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Abstract: This paper is concerned with the PDE (partial differential equation) and numerical analysis
of a modified one-dimensional intravascular stent model. It is proved that the modified model has
a unique weak solution by using the Galerkin method combined with a compactness argument. A
semi-discrete finite-element method and a fully discrete scheme using the Euler time-stepping have
been formulated for the PDE model. Optimal order error estimates in the energy norm are proved for
both schemes. Numerical results are presented, along with comparisons between different decoupling
strategies and time-stepping schemes. Lastly, extensions of the model and its PDE and numerical
analysis results to the two-dimensional case are also briefly discussed.
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1. Introduction

Coronary artery disease (CAD) is a condition where plaque builds up inside the coronary arter-
ies, which are the blood vessels that supply oxygen-rich blood to the heart muscle. As the plaque
accumulates, it can narrow or block the arteries, reducing blood flow to the heart and causing chest
pain or discomfort, shortness of breath, fatigue, and other symptoms. CAD can also lead to more
serious conditions, such as heart attack or heart failure. Treatments for CAD, including angioplasty,
vary depending on the severity and extent of the disease. In some cases, a stent may be placed during
angioplasty. There are two main types of stents: bare-metal stents and drug-eluting stents (DESs).
Bare-metal stents are made of metal and are effective at keeping the artery open, but they can some-
times cause re-narrowing of the artery, called restenosis. DESs are coated with medication that helps
prevent re-narrowing and improve long-term outcomes. In order to model the drug delivery from the
DES to and through the arterial walls, it is necessary to study the biological structures of the arteries.
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Figure 1. Sketch of arterial wall structure from [1].

There are three layers that comprise the arterial wall (see Figure 1), starting from the inside of the
wall: intima, media, and adventitia. A thin layer of endothelial cells, called the endothelium, lines
the inside of the intima. They are in contact with the blood and control the relaxation and contraction
of the artery, as well as prevent the smooth muscle cells in the media from proliferating. The media
is composed of smooth muscle cells, collagen, and elastic fibers that help to regulate blood pressure
and flow. The smooth muscle cells are the targets for the drug delivery. The adventitia is composed
of connective tissue that supports the artery. It is filled with tiny blood vessels called vasa vasorum,
which supplies blood to the adventitia and acts as a clearance mechanism for drugs released into the
artery wall.

Many multi-layer models have been proposed to study the pharmacokinetics in the arterial wall.
Among the one-dimensional models, we first mention the model proposed in [2], which consists of a
diffusion equation in the drug-coating region and a diffusion-advection-reaction equation in the arterial
wall region. The coupling is achieved by applying interface conditions. In [3], the authors further
took the intracellular concentration into account, along with extending an early model to include the
adventitia layer as well. In [4], the authors studied the 2-layer model from [3] and provided an analytic
solution in some special case. This two-layer model is the focus of this paper.

High-dimensional models have been studied as well. We refer the reader to [5–13] for more details.
Here, we focus our attention on the model proposed in [4] since it models the intracellular concentration
separately. The reader is also referred to [14] for a review of different models.

The remainder of this paper is organized as follows. In Section 2, we introduce the one-dimensional
model and state its weak formulation. In Section 3, we present a complete PDE analysis for the model,
which includes derivation of a priori energy estimates and the establishment of its well-posedness by
using the Galerkin method with a compactness argument. In Section 4, we present a complete finite-
element numerical analysis for the PDE (partial differential equation) model, followed by the numerical
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Figure 2. 1-d schematic diagram.

results given in Section 5. In Section 6, we first introduce a generalized two-dimensional model and
then sketch some PDE and numerical analysis results for the proposed model. Finally, the paper is
completed with a few concluding remarks given in Section 7.

2. Mathematical model and its weak formulation

In this section, we first introduce the one-dimensional drug-release model from [4] and then present
its weak formulation. We note that several geometric simplifications were adopted when establishing
this 1-d model. First, the endothelium is usually severely damaged after the stent insertion; it is there-
fore omitted. Second, the intima, when devoid of the endothelium, has a structure that is similar to the
media and will thus be absorbed into the media region in the model. Third, the adventitia is omitted
in the model since research shows that it does not have a large effect on the drug concentration in the
media region. See Figure 2 for a schematic diagram.

Let c, c1, and c2 denote, respectively, the concentrations of the drug in the stent coating, in the ex-
tracellular matrix, and in the smooth muscle cells. The stent concentration is governed by the diffusion
equation, the extracellular concentration by the diffusion-advection-reaction equation, and the intracel-
lular concentration by a linear Ordinary Differential Equation (ODE). A no-flux boundary condition is
imposed at the lumenal boundary (x = −l). The stent and wall concentrations are coupled through the
continuity of mass flux, as well as the Kedem-Katchalsky equation at the interface (x = 0). The system
is then non-dimensionalized. We refer the reader to [4] for a detailed explanation. However, we note
that the original model proposed in [4] imposes a boundedness condition on the solution, whose main
purpose is to help one to obtain an analytic solution, but this restriction may not be appropriate from
the PDE point of view and, more importantly, it is difficult to approximate numerically. Hence, we
chose to replace this boundedness condition by imposing a no-flux boundary condition on the adven-
titial boundary (x = 1), under the assumption that no drug escapes through the adventitial boundary.
We note that this is an idealized situation. It is also common to impose the homogeneous Dirichlet
boundary condition there, under the assumption that the drug concentration would be negligible at the
far end of the arterial wall. Between the two idealized situations, we chose the former, with the un-
derstanding that the analysis of the system would not be affected aside from having slightly different
solution spaces.

Specifically, let Ωs := (−l, 0) and Ωm := (0, 1); our one-dimensional drug-release model is given as
follows:

∂tc − δcxx = 0, x ∈ Ωs, t > 0, (2.1)
cx = 0, x = −l, t > 0, (2.2)
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cx + P̃c = P̃c1, x = 0, t > 0, (2.3)

c = 1, x ∈ Ω
s
, t = 0, (2.4)

φ∂tc1 − (c1)xx + Pe(c1)x + Dac1 =
Da

K
c2, x ∈ Ωm, t > 0, (2.5)

(c1)x − Pec1 = δcx, x = 0, t > 0, (2.6)
(c1)x = 0, x = 1, t > 0, (2.7)

c1 = 0, x ∈ Ω
m
, t = 0, (2.8)

(1 − φ)∂tc2 +
Da

K
c2 = Dac1, x ∈ Ωm, t > 0, (2.9)

c2 = 0, x ∈ Ω
m
, t = 0, (2.10)

where ∂t denotes the partial derivative in time t and the sub-index x represents the partial derivative in
the spatial variable x. The parameters δ, P̃, Pe,Da,K are positive real constants, while φ is a constant
real number between 0 and 1. Their specific values, as they appear in [4], are summarized in Appendix
A.1.

Following the standard derivations, we can obtain the following weak formulation for the above
coupled system.

