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Abstract. Recent works have derived and proven the large-population mean-field limit for several classes of
particle-based stochastic reaction-diffusion (PBSRD) models. These limits correspond to systems of partial

integral-differential equations (PIDEs) that generalize standard mass-action reaction-diffusion PDE models.
In this work we derive and prove the next order fluctuation corrections to such limits, which we show

satisfy systems of stochastic PIDEs with Gaussian noise. Numerical examples are presented to illustrate

how including the fluctuation corrections can enable the accurate estimation of higher order statistics of the
underlying PBSRD model.

1. Introduction

In this work we consider the large-population limit of particle-based stochastic reaction-diffusion (PB-
SRD) models. Such models are used to study the interplay between spatial transport via diffusion and
chemical reactions for systems of interacting particles/molecules, and have been used in a variety of bio-
logical and population process studies. Several recent works [LLN19, IMS22, PV22] have investigated the
large-population (thermodynamic) limit of such models, first studied in [O89], where the number of particles
and a system size parameter (typically domain volume and/or Avogadro’s number) are allowed to become
infinite such that the initial concentration of different chemical species (i.e. different types of particles) is
held constant. In such limits one obtains systems of partial-integral differential equations (PIDEs) for the
associated macroscopic concentration field of each species.

Here we build on our previous studies in [IMS22] and [IMS21], in which we investigated the large-
population mean-field limit for the volume reactivity (VR) PBSRD model, which is a generalization of
the classical Doi model [TS67, D76a, D76b]. In the VR model, molecules are approximated as point par-
ticles that move by Brownian Motion, unimolecular reactions such as A → B occur as an internal Poisson
process with a fixed probability per time for each substrate molecule (i.e. each A molecule), and bimolecular
reactions between two individual reactant particles, like A + B → . . . , occur with a probability per time
based on the positions of the two substrate molecules. Products of a reaction are placed randomly based
on specified particle placement densities. In [IMS22] we derived a set of reaction-diffusion PIDEs that we
then proved corresponded to the rigorous large-population limit of the VR PBSRD model, with our analysis
being valid for general reaction networks involving both first and second order reactions in which particle
numbers can change. Our method of proof was based on formulating a weak representation for the dynam-
ics of measure-valued stochastic processes (MVSPs), which correspond to concentration fields of different
chemical species in the VR PBSRD model. We then adapted the classical Stroock-Varadhan Martingale
approach to calculating mean-field limits [EK86, SV06] to prove the large-population limit for the MVSPs.
A similar approach was used in [O89] to derive the analogous mean-field PIDEs for systems that involved
only linear zero and first-order reactions (and therefore no interactions between particles). In contrast, a
different approach was considered in [LLN19], which derived the analogous mean-field limit using relative
entropy methods, but for systems involving only reactions that conserve particle numbers. Using entropy
methods allowed for more quantitative estimates, but as pointed out by the authors, appears restricted to
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systems in which particle numbers are unchanged by each reaction. Finally, we note that [PV22] considers
a novel underlying PBSRD model that is distinct from the VR model. This enables the consideration of
higher than second order reactions, and is used in studying a large-population limit in which some species
remain discrete with a stochastic evolution while others converge to continuous concentration fields.

We next investigated in [IMS21] how the derived mean-field PIDEs relate to commonly used, but phe-
nomenological, mass action reaction-diffusion PDE models. We demonstrated that the latter could be
interpreted as an approximation to the rigorous mean-field PIDEs in the limit that bimolecular interac-
tions become short-ranged when bimolecular reaction kernels have an averaging form. Collectively, the
works [O89, LLN19, IMS22, IMS21] establish the rigorous large population limit for VR PBSRD models,
and then rigorously demonstrate how they relate to commonly used macroscopic reaction-diffusion PDE
models.

The derived mean-field model has several clear limitations. In particular, as the resulting PIDEs are
deterministic it is unable to give any approximation to higher order statistics of the underlying VR PBSRD
models. To address this issue, in this work we derive the next order fluctuation corrections to the mean-field
PIDEs we derived in [IMS22], giving a proof that the scaled difference between the PBSRD MVSPs and the
mean-field PIDE solutions, see (1.1), converges to the derived fluctuation corrections in the large-population
limit.

