
Extending JumpProcess.jl for fast point process simulation
with time-varying intensities

Guilherme Augusto Zagatti1, Samuel A. Isaacson3, Christopher Rackauckas4, Vasily
Ilin5, See-Kiong Ng1, 2, and Stéphane Bressan1, 2

1Institute of Data Science, National University of Singapore, Singapore
2School of Computing, National University of Singapore, Singapore

3Department of Mathematics and Statistics, Boston University
4Computer Science and AI Laboratory (CSAIL), Massachusetts Institute of

Technology
5Department of Mathematics, University of Washington

July 25, 2023

Keywords— Julia, Simulation, Jump process, Point process

Abstract

Point processes model the occurrence of a countable number of random points over some sup-
port. They can model diverse phenomena, such as chemical reactions, stock market transactions
and social interactions. We show that JumpProcesses.jl is a fast, general-purpose library for
simulating point processes. JumpProcesses.jl was first developed for simulating jump processes
via stochastic simulation algorithms (SSAs) (including Doob’s method, Gillespie’s methods, and
Kinetic Monte Carlo methods). Historically, jump processes have been developed in the context
of dynamical systems to describe dynamics with discrete jumps. In contrast, the development
of point processes has been more focused on describing the occurrence of random events. In
this paper, we bridge the gap between the treatment of point and jump process simulation. The
algorithms previously included in JumpProcesses.jl can be mapped to three general methods
developed in statistics for simulating evolutionary point processes. Our comparative exercise
revealed that the library initially lacked an efficient algorithm for simulating processes with
variable intensity rates. We, therefore, extended JumpProcesses.jl with a new simulation al-
gorithm, Coevolve, that enables the rapid simulation of processes with locally-bounded variable
intensity rates. It is now possible to efficiently simulate any point process on the real line with
a non-negative, left-continuous, history-adapted and locally bounded intensity rate coupled or
not with differential equations. This extension significantly improves the computational perfor-
mance of JumpProcesses.jl when simulating such processes, enabling it to become one of the
few readily available, fast, general-purpose libraries for simulating evolutionary point processes.

1 Introduction
Methods for simulating the trajectory of evolutionary point processes can be split into exact
and inexact methods. Exact methods describe the realization of each point in the process

1

ar
X

iv
:2

30
6.

06
99

2v
3

 [s
ta

t.C
O

]
24

 Ju
l 2

02
3

chronologically. This exactness avoids bias from numerical approximations, but such methods
can suffer from reduced performance when simulating systems with large populations (where
numerous events can fire within a short period since every single point needs to be accounted for).
Inexact methods trade accuracy for speed by simulating the total number of events in successive
intervals. They are popular in biochemical applications, e.g. τ -leap methods [4], which often
require the simulation of chemical reactions in systems with large molecular populations.

Previously, point process simulation library development focused primarily on univariate pro-
cesses with exotic intensities, or large systems with conditionally constant intensities, but not
on both. As such, there was no widely used general-purpose software for efficiently simulating
compound point processes in large systems with time-dependent rates. To enable the efficient
simulation of such processes, we contribute the Coevolve aggregator to JumpProcesses.jl, a
core component of the popular DifferentialEquations.jl library [17]. The implemented al-
gorithm improves the COEVOLVE algorithm described in [2] from where it borrows its name.
Among other improvements, our algorithm supports any process with locally bounded condi-
tional intensity rates, adapts to intensity rates that can change between jumps, can be coupled
with differential equations, and avoids both the unnecessary re-computation of randomly gen-
erated numbers and the computation of the intensity rate when its lower bound is available.
This extension of JumpProcesses.jl dramatically boosts the computational performance of the
library in simulating processes with intensities that have an explicit dependence on time and/or
other continuous variables, significantly expanding the type of models that can be efficiently
simulated. Widely-used point processes with such intensities include compound inhomogeneous
Poisson, Hawkes, and stress-release processes — all described in [1]. Since JumpProcesses.jl is
a member of Julia’s SciML organization, it also becomes easier, and more feasible, to incorporate
compound point processes with explicit time-dependent rates into a wide variety of applications
and higher-level analyses. With our new additions we bump JumpProcesses.jl to version 9.71.

In this paper, we bridge the gap between simulation methods developed in statistics and
biochemistry, which led us to the development of Coevolve. First, we briefly introduce evo-
lutionary point processes. Next, since all simulation methods require a basic understanding
of simulation methods for the Poisson homogeneous process, we first describe such methods.
Then, we identify and discuss three general, exact methods. In the second part of this paper,
we describe the algorithms in JumpProcesses.jl and how they relate to the literature. We high-
light our contribution Coevolve, investigate the correctness of our implementation and provide
performance benchmarks to demonstrate its value. The paper concludes by discussing potential
improvements.

2 The evolutionary point process
The evolutionary point process is a stochastic collection of marked points over a one-dimensional
support. They are exhaustively described in [1]. The likelihood of any evolutionary point process
is fully characterized by its conditional intensity,

λ∗(t) ≡ λ(t | Ht−) =
p∗(t)

1−
∫ tn
t− p∗(u) du

, (2.1)

and conditional mark distribution, f∗(k|t) — see Chapter 7 [1]. Here Ht− = {(tn, kn) | 0 ≤
tn ≤ t} denotes the internal history of the process up to but not including t, the superscript ∗
denotes the conditioning of any function on Ht− , and p∗(t) is the density function corresponding
to the probability of an event taking place at time t given Ht− . We can interpret the conditional
intensity as the likelihood of observing a point in the next infinitesimal unit of time, given that
no point has occurred since the last observed point in Ht− . Lastly, the mark distribution denotes

1All examples and benchmarks in this paper use this version of the library

2

the density function corresponding to the probability of observing mark k given the occurrence
of an event at time t and internal history Ht− .

3 The homogeneous process
A homogeneous process can be simulated using properties of the Poisson process, which allow
us to describe two equivalent sampling procedures. The first procedure consists of drawing
successive inter-arrival times. The distance between any two points in a homogeneous process
is distributed according to the exponential distribution — see Theorem 7.2 [9]. Given the
homogeneous process with intensity λ, then the distance ∆t between two points is distributed
according to ∆t ∼ exp(λ). Draws from the exponential distribution can be performed by
drawing from a uniform distribution in the interval [0, 1]. If V ∼ U [0, 1], then T = − ln(V)/λ ∼
exp(1). (Note, however, in Julia the optimized Ziggurat-based method used in the randexp
stdlib function is generally faster than this inverse method for sampling a unit exponential
random variable.) When a point process is homogeneous, the inverse method of Subsection 4.1
reduces to this approach. Thus, we defer the presentation of this Algorithm to the next section.

The second procedure uses the fact that Poisson processes can be represented as a mixed
binomial process with a Poisson mixing distribution — see Proposition 3.5 [9]. In particular,
the total number of points of a Poisson homogeneous process in [0, T) is distributed according to
N (T) ∼ Poisson(λT) and the location of each point within the region is distributed according
to the uniform distribution tn ∼ U [0, T].

4 Exact simulation methods

4.1 Inverse methods
The inverse method leverages Theorem 7.4.I [1] which states that every simple point process2

can be transformed to a homogeneous Poisson process with unit rate via the compensator. Let
tn be the time in which the n-th chronologically sorted event took place and t0 ≡ 0, we define
the compensator as:

Λ∗(tn) ≡ t̃n ≡
∫ tn

0

λ∗(u)du (4.1)

The transformed data t̃n forms a homogeneous Poisson process with unit rate. Now, if this is
the case, then the transformed interval is distributed according to the exponential distribution.