Definition 2.1. (c, c1, c2) is called a weak solution for the system given by (2.1)–(2.10) if

c ∈ L∞(0,T ; L2(Ωs)) ∩ L2(0,T ; H1(Ωs)) ∩ H1(0,T ; H−1(Ωs)),
c1 ∈ L∞(0,T ; L2(Ωm)) ∩ L2(0,T ; H1(Ωm)) ∩ H1(0,T ; H−1(Ωm)),

and c2 ∈ H1(0,T ; L2(Ωm)) satisfy that c(·, 0) ≡ 1 and c1(·, 0) ≡ c2(·, 0) ≡ 0, and, for some T > 0, any
t ∈ (0,T ] and any (v,w) ∈ H1(Ωs) × H1(Ωm) such that

〈∂tc, v〉H−1(Ωs)×H1(Ωs) +A[c, v] = δP̃c1(0, ·)v(0, ·), (2.11)

φ〈∂tc1,w〉H−1(Ωm)×H1(Ωm) + B[c1,w] = δP̃c(0, ·)w(0, ·) +
Da

K
(c2,w)Ωm , (2.12)

(1 − φ)∂tc2 +
Da

K
c2 = Dac1, (2.13)

where (·, ·) denotes the L2-inner product on the respective domain, 〈·, ·〉 denotes the duality pairing, and

A[w, v] := δ(wx, vx)Ωs + δP̃w(0, ·)v(0, ·),

B[w, v] := Pe(wx, v)Ωm + Da(w, v)Ωm + (wx, vx)Ωm + (δP̃ + Pe)w(0, ·)v(0, ·)

with δ, P̃, Pe,Da,K being positive constant parameters and φ being a constant between 0 and 1.

For notation brevity, but without loss of clarity, throughout this paper, we may omit the explicit
domain dependence in spatial norms. For example, ‖·‖L2(Ωs) could be written as ‖·‖L2 .
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3. PDE analysis

The goals of this section are to prove the well-posedness for the coupled PDE system given by
(2.1)–(2.10) and establish some properties for the weak solution, including the boundedness property.
To this end, we first derive some needed a priori estimates for weak solutions. Then, we prove the
existence and uniqueness by using the Galerkin and energy methods.

3.1. A priori estimates

The main result of this subsection is summarized in the following theorem.

Theorem 3.1. Let (c, c1, c2) be a weak solution to the system given by (2.1)–(2.10) in the sense of
Definition 2.1. Then, the following holds:

‖c‖2L∞(0,T ;L2(Ωs)) + ‖c1‖
2
L∞(0,T ;L2(Ωm)) + ‖c2‖

2
L∞(0,T ;L2(Ωm)) (3.1)

+
2δ
γ
‖cx‖

2
L2(0,T ;L2(Ωs)) +

2
γ
‖c1x‖

2
L2(0,T ;L2(Ωm))

+
Pe

γ

(
‖c1(0, ·)‖2L2(0,T ) + ‖c1(1, ·)‖2L2(0,T )

)
≤ 3l2eMT ,

‖c(0, ·)‖2L2(0,T ) ≤
3γl2eMT

Pe
+

2l2

δP̃
, (3.2)

‖∂tc‖L2(0,T ;H−1(Ωs)) + ‖∂tc1‖L2(0,T ;H−1(Ωm)) + ‖∂tc2‖L2(0,T ;L2(Ωm)) (3.3)

≤ C
(
‖c‖L2(0,T ;H1(Ωs)) + ‖c1‖L2(0,T ;H1(Ωm)) + ‖c2‖L2(0,T ;L2(Ωm))

)
,

where C > 0 is a constant that is independent of (c1, c2, c).

Proof. Setting v := c and w := c1 in Definition 2.1, by Theorem A.3, Hölder’s inequality, and the
fundamental theorem of calculus, we get

1
2

d
dt
‖c‖2L2 + δ‖cx‖

2
L2 + δP̃c2(0, ·) ≤ δP̃

(
ε1c2(0, ·) +

1
4ε1

c2
1(0, ·)

)
∀ε1 > 0, (3.4)

φ

2
d
dt
‖c1‖

2
L2 + Da‖c1‖

2
L2 + ‖c1x‖

2
L2 +

Pe

2
c2

1(1, ·) +

(
δP̃ +

Pe

2

)
c2

1(0, ·)

≤ δP̃
(
ε2c2(0, ·) +

1
4ε2

c2
1(0, ·)

)
+
ε3Da

K
‖c2‖

2
L2 +

1
4ε3
‖c1‖

2
L2 ∀ε2, ε3 > 0, (3.5)

(1 − φ)
2

d
dt
‖c2‖

2
L2 +

Da

K
‖c2‖

2
L2 ≤ Daε4‖c1‖

2
L2 +

Da

4ε4
‖c2‖

2
L2 ∀ε4 > 0. (3.6)

In order to cancel out boundary terms on the right-hand side, we decided to choose ε1 = ε2 = 1
2 and

ε3 = ε4 = 1 and let γ := 1
2 min{φ, 1 − φ}. Combining (3.4) to (3.6) together, applying Lemma A.2 with

x(t) =
2
γ

(
δ‖cx‖

2
L2 + ‖c1x‖

2
L2 +

Pe

2

(
c2

1(1, ·) + c2
1(0, ·)

)
,
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y(t) = ‖c‖2L2 + ‖c1‖
2
L2 + ‖c2‖

2
L2 ,

z(t) ≡ 0, C(t) ≡
1 + Da

2γ
=: M,

and taking the supremum over [0, T ] on both sides yields

‖c‖2L∞(0,T ;L2) + ‖c1‖
2
L∞(0,T ;L2) + ‖c2‖

2
L∞(0,T ;L2) +

2δ
γ
‖cx‖

2
L2(0,T ;L2)

+
2
γ
‖c1x‖

2
L2(0,T ;L2) +

Pe

γ

(
‖c1(0, ·)‖2L2(0,T ) + ‖c1(1, ·)‖2L2(0,T )

)
≤ 3l2eMT ,

which proves (3.1).
Next, to recover the boundary term ‖c(0, ·)‖2L2(0,T ), notice that the above estimate, in particular, im-

plies that ‖c1(0, ·)‖2L2(0,T ) is controlled from the above. Therefore, setting ε1 = 1
2 and integrating (3.4)

over (0,T ) yields

‖c(0, ·)‖2L2(0,T ) ≤ ‖c1(0, ·)‖2L2(0,T ) + 2l2(δP̃)−1 ≤ 3γl2eMT P−1
e + 2l2(δP̃)−1,

which gives (3.2).
We have yet to estimate the functional norms ‖∂tc‖H−1(Ωs) and ‖∂tc1‖H−1(Ωm). It suffices to show that all

terms in the bilinear forms are bounded. By Lemma A.1, we immediately have the following estimate:

δP̃w(0, ·)v(0, ·) ≤ C‖w‖H1‖v‖H1 .

