors contributed equally to this work.

Abstract: This paper is concerned with developing an efficient numerical algorithm for the fast
implementation of the sparse grid method for computing the d-dimensional integral of a given
function. The new algorithm, called the MDI-SG (multilevel dimension iteration sparse grid) method,
implements the sparse grid method based on a dimension iteration/reduction procedure. It does not
need to store the integration points, nor does it compute the function values independently at each
integration point; instead, it reuses the computation for function evaluations as much as possible
by performing the function evaluations at all integration points in a cluster and iteratively along
coordinate directions. It is shown numerically that the computational complexity (in terms of CPU
time) of the proposed MDI-SG method is of polynomial order O(d3Nb)(b ≤ 2) or better, compared
to the exponential order O(N(log N)d−1) for the standard sparse grid method, where N denotes
the maximum number of integration points in each coordinate direction. As a result, the proposed
MDI-SG method effectively circumvents the curse of dimensionality suffered by the standard sparse
grid method for high-dimensional numerical integration.

Keywords: sparse grid (SG) method; multilevel dimension iteration (MDI); high-dimensional
integration; numerical quadrature rules; curse of dimensionality

MSC: 65D30; 65D40; 65C05; 65N99

1. Introduction

With rapid developments in nontraditional applied sciences such as mathematical
finance [1], image processing [2], economics [3], and data science [4], there is an ever-
increasing demand for efficient numerical methods for computing high-dimensional inte-
gration, which also becomes crucial for solving some challenging problems. Numerical
methods (or quadrature rules) mostly stem from approximating the Riemann sum in the
definition of integrals; hence, they are grid-based. The simplest and most natural approach
for constructing numerical quadrature rules in high dimensions is to apply the same 1-d
rule in each coordinate direction. This then leads to tensor-product (TP) quadrature rules.
It is well known (and easy to check) that the number of integration points (and function
evaluations) grows exponentially in the dimension d; such a phenomenon is known as
the curse of dimensionality (CoD). Mitigating or circumventing the CoD is the primary
goal when it comes to constructing efficient high-dimensional numerical quadrature rules.
A lot of progress has been made in this direction in the past 50 years, including sparse
grid (SG) methods [1,5–7], Monte Carlo (MC) methods [8,9], quasi-Monte Carlo (QMC)
methods [10–14], and deep neural network (DNN) methods [15–19]. To some certain extent,
these methods are effective for computing integrals in low and medium dimensions (i.e.,
d . 100), but it is still a challenge for them to compute integrals in very high dimensions
(i.e., d ≈ 1000).

Mathematics 2023, 11, 4191. https://doi.org/10.3390/math11194191 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11194191
https://doi.org/10.3390/math11194191
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9191-9092
https://doi.org/10.3390/math11194191
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11194191?type=check_update&version=2

Mathematics 2023, 11, 4191 2 of 26

This is the second installment in a sequence [20] that aims at developing fast numerical
algorithms for high-dimensional numerical integration (see [21] for fast algorithms for
other applications). As mentioned above, the straightforward implementation of the TP
method will evidently run into the CoD dilemma. To circumvent the difficulty, we proposed
in [20] a multilevel dimension iteration algorithm (called MDI-TP) for accelerating the TP
method. The ideas of the MDI-TP algorithm are to reuse the computation of function
evaluation as much as possible in the tensor product method by clustering computations,
which allows efficient and fast function evaluations at integration points together, and
to perform clustering using a simple dimension iteration/reduction strategy, which is
possible because of the lattice structure of the TP integration points. Since the idea of
the MDI strategy can essentially be applied to any numerical integration rule whose
integration points have a lattice-like structure, the work in this paper was motivated by
applying the MDI idea to accelerate the sparse grid method. We recall that, unlike the
existing numerical integration methods, the MDI algorithm does not aim to provide a
new numerical integration method per se; instead, it is an acceleration algorithm for an
efficient implementation of any tensor product-like existing method. Thus, the MDI is
not a “discretization” method but a “solver” (borrowing numerical PDE terminologies).
A well suited analogy would be high order polynomial evaluations, that is, to compute
p0 := p(x0) = akxk

0 + ak−1xk−1
0 + · · · + a1x0 + a0 for a given real number input x0. It is

well known that such a high order polynomial evaluation on a computer is notoriously
unstable, inaccurate (due to roundoff errors), and expensive; however, those difficulties can
be easily overcome by a simple nested iteration (or Horner’s algorithm. cf. [22]), namely,
set p0 ← ak and for j = k, k − 1, · · · , 1, set p0 ← p0x0 + aj−1. From the cost saving and
efficiency point view, the reason for the nested iteration to be efficient and fast is that it
reuses many multiplications involving x0 compared to the direct evaluations of each term
in p(x0). Conceptually, this is exactly the main idea of the MDI algorithm, i.e., to reuse
computations of the function evaluations in an existing method as much as possible to save
the computational cost and, thus, to make it efficient and fast.

The sparse grid (SG) method, which was first proposed by Smolyak in [23], only uses a
(small) subset of the TP integration points while still maintaining a comparable accuracy to
the TP method. As mentioned earlier, the SG method was one of few successful numerical
methods that could mitigate the CoD in high-dimensional computation, including com-
puting high-dimensional integration and solving high-dimensional PDEs [1,5–7]. Recently,
in [24], Maruri-Aguilar and Wynn proposed using polynomial interpolator models in sparse
grids. Their method uses Betti numbers to reduce the number of terms in the inclusion-
exclusion while achieving the same result as with exhaustive formulas. In [25], Deluzet et
al. proposed a tailored sparse grid reconstruction to introduce a particle-in-cell method to
improve efficiency. In [26], Wu et al. developed a rotational sparse grid (R-SPGR) method
for statistical moment evaluation and structural reliability analysis with enhanced accuracy
and efficiency. The basic idea in application to high-dimensional numerical integration
stems from Smolyak’s general method for multivariate extensions of univariate operators.
Based on this construction, the midpoint rule [27], the rectangle rule [28], the trapezoidal
rule [29], the Clenshaw-Curtis rule [30,31], and the Gaussian-Legendre rule [32,33] have
been used as a one-dimensional numerical integration method. A multivariate quadrature
rule is then constructed by forming the TP method of each of these one-dimensional rules
on the underlying sparse grid. Like the TP method, the SG method is quite general and
easy to implement. But, unlike the TP method, its computational cost is much lower
because the number of its required function evaluations grows exponentially with a smaller
base. A key observation is that the function evaluations of the SG method involve a lot of
computation in each coordinate direction, which can be shared because each coordinate ξ j

of every integration point ξ = (ξ1, ξ2, · · · , ξd) ∈ Rd is shared by many other integration
points due to their tensor product structure. This observation motivated us to compute the
required function evaluations in cluster and iteratively in each coordinate direction instead
of computing them at the integration points independently.

Mathematics 2023, 11, 4191 3 of 26

The goal and main contribution of this paper is to develop a fast algorithm for the
efficient implementation of the SG method based on the MDI approach. The resulting
algorithm is called the MDI-SG algorithm. The MDI-SG method incorporates the MDI
nested iteration idea into the sparse grid method, which allows the reuse of the computation
in the function evaluations at the integration points as much as possible. This saving
significantly reduces the overall computational cost for implementing the sparse grid
method from an exponential growth to a low-order polynomial growth.

The rest of this paper is organized as follows. In Section 2, we first briefly recall the
formulation of the sparse grid method and some known facts. In Section 3, we introduce
our MDI-SG algorithm: first in two and three dimensions to explain the main ideas of
the algorithm, and then we generalize it to arbitrary dimensions. In Sections 4 and 5, we
present various numerical experiments to test the performance of the proposed MDI-SG
algorithm and compare its performances to the standard SG method and the classical MC
method. These numerical tests show that the MDI-SG algorithm is much faster in low
and medium dimensions (i.e., d . 100) and in very high dimensions (i.e., d ≈ 1000). It
still works even when the MC method fails to compute. We also provide numerical tests
to measure the influence of parameters in the proposed MDI-SG algorithm, including
dependencies on the choice of the underlying 1-d quadrature rule, and the choice of the
iteration step size. In Section 6, we numerically estimate the computational complexity of
the MDI-SG algorithm. This was done by using standard regression technique to discover
the relationship between the CPU time and dimension. It is shown that the CPU time grows
at most in a polynomial order O(d3Nb)(b ≤ 2) , where d and N stand for the dimension of
the integration domain and the maximum number of integration points in each coordinate
direction, respectively. As a result, the proposed MDI-SG method effectively circumvents
the curse of dimensionality. Finally, the paper is concluded with some concluding remarks
given in Section 7.

2. Preliminaries

In this paper, f (x) : Ω̄→ R denote a given continuous function on Ω̄ ⊂ Rd for d >> 1,
and then f (x) has pointwise values at every x = (x1, x2, · · · , xd) ∈ Ω̄. Without loss of
the generality, we set Ω := [−1, 1]d and consider the basic and fundamental problem of
computing the integral

Id(f) :=
∫

Ω
f (x)d x. (1)

As mentioned in Section 1, the goal of this paper was to develop a fast algorithm for
computing the above integral based on the sparse grid methodology. To that end, below,
we briefly recall the necessary elements of sparse grid methods.

2.1. The Sparse Grid Method

We now recall the formulation of the sparse grid method for approximating (1) and its
tensor product reformulation formula, which will be crucially used later in the formulation
of our fast MDI-SG algorithm.

For each positive integer index l ≥ 1, let nl be a positive integer, which denotes the
number of grid points at level l and

Γl
1 :=

{
xl

1 < xl
2 < · · · < xl

nl

}
⊂ [−1, 1] (2)

denote a sequence of the level l grid points in [−1, 1]. The grid set {Γl
1} is said to be nested

provided that Γl
1 ⊂ Γl+1

1 . The best known example of the nested grids is the following
dyadic grids:

Γl
1 =

{
xl

i :=
i

2l−1 : i = −2l−1, · · · , 0, 1, · · · , 2l−1
}

. (3)

For a given positive integer q, the tensor product Gq
d := Γq

1 × Γq
1 × · · · × Γq

1 then yields
a standard tensor product grid on Ω = [−1, 1]d. Notice that here the qth level is used

Mathematics 2023, 11, 4191 4 of 26

in each coordinate direction. To reduce the number of grid points in Gq
d, the sparse grid

idea is to restrict the total level to be q in the sense that q = l1 + l2 + · · · + ld, where li
is the level used in the ith coordinate direction. Its corresponding tensor product grid is
Γl1

1 × Γl2
1 × · · · × Γld

1 . Obviously, the decomposition q = l1 + l2 + · · ·+ ld is not unique, so
all such decomposition must be considered. The union

Γq
d :=

⋃
l1+···+ld=q

Γl1
1 × · · · × Γld

1 (4)

then yields the famous Smolyak sparse grid (embedded) on Ω = [−1, 1]d (cf. [5]). We
remark that the underlying idea of going from Gq

d to Γq
d is exactly the same as going from

Qq(Ω) to Pq(Ω), where Qq denotes the set of polynomials whose degrees in all coordinate
directions do not exceed q and Pq denotes the set of polynomials whose total degrees do
not exceed q.