∆t̃n ≡ t̃n − t̃n−1 ∼ exp(1) (4.2)

The idea is to draw realizations from the unit rate Exponential process and solve Equation 4.2
for tn to determine the next event/firing time. We illustrate this in Algorithm 1 where we adapt
Algorithm 7.4 [1].

Whenever the conditional intensity is constant between two points, Equation 4.2 can be
solved analytically. Let λ∗ (t) = λn−1, ∀tn−1 ≤ t < tn, then∫ tn

tn−1

λ∗ (u) du = ∆t̃n ⇐⇒

λn−1(tn − tn−1) = ∆t̃n ⇐⇒

tn = tn−1 +
∆t̃n
λn−1

.

(4.3)

2A simple point process is a process in which the probability of observing more than one point in the same location
is zero.

3

Which is equivalent to drawing the next realization time from the re-scaled exponential dis-
tribution ∆tn ∼ exp(λn−1). As we will see in Subsection 2, this implies that the inverse and
thinning methods are the same whenever the conditional intensity is constant between jumps.

The main drawback of the inverse method is that the root finding problem defined in Equa-
tion 4.2 often requires a numerical solution. To get around a similar obstacle in the context of
the piecewise deterministic Markov process, Veltz [23] proposes a change of variables in time
that recasts the root finding problem into an initial value problem. He denotes his method CHV.

Piecewise deterministic Markov processes are composed of two parts: the jump process and
the piecewise ODE that changes stochastically at jump times — see Lemaire et al. [11] for a
formal definition. Therefore, it is easy to employ CHV in our case by setting the ODE part
to zero throughout time. Adapting from Veltz [23], we can determine the model jump time tn
after sampling ∆t̃n ∼ exp(1) by solving the following initial value problem until ∆t̃n.

t(0) = tn−1 ,
dt

dt̃
=

1

λ∗(t)
(4.4)

Looking back at Equation 4.1, we note that it is a one-to-one mapping between t and t̃ which
makes it completely natural to write t(∆t̃n) ≡ Λ∗−1(t̃n−1 +∆t̃n).

Alternatively, when the intensity function is differentiable between jumps we can go even
further by recasting the jump problem as a piecewise deterministic Markov process. Let λ∗

n ≡
λ∗(tn), then the flow φt−tn(λ

∗
n) maps the initial value of the conditional intensity at time tn

to its value at time t. In other words, the flow describes the deterministic evolution of the
conditional intensity function over time. Next, denote 1(·) as the indicator function, then the
conditional intensity function can be re-written as a jump process:

λ∗(t) =
∑
n≥1

φt−tn−1(λn−1)1(tn−1 ≤ t < tn). (4.5)

According to Meiss [15], if φt(·) is a flow, then it is a solution to the initial value problem:

φ0(λ
∗
n) = λ∗

n ,
d

dt
φt−tn(λ

∗
n) = g(φt−tn(λ

∗
n)) (4.6)

where g : R+ → R is the vector field of λ∗ such that dλ∗/dt = g(λ∗).
Based on Equation 2.1, we find that the probability of observing an interval longer than s

given internal history Ht− is equivalent to:

Pr(tn − tn−1 > s | Ht−) = 1−
∫ tn−1+s

tn−1

p∗(u)du =

= exp

(
−
∫ tn−1+s

tn−1

λ∗(u)du

)
=

= exp

(
−
∫ tn−1+s

tn−1

φu−tn−1(λ
∗
n−1)du

) (4.7)

Equations 4.5 and 4.7 define a piecewise deterministic Markov process satisfying the condi-
tions of Theorem 3.1 [23]. In this case, we find tn by solving the following initial value problem
from 0 to ∆t̃n ∼ exp(1). 

λ∗(t(0)) = λ∗(tn−1) ,
dλ∗

dt̃
=

g(λ∗(t))

λ∗(t)

t(0) = tn−1 ,
dt

dt̃
=

1

λ∗(t)
.

(4.8)

4

This problem specifies how the conditional intensity and model time evolve with respect to the
transformed time. The solution to Equation 4.2 is then given by (tn = t(∆t̃n), λ

∗(t(∆t̃n)) =
λ∗(tn)).

In Algorithm 1, we can implement the CHV method by solving either Equation 4.4 or Equa-
tion 4.8 instead of Equation 4.2. We denote the first specification as CHV simple and the second
as CHV full. Note that CHV full requires that the conditional intensity be piecewise differen-
tiable. The algorithmic complexity is then determined by the ODE solver and no root-finding
is required. In Section 6.2, we will show that there are substantial differences in performance
between them with the full specification being faster.

Another concern with Algorithm 1 is updating and drawing from the conditional mark
distribution in Line 8, and updating the conditional intensity in Line 9. Assume a process with
K number of marks. A naive implementation of Line 9 scales with the number of marks as
O(K) since λ∗ is usually constructed as the sum of K independent processes, each of which
requires updating the conditional intensity rate. Likewise, drawing from the mark distribution
in Line 8 usually involves drawing from a categorical distribution whose naive implementations
also scales with the number of marks as O(K).

Finally, Algorithm 1 is not guaranteed to terminate in finite time since one might need to
sample many points before tn > T . The sampling rate can be especially high when simulating
the process in a large population with self-exciting encounters. In biochemistry, Salis and
Kaznessis [19] partition a large system of chemical reactions into two: fast and slow reactions.
While they approximate the fast reactions with a Gaussian process, the slow reactions are solved
using a variation of the inverse method. They obtain an equivalent expression for the rate of
slow reactions as in Equation 4.2, which is integrated with the Euler method.

Algorithm 1 The inverse method for simulating a marked evolutionary point process over a fixed
duration of time [0, T).
1: procedure InverseMethod([0, T), λ∗, f∗,)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: while t < T do
5: n← n+ 1
6: draw ∆t̃n ∼ exp(1)
7: find the next event time tn by solving Equation 4.2 or 4.8
8: update f∗ and draw the mark kn ∼ f∗ (k | tn)
9: update the history HT− ← HT− ∪ (tn, kn) and λ∗

10: end while
11: return HT−

12: end procedure

4.2 Thinning methods
Thinning methods are one of the most popular methods for simulating point processes. The
main idea is to successively sample a homogeneous process, then thin the obtained points with
the conditional intensity of the original process. As stated in Proposition 7.5.I [1], this procedure
simulates the target process by construction. The advantage of thinning over inverse methods
is that the former only requires the evaluation of the conditional intensity function while the
latter requires computing the inverse of its integrated form [1].

Thinning algorithms have been proposed in different forms [1]. The Shedler-Lewis algorithm
can simulate processes with bounded intensity [12]. The classical algorithm from Ogata [16]

5

overcomes this limitation and only requires the local boundedness of the conditional intensity.
The advantage of Ogata’s algorithm and its variations is that it can simulate processes with
potentially unbounded intensity, such as self-exciting ones. As long as the intensity conditioned
on the simulated history remains locally bounded, it is possible to simulate subsequent points
indefinitely.