Notice that the constant C here depends on the spaces to which the functions w and v belong. If both
w, v ∈ H1(Ωs), then C = 2l−1 + 1 = O(l−1). If both w, v ∈ H1(Ωm), then C = 3 = O(1). If w ∈ H1(Ωs)
and v ∈ H1(Ωm), or vice versa, then C = (6l−1 + 3)1/2 = O(l−1/2), which is the only case that explicitly
appears in Definition 2.1. However, the first two cases appear implicitly within the bilinear forms
A[·, ·] and B[·, ·]. Consequently, by Hölder’s inequality, we get

A[w, v] ≤ δ‖wx‖L2‖vx‖L2 + δP̃(2l−1 + 1)‖w‖H1‖v‖H1

≤
(
δ + δP̃(2l−1 + 1)

)
‖w‖H1‖v‖H1 ,

B[w, v] ≤ ‖wx‖L2‖vx‖L2 + Da‖w‖L2‖v‖L2 + Pe‖wx‖L2‖v‖L2 + 3(δP̃ + Pe)‖w‖H1‖v‖H1

≤ (1 + 4Pe + 3δP̃)‖w‖H1‖v‖H1 .

Therefore,

‖∂tc‖L2(0,T ;H−1) + ‖∂tc1‖L2(0,T ;H−1) + ‖∂tc2‖L2(0,T ;H−1)

≤ C
(
‖c‖L2(0,T ;H1) + ‖c1‖L2(0,T ;H1) + ‖c2‖L2(0,T ;L2)

)
,

where C = C
(
l−1, δ, δP̃, Pe, φ

−1, (1−φ)−1,Da,K−1) with linear dependence on each argument. This then
verifies (3.3) and hence concludes the proof. �

Remark 3.1. The boundedness now becomes a property of the weak solution via the compact embed-
ding H1((x1, x2)) ↪→ L∞((x1, x2)) for any x1 < x2. This validates our modified model and the newly
imposed no-flux boundary condition.

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5634–5657.



5640

3.2. Well-posedness

Since the system given by (2.1)–(2.10) is linear, uniqueness would be an immediate corollary of a
priori estimates because, if there are two weak solutions, their difference must satisfy the conditions of
the same equations but take zero initial conditions, which, in turn, implies that the difference is zero.
Hence, we have the following theorem.

Theorem 3.2 (Uniqueness). There exists at most one weak solution (c, c1, c2) to the problem given by
(2.1)–(2.10) in the sense of Definition 2.1.

To prove the existence, we adopt the Galerkin method with a compactness argument. To setup
our Galerkin approximation, let T s := ∪N

j=1I s
j and T m := ∪N

j=1Im
j be uniform meshes on Ωs and Ωm

respectively. Let {ψs
j}

N+1
j=1 , {ψ

m
j }

N+1
j=1 be the standard linear finite element nodal basis functions on T s and

T m, respectively, and define

V s
h := span{ψs

j}
N+1
j=1 ⊂ H1(Ωs),

Vm
h := span{ψm

j }
N+1
j=1 ⊂ H1(Ωm),

where h = l/N in V s
h and h = 1/N in Vm

h . Here, we abuse the notation to give h multiple meanings for
the sake of notation brevity.

Definition 3.3. (ch, c1h, c2h) : [0, T ] → V s
h × Vm

h × Vm
h is called an approximate weak solution to the

system given by (2.1)–(2.10) if the following holds for any (vh,wh) ∈ V s
h × Vm

h :

〈∂tch, vh〉H−1(Ωs)×H1(Ωs) +A[ch, vh] = δP̃c1h(0, ·)vh(0, ·), (3.7)
φ〈∂tc1h,wh〉H−1(Ωm)×H1(Ωm) + B[c1h,wh] (3.8)

= δP̃ch(0, ·)wh(0, ·) +
Da

K
(c2h,wh)Ωm ,

(1 − φ)∂tc2h +
Da

K
c2h = Dac1h, (3.9)

with the initial conditions ch(·, 0) ≡ 1 and c1h(·, 0) ≡ c2h(·, 0) ≡ 0.

Lemma 3.4. For each h > 0, there exists a unique approximate weak solution (ch, c1h, c2h) in the sense
of Definition 3.3.

Proof. By the definition, ch, c1h, c2h can be written as follows:

ch(x, t) =

N+1∑
j=1

y0, j(t)ψs
j(x), c1h(x, t) =

N+1∑
j=1

y1, j(t)ψm
j (x), c2h(x, t) =

N+1∑
j=1

y2, j(t)ψm
j (x).

Then, the equations in Definition 3.3 can be rewritten as follows:

N+1∑
i=1

y′0,i(t)(ψ
s
i , ψ

s
j)Ωs + y0,i(t)A[ψs

i , ψ
s
j] = δP̃c1h(0, ·)ψs

j(0), (3.10)

φ

N+1∑
i=1

y′1,i(t)(ψ
m
i , ψ

m
j )Ωm + y1,i(t)B[ψm

i , ψ
m
j ] (3.11)
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= δP̃ch(0, ·)ψm
j (0) +

Da

K

N+1∑
i=1

y2,i(t)(ψm
i , ψ

m
j )Ωm ,

(1 − φ)y′2, j(t)ψ
m
j (x) +

Da

K
y2, j(t)ψm

j (x) = Day1, j(t)ψm
j (x) (3.12)

for each j = 1, · · · ,N + 1.
Equations (3.10) to (3.12) can be rewritten as the following ODE system:

D y′(t) = M y(t), y(0) =


~1
~0
~0

 , (3.13)

where

y(t) =


y0(t)
y1(t)
y2(t)

 , D =


Ψs

φΨm

(1 − φ)I

 ,

M =


−A

 ...
...

δP̃ · · ·

 0 · · · δP̃
...

...

 −B Da
K Ψs

0 DaI −
Da
K I


,

and
[Ψs]i j = (ψs

i , ψ
s
j)Ωs , [Ψm]i j = (ψm

i , ψ
m
j )Ωm , Ai j = A[ψs

i , ψ
s
j], Bi j = B[ψm

i , ψ
m
j ].

We note that, for j = 1, 2, · · · ,N + 1, the following holds:

y0, j(t) = ch(x j, t), y1, j(t) = c1h(x j, t), y2, j(t) = c2h(x j, t).

Hence, the existence of a unique approximate weak solution is equivalent to the existence of a unique
solution to the above ODE system. Since Ψs and Ψm are tri-diagonal and strictly diagonally dominant,
they are invertible. Then, y ′(t) = D−1 M y(t). Since D−1 M is a constant matrix, by Lemma A.4, the
ODE system has a unique solution. Thus, there exists a unique approximate weak solution (ch, c1h, c2h).

�

Theorem 3.5 (Existence). There exists a weak solution (c, c1, c2) to the problem given by (2.1)–(2.10)
in the sense of Definition 2.1.

Proof. We first notice that the approximate weak solution proved in Lemma 3.4 satisfies the conditions
of those estimates of Theorem 3.1. Since L2(0,T ; H1(Ωs)) is a reflexive Banach space, L∞(0,T ; L2(Ωs))
is a separable normed linear space, and the sequence {ch} is uniformly bounded in h, then there exists a
subsequence {ch j} that converges weakly and weak* in L∞(0,T ; L2(Ωs)) and L∞(0,T ; L2), respectively
(see Theorems A.5 to A.7), that is, there exists c ∈ L2(0,T ; H1(Ωs)) ∩ L∞(0,T ; L2(Ωs)) such that∫ T

0
〈 f , ch j〉dt →

∫ T

0
〈 f , c〉dt ∀ f ∈ L2(0,T ; H−1(Ωs)),
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0
〈ch j , g〉dt →

∫ T

0
〈c, g〉dt ∀ g ∈ L∞(0,T ; L2(Ωs)).