After having introduced the concept of sparse grids, we can then define the sparse
grid quadrature rule. For a univariate function g on [−1, 1], we consider d, i.e., the one-
dimensional quadrature formula

J li
1 (g) :=

nli

∑
j=1

wli
j g(xli

j), i = 1, · · · , d, (5)

where {xli
j , j = 1, · · · , nli} and {wli

j , j = 1, · · · , nli} denote the integration points/nodes
and weights of the quadrature rule, respectively, and nli denotes the number of integration
points in the ith coordinate direction in [−1, 1]. In addition, define the following:

l := [l1, l2, · · · , ld], |l| := l1 + l2 + · · ·+ ld,

Nd,s :=
{

l = [l1, · · · , ld] : |l| = s, s ≥ d
}

.

For example, N2,4 =
{
[1, 3], [2, 2], [3, 1]

}
.

Then, the sparse grid quadrature rule with accuracy level q ∈ N for d-dimensional
integration (1) on [−1, 1]d is defined as (cf. [1])

Qq
d(f) := ∑

q−d+1≤|l|≤q
(−1)q−|l|

(
d− 1
q− |l|

)
∑

l∈Nd,|l|

(
J l1

1 ⊗J
l2

1 ⊗ · · · ⊗ J
ld

1
)

f , (6)

where (
J l1

1 ⊗J
l2

1 ⊗ · · · ⊗ J
ld

1
)

f :=
nl1

∑
j1=1
· · ·

nld

∑
jd=1

wl1
j1
· · ·wld

jd
f
(
xl1

j1
, · · · , xld

jd

)
. (7)

We note that each term (J l1
1 ⊗J

l2
1 ⊗ · · · ⊗J

ld
1) f in (7) is the tensor product quadrature

rule, which uses nli integration points in the ith coordinate direction. To write Qq
d(f) more

compactly, we set
nq

d := ∑
q−d+1≤|l|≤q

nl1 . . . nld ,

which denotes the total number of integration points in Ω = [−1, 1]d. Let wk, k = 1, · · · , nq
d

denote the corresponding weights and define the bijective mapping{
xk : k = 1, · · · , nq

d
}
−→

{
(xl1

j1
, · · · , xld

jd
) : ji = 1, · · · , nli , q− d + 1 ≤ |l| ≤ q

}
.

Mathematics 2023, 11, 4191 5 of 26

Then, the sparse grid quadrature rule Qq
d(f) can be rewritten as (cf. Section 4 of [6])

Qq
d(f) =

nq
d

∑
k=1

wk f (xk). (8)

We also note that some weights wk may become negative even though the one-
dimensional weights wl1

j1
, · · · , wld

jd
are positive. Therefore, it is no longer possible to interpret

Qq
d(f) as a discrete probability measure. Moreover, the existence of negative weights in (8)

may cause numerical cancellation, and hence, the loss of significant digits. Circumventing
such a potential cancellation, it is recommended in [6] that the summation is carried out by
coordinates, this then leads to the following tensor product reformulation of Qq

d(f):

Qq
d(f) =

q−1

∑
l1=1

γ
q
1

∑
l2=1
· · ·

γ
q
d−1

∑
ld=1

nl1

∑
j1=1
· · ·

nld

∑
jd=1

wl1
j1
· · ·wld

jd
f (xl1

j1
, · · · , xld

jd
), (9)

where the upper limits are defined recursively as

γ
q
0 := q, γ

q
j := γ

q
j−1 − lj, j = 1, 2, · · · , d.

In the nested mesh case (i.e., Γl
1 is nested), nested integration points are selected to

form the sparse grid. We remark that different 1-d quadrature rules in (5) will lead to
different sparse grid methods in (6). We also note that the tensor product reformulation (9)
will play a crucial role later in the construction of our MD-SG algorithm.

Figure 1 demonstrates the construction of a sparse grid according to the Smolyak rule
when d = 2 and q = 4. The meshes are nested, namely, Γli

1 ⊂ Γli+1
1 . The 1-d integration-point

sequence Γl1
1 (l1 = 1, 2, 3, and nl1 = 3, 5, 9) and Γl2

1 (l2 = 1, 2, 3, and nl2 = 3, 5, 9) are shown at
the top and left of the figure, and the tensor product points Γ3

1 ⊗ Γ3
1 are shown in the upper

right corner. From (6), we see that the sparse grid rule is a combination of the low-order
tensor product rule on Γi

1 ⊗ Γj
1 with 3 ≤ i + j ≤ 4. The point sets of these products and

the resulting sparse grid Γ4
2 are shown in the lower half of the figure. We notice that some

points in the sparse grid Γ4
2 are repeatedly used in Γi

1⊗ Γj
1 with 3 ≤ i + j ≤ 4. Consequently,

we would avoid the repeated points (i.e., only using the red points in Figure 1) and use the
reformulation (9), which does not involve repetition in the summation.

2.2. Examples of Sparse Grid Methods

As mentioned earlier, different 1-d quadrature rules in (5) lead to different sparse grid
quadrature rules in (9). Below, we introduce four widely used sparse grid quadrature rules,
which will be the focus of this paper.

Example 1 (The classical trapezoidal rule). The 1-d trapezoidal rule is defined by (cf. [29])

J q
1 (g) =

q−1

∑
l=1

nl

∑
j=1

′′wl
j g(xl

j) (10)

with q ≥ 2 and n1 = 1, nl = 2l−1 + 1, wl
j = 22−l , xl

j = (j − 1) · 22−l − 1; where the ∑ ′′

indicates that the first and last terms in the sum are halved. The following theorem gives the error
estimate; its proof can be found in [6] (pages 3-5).

Theorem 1. Suppose g ∈ C2 :=
{

g : Ω→ R,
∥∥ ∂sg

∂xs

∥∥
∞ < ∞, s ≤ 2

}
, then there holds∣∣I1(g)−J q

1 (g)
∣∣ ≤ C 2−2q. (11)

Mathematics 2023, 11, 4191 6 of 26

1
1

1
2

1
3

Tensor Product

1
3

1
3

1
1

1
1

1
1

1
1

1
2

1
1

1
3

1
2

1
2

1
1

1
2

1
2

Sparse Grid

2
4

1
3

1
3

1
1

Figure 1. Construction of a nested sparse grid in two dimensions.

Example 2 (The classical Clenshaw-Curtis rule). This quadrature rule reads as follows
(cf. [30,31]):

J q
1 (g) =

q−1

∑
l=1

nl

∑
j=1

wl
j g(xl

j) (12)

with q ≥ 2, n1 = 1, nl = 2l−1 + 1, xl
j = − cos(π(j − 1)/(nl − 1)), j = 1, · · · , nl and the

weights

wl
1 = wl

nl
=

1
nl(nl − 2)

, wl
j =

2
nl − 1

(
1 + 2

nl−1
2

∑
k=1

′ 1
1− 4k2 cos

2π(j− 1)k
nl − 1

)
for 2 ≤ j ≤ nl − 1; where ∑ ′ indicates that the last term in the summation is halved.

The following error estimate holds and see [31] (Theorem 1) for its proof.

Theorem 2. Suppose g ∈ Cr :=
{

g : Ω→ R,
∥∥ ∂sg

∂xs

∥∥
∞ < ∞, s ≤ r

}
, then there holds∣∣I1(g)−J q

1 (g)
∣∣ ≤ C (nq

1)
−r, where nq

1 := n1 + n2 + · · ·+ nq−1. (13)

Example 3 (The Gauss-Patterson rule). This quadrature rule is defined by (cf. [32,33])

J q
1 (g) =

q−1

∑
l=1

nl

∑
j=1

wl
j g(xl

j) (14)

with q ≥ 2, nl = 2l(n + 1) − 1, and {xl
j}

nl
j=1 being the union of the zeroes of the polynomial

Pn(x) and Gi(x), 1 ≤ i < l, where Pn(x) is the n-th order Legendre polynomial, G1(x) is the
(n + 1)-th order Stieltjes polynomial, and Gi(x) is orthogonal to all polynomials of degree less than
2l−1(n + 1) with respect to the weight function Pn(x)(∏i−1

j=1 Gj(x)). {wl
j}

nl
j=1 is defined similarly

to the Gauss-Legendre case, see [32] for details. Gauss-Patterson rules are a sequence of nested

Mathematics 2023, 11, 4191 7 of 26

quadrature formulas with the maximal order of exactness. Its error estimate is given by the following
theorem, see [30,33] (Theorem 1).

Theorem 3. Suppose g ∈ Cr :=
{

g : Ω→ R,
∥∥ ∂sg

∂xs

∥∥
∞ < ∞, s ≤ r

}
, then there holds∣∣I1(g)−J q

1 (g)
∣∣ ≤ C (nq

1)
−r, where nq

1 := n1 + n2 + · · ·+ nq−1. (15)

Example 4 (The classical Gauss-Legendre rule). This classical quadrature rule is defined by

J q
1 (g) =

q−1

∑
l=1

nl

∑
j=1

wl
j g(xl

j) (16)

with q ≥ 2, nl = l for l ≥ 1. {xl
j}

nl
j=1 are the zeroes of the nlth order Legendre polynomial Pnl (x),

and {wl
j}

nl
j=1 are the corresponding weights.

The following theorem gives the error estimate; its proof can be found in [6] (pages 3-5).

Theorem 4. Suppose g ∈ Cr :=
{

g : Ω→ R,
∥∥ ∂sg

∂xs

∥∥
∞ < ∞, s ≤ r

}
, then there holds∣∣I1(g)−J q

1 (g)
∣∣ ≤ C (nq

1)
−r, where nq

1 := n1 + n2 + · · ·+ nq−1. (17)

Figures 2 and 3 show the resulting sparse grids of the above four examples in both 2-d
and 3-d cases with q = 6 and q = 7, respectively. We note that these four sparse grids have
different structures.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a)

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(c)

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(d)

Figure 2. Sparse grids corresponding to the trapezoidal rule (a), Clenshaw-Curtis rule (b), Gauss-
Patterson rule (c), and Gauss-Legendre rule (d) when d = 2, q = 6.

-1

1

-0.5

0.5 1

0

0.5

0.5

0

1

0
-0.5

-0.5

-1 -1

(a)

-1

1

-0.5

0.5 1

0

0.5

0.5

0

0

1

-0.5
-0.5

-1 -1

(b)

-1

1

-0.5

0.5 1

0

0.5

0.5

0

0

1

-0.5
-0.5

-1 -1

(c)

-1

1

-0.5

0.5 1

0

0.5

0.5

0

0

1

-0.5
-0.5

-1 -1

(d)

Figure 3. Sparse grids corresponding to the trapezoidal rule (a), Clenshaw-Curtis rule (b), Gauss-
Patterson rule (c), and Gauss-Legendre rule (d) when d = 3, q = 7.