In biochemistry, the thinning method was popularized by Gillespie [6, 5]. For this reason,
this method is also called the Gillespie method. Gillespie himself called it the direct method
or the stochastic simulation algorithm. Gillespie introduced the thinning method in the context
of simulating chemical reactions of well-stirred systems. He developed a stochastic model for
molecule interactions from physics principles without any references to the point process theory
developed in this section. His model of chemical interactions is equivalent to a marked Poisson
process with constant conditional intensity between jumps. The model consists of distinct
populations of molecular species that interact through several reaction channels. A chemical
reaction consists of a Poisson process that transforms a set of molecules of some type into a set
of molecules of another type. What Gillespie calls the master equation can be deduced from the
superposition theorem — Theorem 3.3 [9].

Alternatively, in biochemistry, thinning methods are known as rejection algorithms. Than et
al. [21, 22] proposed the rejection-based algorithm with composition-rejection search, yet another
more sophisticated variation of the thinning method. In this case, the procedure groups similar
processes together. For each group, an upper- and lower-bound conditional intensity is used
for thinning. A similar procedure is also described in [20], in which the authors refer to their
algorithm as kinetic Monte Carlo.

In Algorithm 2, we modify Algorithm 7.5.IV [1] to incorporate the idea of a lower bound
for the conditional intensity from [22]. To implement the algorithm, we define three functions,
B̄∗(t) = B̄(t | Ht), B∗(t) = B(t | Ht) and L∗(t) = L(t | Ht), that characterize the local
boundedness condition such that:

λ∗ (t+ u) ≤ B̄∗(t) and λ∗ (t+ u) ≥ B∗(t),

∀ 0 ≤ u ≤ L∗(t).
(4.9)

The tighter the bound on B̄∗(t), the lower the number of samples discarded. Since looser bounds
lead to less efficient algorithms, the art, when simulating via thinning, is to find the optimal
balance between the local supremum of the conditional intensity B̄∗(t) and the duration of the
local interval L∗(t). On the other hand, the infimum B∗(t) can be used to avoid the evaluation
of λ∗ (t+ u) in Line 5 of Algorithm 3 which often can be expensive.

When the conditional intensity is constant between jumps such that λ∗ (t) = λn−1, ∀tn−1 ≤
t < tn, let B̄∗(t) = B∗(t) = λn−1 and L∗(t) = ∞. We have that for any u ∼ exp(1 / B̄∗(t)) =
exp(λn−1) and v ∼ U [0, 1], u < L∗(t) = ∞ and v < λ∗ (t + u) / B̄∗(t) = 1. Therefore, we
advance the internal history for every iteration of Algorithm 2. In this case, the bound B̄∗(t) is
as tight as possible, and this method becomes the same as the inverse method of Subsection 4.1.

We can draw many more connections between the thinning and inverse methods. Lemaire et
al. [11] propose a version of the thinning algorithm for Piecewise Deterministic Markov Processes
which does not use the local interval L∗ for rejection — this is equivalent to L∗(t) = ∞ —, and
does not assume the upper bound B̄∗(t) is constant over L∗(t). The efficiency of their algorithm
depends on the assumption that the stochastic process determined by B̄∗(t) can be efficiently
inverted such that candidate times can be efficiently obtained using Equation 4.1. They propose
an optimal bound as a piecewise constant function partitioned in such a way that it envelopes
the intensity function as strictly as possible. They then show that under certain conditions
the stochastic process determined by B̄∗(t) converges in distribution to the target conditional
intensity as the partitions of the optimal boundary converge to zero. Although their simulation
approach does not exactly match ours, it suggests some properties between the thinning and
the inverse method that we could investigate in the future. Among other things, the efficiency

6

of thinning compared to inversion most likely depends on the rejection rate obtained by the
former and the number of steps required by the ODE solver for the latter.

While thinning algorithms avoid the issue of directly computing the inverse of the integrated
conditional intensity, they increase the number of time steps needed in the sampling algorithm
as we are now sampling from a process with an increased intensity relative to the original
process. Moreover, like the inverse method, thinning algorithms can also face issues related
with drawing from the conditional mark distribution — Line 11 of Algorithm 2 —, and updating
the conditional intensity — Line 3 of Algorithm 3 — and the mark distribution — Line 12 of
Algorithm 2.

Algorithm 2 The thinning method for simulating a marked evolutionary point process over a fixed
duration of time [0, T).
1: procedure ThinningMethod([0, T), λ∗, f∗,)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: while true do
5: t← TimeViaThinning([t, T), HT− , λ∗)
6: if t ≥ T then
7: break
8: end if
9: n← n+ 1

10: tn ← t
11: update f∗ and draw the mark kn ∼ f∗ (k | tn)
12: update the history HT− ← HT− ∪ (tn, kn)
13: end while
14: return HT−

15: end procedure

4.3 Queuing methods
As an alternative to his direct method — in this text referred as the constant rate thinning
method —, Gillespie introduced the first reaction method in his seminal work on simulation
algorithms [6]. The first reaction method separately simulates the next reaction time for each
reaction channel — i.e. for each mark. It then selects the smallest time as the time of the
next event, followed by updating the conditional intensity of all channels accordingly. This
is a variation of the constant rate thinning method to simulate a set of inter-dependent point
processes, making use of the superposition theorem — Theorem 3.3 [9] — in the inverse direction.

Gibson and Bruck [3] improved the first reaction method with the next reaction method.
They innovate on three fronts. First, they keep a priority queue to quickly retrieve the next
event. Second, they keep a dependency graph to quickly locate all conditional intensity rates
that need to be updated after an event is fired. Third, they re-use previously sampled reaction
times to update unused reaction times. This minimizes random number generation, which can
be costly. Priority queues and dependency graphs have also been used in the context of social
media [2] and epidemics [8] simulation. In both cases, the phenomena are modelled as point
processes.

We prefer to call this class of methods queuing methods since most efficiency gains come
from maintaining a priority queue of the next event times. Up to this point we assumed that
we were sampling from a global process with a mark distribution that could generate any mark
k given an event at time t. With queuing, it is possible to simulate point processes with a finite

7

Algorithm 3 Generates the next event time via thinning.
1: procedure TimeViaThinning([t, T), λ∗, Ht,)
2: while t < T do
3: update λ∗

4: find B̄∗(t), B∗(t) and L∗(t) which satisfy Eq. 4.9
5: draw u ∼ exp(B̄∗(t)) and v ∼ U [0, B̄∗(t)]
6: if u > L∗(t) then
7: t← t+ L∗(t)
8: next
9: end if

10: if (v > B∗(t)) and (v > λ∗ (t+ u)) then
11: t← t+ u
12: next
13: end if
14: t← t+ u
15: break
16: end while
17: return t
18: end procedure

space of marks as M interdependent point processes — see Definition 6.4.1 [1] of multivariate
point processes — doing away with the need to draw from the mark distribution at every
event occurrence. Alternatively, it is possible to split the global process into M interdependent
processes each one of which with its own mark distribution.

Our contribution, Algorithm 5, presents a method for sampling a superposed point process
consisting of M processes by keeping the strike time of each process in a priority queue Q.
The priority queue is initially constructed in O(M) steps in Lines 4 to 7 of Algorithm 5. In
contrast to thinning methods, updates to the conditional intensity depend only on the size of
the neighborhood of i. That is, processes j whose conditional intensity depends on the history
of i. If the graph is sparse, then updates will be faster than with thinning.