Moreover, since H1(0,T ; H−1(Ωs)) is a separable normed linear space and {c′h} is uniformly bounded
in h, there exists a subsequence of {ch j} (not relabeling here for notation brevity) such that it converges
in a weak* sense; namely, there exists ζ ∈ L2(0,T ; H−1(Ωs)) such that∫ T

0
〈∂tch j , g〉dt →

∫ T

0
〈ζ, g〉dt ∀ g ∈ L2(0,T ; H1(Ωs)),

We want to show that ζ is actually the weak time derivative of c. To this end, let η ∈ C∞0 (0,T ) and
vh ∈ V s

h; then, ∫ T

0
〈∂tch j , ηvh〉dt = −

∫ T

0
〈ch j , η

′vh〉dt → −
∫ T

0
〈c, η′vh〉dt as j→ ∞.

Therefore, ζ is the weak time-derivative of c by definition. Now, let η ∈ C∞0 (0,T ) and vh ∈ V s
h; by

Definition 3.3, we have

〈∂tch j , ηvh〉H−1(Ωs)×H1(Ωs) +A[ch j , ηvh] = δP̃c1h j(0, ·)ηvh(0, ·)

For each fixed η and vh, notice that A[·, ηvh] defines a bounded linear functional on the space to
which {ch j} belongs. Therefore, setting j→ ∞, and by weak convergence, we get∫ T

0
ηA[ch j , vh]dt =

∫ T

0
A[ch j , ηvh]dt →

∫ T

0
A[c, ηvh]dt =

∫ T

0
ηA[c, vh]dt.

Similarly,

δP̃
∫ T

0
ηch j(0, ·)vh(0, ·)dt → δP̃

∫ T

0
ηc(0, ·)vh(0, ·)dt as j→ ∞.

Since η ∈ C∞0 (0,T ) is arbitrary, then the above equations infer that

〈∂tc, vh〉(H−1×H1)(Ωs) +A[c, vh] = δP̃c1(0, ·)vh(0, ·) ∀ vh ∈ V s
h ,

which, with the denseness of V s
h in H1(Ωs), implies that

〈∂tc, v〉(H−1×H1)(Ωs) +A[c, v] = δP̃c1(0, ·)v(0, ·) ∀ v ∈ H1(Ωs).

Hence, (2.11) holds.
Using exactly the same argument we can show that c1 satisfies (2.12).
It remains to be shown that c2 satisfies (2.13). To this end, let η ∈ C∞0 (0,T ) and wh ∈ Vm

h ; then, it
follows that ∫ T

0
〈ηwh, c′2h〉dt +

∫ T

0

〈Da

K
c2h, ηwh

〉
dt =

∫ T

0
〈ηwh,Dac1h〉dt.

Using a previous derivation, we can show that∫ T

0
〈ηwh,Dac1h j〉dt →

∫ T

0
〈ηwh,Dac1〉dt as j→ ∞.
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In addition, since {c2h j} is uniformly (in h) bounded in L∞(0,T ; L2), which is a separable normed
linear space, and {c′2h j

} is uniformly bounded in L2(0,T ; L2), which is a reflexive Banach space, then
there exists a subsequence of {c2h j} (not relabeling for notation brevity) such that, as j→ ∞,

c2h j ⇀ c2 ∈ L∞(0,T ; L2(Ωm)), ∂tc2h j ⇀
∗ θ ∈ L2(0,T ; L2(Ωm)).

Again, with the help of integration by parts and the definition, we can show that θ = ∂tc2. Therefore,
as j→ ∞, ∫ T

0

〈Da

K
c2h j , ηwh

〉
dt →

∫ T

0

〈Da

K
c2, ηwh

〉
dt,∫ T

0
〈ηwh, ∂tc2h j〉dt →

∫ T

0
〈ηwh, ∂tc2〉dt.

Consequently, ∫ T

0
〈ηwh, ∂tc2〉dt +

∫ T

0

〈Da

K
c2, ηwh

〉
dt =

∫ T

0
〈ηwh,Dac1〉dt.

Since η ∈ C∞0 (0,T ) and wh ∈ Vm
h are arbitrary and Vm

h is dense in H1(Ωm), then

(1 − φ)∂tc2 +
Da

K
c2 = Dac1 in L2(0,T ; L2(Ωm)).

Thus, (c, c1, c2) is a weak solution to the problem given by (2.1)–(2.10) by Definition 2.1. The proof
is complete. �

Corollary 1 (Convergence). The finite-element approximate weak solution (ch, c1h, c2h) converges to
the unique PDE solution (c, c1, c2).

Proof. From the proof of Theorem 3.5, we conclude that every convergent subsequence of the finite-
element approximate weak solution (ch, c1h, c2h) converges to a PDE weak solution (c, c1, c2). Since
the PDE weak solution is unique, the whole sequence (ch, c1h, c2h) must converge to the PDE solution
(c, c1, c2). �

4. Error estimates and formulation of fully discrete scheme

In the last section, we constructed a semi-discrete finite-element Galerkin approximation to the
problem given by (2.1)–(2.10) and proved its convergence (see Corollary 1) as a byproduct of the
proof of the existence theorem. The primary goals of this section are to derive optimal rates of conver-
gence in powers of h (i.e., error estimates) for the finite-element solution, and to formulate a practical
fully discrete scheme which will be used in the subsequent section for numerical simulations and to
numerically verify the sharpness of the proved convergence rates.

4.1. Error estimates for semi-discrete finite element method

We recall that PDE and finite-element approximate solutions were respectively defined in Defini-
tions 2.1 and 3.3. To derive the error estimates, we first need to obtain the error equations; to this end,

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5634–5657.



5644

subtracting the equations in Definition 3.3 from their corresponding equations in Definition 2.1 (with
the same test functions vh ∈ V s

h and wh ∈ Vm
h ), we get

〈∂teh, vh〉H−1(Ωs)×H1(Ωs) +A[eh, vh] = δP̃e1h(0, ·)vh(0, ·), (4.1)
φ〈∂te1h,wh〉H−1(Ωm)×H1(Ωm) + B[e1h,wh] (4.2)

= δP̃eh(0, ·)wh(0, ·) +
Da

K
(e2h,wh)Ωm ,

(1 − φ)∂te2h +
Da

K
e2h = Dae1h, a.e. x ∈ Ωm, (4.3)

where eh := c − ch, e1h := c1 − c1h, and e2h := c2 − c2h.
Let RA

h : H1(Ωs)→ V s
h be the elliptic projection defined by

A[c − RA
h c, vh] = 0 ∀vh ∈ V s

h ,

and RB
h : H1(Ωs)→ Vm

h be another elliptic projection defined by

B[c1 − R
B
h c1,wh] = 0 ∀wh ∈ Vm

h .