We conclude this section by remarking that the error estimates of the above quadrature
rules can be easily translated to error estimates for the sparse grid method (9). For example,

Mathematics 2023, 11, 4191 8 of 26

in the case of the Clenshaw-Curtis, Gauss-Patterson, and Gauss-Legendre quadrature rule,
there holds (cf. [31] (Corollary 1))∣∣Id(f)−Qq

d(f)
∣∣ ≤ C(nq

d)
−r · (log(nq

d))
(d−1)(r+1) ∀ f ∈Wr

d, (18)

where
nq

d := ∑
q−d+1≤|l|≤q

nl1 . . . nld ,

Wr
d :=

{
f : Ω→ R;

∣∣∣∣ ∂|l| f

∂xl1
1 · · · ∂xld

d

∣∣∣∣
∞
< ∞, li ≤ r, i = 1, 2, · · · , d

}
.

We note that the above estimate indicates that the error of the sparse grid method still
deteriorates exponentially in the dimension d, but with a smaller base log(nq

d).

3. The MDI-SG Algorithm

The goal of this section is to present an efficient and fast implementation algorithm (or
solver), called the MDI-SG algorithm, for evaluating the sparse grid quadrature rule (6) via
its reformulation (9) in order to circumvent the curse of dimensionality, which hampers
the usage of the sparse grid method (6) in high dimensions. To better understand the main
idea of the MDI-SG method, we first consider the simple two- and three-dimensional cases
and then formulate the algorithm in arbitrary dimensions.

Recall that f (x) : Ω̄→ R denotes a continuous function on Ω̄ ⊂ Rd; we assume that f
has a known expression.

3.1. Formulation of the MDI-SG Algorithm in Two Dimensions

Let d = 2, Ω = [−1, 1]2, and x = (x1, x2) ∈ Ω. Using Fubini’s theorem, we have

I2(f) :=
∫
[−1,1]2

f (x) dx =
∫ 1

−1

(∫ 1

−1
f (x1, x2) dx1

)
dx2. (19)

Then, the two-dimensional SG quadrature rule (9) takes the form

Qq
2(f) =

q−1

∑
l1=1

γ
q
1

∑
l2=1

nl1

∑
j1=1

nl2

∑
j2=1

wl1
j1

wl2
j2

f (xl1
j1

, xl2
j2
), (20)

where γ
q
1 = q− l1. Motivated by (and mimicking) Fubini’s formula (19), we rewrite (20) as

Qq
2(f) =

γ
q
1

∑
l2=1

nl2

∑
j2=1

wl2
j2

(q−1

∑
l1=1

nl1

∑
j1=1

wl1
j1

f (xl1
j1

, xl2
j2
)

)
(21)

=
γ

q
1

∑
l2=1

nl2

∑
j2=1

wl2
j2

f1(xl2
j2
),

where

f1(s) :=
q−1

∑
l1=1

nl1

∑
i=1

wl1
i f (xl1

i , s).

We note that the evaluation of f1(x2) amounts to applying the 1-d Formula (5) to
approximate the integral

∫ 1
−1 f (x1, x2)dx1. However, the values of { f1(xl2

j2
)} will not be

computed by the 1-d quadrature rule in our MDI-SG algorithm; instead, f1 is formed as a
symbolic function, so the 1-d quadrature rule can be called on f1. Therefore, we still use the
SG method to select the integration points, and then use our MDI-SG algorithm to perform
function evaluations at the integration points collectively to save computation, which is the
main idea of the MDI-SG method.

Mathematics 2023, 11, 4191 9 of 26

Let W and X denote the weight and node vectors of the 1-d quadrature rule on [−1, 1].
In addition, nli represents the number of integration points in the xi direction and we
use a parameter r ∈ {1, 2, 3, 4} to indicate one of the four quadrature rule. The following
algorithm implements the sparse grid quadrature Formula (21).

We note that the first do-loop forms the symbolic function f1, which encodes all
computations involving the x1-components at all integration points. The second do-loop
evaluates the 1-d quadrature rule for the function f1. As mentioned above, in this paper,
we only focus on the four well-known 1-d quadrature rules: (i) the trapezoidal rule; (ii) the
Clenshaw-Curtis rule; (iii) the Gauss-Patterson rule; (iv) the Gauss-Legendre rule. They
will be represented respectively by r = 1, 2, 3, 4.

Below, we use a simple 2-d example to explain the mechanism of above 2d-MDI-SG
algorithm. It is clear that to directly compute the SD sum

n1

∑
i1=1

n2

∑
i2=1

f (ξi1 , ξi2) = f (ξ1, ξ1) + f (ξ1, ξ2) + · · ·+ f (ξn1 , ξn2), (22)

it is necessary to compute the function values of f (x1, x2) at n1n2 points, which is often
performed independently. On the other hand, the 2d-MDI-SD algorithm is based on
rewriting the sum as

n1

∑
i1=1

n2

∑
i2=1

f (ξi1 , ξi2) =
n1

∑
i1=1

f1(ξi1), (23)

where f1(x1) = ∑n2
i2

f (x1, ξi2) denotes the symbolic function obtained in the first do-loop.
Hence, the algorithm performs two separate do-loops. In the first d-loop, symbolic compu-
tations are performed to obtain the symbolic function f1(x1), which is saved. In the second
do-loop, the single sum ∑n1

i1=1 f1(ξi1) is calculated. When computing the symbolic function
f1(x1), a lot of computations have been reused for computing the coefficients in f1(x1), and
those coefficients are constants in the second do-loop. Efficiently generating the symbolic
function and using it to compute the SG sum are the main reasons for saving computation
and computer memory.

Take f (x1, x2) = x2
1 + x1x2 + x2

2 as a concrete example. The direct computation the
SG sum in (22) requires to compute the function value f (ξ1, ξ2) = ξ2

1 + ξ1ξ2 + ξ2
2 at each

node (ξ1, ξ2); this, in turn, requires three multiplications and two additions. With a total of
n1n2 nodes, the computing the sum requires a total of 3n1n2 multiplications and 3n1n2 − 1
additions. On the other hand, when using the 2d-MDI-SD algorithm to compute the same
sum, in the first do-loop, we compute the symbolic function f1(x1) = ∑n2

i2=1 f (x1, ξi2), which
requires n2 “symbolic multiplications" of ξi2 x1 (no real multiplication is needed because of its
linear dependence on ξu2) and n2 multiplications of ξ2

i2
, and 3n2 − 1 additions. In the second

do-loop, computing the ∑n1
i1=1 f1(ξi1) requires n1 multiplications of ξ2

i1
and n1 multiplications

of ξi1 ξ̄i2 , and 3n1 − 1 additions. Thus, the 2d-MDI-SD algorithm requires a total of 2(n1 + n2)

multiplications and 3(n1 + n2 − 4
3) additions. Therefore, the 2d-MDI-SG algorithm computes

the SD sum much more economically than the standard implementation, and this advantage
will become more significant in high dimensions. See Sections 3.2 and 3.3 for details.

3.2. Formulation of the MDI-SG Algorithm in Three Dimensions

In the subsection, we extend the formulation of the above 2d-MDI-SGI algorithm to
the 3-d case by highlighting its main steps, in particular, how the above 2-d algorithm is
utilized. First, recall that Fubini’s theorem is given by

I3(f) :=
∫
[−1,1]3

f (x) dx =
∫
[−1,1]2

(∫ 1

−1
f (x) dx1

)
dx′, (24)

where x′ = (x2, x3).
Second, notice that the SG quadrature rule (9) in 3-d takes the form

Mathematics 2023, 11, 4191 10 of 26

Qq
3(f) =

q−1

∑
l1=1

γ
q
1

∑
l2=1

γ
q
2

∑
l3=1

nl1

∑
j1=1

nl2

∑
j2=1

nl3

∑
j3=1

wl1
j1

wl2
j2

wl3
j3

f (xl1
j1

, xl2
j2

, xl3
j3
). (25)

where γ
q
2 = q− l1 − l2. Mimicking Fubini’s formula above, we rewrite (25) as

Qq
3(f) =

γ
q
2

∑
l3=1

nl3

∑
j3=1

γ
q
1

∑
l2=1

nl2

∑
j2=1

wl3
j3

wl2
j2

(q−1

∑
l1=1

nl1

∑
j1=1

wl1
j1

f (xl1
j1

, xl2
j2

, xl3
j3
)

)
(26)

=
γ

q
2

∑
l3=1

nl3

∑
j3=1

γ
q
1

∑
l2=1

nl2

∑
j2=1

wl3
j3

wl2
j2

f2(xl2
j2

, xl3
j3
),

where

f2(s, t) :=
q−1

∑
l1=1

nl1

∑
j1=1

wl1
j1

f (xl1
j1

, s, t). (27)

We note that f2 is formed as a symbolic function in our MDI-SG algorithm and the
right-hand side of (26) is viewed as a 2-d sparse grid quadrature formula for f2; it can be
computed either directly or recursively by using Algorithm 1. The following algorithm
implements the SG quadrature formula (26).

Algorithm 1 2d-MDI-SG (f , Ω, r, q, X, W)

Initialize Q = 0, f1 = 0.
for l1 = 1 : q do

for j1 = 1 : nl1 do
f1 = f1 + W l1

j1
f ((Xl1

j1
, ·)).

end for
end for
for l2 = 1 : q− l1 do

for j2 = 1 : nl2 do
Q = Q + W l2

j2
· f1(Xl2

j2
).

end for
end for
return Q.

Where P2
3 denotes the orthogonal projection (or natural embedding): x = (x1, x2, x3)

→ x′ = (x2, x3), and W and X stand for the weight and node vectors of the underlying 1-d
quadrature rule, respectively.

From Algorithm 2 we can see the mechanism of the MDI-SG algorithm. It is based on
two main ideas: (i) Using the sparse grid approach to select integration points; (ii) using
the discrete Fubini formula to efficiently compute the total sparse grid sum by reducing
it to the calculation of a low-dimensional (i.e., 2-d) sparse grid sum, which allows us to
recursively call the low-dimensional MDI-SG algorithm.

Algorithm 2 3d-MDI-SG(f , Ω, r, q, X, W)

Initialize Q = 0, f2 = 0.
for l1 = 1 : q do

for j1 = 1 : nl1 do
f2 = f2 + W l1

j1
· f ((Xl1

j1
, ·, ·)).

end for
end for
Ω2 = P2

3 Ω, γ
q
1 = q− l1.

Q =2d-MDI-SG(f2, Ω2, r, γ
q
1, X, W).

return Q.

Mathematics 2023, 11, 4191 11 of 26

3.3. Formulation of the MDI-SG Algorithm in Arbitrary d-Dimensions

The goal of this subsection is to extend the 2-d and 3-d MDI-SG algorithms to arbitrary
d-dimensions. We again start by recalling the d-dimensional Fubini’s theorem

Id(f) =
∫

Ω
f (x) dx =

∫
Ωd−m

(∫
Ωm

f (x) dx′′
)

dx′, (28)

where 1 ≤ m < d, Ω = [−1, 1]d, Ωm = ρm
d Ω = [−1, 1]m and Ωd−m = Pd−m

d Ω =

[−1, 1]d−m in which ρm
d and Pd−m

d denote the orthogonal projections (or natural embed-
dings): x = (x1, x2, · · · , xd) → x′′ = (x1, x2, · · · , xm) and x = (x1, x2, · · · , xd) → x′ =
(xm+1, xm+2, · · · , xd), respectively. The integer m denotes the dimension reduction step
length in our algorithm.