Our analysis allows us to obtain an approximation to the distribution of the empirical measure of the
system to leading order in the system size parameter. Denote by µγ,j

t the marginal distribution (molar
concentration) of species j = 1 · · · , J , where γ represents the system size parameter (e.g. Avogadro’s number

in Rd). Letting µ̄j
t be the limit of µγ,j

t as γ → ∞, we study the behavior of the fluctuation corrections

Ξγ,j
t =

√
γ
(
µγ,j
t − µ̄j

t

)
, j = 1, · · · J,(1.1)

as γ → ∞. We prove that, in the appropriate sense, Ξγ,j
t → Ξ̄j

t as γ → ∞ with Ξ̄j
· being Gaussian. We

therefore obtain the approximation

µγ,j
t ≈ µ̄j

t +
1
√
γ
Ξ̄j
t ,

which expands on earlier mean-field limit studies by allowing the approximation of the distribution of µγ,j
t ,

as well as associated statistics.
The proof of convergence is based on weak convergence analysis of interacting particle systems. One of the

main challenges is that the fluctuations of the empirical distribution correspond to a signed measure-valued
process. As discussed in [BDG07, SSG14], the space of signed measures endowed with the weak topology
is in general not metrizable. For this reason, we study convergence of the distribution-valued fluctuation
process in the dual space of an appropriately weighted Sobolev space (weights are introduced to control the
behavior at infinity). We use the weights introduced in [FM97] in studying the McKean-Vlasov equation,
and show fluctuations arising from our VR PBSRD model are elements of these spaces, see Section 6 for a
short exposition. The limit, Ξ̄j

t , is then obtained as a distribution-valued process in an appropriate weighted
negative Sobolev space. In the process of studying the limit of Ξγ,j as γ → ∞, we need to linearize the
dynamics of µγ,j around its limiting behavior µ̄j . Doing so produces a number of remainder terms that need
to be appropriately controlled; details of these bounds are in Section 8.

We note that our driving goal in this work is to rigorously derive the main correction terms to the mean-
field large-population limit of PBSRD models. The derived fluctuations limit identifies and enables the
approximation of the resulting error terms for the mean-field limit. Our results can be used to both assess
errors in the mean-field approximation, but also, as our numerical studies of Section 7 demonstrate, enable
the approximation of a broader range of statistics from the underlying PBSRD model, reducing the need
for expensive Monte-Carlo simulations of the underlying PBSRD model. A number open questions around
the large population limit and properties of the PBSRD model still remain. For example, in our work we
assume the well-posedness of the process associated with the PBSRD model, and finiteness of certain of its
spatial moments. It is of great mathematical and practical interest to identify general reaction networks
and placement mechanisms for which one can rigorously prove the validity of these assumption. Initial steps
towards this direction have been recently taken in [LLN19, C23, IMS21]. In addition, it would also be of
great interest to apply the theoretical results of this paper to study more complex reaction networks as arise
in many biological applications. Our numerical results in Section 7 demonstrate the theory, but at the same
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time they also demonstrate that the fluctuation limit is computationally tractable. It can thus be used to aid
computational modeling studies, for example being used in uncertainty quantification and to enable more
efficient approximation of higher order statistics than direct simulation of the underlying particle model. We
plan to explore these directions in future work.

As stating our main result, Theorem 5.6, requires significant notation and a number of assumptions, we
begin in Section 2 by summarizing our results for the special case of the reversible A+B ⇆ C reaction. In
Section 3 we then summarize the main notation we will use in describing the weak MVSP representation
for the VR PBSRD model. Section 4 summarizes our earlier work on the large-population mean-field
limit from [IMS22], along with recalling the main assumptions under which we proved the large-population
mean-field limit. In Section 5 we present the main result of this work, Theorem 5.6, along with stating
the additional assumptions we introduce to prove this theorem. We summarize in Section 6 the weighted
Sobolev spaces used to control behavior at infinity, and in which we prove convergence. In Section 7 we
illustrate how including fluctuation corrections can enable the accurate approximation of higher-order (i.e.
non-mean) statistics of an underlying VR PBSRD model. This is demonstrated via comparison of numerical
solutions to the SPIDEs of the fluctuation process model and a jump process approximation to the VR
PBSRD model [I13, IZ18]. Finally, in Section 8 we provide the proof of Theorem 5.6 via proving uniform
spatial moment bounds of the PBSRD model in Section 8.2, proving tightness in Section 8.3, identifying the
limiting SPIDEs satisfied by the fluctuation corrections in Section 8.4, and proving uniqueness of solutions
to the limiting equations in Section 8.5. An appendix proves several results that are used in Section 8.