These projection operators are well-defined because each bilinear form is coercive and continuous.
Further, let Ph be the L2-projection onto Vm

h defined by

(c2 − Phc2,wh) = 0 ∀wh ∈ Vm
h .

We also introduce the following error decompositions:

eh = (c − RA
h c)︸     ︷︷     ︸

=:ρh

+ (RA
h c − ch)︸      ︷︷      ︸

=:ξh

,

e1h = (c1 − R
B
h c1)︸       ︷︷       ︸

=:ρ1h

+ (RB
h c1 − c1h)︸         ︷︷         ︸

=:ξ1h

,

e2h = (c2 − Phc2)︸       ︷︷       ︸
=:ρ2h

+ (Phc2 − c2h)︸        ︷︷        ︸
=:ξ2h

.

It is well known (see [15]) that

‖ρh‖L2 + h‖(ρh)x‖L2 . h2‖c‖H2 , (4.4)
‖ρ1h‖L2 + h‖(ρ1h)x‖L2 . h2‖c1‖H2 , (4.5)

‖ρ2h‖L2 . h2‖c2‖H2 . (4.6)

Using the error decompositions we can rewrite the error equations (4.1)–(4.3) as follows:

〈∂tξh, vh〉H−1(Ωs)×H1(Ωs) +A[ξh, vh] − δP̃ξ1h(0, ·)vh(0, ·) (4.7)

= −〈∂tρh, vh〉H−1(Ωs)×H1(Ωs) −A[ρh, vh] + δP̃ρ1h(0, ·)vh(0, ·),

φ〈∂tξ1h,wh〉H−1(Ωm)×H1(Ωm) + B[ξ1h,wh] − δP̃ξh(0, ·)wh(0, ·) (4.8)

−
Da

K
(ξ2h,wh)Ωm = −φ〈∂tρ1h,wh〉H−1(Ωm)×H1(Ωm) − B[ρ1h,wh]
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+ δP̃ρh(0, ·)wh(0, ·) +
Da

K
(ρ2h,wh)Ωm ,

(1 − φ)∂tξ2h +
Da

K
ξ2h − Daξ1h = (φ − 1)∂tρ2h −

Da

K
ρ2h + Daρ1h. (4.9)

To derive the desired error estimates, our task now is to control ξ terms via the ρ terms by using the
above error equations.

Theorem 4.1 (Error estimates). The following error estimates hold:

‖eh‖L∞(0,T ;L2(Ωs)) + ‖e1h‖L∞(0,T ;L2(Ωm)) + ‖e2h‖L∞(0,T ;L2(Ωm)) . h2, (4.10)
‖(eh)x‖L2(0,T ;L2(Ωs)) + ‖(e1h)x‖L2(0,T ;L2(Ωm)) + ‖eh(0, ·)‖L2(0,T ) (4.11)

+‖e1h(0, ·)‖L2(0,T ) + ‖e1h(1, ·)‖L2(0,T ) . h.

Proof. Similar to the a-priori estimates, setting ξh, ξ1h, and ξ2h to be the test functions, we obtain the
following inequalities:

1
2

d
dt
‖ξh‖

2
L2 + δ‖(ξh)x‖

2
L2 + δP̃

(
ξ2

h(0, ·)
)

(4.12)

≤
1
2
‖ξh‖

2
L2 + δP̃(ε1 + ε2)ξ2

h(0, ·) +
δP̃
4ε1

ξ2
1h(0, ·) + Eh,

φ

2
d
dt
‖ξ1h‖

2
L2 + Da‖ξ1h‖

2
L2 + ‖(ξ1h)x‖

2
L2 +

Pe

2
ξ2

1h(1, ·) +

(
δP̃ +

Pe

2

)
ξ2

1h(0, ·) (4.13)

≤
(Da

K
+
φ

2

)
‖ξ1h‖

2
L2 +

Da

2K
‖ξ2h‖

2
L2 +

( δP̃
4ε4

+
δP̃
4ε5

)
ξ2

1h(0, ·)

+ δP̃ε4ξ
2
h(0, ·) + E1h,

1 − φ
2

d
dt
‖ξ2h‖

2
L2 +

Da

K
‖ξ2h‖

2
L2 (4.14)

≤

(
Da +

1 − φ
2

+
Da

2K

)
‖ξ2h‖

2
L2 +

Da

2
‖ξ1h‖

2
L2 + E2h,

where

Eh =
δP̃
4ε2

ρ2
1h(0, ·) +

1
2
‖∂tρh‖

2
L2 ,

E1h = ε5δP̃ρ2
h(0, ·) +

Da

2K
‖ρ2h‖

2
L2 +

φ

2
‖∂tρ1h‖

2
L2 ,

E2h =
Da

2
‖ρ1h‖

2
L2 +

1 − φ
2
‖∂tρ2h‖

2
L2 +

Da

2K
‖ρ2h‖

2
L2 .

Choose appropriate values of ε2 and ε5 such that

P̃ε2ξ
2
h(0, ·) ≤

δ

2
‖ξh‖

2
H1(Ωs) and

δP̃
4ε5

ξ2
1h(0, ·) ≤

1
2
‖ξ1h‖

2
H1(Ωm).
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Furthermore, choosing ε1 = ε4 = 1
2 , as well as

γ := min
{φ
2
,

1 − φ
2

}
, θ := max

{1 + δ

2
,

Da

K
+
φ

2
+

Da

2
,Da +

1 − φ
2

}
,

and adding (4.12) to (4.14), yields

d
dt

(
‖ξh‖

2
L2 + ‖ξ1h‖

2
L2 + ‖ξ2h‖

2
L2

)
+

2δ
γ
‖(ξh)x‖

2
L2 +

2
γ
‖(ξ1h)x‖

2
L2

+
Pe

γ
ξ2

1h(0, ·) +
Pe

γ
ξ2

1h(1, ·) ≤
2θ
γ

(
‖ξh‖

2
L2 + ‖ξ1h‖

2
L2 + ‖ξ2h‖

2
L2

)
+ 2E(t),

where E := Eh + E1h + E2h.
By using Gronwall’s inequality given in Lemma A.2 and taking the supremum over (0, T ), we get

‖ξh‖
2
L∞(0,T ;L2) + ‖ξ1h‖

2
L∞(0,T ;L2) + ‖ξ2h‖

2
L∞(0,T ;L2) +

2δ
γ
‖(ξh)x‖

2
L2(0,T ;L2)

+
2
γ
‖(ξ1h)x‖

2
L2(0,T ;L2) +

Pe

γ
‖ξ1h(0, ·)‖2L2(0,T ) +

Pe

γ
‖ξ1h(1, ·)‖2L2(0,T )

≤ 2e2θT/γ‖E(t)‖L2(0,T ) ≤ C(e2θT/γ) h4.

In particular,
‖ξ1h(0, ·)‖2L2(0,T ) . h4.

By applying (4.12) with the above choices of ε1 and ε2, we have

1
2

d
dt
‖ξh‖

2
L2 +

δ

2
‖(ξh)x‖

2
L2 +

δP̃
2
ξ2

h(0, ·) ≤
1
2
‖ξh‖

2
L2 +

δP̃
2
ξ2

1h(0, ·) + Eh.