Mimicking Fubini’s theorem above, we rewrite the d-dimensional SG quadrature rule
(9) as follows:

Qq
d(f) =

γ
q
d−1

∑
ld=1

nld

∑
jd=1
· · ·

γ
q
m

∑
lm+1=1

nlm+1

∑
jm+1

wlm+1
jm+1
· · ·wld

jd

(γ
q
m−1

∑
lm=1
· · ·

nl1

∑
j1=1

wl1
j1
· · ·wlm

jm
f (xl1

j1
, · · · , xld

jd
)

)
(29)

=
γ

q
d−1

∑
ld=1

nld

∑
jd=1
· · ·

γ
q
m

∑
lm+1=1

nlm+1

∑
jm+1=1

wlm+1
jm+1
· · ·wld

jd
fd−m(xlm+1

jm+1
, · · · , xld

jd
),

where

fd−m(s1, · · · , sd−m) =
γ

q
m−1

∑
lm=1

nlm

∑
jm=1
· · ·

q−1

∑
l1=1

nl1

∑
j1=1

wl1
j1
· · ·wlm

jm
f (xl1

j1
, · · · , xlm

jm
, s1, · · · , sd−m). (30)

We note that, in our MDI-SG algorithm, fd−m defined by (30) is a symbolic function
and the right-hand side of (29) is a (d − m)-order multisummation, which itself can be
evaluated by employing the dimension reduction strategy. Dimensionality can be reduced
by iterating k := [d

m] times until d− km ≤ m. To implement this process, we introduce the
following conventions:

• If t = 1, set MDI-SG(t, ft, Ωt, m, s, r, q, X, W) := J q
1 (f), which is computed by using

the one-dimensional quadrature rule (5);
• If t = 2, set MDI-SG(t, ft, Ωt, m, s, r, q, X, W) := 2d-MDI-SG(ft, Ωt, r, q, X, W);
• If t = 3, set MDI-SG(t, ft, Ωt, m, s, r, q, X, W) := 3d-MDI-SG(ft, Ωt, r, q, X, W).

We note that when t = 1, 2, 3, the parameter m becomes a dummy variable and can
be given any value. Recall that Pt−m

t denotes the natural embedding from Rt to Rt−m by
deleting the first m components of vectors in Rt. The following algorithm implements the
sparse grid quadrature via (29) with

ft−m(s1, · · · , st−m) =
γ

q
m−1

∑
lm=1

nlm

∑
jm=1
· · ·

q−1

∑
l1=1

nl1

∑
j1=1

wl1
j1
· · ·wlm

jm
· f (xl1

j1
, · · · , xlm

jm
, s1, · · · , st−m). (31)

Algorithm 3 recursively generates a sequence of symbolic functions fd, · · · , fd−km,
fd−km−s, · · · , fd−km−k1s; each function has m fewer arguments than its predecessor. As
mentioned earlier, our MDI-SG algorithm does not perform the function evaluations at
all integration points independently, but rather iteratively along m-coordinate directions;
hence, the function evaluation at any integration point is not completed until the last step
of the algorithm is executed. As a result, many computations are reused in each iteration,
which is the main reason for the computational savings and achieving a faster algorithm.

Mathematics 2023, 11, 4191 12 of 26

Algorithm 3 MDI-SG(d, f , Ω, m, s, r, q, X, W)

Ωd = Ω, fd = f , k = [d
m], γ

q
d = q− 1.

for t = d : −m : d− km (the index is decreased by m at each iteration) do
Ωd−m = Pt−m

t Ωt, γ
q
d−m = γ

q
t − l1 − · · · − lm.

(Construct symbolic function ft−m by (31) below).
MDI-SG(t, ft, Ωt, m, s, r, γ

q
t , X, W) := MDI-SG(t−m, ft−m, Ωt−m, m, s, r, γ

q
t−m, X, W)

end for
d = d− km, s = 1(or 2, 3), fd = ft, k1 = [d−km

s].
for t = d : −s : d− k1s (the index is decreased by s at each iteration) do

Ωd−s = Pt−s
t Ωt, γ

q
d−s = γ

q
t − l1 − · · · − ls.

(Construct symbolic function ft−s by (31) below).
MDI-SG(t, ft, Ωt, m, s, r, γ

q
t , X, W) := MDI-SG(t− s, ft−s, Ωt−s, m, s, r, γ

q
t−s, X, W)

end for
Q = MDI-SG(d− k1s, fd−k1s, Ωd−k1s, m, s, r, γ

q
d−k1s, X, W).

return Q.

Remark 1. We note that as a solver-type algorithm, the proposed MDI-SG algorithm provides an
efficient and fast way to implement the widely used sparse grid methods reviewed in Section 2.2; it
does not improve or reduce the theoretical convergence rate of the underlying sparse grid method.
As a result, the numerical results obtained by our MDI-SG algorithm also obey the same theoretical
error bounds stated in Theorems 1-4 depending on the choice of the underlying sparse grid method.

4. Numerical Performance Tests

In this section, we present extensive numerical tests to gauge the performance of the
proposed MDI-SG algorithm and to compare it with the standard sparse grid (SG) and
classical Monte Carlo (MC) methods. All numerical tests show that MDI-SG algorithm
outperforms both the SG and MC methods in low and medium/high dimensions (i.e.,
d . 100), and can compute very high-dimensional (i.e., d ≈ 1000) integrals while others fail.

All our numerical experiments were performed in Matlab 9.4.0.813654(R2018a) on a
desktop PC with Intel(R) Xeon(R) Gold 6226R CPU 2.90GHz and 32GB RAM.

4.1. Two- and Three-Dimensional Tests

We first tested our MDI-SG algorithm on simple 2-d and 3-d examples and compared
its performance (in terms of CPU time) with the SG methods.

Test 1. Let Ω = [−1, 1]2 and consider the following 2-d integrands:

f (x) := exp
(
5x2

1 + 5x2
2
)
; f̂ (x) := sin

(
2π + 10x2

1 + 5x2
2
)
. (32)

Let q denote the accuracy level of the sparse grid. The larger q is, the more integration
points we need for the 1-d quadrature rule, and the higher the accuracy of the MDI-SG
quadrature. The base 1-d quadrature rule was chosen to be the Gauss-Patterson rule; hence,
parameter r = 3 in the algorithm.

Tables 1 and 2 present the computational results (errors and CPU times) of the MDI-SG
and SG methods for approximating I2(f) and I2(f̂), respectively.

Table 1. Relative errors and CPU times of MDI-SG and SG tests with m = 1 for approximating I2(f).

MDI-SG SG

Accuracy Level
(q)

Total
Nodes

Relative
Error

CPU
Time(s)

Relative
Error

CPU
Time(s)

6 33 1.0349× 10−1 0.0512817 1.0349× 10−1 0.0078077
7 65 2.3503× 10−3 0.0623538 2.3503× 10−3 0.0084645
9 97 8.1019× 10−4 0.0644339 8.1019× 10−4 0.0095105

10 161 1.8229× 10−6 0.0724491 1.8229× 10−6 0.0106986
13 257 2.0720× 10−7 0.0913161 2.0720× 10−7 0.0135131
14 321 4.3279× 10−7 0.1072016 4.3279× 10−7 0.0155733

Mathematics 2023, 11, 4191 13 of 26

Table 2. Relative errors and CPU times of MDI-SG and SG tests with m = 1 for approximating I2(f̂).

MDI-SG SG

Accuracy Level
(q)

Total
Nodes

Relative
Error

CPU
Time(s)

Relative
Error

CPU
Time(s)

9 97 4.7425× 10−1 0.0767906 4.7425× 10−1 0.0098862
10 161 1.4459× 10−3 0.0901238 1.4459× 10−3 0.0102700
13 257 1.9041× 10−5 0.1025934 1.9041× 10−5 0.0152676
14 321 2.3077× 10−5 0.1186194 2.3077× 10−5 0.0144737
16 449 3.1236× 10−6 0.1353691 3.1236× 10−6 0.0177445
20 705 2.4487× 10−6 0.1880289 2.4487× 10−6 0.0355606

From Tables 1 and 2, we can see that these two methods used very little CPU time;
however, despite the SG method outperforming the MDI-SG method in both tests, the
difference was almost negligible, so both methods performed well in 2-d case.

Test 2. Let Ω = [−1, 1]3 and we consider the following 3-d integrands:

f (x) = exp
(
5x2

1 + 5x2
2 + 5x2

3
)
, f̂ (x) = sin

(
2π + 10x2

1 + 5x2
2 + 5x3

)
. (33)

We computed the integral of these two functions over Ω = [−1, 1]3 using the MDI-SG
and SG methods. Similarly, let q denote the accuracy level of the sparse grid. In addition,
we chose parameters r = 3 and m = 1 in the algorithm.

The test results are given in Tables 3 and 4. We again can see that both methods
used very little CPU time; although the SG method again slightly outperformed the other
method in both tests. However, as q increased, the number of integration points increased,
and the CPU times used by these two methods became closer. We would like to point out
that both methods were very efficient and their difference was negligible in the 3-d case.

Table 3. Relative errors and CPU times of MDI-SG and SG tests with m = 1 for approximating I3(f).

MDI-SG SG

Accuracy Level
(q)

Total
Nodes

Relative
Error

CPU
Time(s)

Relative
Error

CPU
Time(s)

9 495 3.2467× 10−2 0.0669318 3.2467× 10−2 0.0235407
10 751 1.8956× 10−3 0.0886774 1.8956× 10−3 0.0411750
11 1135 3.9146× 10−4 0.0902602 3.9146× 10−4 0.0672375
13 1759 4.7942× 10−6 0.1088353 4.7942× 10−6 0.0589584
14 2335 1.8013× 10−6 0.1381728 1.8013× 10−6 0.0704032
15 2527 1.2086× 10−6 0.1484829 1.2086× 10−6 0.0902680
16 3679 3.6938× 10−7 0.1525743 3.6938× 10−7 0.1143728

Table 4. Relative errors and CPU times of MDI-SG and SG tests with m = 1 for approximating I3(f̂).

MDI-SG SG

Accuracy Level
(q)

Total
Nodes

Relative
Error

CPU
Time(s)

Relative
Error

CPU
Time(s)

12 1135 5.5057× 10−1 0.0921728 5.5057× 10−1 0.0495310
13 1759 8.9519× 10−3 0.1031632 8.9519× 10−3 0.0644124
15 2527 1.8063× 10−3 0.1771094 1.8063× 10−3 0.0891040
16 3679 1.1654× 10−4 0.1957219 1.1654× 10−4 0.1159222
17 4447 2.4311× 10−5 0.2053174 2.4311× 10−5 0.1443184
19 6495 5.4849× 10−6 0.4801467 5.4849× 10−6 0.2259950
20 8031 1.5333× 10−6 0.6777698 1.5333× 10−6 0.2632516

Mathematics 2023, 11, 4191 14 of 26

4.2. High-Dimensional Tests

In this section, we evaluate the performance of the MDI-SG method for d >> 1. First,
we tested and compared the performance of the MDI-SG and SG methods in computing
Gaussian integrals for dimensions 2 ≤ d ≤ 20 because d ≈ 20 is the highest dimension
that the SG method is able to compute on our computer. We then provide a performance
comparison (in terms of CPU time) of the MDI-SG and classical Monte Carlo (MC) methods
in computing high-dimensional integrals.