2. Summary of fluctuation corrections for the A+B ⇆ C reaction

In order to introduce the main result of this paper, let us first present the result in the special case of the
reversible A+B ⇆ C reaction. We first summarize the large population limit derived in [IMS22], and then
we show the fluctuation corrections we obtain in this work.

Let γ denote a system size parameter (i.e. Avogadro’s number, or in bounded domains the product of
Avogadro’s number and the domain volume). We assume all molecules move by Brownian Motion in Rd,
with species-dependent diffusivities, DA, DB and DC respectively. Let Kγ

1 (x, y) = K1(x, y)/γ denote the
probability per time an individual A molecule at x and B molecule at y can react, with m1(z|x, y) giving
the probability density that when the A and B molecules react they produce a C molecule at z. We define
Kγ

2 (z) = K2(z) and m2(x, y|z) similarly for the reverse reaction. Finally, denote by A(t) the stochastic
process for the number of species A molecules at time t, and label the position of ith molecule of species A

at time t by the stochastic process Q
A(t)
i (t) ⊂ Rd. The generalized stochastic process

Aγ(x, t) =
1

γ

A(t)∑
i=1

δ
(
x−Q

A(t)
i (t)

)
corresponds to the molar concentration of species A at x at time t. We can similarly define Bγ(x, t) and
Cγ(x, t). In [IMS22] we derived the large population (thermodynamic) limit where γ → ∞ and Aγ(x, 0)
converges to a well defined limiting molar concentration field (with similar limits for the molar concentrations
of species B and C). We proved, in a weak sense, that as γ → ∞,

(Aγ(x, t), Bγ(x, t), Cγ(x, t)) → (A(x, t), B(x, t), C(x, t)) ,

where

∂tA(x, t) = DA∆A(x, t)−
∫
Rd

K1(x, y)A(x, t)B(y, t) dy +

∫
R2d

K2(z)m2(x, y|z)C(z, t) dy dz.

∂tB(x, t) = DB∆B(x, t)−
∫
Rd

K1(y, x)A(y, t)B(x, t) dy +

∫
R2d

K2(z)m2(y, x|z)C(z, t) dy dz.

∂tC(x, t) = DC∆C(x, t)−K2(x)C(x, t) +

∫
R2d

K1(y, z)m1(x|y, z)A(y, t)B(z, t) dy dz.

Here (A(x, t), B(x, t), C(x, t)) corresponds to the deterministic mean-field large-population limit.
In this work we derive the next order correction to these equations, obtaining an approximation as γ → ∞

of

Aγ(x, t) ∼ A(x, t) +
1
√
γ
Ā(x, t), γ → ∞,
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with similar equations for B(x, t) and C(x, t). We prove that in an appropriate (weak) sense,

lim
γ→∞

√
γ (Aγ(x, t)−A(x, t)) = Ā(x, t).

Here the fluctuation correction processes, (Ā(x, t), B̄(x, t), C̄(x, t)), satisfy the stochastic PIDEs

∂tĀ(x, t) = DA∆xĀ+ ξAt −
∫
Rd

K1(x, y)
[
A(x, t)B̄(y, t) + Ā(x, t)B(y, t)

]
dy

+

∫
R2d

K2(z)m2(x, y|z)C̄(z, t) dy dz,

∂tB̄(x, t) = DB∆xB̄ + ξBt −
∫
Rd

K1(y, x)
[
A(y, t)B̄(x, t) + Ā(y, t)B(x, t)

]
dy

+

∫
R2d

K2(z)m2(y, x|z)C̄(z, t) dy dz,

∂tC̄(x, t) = DB∆xC̄ + ξCt −K2(x)C̄(x, t)

+

∫
R2d

K1(y, z)m1(x|y, z)
[
A(y, t)B̄(z, t) + Ā(y, t)B(z, t)