Integrating over (0,T ) in t yields

‖ξh(·,T )‖2L2 + δ‖(ξh)x‖
2
L2(0,T ;L2) + δP̃‖ξh(0, ·)‖2L2(0,T )

≤ δP̃‖ξ1h(0, ·)‖2L2(0,T ) + 2‖Eh‖L2(0,T ) + ‖ξh(·, 0)‖2L2 . h4.

In particular,
‖ξh(0, ·)‖2L2(0,T ) . Ch4.

In summary, we have shown that

‖ξh‖
2
L∞(0,T ;L2) + ‖ξ1h‖

2
L∞(0,T ;L2) + ‖ξ2h‖

2
L∞(0,T ;L2) + ‖(ξh)x‖

2
L2(0,T ;L2)

+ ‖(ξ1h)x‖
2
L2(0,T ;L2) + ‖ξh(0, ·)‖2L2(0,T ) + ‖ξ1h(0, ·)‖2L2(0,T )

+ ‖ξ1h(1, ·)‖2L2(0,T ) . h4,

which, combined with (4.4)–(4.6) and an application of the triangle inequality, concludes the proof. �

Remark 4.1. (a) Both estimates (4.10) and (4.11) are optimal compared to the linear finite-element
interpolation errors.

(b) The L2-norms of (ξh)x and (ξ1h)x exhibit a superconvergence property.
(c) If rth (r > 1)-order finite-element space is used in place of the linear finite-element space and

we assume that the solution (c, c1, c2) is sufficiently regular, then it can be proved that the rates of
convergence in (4.10) and (4.11) will be improved to O(hr+1) and O(hr), respectively.
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4.2. Formulation of fully discrete schemes

To get a computable fully discrete method, we need to discretize (3.10) to (3.12) in time by using
any time-stepping scheme, such as the Euler, implicit Euler, Runge-Kutta, backward differentiation
formula (BDF), and Crank-Nicolson methods. Below, we use the simplest Euler method to demonstrate
the procedure. For each j, the Euler method is given by

N+1∑
i=1

yk+1
0,i − yk

0,i

∆t
(ψs

i , ψ
s
j)Ωs + yk

0,iA[ψs
i , ψ

s
j] = δP̃c1h(0, ·)ψs

j(0),

φ

N+1∑
i=1

yk+1
1,i − yk

1,i

∆t
(ψm

i , ψ
m
j )Ωm + yk

1,iB[ψm
i , ψ

m
j ]

= δP̃ch(0, ·)ψm
j (0) +

Da

K

N+1∑
i=1

yk
2,i(ψ

m
i , ψ

m
j )Ωm ,

(1 − φ)
yk+1

2, j − yk
2, j

∆t
ψm

j (x) +
Da

K
yk

2, jψ
m
j (x) = Dayk

1, jψ
m
j (x).

They can be rewritten in matrix-vector form, as follows:

Ψsyk+1
0 = (Ψs − ∆tA)yk

0 + ∆t f k
0 , (4.15)

Ψmyk+1
1 =

(
Ψm −

∆t
φ

B
)

yk
1 +

∆tDa

φK
Ψmyk

2 +
∆t
φ

f k
1 , (4.16)

yk+1
2 =

(
1 −

∆tDa

(1 − φ)K

)
yk

2 +
∆tDa

1 − φ
yk

1, (4.17)

where f k
0 = [0; ...; 0; yk

1,1] and f k
1 = [yk

0,N+1; 0; ...; 0].
It is well known that the Euler method results in an error of order O(∆t); therefore, it can be shown

that the fully discrete error is of order O(∆t + h2), provided that the Courant-Friedrichs-Lewy (CFL)
condition ∆t < min{ h

2

2δ ,
φh2

2 } holds.

5. Numerical simulations

In this section we present some numerical simulation results, which were computed by using Matlab
R2022a. Since we aimed to solve a coupled system, a decoupling strategy was needed. In addition,
due to the biological nature of the system, we propose a multi-rate time-stepping procedure to solve the
system in order to save computation time. Several comparisons are made in Sections 5.1 to 5.2 among
different schemes, different time-stepping strategies, and different decoupling strategies. Numerical
results of the simulations are presented in Section 5.3.

The following notations are adopted in this section. Let h denote the mesh size and ∆t the time
step size. When those values differ in the two domains, we denote them as hΩs , ∆tΩs and hΩm , ∆tΩm ,
respectively. Furthermore, let N0 := l/hΩs ,N := 1/hΩm , n0 := T/∆tΩs , and n := T/∆tΩm .

5.1. Comparison between two decoupling strategies

We propose two decoupling strategies for solving the system given by (4.15)–(4.17). The first
strategy is parallelizable, updating c and c2 simultaneously, followed by updating c1, as shown in
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(c2)k+1

... (c1)k (c1)k+1 ...

(c)k+1

Figure 3. Algorithm I based on decoupling strategy #1.

...
(
(c), (c1), (c2)

)k
(c2)k+1 (c1)k+1 (c)k+1 ...

Figure 4. Algorithm II based on decoupling strategy #2.

Figure 3. The second strategy is a sequential update, which is shown in Figure 4.
Test cases were run for Tend = 1, 10, 100, 200, also applying different stepping strategies. In some

cases, Algorithm I ran faster than Algorithm II, and, in some cases, it was vice versa. Furthermore,
the difference in total CPU time was within 5% between the two algorithms. As for the accuracy
comparison, we computed the numerical “true” solutions first, using T = 1, Ñ0 = 1000, Ñ = 500, ñ =

2.5816 × 106. Then, the approximate solutions were computed for T = 1,N0 = 50,N = 25, n = 6454.
The relative errors in c and c2 were both under 10−3; the relative error in c1 was around 10−2 with
Algorithm I, and it was about 10% more accurate than Algorithm II. This can be explained by the fact
that c1 is updated with the most recent coupling values in Algorithm I.

5.2. Comparison between two time-stepping strategies

Since each subdomain possesses distinct biological/physical properties, it is natural to use different
mesh sizes for different subdomains. In addition, the time step sizes can also be distinct in different
subdomains; one scenario was that one time step size was taken as a constant multiple of the other.
Recall that the Robin boundary condition of Ωs at x = 0 states that cx + P̃c = P̃c1, where P̃ = 45000.
Therefore, it is natural to use a fine spatial mesh in Ωs. This does not have much effect on the mesh size
despite the CFL condition since the diffusion coefficient was extremely small, at δ ∼ 10−7. Therefore,
the explicit time-stepping in fact demonstrates no disadvantage in this regard.

We restricted ourselves to Algorithm I and compared the performance of the naive and the multi-
rate time-stepping strategies. When N0 = 2N, all three errors decreased to around 10%, and, in the
case of c2, the errors decreased to around 1% of their naive counterparts, without increasing CPU time.
Table 1 shows the relative errors of the three equations respectively.

Table 1. Stepping strategies: accuracy comparison.