Test 3. Let Ω = [−1, 1]d for 2 ≤ d ≤ 20 and consider the following Gaussian integrand:

f (x) =
1√
2π

exp
(
−1

2
|x|2

)
, (34)

where |x| stands for the Euclidean norm of the vector x ∈ Rd.
We computed the integral Id(f) by using the MDI-SG and SG methods, as was done

in Tests 1 and 2. Both methods were based on the same 1-d Gauss-Patterson rule (i.e., the
parameter r = 3). We also set m = 1, s = 1 in the MDI-SG method and used two accuracy
levels: q = 10, 12.

Table 5 gives the relative error and CPU time for approximating Id(f) using the MDI-
SG and SG methods with the accuracy level q = 10, and Table 6 gives the corresponding
results for q = 12. As can be observed, the errors were the same for both methods (since
they used the same integration points), but their CPU times were quite different. The SG
method was more efficient for d ≤ 4 when q = 8, 10 and for d ≤ 3 when q = 12, but the
MDI-SG method excelled for d ≥ 4 and the winning margin became significant as d and q
increased (also see Figure 4). For example, when d = 14 and q = 10, the CPU time required
by the SG method was about 6167 seconds, which is about 2 h, but the CPU time of the
MDI-SG method was less than 1 s. Also, when d = 13 and q = 12, the SG method failed to
compute the integral due to running out of computer memory. This is because the large
number of integration points need to be saved and function evaluations must be performed.
The MDI-SG method only needed about 2 s to complete the computation.

Table 5. Relative errors and CPU times of MDI-SG and SG tests with m = 1, s = 1, and q = 10 for
approximating Id(f).

MDI-SG SG

Dimension
(d)

Total
Nodes

Relative
Error

CPU
Time(s)

Relative
Error

CPU
Time(s)

2 161 1.0163× 10−8 0.0393572 1.0163× 10−8 0.0103062
4 2881 2.0310× 10−8 0.0807326 2.0310× 10−8 0.0993984
8 206465 1.3429× 10−7 0.1713308 1.3429× 10−7 6.7454179
10 1041185 1.6855× 10−6 0.2553576 1.6855× 10−6 86.816883
12 4286913 1.8074× 10−5 0.3452745 1.8074× 10−5 866.1886366
14 5036449 2.1338× 10−4 0.4625503 2.1338× 10−4 6167.3838002
15 12533167 7.1277× 10−4 0.5867914 failed failed

Table 6. Relative errors and CPU times of MDI-SG and SG tests with m = 1, s = 1, and q = 12 for
approximating Id(f).

MDI-SG SG

Dimension
(d)

Total
Nodes

Relative
Error

CPU
Time(s)

Relative
Error

CPU
Time(s)

2 161 1.0198× 10−8 0.0418615 1.0198× 10−8 0.0191817
4 6465 2.0326× 10−8 0.0704915 2.0326× 10−8 0.2067346
6 93665 3.0487× 10−8 0.0963325 3.0487× 10−8 3.1216913
8 791169 4.0881× 10−8 0.2233707 4.0881× 10−8 41.3632962
10 5020449 4.0931× 10−8 0.3740873 4.0931× 10−8 821.6461622
12 25549761 1.1560× 10−6 0.8169479 1.1560× 10−6 11887.797686
13 29344150 5.2113× 10−6 1.2380811 failed failed

Mathematics 2023, 11, 4191 15 of 26

2 4 6 8 10 12 14 16 18 20

Dimension (d)

-5

-3

-1

1

3

5

7

9

10

lo
g

 (
C

P
U

 t
im

e
 (

s
))

SG method

SG-MDI method

2 4 6 8 10 12 14 16

Dimension (d)

-5

-3

-1

1

3

5

7

9

10

lo
g

 (
C

P
U

 t
im

e
 (

s
))

SG method

SG-MDI method

2 4 6 8 10 12 14

Dimension (d)

-4

-2

0

2

4

6

8

10

lo
g

 (
C

P
U

 t
im

e
 (

s
))

SG method

SG-MDI method

Figure 4. CPU time comparison of MDI-SG and SG tests: q = 8 (left); q = 10 (middle); q = 12 (right).

The classical (and quasi) Monte Carlo (MC) method is often the preferred/default
method for computing high-dimensional integrals. However, due to its low order of
convergence, to achieve the accuracy, a large number of function evaluations are required
at randomly sampled integration points, and the number grows rapidly as dimension d
increases (due to the rapid growth of variance). Below, we compare the performance of the
MDI-SG (with parameters r = 3, q = 10, m = 10, s = 1) and classical MC method. In the
test, when d ≥ 10, we used the iteration step length m > 1 to iterate faster until d− km ≤ m
to reach stage 2 of the iteration. We refer the reader to Section 5.2 for a detailed analysis.

Test 4. Let Ω = [−1, 1]d and choose the following integrands:

f (x) =
d

∏
i=0

1
0.92 + (xi − 0.6)2 , f̂ (x) =

1√
2π

exp
(
−1

2
|x|2

)
. (35)

We used relative error as a criterion for comparison, that is, we determined a required
(minimum) number of random sampling points for the MC method so that it produced a
relative error comparable to that of the MDI-SG method. The computed results for Id(f)
and Id(f̂) are given in Tables 7 and 8, respectively.

From Tables 7 and 8, we clearly see that there was a significant difference in the CPU
time of these two methods for computing Id(f) and Id(f̂). When d > 30, the classical
MC method failed to produce a computed result with a relative error of order 10−5. As
explained in [20], the MC method requires more than 1010 randomly sampled integration
points and then needs to independently compute their function values, which is a tall order
on a regular workstation.

Table 7. CPU times of the MDI-SG and MC tests with comparable relative errors for approximating
Id(f).

MC MDI-SG

Dimension
(d)

Relative
Error

CPU Time(s) Relative
Error

CPU Time(s)

5 1.3653× 10−5 62.1586394 1.3653× 10−5 0.0938295
10 2.0938× 10−5 514.1493073 2.0938× 10−5 0.1945813
20 4.2683× 10−5 1851.0461899 4.1876× 10−5 0.4204564
30 6.2814× 10−5 15346.222011 6.2814× 10−5 0.7692118
35 7.3283× 10−5 failed 7.3283× 10−5 0.9785784
40 8.3752× 10−5 8.3752× 10−5 1.2452577
60 1.2562× 10−4 1.2562× 10−4 2.5959174
80 1.6750× 10−4 1.6750× 10−4 4.9092032
100 2.1235× 10−4 2.1235× 10−4 8.1920274

Mathematics 2023, 11, 4191 16 of 26

Table 8. CPU times of the MDI-SG and MC tests with comparable relative errors for approximat-
ing Id(f̂).

MC MDI-SG

Dimension
(d)

Relative
Error

CPU Time(s) Relative
Error

CPU Time(s)

5 9.4279× 10−7 85.2726354 9.4279× 10−7 0.0811157
10 1.6855× 10−6 978.1462121 1.6855× 10−6 0.295855
20 3.3711× 10−6 2038.138555 3.3711× 10−6 6.3939110
30 5.0567× 10−6 16872.143255 5.0567× 10−6 29.5098187
35 5.8995× 10−6 failed 5.8995× 10−6 62.0270714
40 6.7423× 10−6 6.7423× 10−6 106.1616486
80 1.3484× 10−5 1.3484× 10−5 1893.8402620
100 1.7825× 10−5 1.7825× 10−5 3077.1890005

Next, we come to address a natural question: how high a dimension d can be handled
by the MDI-SG method. Obviously, the answer is computer-dependent, and the result
given below was obtained using the workstation at our disposal.

Test 5. Let Ω = [−1, 1]d and consider the following integrands:

f (x) =
1
2d exp

(d

∑
i=1

(−1)i+1xi

)
, f̂ (x) =

d

∏
i=0

1
0.92 + (xi − 0.6)2 . (36)

We then computed Id(f) and Id(f̂) using the MDI-SG algorithm for an increasing
sequence of d up to 1000 with parameters r = 3, q = 10, m = 10, s = 1. The computed
results are shown in Table 9. We stopped the computation at d = 1000 since it was already
quite high and used q = 10, m = 10, s = 1 to minimize the computation in each iteration.
This test demonstrates the promise and capability of the MDI-SG algorithm for efficiently
computing high-dimensional integrals. When computing the integral of a 1000-dimensional
function using the SG method, the SG sum contained 5.6× 10601 function evaluations,
but the MDI-SG algorithm did not compute them one by one. Instead, the symbolic
functions were efficiently degenerated through dimension iterations by reusing/sharing
many calculations. It should be noted that the MDI-SG algorithm uses of a lot of computer
memory when computing high-dimensional integrals.

Table 9. Computed results for Id(f) and Id(f̂) from the MDI-SG algorithm.

Id(f) Id(f̂)

Dimension
(d)

Approximate
Total Nodes

Relative
Error

CPU
Time(s)

Relative
Error

CPU
Time(s)

10 1.0411× 106 1.4725× 10−6 0.1541 2.0938× 10−5 0.1945
100 1.4971× 1060 1.5125× 10−5 80.1522 2.1235× 10−4 8.1920
300 3.3561× 10180 4.5377× 10−5 348.6000 6.3714× 10−4 52.0221
500 7.5230× 10300 7.7786× 10−5 1257.3354 1.0621× 10−3 219.8689
700 1.6767× 10421 1.0890× 10−4 3827.5210 1.4869× 10−3 574.9161
900 3.7524× 10541 1.4001× 10−4 9209.119 1.9117× 10−3 1201.65

1000 5.6136× 10601 1.5557× 10−4 13225.14 2.3248× 10−3 1660.84

5. Influence of Parameters

There are four parameters in the d-dimensional MDI-SG algorithm; they are r, m, s, and
q, respectively, where r ∈ {1, 2, 3, 4} represents the choice of one-dimensional numerical
quadrature rule, namely, the (composite) trapezoidal rule (r = 1), Clenshaw-Curtis rule
(r = 2), Gauss-Patterson rule (r = 3), and Gauss-Legendre rule (r = 4). The parameter m
stands for the multidimensional iteration step size in the first stage of the algorithm so
the dimension of the integration domain is reduced by m in each iteration. In practice,
1 ≤ m ≤ q, and it is preferred to be close to q. In this section, we shall evaluate the

Mathematics 2023, 11, 4191 17 of 26

performance of the MDI-SG algorithm when m < q, m = q, m > q. It should be noted
that after k := [d

m] iterations, the algorithm enters its second stage and the iteration step
size is changed to s. Because after the first stage the remaining dimension d− km is small,
s ∈ {1, 2, 3}. It should be noted that after k1 := [d−km

s] iterations, the residual dimension
satisfies d− km− k1s ≤ s. Then, in case s = 2 or 3, one has two options to complete the
algorithm. One either just continues the dimension reduction by calling 3d-MDI-SG or
2d-MDI-SG as explained in the definition of Algorithm 3 or computes the remaining two-
or three-dimensional integral directly. The effect of these two choices will be tested in this
section. Finally, the parameter q represents the precision level of the sparse grid method.
Obviously, the larger q is, the higher the accuracy of the computed results. The trade-off
comprises more integration points being used, and hence, more cost. In this section, we
test the impact of the q value on the MDI-SG algorithm.