A source of inefficiency in some implementations of queuing algorithms is the fact that one
might need to go through multiple rejection cycles before accepting a time candidate ti for pro-
cess i. This might require looking ahead in the future. In addition to that, if process j, which i
depends on, takes place before i, then we need to repeat the whole thinning process to obtain
a new time candidate for i. We thus propose Algorithm 5 which is a queuing algorithm that
performs thinning in synchrony with the main loop, thus avoiding look ahead and wasted rejec-
tions. Since thinning is now synced with the main loop, it is possible to couple this simulator
with other algorithms that step chronologically through time. These include ordinary differen-
tial equation solvers, enabling us to simulate jump processes with rates given by a differential
equation. This is the first synced thinning algorithm we are aware of.

5 Implementation
JumpProcesses.jl is a Julia library for simulating jump — or point — processes which is part
of Julia’s SciML organization. Our discussion in Section 4 identified three exact methods for
simulating point processes. In all the cases, we identified two mathematical constructs required
for simulation: the intensity rate and the mark distribution. In JumpProcesses.jl, these can be
mapped to user defined functions rate(u, p, t) and affect!(integrator). The library pro-

8

Algorithm 4 Generates the next candidate time for queuing.
1: procedure QueueTime(t, λ∗, Ht,)
2: update λ∗

3: find B̄∗(t), B∗(t) and L∗(t) which satisfy Eq. 4.9
4: draw u ∼ exp(B̄∗(t))
5: if u > L∗(t) then
6: accepted← false
7: else
8: accepted← true
9: end if

10: t← t+ u
11: return t, B̄∗(t), B∗, accepted
12: end procedure

vides APIs for defining processes based on the nature of the intensity rate and the intended sim-
ulation algorithm. Processes intended for exact methods can choose between ConstantRateJump
and VariableRateJump. While the former expects the rate between jumps to be constant, the
latter allows for time-dependent rates. The library also provides the MassActionJump API to
define large systems of point processes that can be expressed as reaction equations. Finally,
RegularJump are intended for inexact methods.

The inverse method as described around Equation 4.2 uses root find to find the next jump
time. Jumps to be simulated via the inverse method must be initialized as a VariableRateJump.
JumpProcesses.jl builds a continuous callback following the algorithm in [19] and passes the
problem to an OrdinaryDiffEq.jl integrator, which easily interoperates with JumpProcesses.jl
(both libraries are part of the SciML organization, and by design built to easily compose).
JumpProcesses.jl does not yet support the CHV ODE based approach.

Alternatively, thinning and queuing methods can be simulated via discrete steps. In the
context of the library, any method that uses a discrete callback is called an aggregator. There
are twelve different aggregators, seven of which implement a variation of the thinning method
and five of which a variation of the queuing method.

We start with the thinning aggregators, none of which support VariableRateJump. Algo-
rithm 2 assumes that there is a single process. In reality, all the implementations assume a
finite multivariate point process with M interdependent processes. This can be easily concil-
iated, as we do now, using Definition 6.4.1 [1] which states the equivalence of such process
with a point process with a finite space of marks. As all the thinning aggregators only deal
with ConstantRateJump, the intensity between jumps is constant, Algorithm 3 short-circuits to
quickly return t ∼ exp(B̄) = exp(λn) as discussed in Subsection 4.2. Next, the mark distribution
becomes the categorical distribution weighted by the intensity of each process. That is, given
an event at time tn, we have that the probability of drawing process i out of M sub-processes
is λ∗

i (tn)/λ
∗(tn). Conditional on sub-process i, the corresponding affect!(integrator) is in-

voked, that is, kn ∼ f∗
i (k | tn). Here we use a notation analogous to Section 4.3.

Where most implementations differ is on updating the mark distribution in Line 11 of Algo-
rithm 2 and the conditional intensity rate in Line 3 of Algorithm 3. Direct and DirectFW follows
the direct method in [6] which re-evaluates all intensities after every iteration scaling at O(K).
When drawing the process to fire, it executes a search in an array that stores the cumulative sum
of rates. DirectCR, SortingDirect and RDirect only re-evaluate the intensities of the processes
that are affected by the realized process. This operation is executed efficiently by keeping a
vector of dependencies. These three algorithms differ in how they select the process. DirectCR
keeps the intensity rates in a priority table, it is implemented after [20]. SortingDirect keeps
the intensity rate in a loosely sorted array following [14]. In both cases, the idea is to use a

9

randomly generated number between zero and one to guide the search for the next jump. With
the intensity rates sorted, more frequent processes should be selected faster than less frequent
ones. Overall, this should increase the speed of the simulation. RDirect keeps track of the
maximum rate of the system, it implements an algorithm equivalent to thinning with B̄ equal
to the maximum rate. However, the implementation differs. It thins with B̄ = λn, then ran-
domly selects a candidate process and confirms the candidate only if its rate is above a random
proportion of the maximum rate. Finally, RSSA and RSSACR group processes with similar rates
in bounded brackets. The upper bounds are used for thinning. For each round of thinning, a
sampled candidate process is considered for selection. In RSSA, the candidate process is selected
similarly to Direct, while a priority table is used in RSSACR. Both of these algorithms follow
from [21, 22].

Next, we consider the queuing aggregators. Starting with aggregators that only support
ConstantRateJumps we have, FRM, FRMFW and NRM. FRM and FRMFW follow the first reaction method
in [6]. To compute the next jump, both algorithms compute the time to the next event for each
process and select the process with minimum time. This is equivalent to assuming a complete
dependency graph in Algorithm 5. For large systems, they can be less efficient than NRM. The
latter implementation is sourced from [3] and follows Algorithm 5 very closely.

Previously, we attempted to bridge the gap between the treatment of point process simu-
lation in statistics and biochemistry. Despite the many commonalities, most of the algorithms
implemented in JumpProcesses.jl are derived from the biochemistry literature. There has
been less emphasis on implementing processes commonly studied in statistics such as self-
exciting point processes characterized by time-varying and history-dependent intensity rates.
This is addressed by our latest aggregator, Coevolve. This is the first aggregator that supports
VariableRateJumps, facilitating substantially more performant simulation of processes with
time-dependent intensity rates in JumpProcesses.jl and DifferentialEquations.jl compared
to the current inverse method-based approach that relies on ODE integration and continuous
events.

The implementation of this aggregator takes inspiration from [2], and improves the method
in several ways. First, we take advantage of the modularity and composability of Julia to
design an API that accepts any intensity rate, not only the Hawkes’. Second, we avoid the
re-computation of unused random numbers. When updating processes that have not yet fired,
we can transform the unused time of constant rate processes to obtain the next candidate time
for the first round of iteration of the thinning procedure in Algorithm 3. This saves one round
of sampling from the exponential distribution, which translates into a faster algorithm. Third,
we allow the user to supply a lower bound rate which can short-circuit the loop in Algorithm 3,
saving yet another round of sampling. Fourth, it adapts to processes with constant intensity
between jumps which reduces the loop in Algorithm 3 to the equivalent implemented in NRM.
Finally, since Coevolve can be mapped to a thinning algorithm — see [2] —, it can simulate any
point process on the real line with a non-negative, left-continuous, history-adapted and locally
bounded intensity rate as per Proposition 7.5.I [1].