Rel. err. in c Rel. err. in c1 Rel. err. in c2

N0 = N 2.75e-3 0.1212 7.12e-4
N0 = 2N 3.52e-4 8.42e-3 1.59e-6
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It is worth pointing out that increasing the ratio N0/N further would increase CPU time without
seeing any improvement in the accuracy. Furthermore, choosing N0 < N not only increased CPU time,
it also resulted in larger error.

5.3. Simulation results

We computed the concentrations c, c1, c2 with T taken as 10 minutes, 30 minutes, 1 hour, 6 hours,
and 24 hours after the stent insertion, using Algorithm I. Computed results are summarized in Figure 5
and Figure 6. It can be observed that the diffusion within the stent is slow. This is in line with the
extremely small diffusion coefficient, i.e., δ � 1. However, at the interface, the advection of the drug
into the media region is initially extremely fast since it is proportional to the concentration difference,
which led to the steep drop near x = 0. As for the media concentrations, c1 increased for a period of
time before eventually dropping due to the absorption of the drug into the muscle cells, where a steady
increase in drug concentration is demonstrated. In addition, Figure 7 shows the interface concentration
c1(0, t) over the first 24 hours after stent insertion, reproducing the profile shape from [4], which was
obtained via an analytic method.

Figure 5. Stent concentrations.

The finite-element simulation results presented in this section were also confirmed by those obtained
via a finite-difference method (which are not presented here to save space). The L∞(L2)-error between
the finite-element and the finite-difference results was found to be around 5×10−5 when hΩs = 2.8×10−4

and hΩm = 0.01.
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Figure 6. Wall concentrations.

6. Two-dimensional generalization

Below, we propose a two-dimensional drug-release model which is an extension of the one-
dimensional model studied in the previous sections. Figure 8 shows a two-dimensional sketch of the
arterial wall.

Again, as in the one-dimensional case, c, c1, and c2 represent the unknown concentrations in the
stent, in the extracellular matrix, and in the muscle cells, respectively. All other quantities are given
coefficients. Unlike the one-dimensional model, we note that there are four additional pieces of the
boundary. New boundary conditions must be prescribed there. For these four pieces, Dirichlet bound-
ary conditions were imposed on Γa and Γb, whereas the periodic boundary conditions were used on Γc

and Γd for c1.

Essentially, all of the PDE and numerical analysis results for the 1-d model can be extended to the
2-d model; this includes a priori estimates and well-posedness proofs, as well as the finite-element con-
vergence and error estimates. One notable difference is that the boundary of the 2-d domain consists
of 1-d line segments; handling the 2-d boundary terms requires some additional and more involved
trace inequalities. Below, we only state the key formulations and main results, without giving detailed
derivations and proofs, to save space. However, it should be noted that, although the PDE and numer-
ical analyses are similar, the computer simulations and coding are much more complicated in the 2-d
case; we will present those results elsewhere.
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Figure 7. Interface concentration: extracellular.

Lumen

Wall
Stent

Ωs Ωm

Γs Γ Γm

Γb

Γa

Γd

Γc

Figure 8. Arterial wall; schematic diagram in 2-d.

Our two-dimensional model is given as follows:

∂tc − div
(
D(x)∇c

)
= 0, x ∈ Ωs, t ∈ (0,T ], (6.1)

D(x)∇c·n + βc = βc1, x ∈ Γ, t ∈ (0,T ], (6.2)
D(x)∇c·n = 0, x ∈ Γs, t ∈ (0,T ], (6.3)

c(x, t) = a(x, t), x ∈ Γa, t ∈ (0,T ], (6.4)
c(x, t) = b(x, t), x ∈ Γb, t ∈ (0,T ], (6.5)

c = c0, x ∈ Ωs, t = 0; (6.6)

φ∂tc1 + v·∇c1 − div
(
D1(x)∇c1

)
+ αc1 =

α

κ
c2, x ∈ Ωm, t ∈ (0,T ], (6.7)

D1(x)∇c1·n− v·nc1 = D(x)∇c·n, x ∈ Γ, t ∈ (0,T ], (6.8)
D1(x)∇c1·n1 = 0, x ∈ Γm, t ∈ (0,T ], (6.9)

c1(x) − c1(x + L2e2) = 0, x ∈ Γc, t ∈ (0,T ], (6.10)
∇c1(x)·n1 − ∇c1(x + L2e2)·n1 = 0, x ∈ Γc, t ∈ (0,T ], (6.11)

c1 = 0, x ∈ Ωm, t = 0; (6.12)
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(1 − φ)∂tc2 +
α

κ
c2 = αc1, x ∈ Ωm, t ∈ (0,T ], (6.13)

c2 = 0, x ∈ Ωm, t = 0. (6.14)

We note that (6.10) and (6.11) represent the periodic boundary conditions for c1.

Theorem 6.1 (Well-posedness in 2-d). Under some reasonable assumptions on the coefficients, there
exists a unique weak solution (c, c1, c2) satisfying the following for any T > 0:

c ∈ L∞(0,T ; L2(Ωs)) ∩ L2(0,T ; H1(Ωs)) ∩ H1(0,T ; H−1(Ωs)),
c1 ∈ L∞(0,T ; L2(Ωm)) ∩ L2(0,T ; H1

per(Ω
m)) ∩ H1(0,T ; H−1(Ωm)),

c2 ∈ H1(0,T ; L2(Ωm)),

and, for t ∈ (0,T ],

〈∂tc, v〉Vs′×Vs +A[c, v; t] = 〈βc1, v〉Γ ∀ v ∈ H1(Ωs),
〈φ∂tc1,w〉Vm′×Vm + B[c1,w; t] = 〈βc,w〉Γ + α

κ
(c2,w)Ωm ∀w ∈ H1

per(Ω
m),

(1 − φ)∂tc2 + α
κ
c2 = αc1 a.e. x ∈ Ωm,

c(·, 0) = c0(x) ∈ L2(Ωs), c1(·, 0) ≡ c2(·, 0) ≡ 0.

Here,
H1

per(Ω
m) := {u ∈ H1 : u(x) = u(x + L2e2) and ∇u(x) = ∇u(x + L2e2), a.e.x ∈ Γc},

(·, ·) denotes the L2-inner product, 〈·, ·〉 denotes the duality pairing, and

A[u, v; t] :=
(
D∇u,∇v

)
Ωs + 〈βu, v〉Γ,

B[u,w; t] :=
(
D1∇u,∇w

)
Ωm +

(
v·∇u,w

)
Ωm + α

(
u,w

)
Ωm +

〈
(β − v·n1)u,w

〉
Γ.

Before introducing the finite-element result, we first introduce the finite-element spaces and the con-
cept of approximate weak solutions. Let T s

h be a mesh of Ωs and T m
h a mesh of Ωm, both geometrically

conformal. Let

Vs
h := {vh ∈ V

m; vh|K ∈ P1(K) ∀K ∈ T s
h },

Vm
h := {wh ∈ V

m; wh|K ∈ P1(K) ∀K ∈ T m
h },

Vm
h,per := {wh ∈ V

m
h ; wh is periodic along the x2 direction}.

It is a known fact that each Vs
h and Vm

h has a set of nodal basis functions, denoted by {ψs
j} and {ψm

j },
respectively, and satisfying that ψs

j(ai) = δi j and ψm
j (âi) = δi j for each node ai and âi, and each j.