5.1. Influence of Parameter r

We first examined the impact of one-dimensional quadrature rules, which are indicated
by r = 1, 2, 3, 4, in the MDI-SG algorithm.

Test 6. Let Ω = [−1, 1]d and choose the integrand f as

f (x) = exp
(d

∑
i=1

(−1)i+1xi

)
, f̂ (x) =

d

∏
i=0

1
0.92 + (xi − 0.6)2 . (37)

Below, we compare the performance of the MDI-SG algorithm with different r in
computing Id(f) and Id(f̂) with the accuracy level q = 10 and step size m = 10.

Figure 5a shows the computed results of I(f) from the MDI-SG algorithm. We ob-
served that the choice of one-dimensional quadrature rules had a significant impact on
the accuracy and efficiency of the MDI-SG algorithm. The trapezoidal rule (r = 1) had the
lowest precision and used the most integration points, the Clenshaw-Curtis rule (r = 2)
was the second lowest, and the Gauss-Patterson (r = 3) and Gauss-Legendre rule (r = 4)
had the highest precision. Both the Clenshaw-Curtis and Gauss-Patterson rule use the
nested grids, that is, the integration points of the (q + 1)th level contain those of the qth
level. Although they used the same number of integration points, the Gauss-Patterson rule
was more efficient than the Clenshaw-Curtis rule. Moreover, the Gauss-Patterson rule was
more efficient than the Gauss-Legendre rule (r = 4), which used the most CPU time and
produced the most accurate solution. This comparison suggests that the Gauss-Patterson
rule is the superior among these four rules when they are used as the building blocks in the
MDI-SG algorithm for high-dimensional integration.

10 20 30 40 50 60 70 80 90 100

Dimension (d)

0

50

100

150

200

250

300

350

400

C
P

U
 t
im

e
 (

s
)

Trapezoidal rule (r=1)

Clenshaw-Curtis rule (r=2)

Gauss-Patterson rule (r=3)

Gauss-Legendre rule (r=4)

(a)

10 20 30 40 50 60 70 80 90 100

Dimension (d)

0

2

4

6

8

10

12

14

16

18

C
P

U
 t

im
e

 (
s
)

Trapezoidal rule (r=1)

Clenshaw-Curtis rule (r=2)

Gauss-Patterson rule (r=3)

Gauss-Legendre rule (r=4)

(b)

Figure 5. Performance comparison of the MDI-SG algorithm with q = 10, m = 10, s = 1, and
r = 1, 2, 3, 4. (a) Approximate Id(f). (b) Approximate Id(f̂).

Mathematics 2023, 11, 4191 18 of 26

Figure 5b shows the computational results of Id(f̂) from the MDI-SG algorithm. Sim-
ilarly, the choice of one-dimensional quadrature rules had a significant impact on the
accuracy and efficiency of the MDI-SG algorithm. Because the integrand f̂ (x) is simple,
the MDI-SG algorithm with all four 1-d quadrature rules computed this integral very fast.
Again, the trapezoidal rule was least accurate and the other three rules all performed
very well; however, a closer look shows that the Gauss-Patterson rule was again the
best performer.

5.2. Influence of Parameter m

From the Tables 5 and 6 and Figures 6 and 7, we can observe that when m = 1 is
fixed, as the dimension d increased, the number of iterations of the MDI-SG algorithm also
increased, and the computational efficiency decreased rapidly. In practice, the step size m
of the MDI-SG algorithm in the first stage iteration should not be too large or too small.
One strategy is to use variable step sizes. After selecting an appropriate initial step size m,
this can be decreased during the dimension iteration. The next test presents a performance
comparison of the MDI-SG algorithm for m < q, m = q, m > q.

Test 7. Let Ω = [−1, 1]d, f and f̂ be the same as in (35).
We computed these integrals using the MDI-SG algorithm with s = 1, r = 3 (Gauss-

Patterson rule), and q = 10.

10 20 30 40 50 60 70 80 90 100

Dimension (d)

0

5

10

15

20

25

30

C
P

U
 t

im
e

 (
s
)

 m=5

m=10

m=15

(a)

0 5 10 15 20 25 30 35

Parameter(m)

-12

-10

-8

-6

-4

-2

0

lo
g

 (
R

e
la

ti
v
e

 e
rr

o
r)

(b)

Figure 6. (a) Efficiency comparison of the MDI-SG algorithm with q = 10, r = 3, s = 1 and
m = 5, 10, 15 for approximating Id(f). (b) Accuracy comparison of the MDI-SG algorithm with
q = 10, , d = 100, r = 3, s = 1 and different parameters m for approximating I100(f).

Figure 6 presents the computed results of integral I(f) in Test 7 from the MDI-SG
algorithm. It is easy to see that the accuracy and efficiency of the MDI-SG algorithm with
different m were different; this is because the step size m affects the number of iterations
in the first stage. It shows that the larger step size m, the smaller the number of iterations
and the number of symbolic functions that need to be saved, and the less CPU time used;
however, this is at the expense of decreasing the accuracy and a higher truncation error. On
the other hand, the smaller step size m, the more accurate the computed results, but at the
expense of CPU time. To explain this observation, we notice that when the step size m was
large, each iteration reduced more dimensions, and the number of symbolic functions that
needed to be saved was less; however, the truncation error generated by the system was
larger, although the CPU time used was small. The increase in the system truncation error
was due to the augmentation of the iteration step size. This was because, when the iteration
step size became large while keeping q fixed, the shared computation in evaluating the
sparse grid summation deceased, consequently causing the integration points to become
overly sparse. When the step size was small, however, more symbolic functions needed to

Mathematics 2023, 11, 4191 19 of 26

be saved. This was because each iteration reduced a small number of dimensions, and the
error of computed result was smaller, but the CPU time used was larger. We also observed
that the MDI-SG algorithm with step size m ≈ q achieved a good balance between CPU
time and accuracy.

Figure 7 shows the computed results of Id(f̂) in Test 7 for the MDI-SG algorithm. As
expected, choosing different parameters m had a significant impact on the accuracy and
efficiency of the MDI-SG algorithm. Since function evaluation of the integrand f̂ (x) was
more complicated, the influence of different parameters m on the MDI-SG algorithm was
dramatic. Again, the MDI-SG algorithm with step size m ≈ q struck a balance between
CPU time and accuracy.

10 20 30 40 50 60 70 80 90 100

Dimension (d)

0

2000

4000

6000

8000

10000

12000

14000

C
P

U
 t

im
e

 (
s
)

m=5

m=10

m=15

(a)

0 5 10 15 20 25 30 35

Parameter (m)

-16

-14

-12

-10

-8

-6

-4

-2

lo
g

 (
R

e
la

ti
v
e

 e
rr

o
r)

(b)

Figure 7. (a) Efficiency comparison of the MDI-SG algorithm with q = 10, r = 3, s = 1 and
m = 5, 10, 15 for approximating Id(f̂). (b) Accuracy comparison of the MDI-SG algorithm with
q = 10, , d = 100, r = 3, s = 1 and different parameters m for approximating I100(f̂).

5.3. Influence of the Parameter s

In this subsection, we tested the impact of the step size s used in the second stage of
the MDI-SG algorithm. Recall that the step size m ≈ q works well in the first stage. After
k := [d

m] iterations, the dimension of the integration domain was reduced to d− km, which
is relatively small; hence, s should be small. In practice, we have 1 ≤ s ≤ 3. The goal
of the next test was to provide a performance comparison of the MDI-SG algorithm with
s = 1, 2, 3.

Test 8. Let Ω = [−1, 1]d, and choose the integrand f as

f (x) =
d

∏
i=0

1
0.92 + (xi − 0.6)2 . (38)

We computed this integral I(f) using the MDI-SG algorithm with m = 10, r = 3
(Gauss-Patterson rule), and q = 10. Figure 8 displays the computed results. We observed
that the same accuracy was achieved in all cases s = 1, 2, 3, which was expected. Moreover,
the choice of s had little effect on the efficiency of the algorithm. An explanation of this
observation is that, because d− km became small after the first stage iterations, the number
of the second stage iterations was small, and the special way of performing function
evaluations in the MDI-SG algorithm was not sensitive to the small variations in the choice
of s = 1, 2, 3.

Mathematics 2023, 11, 4191 20 of 26

10 20 30 40 50 60 70 80 90 100

Dimension (d)

0

1

2

3

4

5

6

7

8

9

C
P

U
 t
im

e
 (

s
)

s=1

s=2

s=3

10 20 30 40 50 60 70 80 90 100

Dimension (d)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

R
e

la
ti
v
e

 e
rr

o
r

10
-4

s=1

s=2

s=3

Figure 8. Efficiency comparison of the MDI-SG algorithm with r = 3 and s = 1, 2, 3.

5.4. Influence of the Parameter q or N

Finally, we examine the impact of the accuracy level q on the MDI-SG algorithm.
Recall that the parameter q in the SG method is related to the number of integration
points N in one coordinate direction on the boundary. It is easy to check that for the
trapezoidal (r = 1) and Clenshaw-Curtis (r = 2) quadrature rules, q = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
correspond to N = 1, 3, 5, 9, 9, 17, 17, 17, 17, 33, for the Gauss-Patterson quadrature rule
(r = 3), q = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 correspond to N = 1, 3, 3, 7, 7, 7, 15, 15, 15, 15, and for the
Gauss-Legendre quadrature rule (r = 4), q = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14 correspond to
N = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14. Therefore, we only needed to examine the impact of the
parameter N on the MDI-SG algorithm. To the end, we consider the case m = 1, s = 1, and
r = 4 (Gauss-Legendre rule) in the next test.

Test 8. Let Ω = [−1, 1]d and choose the following integrands:

f (x) = exp
(d

∑
i=1

(−1)i+1xi

)
, f̂ (x) = cos

(
2π +

d

∑
i=1

xi

)
, f̃ (x) =

d

∏
i=0

1
0.92 + (xi − 0.6)2 .

Tables 10–12 present the computed results for d = 5, 10 and N = 4, 6, 8, 10, 12, 14,
respectively. We observed that the quality of approximations also depends on the behavior
of the integrand. For very oscillatory and rapidly growing functions, more integration
points must be used to achieve good accuracy.