Coevolve syncs with the main execution loop which means that it can be easily coupled
with differential equations modeled with OrdinaryDiffEq.jl. For instance, It is possible to
model processes whose rates are given by a differential equation. This is a departure from
the algorithm described in [2] which translates not only into a faster, but also more flexible
simulator. This difference in implementation follows our discussion on the relationship between
the main execution loop and the thinning loop in Section 4.3.

6 Empirical evaluation
This section conducts some empirical evaluation of the JumpProcesses.jl aggregators described
in Section 5. First, since Coevolve is a new aggregator, we test its correctness by conducting
statistical analysis. Second, we conduct the jump benchmarks available in SciMLBenchmarks.jl.

10

We have added new benchmarks that assess the performance of the new aggregators under
settings that could not be simulated with previous aggregators.

6.1 Statistical analysis of Coevolve
To simulate a process intended for a discrete solver with JumpProcesses.jl, we define a dis-
crete problem, initialize the jumps and define the jump problem which takes the aggregator
as an argument. The jump problem can then be solved with the discrete stepper provided
by JumpProcesses.jl, SSAStepper. The code for simulating the homogeneous Poisson process
with Direct is reproduced in Listing 1.

Listing 1: Simulation of the homogeneous Poisson process.✞ ☎
u s i n g J u m p P r o c e s s e s
r a t e (u , p , t) = p [1]
a f f e c t ! (i n t e g r a t o r) = (i n t e g r a t o r . u [1] + = 1 ;

n o t h i n g)
j u m p = C o n s t a n t R a t e J u m p (r a t e , a f f e c t !)
u , t s p a n , p = [0 .] , (0 . , 2 0 0 .) , (0 .2 5 ,)
d p r o b = D i s c r e t e P r o b l e m (u , t s p a n , p)
j p r o b = J u m p P r o b l e m (d p r o b , D i r e c t () , j u m p ;

d e p _ g r a p h = [[1]])
s o l = s o l v e (j p r o b , S S A S t e p p e r ())✝ ✆
The simulation of a Hawkes process — see Subsection 6.2 for a definition — requires a

VariableRateJump along with the rate bounds and the interval for which the rates are valid.
Also, since the Hawkes process is history dependent, we close the rate and affect! function
with a vector containing the history of events. The code for simulating the Hawkes process is
reproduced in Listing 2. Note that it is possible to simplify the computation of the rate —
see Subsection 6.2 —, but we keep the code here as close as possible to its usual definition for
illustration purposes.

Listing 2: Simulation of the Hawkes process.✞ ☎
u s i n g J u m p P r o c e s s e s
h = F l o a t 6 4 []
r a t e (u , p , t) = p [1] +

p [2] * s u m (e x p (- p [3] * (t - _t)) f o r _t in h ; i n i t = 0)
l r a t e (u , p , t) = p [1]
u r a t e = r a t e
r a t e i n t e r v a l (u , p , t) = 1 / (2 * u r a t e (u , p , t))
a f f e c t ! (i n t e g r a t o r) = (p u s h ! (h , i n t e g r a t o r . t) ;

i n t e g r a t o r . u [1] + = 1 ; n o t h i n g)
j u m p = V a r i a b l e R a t e J u m p (r a t e , a f f e c t ! ; l r a t e ,

u r a t e , r a t e i n t e r v a l)
u , t s p a n , p = [0 .] , (0 . , 2 0 0 .) , (0 .2 5 , 0 .5 , 2 .0)
d p r o b = D i s c r e t e P r o b l e m (u , t s p a n , p)
j p r o b = J u m p P r o b l e m (d p r o b , C o e v o l v e () , j u m p ;

d e p _ g r a p h = [[1]])
s o l = s o l v e (j p r o b , S S A S t e p p e r ())✝ ✆
To assess the correctness of Coevolve, we add it to the JumpProcesses.jl test suite. Some

tests check whether the aggregators are able to obtain empirical statistics close to the expected
in a number of simple biochemistry models such as linear reactions, DNA repression, reversible
binding and extinction. The test suite was missing a unit test for self-exciting process. Thus, we
have added a test for the univariate Hawkes model that checks whether algorithms that accept

11

VariableRateJump are able to produce an empirical distribution of trajectories whose first two
moments of the observed rate are close to the expected ones.

In addition to that, the correctness of the implemented algorithm can be visually assessed
using a Q-Q plot. As discussed in Subsection 4.1, every simple point process can be transformed
to a Poisson process with unit rate. This implies that the interval between points for any such
transformed process should match the exponential distribution. Therefore, the correctness of
any aggregator can be assessed as following. First, transform the simulated intervals with the
appropriate compensator. Let tni be the time in which the n-th event of sub-process i took
place and t0i ≡ 0, the compensator for sub-process i is given by the following:

Λ∗
i (tni) ≡ Λ∗

ni
≡
∫ tni

0

λ∗
i (u)du (6.1)

Then the transformed simulated interval is given by:

∆Λni ≡ Λ∗
ni

− Λ∗
(n−1)i (6.2)

Compute the empirical quantiles of the transformed intervals. That is, the q-th quantile is the
interval ∆Λq that divides the sorted intervals in two sets, those below and above ∆Λq such
that q-percent of the elements are below it. Plot the empirical quantiles with the corresponding
quantiles of the exponential distribution. If the simulator produces correct trajectories, this
plot known as Q-Q plot should depict the points aligned around the 45-degree line. We produce
Q-Q plots for the homogeneous Poisson process as well as the compound Hawkes process — see
Subsection 6.2 for a definition — to attest the correctness of Coevolve. Figure 1 (d) depicts the
Q-Q plot for a ten-node compound Hawkes process with parameters λ = 0.5, α = 0.1, β = 2.0
simulated 250 times for 200 units of time. Figure 1 also depicts the trajectory, the conditional
intensity and the network structure of a single simulation for three random nodes in panels
(a), (b) and (c) respectively. We obtained similar Q-Q plots for the other algorithms that
benchmarked the Multivariate Hawkes process below.

6.2 Benchmarks
We conduct a set of benchmarks to assess the performance of the JumpProcesses.jl aggregators
described in Section 5. All benchmarks are available in SciMLBenchmarks.jl3. All were run
in BuildKite4 via the continuous integration facilities provided by the package maintainers.
We have added two benchmark suites to assess the performance of the new aggregators under
settings that could not be simulated with previous aggregators.

First, we assess the speed of the aggregators against jump processes whose rates are constant
between jumps. There are four such benchmarks: a 1-dimensional continuous time random
walk approximation of a diffusion model (Diffusion), the multi-state model from Appendix
A.6 [13] (Multi-state), a simple negative feedback gene expression model (Gene I) and the
negative feedback gene expression from [7] (Gene II). We simulate a single trajectory for each
aggregator to visually check that they produce similar trajectories for a given model. The
Diffusion, Multi-state, Gene I and Gene II benchmarks are then simulated 50, 100, 2000 and
200 times, respectively. Check the source code for further implementation details.