Definition 6.2. (ch, c1h, c2h) : (0,T ]→ Vs
h × V

m
h,per × V

m
h is called an approximate weak solution to the

2-d system if

〈∂tch, vh〉Vs′×Vs +A[ch, vh; t] = F [c1h, vh; t] ∀ vh ∈ V
s
h,

〈φ∂tc1h,wh〉Vm′×Vm + B[c1h,wh; t] = F [ch,wh; t] +
α

κ
(c2h,wh)Ωm ∀wh ∈ V

m
h ,

(1 − φ)∂tc2h +
α

κ
c2h = αc1h.

with ch(0, ·) = Phc0 ∈ V
s
h and c1h(0, ·) ≡ c2h(0, ·) ≡ 0.
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We obtained the following well-posedness and error estimate results.

Theorem 6.3 (Error estimates in 2-d). For each h > 0, there exists a unique approximate weak solution
(ch, c1h, c2h). Moreover, let (c, c1, c2) be the weak solution stated in Theorem 6.1 and define error
functions eh := c − ch, e1h := c1 − c1h, and e2h := c2 − c2h, then, the following error estimates hold:

‖eh‖L∞(0,T ;L2(Ωs)) + ‖e1h‖L∞(0,T ;L2(Ωm)) + ‖e2h‖L∞(0,T ;L2(Ωm)) . h2, (6.15)
‖eh‖L2(0,T ;H1(Ωs)) + ‖e1h‖L2(0,T ;H1(Ωm)) . h. (6.16)

We note that the interface terms now appear as L2 integrals on Γ in the 2-d case, which only gives
us the control of ‖eh‖L2(0,T ;L2(Γ)) and ‖e1h‖L2(0,T ;L2(Γ)), not pointwise control as in the 1-d case. But, these
estimates are consequences of (6.16) and the trace inequality.

7. Summary and concluding remarks

In this paper we have presented a complete PDE and numerical analysis for the modified one-
dimensional intravascular stent model originally proposed in [4]. The modified model is not only
well-posed, it also has improved numerical computability. The well-posedness was proved by using
the Galerkin method in combination with a compactness argument. A semi-discrete finite-element
method and a fully discrete scheme using the Euler time-stepping was formulated for the PDE model.
Optimal order error estimates in the energy norm was proved for both schemes. Numerical results have
been presented, along with comparisons between different decoupling strategies and time-stepping
schemes. Finally, extensions of the model, along with its PDE and numerical analysis results for the
two-dimensional case, were also briefly discussed.

Our future work on this research project will focus on the direct generalizations of this model in
one and more dimensions in the modeling of the transmural advection using Darcy’s flow; the model
will also include an additional lumenal layer that considers the effect of blood flow on drug delivery.
Moreover, we are very much interested in completing higher-dimensional codes and simulations as
well as in validating the model simulations with real lab data.

It is also worth noting that the analysis techniques employed in this work should be readily extend-
able to other more sophisticated linear models. In addition, there have been recent developments in
nonlinear drug-binding models (see [16] and [17]). In those cases, the nonlinear terms require special
care and new techniques. It is expected that our general techniques might still be applicable. Such a
detailed analysis will be carried out as future work.
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A. Parameters and cited facts

A.1. Parameters

We summarize in the chart below the parameter values that appeared in the one-dimensional model
and used in our simulations. We refer the reader to [4] for more details.

Parameter Symbol Value
Media porosity φ 0.61

Partition coefficient K 15
δ 4 × 10−7

l 0.028
P̃ 4.5 × 104

Peclet number Pe 0.1044
Damkholer number Da 0.0162

A.2. Some known facts

In this subsection, we present a few well-known lemmas and theorems cited in this paper and either
provide a brief proof or cite at least one reference where a proof can be found.

Lemma A.1 (A 1-d trace inequality). Let v : [a, b]→ R, v ∈ H1(a, b), and H := b − a. Then

|v(a)| ≤ C‖v‖H1(a,b) and |v(b)| ≤ C‖v‖H1(a,b).

where C ≈ 1 if H � 1 and C ∈ O
(
H−1/2) if H � 1.
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Proof. Let w : [a, b] → R be differentiable. By the fundamental theorem of calculus we have the
following for any a ≤ w1 < w2 ≤ b:

w(x2) = w(x1) +

∫ x2

x1

w′(s) ds.

Setting w(x) := [(x − a)v(x)]2, x1 := a, and x2 := b yields

[hv(b)]2 = [(a − a)v(a)]2 +

∫ b

a

(
(x − a)2v2(x)

)′
dx

=

∫ b

a
2(x − a)v2(x) + 2(x − a)2v(x)v′(x) dx

≤ (2H + H2)‖v‖2L2(a,b) + H2‖v′‖2L2(a,b).

Therefore,

v2(b) ≤ (2/H + 1)‖v‖2L2(a,b) + ‖v′‖2L2(a,b),

which gives the first inequality. The second inequality follows similarly with w(x) := [(b−x)v(x)]2. �

Lemma A.2 (General form of Grönwall’s inequality; see Appendix B2 of [18]). Let ξ, φ, ψ ∈ L2(0,T )
and be nonnegative, and let η ∈ H1(0,T ). If

η′(t) + ξ(t) ≤ φ(t)η(t) + ψ(t) ∀t ∈ (0,T ],

then

η(t) +

∫ t

0
ξ(s)ds ≤ exp

{∫ t

0
φ(s)ds

} (∫ t

0
ψ(s)ds + η(0)

)
∀t ∈ (0,T ].

Theorem A.3 (Theorem 5.9 of [18]). Suppose that u ∈ L2(0,T ; H1
0(U)) and u′ ∈ L2(0,T ; H−1(U)).

(i) Then, u ∈ C([0,T ]; L2(U)) (after possibly being redefined on a set of measure zero).
(ii) The mapping t 7→ ‖u(t)‖2L2(U) is absolutely continuous, with

d
dt
‖u(t)‖2L2(U) = 2〈u′(t), u(t)〉 for a.e. 0 ≤ t ≤ T.

(iii) Furthermore, the following holds

max
0≤t≤T

‖u(t)‖L2(U) ≤ C
(
‖u‖L2(0,T ;H1

0 (U)) + ‖u′‖L2(0,T ;H−1(U))

)
.

Lemma A.4 (Lemma 1.1, Chapter IV of [19]). The initial value problem given by

y ′(t) = Q(t) y(t), y(0) = y0

has a unique solution y : [0,T ]→ Rn if Q is a continuous function on [0,T ].

Theorem A.5 (Theorem 4.10.8 of [20]). Let X be a reflexive Banach space. A set K ⊂ X is weakly
sequentially compact if and only if it is both bounded and weakly closed.
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Theorem A.6 (Theorem 4.12.3 of [20]). Let X be a separable normed linear space. Then every
bounded sequence of continuous linear functionals in X∗ has a weakly convergent subsequence.

Theorem A.7 (Theorem 5.1.1 of [20]). A completely continuous (compact) linear operator maps
weakly convergent sequences into convergent sequences.
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