Table 10. Performance comparison of the MDI-SG algorithm with q, N = 4, 6, 8, 10, 12, 14 for comput-
ing Id(f).

q(N)
d = 5 d = 10

Approximate
Total Nodes

Relative
Error

CPU
Time (s)

Approximate
Total Nodes

Relative
Error

CPU
Time (s)

4 (4) 241 3.8402× 10−3 0.1260 1581 5.7516× 10−2 0.3185
6 (6) 2203 1.6039× 10−5 0.1608 40405 2.3524× 10−3 0.4546
8 (8) 13073 1.7195× 10−8 0.2127 581385 3.6774× 10−5 0.6056

10 (10) 58923 6.4718× 10−12 0.2753 5778965 2.2885× 10−7 0.7479
12 (12) 218193 1.8475× 10−12 0.3402 44097173 2.2746× 10−9 1.0236
14 (14) 695083 8.0013× 10−12 0.4421 112613833 3.8894× 10−11 1.2377

Mathematics 2023, 11, 4191 21 of 26

Table 11. Performance comparison of the MDI-SG algorithm with q, N = 4, 6, 8, 10, 12, 14 for comput-
ing Id(f̂).

q(N)
d = 5 d = 10

Approximate
Total Nodes

Relative
Error

CPU
Time (s)

Approximate
Total Nodes

Relative
Error

CPU
Time (s)

4 (4) 241 1.4290× 10−2 0.1664 1581 8.1129× 10−1 0.3174
6 (6) 2203 6.1319× 10−5 0.2159 40405 3.6823× 10−2 0.4457
8 (8) 13073 6.6347× 10−8 0.2526 581385 5.8931× 10−4 0.5571

10 (10) 58923 2.5247× 10−11 0.3305 5778965 3.8749× 10−6 0.6717
12 (12) 218193 1.7163× 10−12 0.3965 44097173 2.2490× 10−8 0.8843
14 (14) 695083 8.2889× 10−12 0.5277 112613833 8.7992× 10−10 1.1182

Table 12. Performance comparison of the MDI-SG algorithm with q, N = 4, 6, 8, 10, 12, 14 for comput-
ing Id(f̃).

q(N)
d = 5 d = 10

Approximate
Total Nodes

Relative
Error

CPU
Time (s)

Approximate
Total Nodes

Relative
Error

CPU
Time (s)

4 (4) 241 6.1894× 10−4 0.1275 1581 1.5564× 10−2 0.1657
6 (6) 2203 1.9354× 10−3 0.1579 40405 1.0163× 10−2 0.2530
8 (8) 13073 1.5488× 10−4 0.1755 581385 2.2076× 10−3 0.3086

10 (10) 58923 1.7878× 10−6 0.1963 5778965 1.4304× 10−4 0.3889
12 (12) 218193 7.0609× 10−7 0.2189 44097173 9.3339× 10−6 0.4493
14 (14) 695083 1.7194× 10−8 0.2459 112613833 2.4671× 10−7 0.4864

6. Computational Complexity
6.1. The Relationship between the CPU Time and N

In this subsection, we examine the relationship between the CPU time and parameter
N using the regression technique based on the test data.

Test 9. Let Ω, f , f̃ , and f̃ be the same as in Test 8.
Figures 9 and 10 show the CPU time as a function of N obtained by the least square

method and the fitting functions are given in Table 13. All the results indicate that the CPU
time grew at most in the polynomial order O(Nb)(b ≤ 2).

4 6 8 10 12 14

N

0

0.1

0.2

0.3

0.4

0.5

0.6

C
P

U
 t

im
e

Test data

Fitting function (0.02913)*N

Fitting function (0.02068)*N
1.143

Fitting function (0.002468)*N
2

4 6 8 10 12 14

N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
P

U
 t

im
e

Test data

Fitting function (0.03495)*N

Fitting function (0.03176)*N
1.04

Fitting function (0.002944)*N
2

4 6 8 10 12 14

N

0.05

0.1

0.15

0.2

0.25

0.3

C
P

U
 t
im

e

Test data

Fitting function (0.06365)*N
0.5

Fitting function (0.06092)*N
0.5193

Fitting function (0.01959)*N

Figure 9. The relationship between the CPU time and parameter N when d = 5, r = 3, m = 1 for
computing Id(f) (left), Id(f̂) (middle), and Id(f̃) (right).

Mathematics 2023, 11, 4191 22 of 26

4 6 8 10 12 14

N

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C
P

U
 t

im
e

Test data

Fitting function (0.08262)*N

Fitting function (0.05188)*N
1.195

Fitting function (0.007019)*N
2

4 6 8 10 12 14

N

0

0.5

1

1.5

C
P

U
 t
im

e

Test data

Fitting function (0.07443)*N

Fitting function (0.05843)*N
1.101

Fitting function (0.006289)*N
2

4 6 8 10 12 14

N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
P

U
 t

im
e

Test data

Fitting function (0.0373)*N

Fitting function (0.05587)*N
0.83

Fitting function (0.01093)*N
1.5

Figure 10. The relationship between the CPU time and parameter N when d = 10, r = 3, m = 1 for
computing Id(f) (left), Id(f̂) (middle), and Id(f̃) (right).

Table 13. The relationship between the CPU time and parameter N.

Fitting Function h(N) = a ∗ Nb

Integrand d a b R-Square a b R-Square a b R-Square

f (x) 5 0.0291 1 0.9683 0.0206 1.14 0.9790 0.0024 2 0.7361
f̂ (x) 5 0.0349 1 0.9564 0.0317 1.04 0.9574 0.0029 2 0.6028
f̃ (x) 5 0.0636 1

2 0.9877 0.0609 0.52 0.9889 0.0195 1 0.3992
f (x) 10 0.0826 1 0.9692 0.0518 1.19 0.9876 0.0070 2 0.7866
f̂ (x) 10 0.0744 1 0.9700 0.0584 1.10 0.9758 0.0062 2 0.6905
f̃ (x) 10 0.0373 1 0.9630 0.0558 0.83 0.9924 0.0109 3

2 0.6287

6.2. The Relationship between the CPU Time and the Dimension d

Recall that the computational complexity of the sparse grid method is of the order
O(N · (log N)d−1) for computing Id(f), which grew exponentially in d with base log N.
The numerical tests presented above overwhelmingly and consistently indicate that the
MDI-SG algorithm has hidden capability to overcome the curse of dimensionality, which
hampers the sparse grid method. The goal of this subsection is to find out the computational
complexity of the MDI-SG algorithm (in terms of CPU time as a function of d) using the
regression technique based on numerical test data.

Test 10. Let Ω = [0, 1]d and consider the following five integrands:

f1(x) = exp
(d

∑
i=1

(−1)i+1xi

)
, f2(x) =

d

∏
i=0

1
0.92 + (xi − 0.6)2 ,

f3(x) =
1√
2π

exp
(
−1

2
|x|2

)
, f4(x) = cos

(
2π +

d

∑
i=1

xi

)
,

f5(x) =
1
2d exp

(d

∑
i=1

(−1)i+1xi

)
.

Figure 11 displays the CPU time as functions of d obtained by the least square re-
gression method, whose analytical expressions are given in Table 14. We note that the
parameters of the MDI-SG algorithm only affect the coefficients of the fitting functions, but
not their orders in d.

Mathematics 2023, 11, 4191 23 of 26

0 20 40 60 80 100

Dimension (d)

0

2

4

6

8

10

12

(C
P

U
 t

im
e

)
/

N

Test data

Fitting function (1.092e-05)*d3

0 20 40 60 80 100

Dimension (d)

0

1

2

3

4

5

6

7

(C
P

U
 t

im
e

)
/

N

Test data

Fitting function (6.531e-06)*d3

0 20 40 60 80 100

Dimension (d)

0

1

2

3

4

5

6

(C
P

U
 t

im
e

)
/

N

Test data

Fitting function (8.076e-05)*d2.4

0 20 40 60 80 100

Dimension (d)

0

5

10

15

20

25

30

35

40

(C
P

U
 t

im
e

)
/

N

Test data

Fitting function (3.461e-05)*d3

0 20 40 60 80 100

Dimension (d)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(C
P

U
 t

im
e

)
/

N

Test data

Fitting function 0.00382*d1.1

0 20 40 60 80 100

Dimension (d)

0

0.1

0.2

0.3

0.4

0.5

0.6

(C
P

U
 t

im
e

)
/

N

Test data

Fitting function (0.003432)*d1.1

0 20 40 60 80 100

Dimension (d)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(C
P

u
 t

im
e

)
/

N

Test data

Fitting function (7.152e-05)*d2.2

0 200 400 600 800 1000

Dimension (d)

0

20

40

60

80

100

120

(C
P

U
 t

im
e

)
/

N

Test data

Fitting function (1.106e-07)*d3

0 20 40 60 80 100

Dimension (d)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(C
P

U
 t
im

e
)

/
N

Test data

Fitting function 0.0004145*d1.47

0 20 40 60 80 100

Dimension (d)

0

0.1

0.2

0.3

0.4

0.5

0.6

(C
P

U
 t
im

e
)

/
N

Test data

Fitting function (5.681e-05)*d2

0 20 40 60 80 100

Dimension (d)

0

0.1

0.2

0.3

0.4

0.5

0.6

(C
P

U
 t
im

e
)

/
N

Test data

Fitting function (5.677e-05)*d2

0 20 40 60 80 100

Dimension (d)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(C
P

U
 t
im

e
)

/
N

Test data

Fitting function 0.00016*d2

Figure 11. Cont.

Mathematics 2023, 11, 4191 24 of 26

0 20 40 60 80 100

Dimension (d)

0

100

200

300

400

500

600

700

800

900

(C
P

U
 t
im

e
)

/
N

Test data

Fitting function (8.312e-08)*d5

0 20 40 60 80 100

Dimension (d)

0

50

100

150

200

250

(C
P

U
 t
im

e
)

/
N

Test data

Fitting function 0.0008441*d2.7

0 20 40 60 80 100

Dimension (d)

0

10

20

30

40

50

60

70

80

(C
P

U
 t
im

e
)

/
N

Test data

Fitting function 0.0003023*d2.8

0 20 40 60 80 100

Dimension (d)

0

5

10

15

20

25

30

35

40

45

(C
P

U
 t
im

e
)

/
N

Test data

Fitting function (4.053e-05)*d3

0 200 400 600 800 1000

Dimension (d)

0

100

200

300

400

500

600

700

800

900

(C
P

U
 t
im

e
)

/
N

Test data

Fitting function (8.461e-07)*d3

Figure 11. The relationship between the CPU time and dimension d.

Table 14. The relationship between CPU time as a function of the dimension d.

Integrand r m s q(N) Fitting Function R-Square

f1 1 10 1 10(33) g1 = (1.092e− 05) ∗ Nd3 0.9995
2 10 1 10(33) g2 = (6.531e− 06) ∗ Nd3 0.9977
3 10 1 10(15) g3 = (8.076e− 05) ∗ Nd2.4 0.9946
4 10 1 10(10) g4 = (3.461e− 05) ∗ Nd3 0.9892

f2 1 10 1 10(33) g5 = 0.003820 ∗ Nd1.1 0.9985
2 10 1 10(33) g6 = 0.003432 ∗ Nd1.1 0.9986
3 5 1 10(15) g6 = (7.152e− 05) ∗ Nd2.2 0.9983
3 10 1 10(15) g9 = (1.106e− 07) ∗ Nd3 0.9998
3 15 1 10(15) g7 = 0.0004145 ∗ Nd1.47 0.9955
3 15 2 10(15) g7 = (5.681e− 05) ∗ Nd2 0.9961
3 15 3 10(15) g7 = (5.677e− 05) ∗ Nd2 0.9962
4 10 1 10(10) g8 = 0.00016 ∗ Nd2 0.9965

f3 3 5 1 10(15) g11 = (8.312e− 08) ∗ Nd3 0.9977
3 10 1 10(15) g12 = 0.0008441 ∗ Nd2.7 0.9844
3 15 1 10(15) g13 = 0.0003023 ∗ Nd2.8 0.9997

f4 3 10 1 10(15) g18 = (4.053e− 05) ∗ Nd3 0.9903

f5 3 10 1 10(15) g19 = (8.461e− 07) ∗ Nd3 0.9958

We also quantitatively characterized the performance of the fitted curve by the R-

square in Matlab, which is defined as R-square = 1− ∑n
i (yi−ŷi)

2

∑n
i (yi−y)2 ; where yi represents a test

data output, ŷi refers to the predicted value, and y indicates the mean value of yi. Table 14
also shows that the R-square of all fitting functions is very close to 1, which indicates that
the fitting functions are quite accurate. These results suggest that the CPU time grows at
most cubically in d. Combining the results of Test 9 in Section 6.1, we conclude that the

Mathematics 2023, 11, 4191 25 of 26

CPU time required by the proposed MDI-SG algorithm grows at most in the polynomial
order O(d3Nb)(b ≤ 2).