Benchmark results are listed in Table 1. The table shows that no single aggregator dominates
suggesting they should be selected according to the task at hand. However, FRM, NRM, Coevolve
never dominate any benchmark. In common, they all belong to the family of queuing methods
suggesting that there is a penalty when using such methods for jump processes whose rates are
constant between jumps. We also note that the performance of Coevolve lag that of NRM despite

3https://github.com/SciML/SciMLBenchmarks.jl/tree/3bf650c1aae7b10e49cbd10e8f626d2a517f3e79/
benchmarks/Jumps

4https://buildkite.com/julialang/scimlbenchmarks-dot-jl/builds/1326#01898353-e5f2-449e-82fd-79708f84462c

12

https://github.com/SciML/SciMLBenchmarks.jl/tree/3bf650c1aae7b10e49cbd10e8f626d2a517f3e79/benchmarks/Jumps
https://github.com/SciML/SciMLBenchmarks.jl/tree/3bf650c1aae7b10e49cbd10e8f626d2a517f3e79/benchmarks/Jumps
https://buildkite.com/julialang/scimlbenchmarks-dot-jl/builds/1326#01898353-e5f2-449e-82fd-79708f84462c

0 5 10 15 20

1

2

3

t

no
de

in
de

x

(a)

0 5 10 15 20

0.5

0.6

0.7

0.8

t
co

nd
it

io
na

l
ra

te

(b)

(c)

0 1 2 3 4 5
0

1

2

3

4

5

Expected quantile

E
m

pi
ri

ca
l

qu
an

ti
le

(d)

Figure 1: Simulations of 10-nodes compound Hawkes process with parameters λ = 0.5, α = 0.1, β =
2.0 for 200 units of time. (a) and (b) sampled trajectory and intensity rate for a single simulation
for the three selected nodes in (c) for the first 20 units of time. (c) underlying 10-nodes network
with three random nodes selected. (d) Q-Q plot of transformed inter-event time for 250 simulations
colored by node.

13

Diffusion Multi-state Gene I Gene II
Direct 4.80 s 0.11 s 0.17 ms 0.49 s
FRM 14.51 s 0.20 s 0.25 ms 0.83 s
SortingDirect 1.17 s 0.09 s 0.18 ms 0.44 s
NRM 0.68 s 0.22 s 0.33 ms 0.82 s
DirectCR 0.44 s 0.18 s 0.35 ms 0.87 s
RSSA 1.64 s 0.09 s 0.35 ms 0.58 s
RSSACR 0.36 s 0.12 s 0.72 ms 0.91 s
Coevolve 0.75 s 0.30 s 0.45 ms 1.13 s

Table 1: Median execution time. A 1-dimensional continuous time random walk approximation of
a diffusion model (Diffusion), the multi-state model from Appendix A.6 [13] (Multi-state), a simple
negative feedback gene expression model (Gene I) and the negative feedback gene expression from [7]
(Gene II). Fastest time is bold, second fastest underlined. Benchmark source code and dependencies
are available in SciMLBenchmarks.jl, see first paragraph of Section 6.2 for source references.

the fact that Coevolve should take the same number of steps as NRM when no VariableRateJump
is used. The reason behind this discrepancy is likely due to implementation differences, but left
for future investigation.

Second, we add a new benchmark which simulates the compound Hawkes process for an
increasing number processes. Consider a graph with V nodes. The compound Hawkes process
is characterized by V point processes such that the conditional intensity rate of node i connected
to a set of nodes Ei in the graph is given by

λ∗
i (t) = λ+

∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tnj)

]
. (6.3)

This process is known as self-exciting, because the occurrence of an event j at tnj will increase
the conditional intensity of all the processes connected to it by α. The excited intensity then
decreases at a rate proportional to β.

dλ∗
i (t)

dt
= −β

∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tnj)

]
= −β (λ∗

i (t)− λ)

(6.4)

The conditional intensity of this process has a recursive formulation which can significantly
speed the simulation. The recursive formulation for the univariate case is derived in [10] which
also provides additional discussion and results on the Hawkes process. We derive the compound
case here. Let tNi = max{tnj < t | j ∈ Ei} and ϕ∗

i (t) below.

ϕ∗
i (t) =

∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tNi + tNi − tnj)

]
= exp [−β(t− tNi)]

∑
j∈Ei

∑
tnj

≤tNi

α exp
[
−β(tNi − tnj)

]
= exp [−β(t− tNi)] (α+ ϕ∗

i (tNi))

(6.5)

Then the conditional intensity can be re-written in terms of ϕ∗
i (tNi).

λ∗
i (t) = λ+ ϕ∗

i (t) = λ+ exp [−β(t− tNi)] (α+ ϕ∗
i (tNi)) (6.6)

14

A random graph is sampled from the Erdős-Rényi model. This model assumes the probability
of an edge between two nodes is independent of other edges, which we fix at 0.2. Note that this
setup implies an increasing expected node degree.

We fix the Hawkes parameters at λ = 0.5, α = 0.1, β = 5.0 ensuring the process does not
explode and simulate models in the range from 1 to 95 nodes for 25 units of time. We simulate
50 trajectories with a limit of ten seconds to complete execution. For this benchmark, we save
the state of the system exactly after each jump.

We assess the benchmark in eight different settings. First, we run the inverse method,
Coevolve and CHV simple using the brute force formula of the intensity rate which loops through
the whole history of past events — Equation 6.3. Second, we simulate the same three methods
with the recursive formula — Equation 6.6. Next, we run the benchmark against CHV full.
All CHV specifications are implemented with PiecewiseDeterministicMarkovProcesses.jl 5

which is developed by Veltz, the author of the CHV algorithm discussed in Subsection 4.1.
Finally, we run the benchmark using the Python library Tick6. This library implements a
version of the thinning method for simulating the Hawkes process and implements a recursive
algorithm for computing the intensity rate.

Table 2 shows that the Inverse method which relies on root finding is the most inefficient of
all methods for any system size. For large system size this method is unable to complete all 50
simulation runs because it needs to find an ever larger number of roots of an ever larger system
of differential equations.

The recursive implementation of the intensity rate brings a considerable boost to the sim-
ulations, placing Coevolve as one of the fastest algorithms. As shown in Algorithm 5, every
sampled point in Coevolve requires a number of expected updates equal to the expected degree
of the dependency graph. Therefore, it is able to complete non-exploding simulations efficiently.

The Python library Tick remains competitive for smaller problems, but gets considerably
slower for bigger ones. Also, it is only specialized to the Hawkes process. Another drawback
is that the library wraps the actual C++ implementation. In contrast, JumpProcesses.jl can
simulate many other point processes with a relatively simple user-interface provided by the Julia
language.

There is substantial difference between the performance of recursive CHV simple and CHV
full. The former does not make use of the derivative of the intensity function in Equation 6.4
which is more efficient to compute than the recursive rate in Equation 6.6.

On the one hand, Coevolve clearly dominates CHV simple. On the other hand, CHV full
is slower for smaller networks, but slightly faster than Coevolve for larger models. This change
in relative performance occurs due to the rate of rejection in Coevolve increasing in model size
for this particular model. We compute the rejection rate as one minus the ratio between the
number of jumps and the number of calls to the upper bound. A system with a single node
sees a rejection rate of around 8 percent which rapidly increases to 80 percent when the system
reaches 20 nodes and plateaus at around 95 percent with 95 nodes.