7. Conclusions

This paper presents an efficient and fast implementation algorithm (or solver), called
the MDI-SG algorithm, for high-dimensional numerical integration using the sparse grid
method. It is based on combining the idea of dimension iteration/reduction combined
with the idea of computing the function evaluations at all integration points in cluster
so many computations can be reused. It was shown numerically that the computational
complexity (in terms of the CPU time) of the MDI-SG algorithm grows at most cubically
in the dimension d, and overall in the order O(d3Nb)(b ≤ 2) , where N denotes the
maximum number of integration points in each coordinate direction. This shows that
the MDI-SG algorithm could effectively circumvent the curse of dimensionality in high-
dimensional numerical integration; hence, this shows that sparse grid methods are not only
competitive but can excel in the job. Extensive numerical tests were conducted to examine
the performance of the MDI-SG algorithm and to carry out performance comparisons
with the standard sparse grid method and with the Monte Carlo (MC) method. It was
shown that the MDI-SG algorithm (regardless of the choice of the 1-d base sparse grid
quadrature rules) is faster than the MC method in low and medium dimensions (i.e.,
d . 100), much faster in very high dimensions (i.e., d ≈ 1000), and succeeds even when the
MC method fails. An immediate application of the proposed MDI-SG algorithm is to solve
high-dimensional linear PDEs based on the integral equation formulation, which will be
reported in a forthcoming work.

Author Contributions: Conceptualization, X.F.; methodology, H.Z. and X.F.; code and simulation.
H.Z.; writing—original draft preparation, H.Z.; writing—revision and editing, X.F. All authors have
read and agreed to the published version of the manuscript.

Funding: The work of X.F. was partially supported by the NSF grants: DMS-2012414 and DMS-
2309626.

Data Availability Statement: All datasets generated during the current study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Griebel, M.; Holtz, M. Dimension-wise integration of high-dimensional functions with applications to finance. J. Complex. 2010,

26, 455–489. [CrossRef]
2. LaValle, S.M.; Moroney, K.J.; Hutchinson, S.A. Methods for numerical integration of high-dimensional posterior densities with

application to statistical image models. IEEE Trans. Image Process. 1997, 6, 1659–1672. [CrossRef] [PubMed]
3. Barraquand, J.; Martineau, D. Numerical valuation of high dimensional multivariate American securities. J. Financ. Quant. Anal.

1995, 30, 383–405. [CrossRef]
4. Quackenbush, J. Extracting biology from high-dimensional biological data. J. Exp. Biol. 2007, 210, 1507–1517. [CrossRef]

[PubMed]
5. Azevedo, J.D.S.; Oliveira, S.P. A numerical comparison between quasi-Monte Carlo and sparse grid stochastic collocation

methods. Commun. Comput. Phys. 2012, 12, 1051–1069. [CrossRef]
6. Gerstner, T.; Griebel, M. Numerical integration using sparse grids. Numer. Algorithms 1998, 18, 209–232. [CrossRef]
7. Bungartz, H.-J.; Griebel, M. Sparse grids. Acta Numer. 2014, 13, 147–269. [CrossRef]
8. Caflisch, R.E., Monte Carlo and quasi-Monte Carlo methods. Acta Numer. 1998, 7, 1–49. [CrossRef]
9. Ogata, Y. A Monte Carlo method for high dimensional integration. Numer. Math. 1989, 55, 137–157. [CrossRef]
10. Dick, J.; Kuo, F.Y.; Sloan, I.H. High-dimensional integration: The quasi-Monte Carlo way. Acta Numer. 2013, 22, 133–288.

[CrossRef]
11. Hickernell, F.J.; Müller-Gronbach, T.; Niu, B.; Ritter, K. Multi-level Monte Carlo algorithms for infinite-dimensional integration

on RN . J. Complexity 2010, 26, 229–254. [CrossRef]
12. Kuo, F.Y.; Schwab, C.; Sloan, I.H. Quasi-Monte Carlo methods for high-dimensional integration: The standard (weighted Hilbert

space) setting and beyond. ANZIAM J. 2011, 53, 1–37. [CrossRef]

http://doi.org/10.1016/j.jco.2010.06.001
http://dx.doi.org/10.1109/83.650119
http://www.ncbi.nlm.nih.gov/pubmed/18285236
http://dx.doi.org/10.2307/2331347
http://dx.doi.org/10.1242/jeb.004432
http://www.ncbi.nlm.nih.gov/pubmed/17449816
http://dx.doi.org/10.4208/cicp.260111.230911a
http://dx.doi.org/10.1023/A:1019129717644
http://dx.doi.org/10.1017/S0962492904000182
http://dx.doi.org/10.1017/S0962492900002804
http://dx.doi.org/10.1007/BF01406511
http://dx.doi.org/10.1017/S0962492913000044
http://dx.doi.org/10.1016/j.jco.2010.02.002
http://dx.doi.org/10.1017/S1446181112000077

Mathematics 2023, 11, 4191 26 of 26

13. Lu, J.; Darmofal, L. Higher-dimensional integration with Gaussian weight for applications in probabilistic design. SIAM J. Sci.
Comput. 2004, 26, 613–624. [CrossRef]

14. Wipf, A. High-Dimensional Integrals. In Statistical Approach to Quantum Field Theory; Springer Lecture Notes in Physics; Springer:
Berlin/Heidelberg, Germany, 2013; Volume 100, pp. 25–46.

15. E, W.; Yu, B. The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. Commun.
Math. Stat. 2018, 6, 1–12. [CrossRef]

16. Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A deep learning library for solving differential equations. SIAM Rev.
2021, 63, 208–228. [CrossRef]

17. Sirignano, J.; Spiliopoulos, K. DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 2018,
375, 1339–1364. [CrossRef]

18. Han, J.; Jentzen, A.E.W. Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. USA
2018, 115, 8505–8510. [CrossRef]

19. Xu, J. Finite neuron method and convergence analysis. Commun. Comput. Phys. 2020, 28, 1707–1745. [CrossRef]
20. Feng, X.; Zhong, H. A fast multilevel dimension iteration algorithm for high dimensional numerical integration. arXiv, 2022

arXiv:2210.13658.
21. Yang, X.; Wu, L.; Zhang, H. A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising

in viscoelasticity. Applied Math. Comput. 2023, 457, 128192. [CrossRef]
22. Burden, R.L.; Faires, J.D. Numerical Analysis, 10th ed.; Cengage Learning: Boston, MA, USA, 2015.
23. Smolyak, S.A. Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions; Russian Academy of Sciences:

Saint Petersburg, Russia, 1963; Volume 148, pp. 1042–1045.
24. Maruri-Aguilar, H.; Wynn, H. Sparse polynomial prediction. Stat. Pap. 2023, 64, 1233–1249. [CrossRef]
25. ; Deluzet, F.; Fubiani, G.; Garrigues, L.; Guillet, C.; Narski, J. Sparse grid reconstructions for Particle-In-Cell methods. ESAIM:

Math. Model. Numer. Anal. 2022, 56, 1809–1841.
[CrossRef]

26. Wu, J.; Zhang, D.; Jiang, C. On reliability analysis method through rotational sparse grid nodes. Mech. Sys. Signal Process. 2021,
147, 107106. [CrossRef]

27. Baszenki, G.; Delvos, F.-J. Multivariate Boolean Midpoint Rules, Numerical Integration IV; Birkhäuser, Basel, Switzerland, 1993;
pp. 1–11.

28. Paskov, S.H. Average case complexity of multivariate integration for smooth functions. J. Complex. 1993, 9, 291–312. [CrossRef]
29. Bonk, T. A new algorithm for multi-dimensional adaptive numerical quadrature. In Adaptive Methods—Algorithms, Theory and

Applications; Vieweg/Teubner Verlag: Wiesbaden, Germany, 1994; pp. 54–68.
30. Novak, E.; Ritter, K. The curse of dimension and a universal method for numerical integration. In Multivariate Approximation and

Splines; Birkhäuser: Basel, Switzerland, 1997; pp. 177–187.
31. Novak, E.; Ritter, K. High dimensional integration of smooth functions over cubes. Numer. Math. 1996, 75,79–97. [CrossRef]
32. Patterson, T.N.L. The optimum addition of points to quadrature formulae. Math. Comp. 1968, 22, 847–856. [CrossRef]
33. Novak, E.; Ritter, K. Simple Cubature Formulas for d-Dimensional Integrals with High Polynomial Exactness and Small Error; Report;

Institut für Mathematik, Universität Erlangen–Nürnberg: Nürnberg, Germany, 1997.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1137/S1064827503426863
http://dx.doi.org/10.1007/s40304-018-0127-z
http://dx.doi.org/10.1137/19M1274067
http://dx.doi.org/10.1016/j.jcp.2018.08.029
http://dx.doi.org/10.1073/pnas.1718942115
http://dx.doi.org/10.4208/cicp.OA-2020-0191
http://dx.doi.org/10.1016/j.amc.2023.128192
http://dx.doi.org/10.1007/s00362-023-01439-8
http://dx.doi.org/10.1051/m2an/2022055
http://dx.doi.org/10.1016/j.ymssp.2020.107106
http://dx.doi.org/10.1006/jcom.1993.1019
http://dx.doi.org/10.1007/s002110050231
http://dx.doi.org/10.1090/S0025-5718-68-99866-9

	Introduction
	Preliminaries
	The Sparse Grid Method
	Examples of Sparse Grid Methods

	The MDI-SG Algorithm
	Formulation of the MDI-SG Algorithm in Two Dimensions
	Formulation of the MDI-SG Algorithm in Three Dimensions
	Formulation of the MDI-SG Algorithm in Arbitrary d-Dimensions

	Numerical Performance Tests
	Two- and Three-Dimensional Tests
	High-Dimensional Tests

	Influence of Parameters
	Influence of Parameter r
	Influence of Parameter m
	Influence of the Parameter s
	Influence of the Parameter q or N

	Computational Complexity
	The Relationship between the CPU Time and N
	The Relationship between the CPU Time and the Dimension d

	Conclusions
	References