Finally, we introduce a new benchmark which is intended to assess the performance of
algorithms capable of simulating the stochastic model of hippocampal synaptic plasticity with
geometrical readout of enzyme dynamics proposed in [18]. For short, we denote it as the synapse
model. We chose to benchmark this model as it is representative of a complex biochemical
model. It couples a jump problem containing 98 jumps affecting 49 discrete variables with
a stiff, ordinary differential equation problem containing 34 continuous variables. Continuous
variables affect jump rates while the discrete variables affect the continuous problem. There are 3
stages to the simulation: pre-synaptic evolution, glutamate release, and post-synaptic evolution.
Among the algorithms considered, only the inverse method implemented in JumpProcesses.jl,
Coevolve and CHV are theoretically able to simulate the synapse model. However, in practice,
only the last two complete at least one benchmark run. The original synapse problem was

5https://github.com/rveltz/PiecewiseDeterministicMarkovProcesses.jl
6https://github.com/X-DataInitiative/tick

15

https://github.com/rveltz/PiecewiseDeterministicMarkovProcesses.jl
https://github.com/X-DataInitiative/tick

described as a piecewise deterministic Markov process, so we do not make the distinction between
CHV simple and full in this benchmark.

Benchmark results are displayed in Table 3. We observe that CHV is the fastest algorithm
completing the synapse evolution in about half of the time it takes Coevolve with less than half
of the allocations. Further investigation reveals that the thinning procedure in Coevolve reaches
an average of 70 percent over all jumps which then leads to 2 to 3 times more function evaluations
and Jacobians created compared to CHV. Our implementation adds stopping times via a call to
register_next_jump_time! even for rejected jumps — we do not know a jump will be rejected
until evaluated. This then leads the ODE solver to step to those times and make additional
function evaluations and Jacobians. Lemaire et al. [11] performs a similar benchmark in which
they compare the Hodgkin-Huxley model against different thinning conditions and against an
ODE approximation. They find that a thinned algorithm with optimal boundary conditions
can run significantly faster than the ODE approximation. Thus, there could be plenty of room
to improve the performance of Coevolve in our setting.

A disadvantage of CHV compared with Coevolve is that it supports limited saving options
by design. To save at pre-specified times would require using the fact that solutions are piece-
wise constant to determine solutions at times in-between jumps — and for coupled ODE-jump
problems would require root-finding to determine when s(u) = sn for each desired saving time
sn in Equation 4.8. The alternative proposed in [23] is to introduce an artificial jump to the
model such as the homogeneous Poisson process with unit rate to sample the system at regular
intervals. Alternatively, Coevolve allows saving at any arbitrary point. A common workflow
in simulating jump processes, particularly when interested in calculating statistics over time,
is to pre-specify a precise set of times at which to save a simulation. In theory, this reduces
memory pressure, particularly for systems with large numbers of jumps, and can give increased
computational performance relative to saving the state at the occurrence of every jump. How-
ever, in the case of the synapse model, the number of candidate time rejections far surpasses the
number of jumps. Therefore, reducing the number of saving points — e.g. only saving at start
and end of the simulation — does not significantly reduce allocations or running time. Given
these considerations, we decided to save after every jump and at regular pre-specified intervals
that occur at the same frequency as the artificial saving jump used by CHV.

Another parameter that can affect the precision and speed of the synapse benchmark is
the ODE solver. The author of PiecewiseDeterministicMarkovProcesses.jl discuss some
of these issues in Discourse7. Some ODE solvers can be faster and more precise. Due to
time constraints, we have not investigated this matter. The synapse benchmark uses the
AutoTsit5(Rosenbrock23()) solver in both Coevolve and CHV. Further investigation of this
matter is left to future research.

7 Conclusion
This paper demonstrates that JumpProcesses.jl is a fast, general-purpose library for simu-
lating evolutionary point processes. With the addition of Coevolve, any point process on the
real line with a non-negative, left-continuous, history-adapted and locally bounded intensity
rate can be simulated with this library. The objective of this paper was to bridge the gap
between the treatment of point process simulation in statistics and biochemistry. We demon-
strated that many of the algorithms developed in biochemistry which served as the basis for the
JumpProcesses.jl aggregators can be mapped to three general methods developed in statistics
for simulating evolutionary point processes. We showed that the existing aggregators mainly
differ in how they update and sample from the intensity rate and mark distribution. As we
performed this exercise, we noticed the lack of an efficient aggregator for variable intensity rates
in JumpProcesses.jl, a gap which Coevolve is meant to fill.

7https://discourse.julialang.org/t/help-me-beat-lsoda/88236

16

https://discourse.julialang.org/t/help-me-beat-lsoda/88236

Brute Force Recursive
V Inverse Coevolve CHV Inverse Coevolve CHV CHV Tick

simple simple full

Time

1 95.9 µs 5.3 µs 130.3 µ s 107.9 µs 6.0 µs 128.6 µs 129.4 µs 24.7 µs

10 15.0 ms 180.6 µs 3.8 ms 8.2 ms 60.1 µs 340.6 µs 452.8 µs 120.2 µs

20 105.2 ms 1.5 ms 37.7 ms 48.9 ms 223.2 µs 773.8 µs 699.6 µs 897.7 µs

30 370.6 ms 3.2 ms 101.2 ms 155.9 ms 405.8 µs 1.3 ms 1.1 ms 2.5 ms
n=28

40 1.7 s 7.8 ms 262.2 ms 1.1 s 764.4 µs 2.0 ms 1.4 ms 6.3 ms
n=7 n=39 n=9

50 3.2 s 16.5 ms 556.6 ms 2.4 s 1.2 ms 3.0 ms 1.7 ms 13.4 ms
n=3 n=18 n=5

60 6.3 s 32.0 ms 1.0 s 4.1 s 1.8 ms 4.3 ms 2.4 ms 27.9 ms
n=2 n=10 n=3

70 11.5 s 52.8 ms 1.8 s 6.8 s 2.5 ms 5.7 ms 2.7 ms 56.0 ms
n=1 n=6 n=2

80 16.6 s 88.5 ms 2.8 s 11.2 s 3.2 ms 7.4 ms 3.1 ms 93.2 ms
n=1 n=4 n=1

90 24.9 s 124.5 ms 4.8 s 15.3 s 4.2 ms 9.9 ms 3.8 ms 152.3 ms
n=1 n=3 n=1

Table 2: Median execution time for the compound Hawkes process, V is the number of nodes
and n is the total number of successful executions under ten seconds. Brute force refers to the
implementation of the intensity rate looping through the whole history of past events. Recur-
sive refers to a recursive implementation that only requires looking at the previous state of each
node. Inverse and Coevolve are algorithms from JumpProcesses.jl, CHV is an algorithm from
PiecewiseDeterministicMarkovProcesses.jl. See Subsection 4.1 for the distinction between
CHV simple and CHV full. Tick is a Python library. All simulations were run 50 times except
when stated otherwise under the running time. Fastest time is bold, second fastest underlined.
Benchmark source code and dependencies are available in SciMLBenchmarks.jl, see first paragraph
of Section 6.2 for source references.

Time Allocation
Inverse - -
Coevolve 3.8 s 94.1 Mb
CHV 2.0 s 43.5 Mb

Table 3: Median execution time and memory allocation. All simulations were run 50 times, a dash
indicates that no runs were successful. Fastest time is bold, second fastest underlined. Benchmark
source code and dependencies are available in SciMLBenchmarks.jl, see first paragraph of Section 6.2
for source references.

17

Coevolve borrows many enhancements from other aggregators in JumpProcesses.jl. How-
ever, there are still a number of ways forward. First, given the performance of the CHV al-
gorithm in our benchmarks, we should consider adding it to JumpProcesses.jl as another
aggregator so that it can benefit from tighter integration with the SciML organization and li-
braries. The saving behavior of CHV might pose a challenge when bringing this algorithm to
the library. We could leverage the connection between inverse and thinning methods illustrated
in Subsection 4.2 to attempt to develop a version of this algorithm that can evolve in synchrony
with model time. Second, the new aggregator depends on the user providing bounds on the jump
rates as well as the duration of their validity. In practice, it can be difficult to determine these
bounds a priori, particularly for models with many ODE variables. Moreover, determining such
bounds from an analytical solution or the underlying ODEs does not guarantee their holding for
the numerically computed solution (which is obtained via an ODE discretization), and so modi-
fications may be needed in practice. A possible improvement would be for JumpProcesses.jl to
determine these bounds automatically taking into account the derivative of the rates. Deriving
efficient bounds require not only knowledge of the problem and a good amount of analytical
work, but also knowledge about the numerical integrator. At best, the algorithm can perform
significantly slower if a suboptimal bound or interval is used, at worst it can return incorrect
results if a bound is incorrect — i.e. it can be violated inside the calculated interval of valid-
ity. Third, JumpProcesses.jl would benefit from further development in inexact methods. At
the moment, support is limited to processes with constant rates between jumps and the only
solver available SimpleTauLeaping does not support marks. Inexact methods should allow for
the simulation of longer periods of time when only an event count per time interval is required.
Hawkes processes can be expressed as a branching process. There are simulation algorithms that
already take advantage of this structure to leap through time [10]. It would be important to
adapt these algorithms for general, compound branching processes to cater for a larger number
of settings. Finally, JumpProcesses.jl also includes algorithms for jumps over two-dimensional
spaces. It might be worth conducting a similar comparative exercise to identify algorithms in
statistics for 2- and N -dimensional processes that could also be added to JumpProcess.jl as it
has the potential to become the go-to library for general point process simulation.

8 Acknowledgements
This project has been made possible in part by grant number 2021-237457 from the Chan
Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation. SAI was
also partially supported by NSF-DMS 1902854.

References
[1] D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes: Vol-

ume I: Elementary Theory and Methods, Probability and Its Applications, An Introduction
to the Theory of Point Processes, Springer-Verlag, 2 ed.

[2] M. Farajtabar, Y. Wang, M. Gomez-Rodriguez, S. Li, H. Zha, and L. Song,
COEVOLVE: A joint point process model for information diffusion and network evolution,
18.

[3] M. A. Gibson and J. Bruck, Efficient Exact Stochastic Simulation of Chemical Systems
with Many Species and Many Channels, 104.

[4] D. T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting
systems, 115.

[5] , Exact stochastic simulation of coupled chemical reactions, 81.

18

[6] D. T. Gillespie, A general method for numerically simulating the stochastic time evolution
of coupled chemical reactions, 22.

[7] A. Gupta and P. Mendes, An Overview of Network-Based and -Free Approaches for
Stochastic Simulation of Biochemical Systems, 6.

[8] P. Holme, Fast and principled simulations of the SIR model on temporal networks, 16.

[9] G. Last and M. Penrose, Lectures on the Poisson Process, Cambridge University Press,
1st edition ed.

[10] P. J. Laub, Y. Lee, and T. Taimre, The Elements of Hawkes Processes, Springer
International Publishing.

[11] V. Lemaire, M. Thieullen, and N. Thomas, Exact Simulation of the Jump Times of
a Class of Piecewise Deterministic Markov Processes, 75.

[12] P. A. W. Lewis and G. S. Shedler, Simulation of Nonhomogeneous Poisson Processes
with Log Linear Rate Function, 63.

[13] L. Marchetti, C. Priami, and V. H. Thanh, Simulation Algorithms for Computational
Systems Biology, Texts in Theoretical Computer Science. An EATCS Series, Springer In-
ternational Publishing.

[14] J. M. McCollum, G. D. Peterson, C. D. Cox, M. L. Simpson, and N. F. Samatova,
The sorting direct method for stochastic simulation of biochemical systems with varying
reaction execution behavior, 30.

[15] J. Meiss, Differential Dynamical Systems, Revised Edition, Mathematical Modeling and
Computation, Society for Industrial and Applied Mathematics.

[16] Y. Ogata, On Lewis’ simulation method for point processes, 27.

[17] C. Rackauckas and Q. Nie, DifferentialEquations.jl – A Performant and Feature-Rich
Ecosystem for Solving Differential Equations in Julia, 5.

[18] Y. E. Rodrigues, C. M. Tigaret, H. Marie, C. O’Donnell, and R. Veltz, A
stochastic model of hippocampal synaptic plasticity with geometrical readout of enzyme dy-
namics.

[19] H. Salis and Y. Kaznessis, Accurate hybrid stochastic simulation of a system of coupled
chemical or biochemical reactions, 122.

[20] A. Slepoy, A. P. Thompson, and S. J. Plimpton, A constant-time kinetic Monte Carlo
algorithm for simulation of large biochemical reaction networks, 128.

[21] V. H. Thanh, C. Priami, and R. Zunino, Efficient rejection-based simulation of bio-
chemical reactions with stochastic noise and delays, 141.

[22] V. H. Thanh, R. Zunino, and C. Priami, Efficient Constant-Time Complexity Algo-
rithm for Stochastic Simulation of Large Reaction Networks, 14.

[23] R. Veltz, A new twist for the simulation of hybrid systems using the true jump method.

19

Algorithm 5 The queuing method for simulating a marked evolutionary point process over a fixed
duration of time [0, T).
1: procedure QueuingMethod([0, T), {λ∗

k}, {f∗
k},)

2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: for i=1,M do
5: (ti, B̄

∗
i , B

∗
i , ai)← QueueTime(0, HT− , λ∗

i (·))
6: push (ti, B̄

∗
i , B

∗
i , ai, i) to Q

7: end for
8: while t < T do
9: first (ti, i, B̄

∗
i , B

∗
i , ai, i) from Q

10: t← ti
11: if t ≥ T then
12: break
13: end if
14: draw v ∼ U [0, B̄∗

i]
15: if (v > B∗

i) and (v > λ∗ (t)) then
16: ai ← false
17: end if
18: if ai then
19: n← n+ 1
20: tn ← t
21: update f∗ and draw the mark kn ∼ f∗

i (k | tn)
22: update the history HT− ← HT− ∪ (tn, kn)
23: for j ∈ {i} ∪Neighborhood(i) do
24: (tj , B̄

∗
j , B

∗
j , aj)← QueueTime(0, HT− , λ∗

j (·))
25: update (tj , B̄

∗
j , B

∗
j , aj , j) in Q

26: end for
27: else
28: (ti, B̄

∗
i , B

∗
i , ai)← QueueTime(0, HT− , λ∗

i (·))
29: update (ti, B̄

∗
i , B

∗
i , ai, i) in Q

30: end if
31: end while
32: return HT−

33: end procedure

20

	Introduction
	The evolutionary point process
	The homogeneous process
	Exact simulation methods
	Inverse methods
	Thinning methods
	Queuing methods

	Implementation
	Empirical evaluation
	Statistical analysis of Coevolve
	Benchmarks

	Conclusion
	Acknowledgements