]
dy dz,

where the noise processes, (ξAt , ξ
B
t , ξCt ), are distribution-valued mean-zero Gaussian processes, specified pre-

cisely in Theorem 5.6. For test functions f and g they have the covariance structure

Cov
[〈
ξAt , f

〉
,
〈
ξAs , g

〉]
= 2DA

∫ s∧t

0

(∇xf(x) · ∇xg(x))A(x, s′) dx ds′

+

∫ t∧s

0

∫
Rd

K2(z)

(∫
R2d

f(x)g(x)m2(x, y|z) dx dy
)
C(z, s′) dz ds′

+

∫ t∧s

0

∫
R2d

K1(x, y)f(x)g(x)A(x, s′)B(y, s′) dx dy ds′,

Cov
[〈
ξAt , f

〉
,
〈
ξBs , g

〉]
=

∫ t∧s

0

∫
Rd

K2(z)

(∫
R2d

f(x)g(y)m2(x, y|z) dx dy
)
C(z, s′) dz ds′

+

∫ t∧s

0

∫
R2d

K1(x, y)f(x)g(y)A(x, s′)B(y, s′) dx dy ds′,

Cov
[〈
ξCt , f

〉
,
〈
ξCs , g

〉]
= 2DC

∫ s∧t

0

(∇zf(z) · ∇zg(z))C(z, s′) dz ds′

+

∫ t∧s

0

∫
R2d

K1(x, y)

(∫
Rd

f(z)g(z)m1(z|x, y) dz
)
A(x, s′)B(y, s′) dx dy ds′

+

∫ t∧s

0

∫
Rd

K2(z)f(z)g(z)C(z, s′) dz ds′,

Cov
[〈
ξAt , f

〉
,
〈
ξCs , g

〉]
= −

∫ t∧s

0

∫
Rd

K2(z)

(∫
R2d

f(x)g(z)m2(x, y|z) dx dy
)
C(z, s′) dz ds′

−
∫ t∧s

0

∫
R2d

K1(x, y)

(∫
Rd

f(x)g(z)m1(z|x, y) dz
)
A(x, s′)B(y, s′) dx dy ds′,

with Cov
[〈
ξBt , f

〉
,
〈
ξBs , g

〉]
and Cov

[〈
ξBt , f

〉
,
〈
ξCs , g

〉]
defined analogously. In Section 7, statistics of the

PBSRD solution, (Aγ , Bγ , Cγ), the mean-field model solution, (A,B,C), and the fluctuation process ap-
proximation, (A,B,C)+(Ā, B̄, C̄)/

√
γ, are compared numerically for specific choices of the reaction kernels,

K1 and K2, and the placement kernels, m1 and m2.

3. Notation and preliminary definitions

Our notation is similar to what we previously used in [IMS22], however, for completeness it is fully
described in this section.

We consider a collection of particles with J possible different types. Note, in the following we will
interchangeably use particle or molecule, and type or species. Let S = {S1, · · · , SJ} denote the set of
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different possible particle types, with pi ∈ S the value of the type of the i-th particle. In the remainder, we
also assume an underlying probability triple, (Ω,F,P), on which all random variables are defined.

Molecules are assumed to diffuse freely in Rd, and undergo at most L possible different types of reactions,
denoted as R1, · · · ,RL. We describe the Rℓth reaction, ℓ ∈ {1, . . . , L}, by

J∑
j=1

αℓjSj →
J∑

j=1

βℓjSj ,

where we assume the stoichiometric coefficients {αℓj}Jj=1 and {βℓj}Jj=1 are non-negative integers. Let α(ℓ) =

(αℓ1, αℓ2, · · · , αℓJ) and β(ℓ) = (βℓ1, βℓ2, · · · , βℓJ) be multi-index vectors collecting the coefficients of the

ℓth reaction. We denote the reactant and product orders of the reaction by |α(ℓ)| .
=
∑J

i=1 αℓi ≤ 2 and

|β(ℓ)| .
=
∑J

j=1 βℓj ≤ 2, assuming that at most two reactants and two products participate in any reaction.
We therefore implicitly assume all reactions are at most second order. For subsequent notational purposes, we
order the reactions such that the first L̃ reactions correspond to those that have no products, i.e. annihilation
reactions of the form

J∑
j=1

αℓjSj → ∅,

for ℓ ∈ {1, . . . , L̃}. We assume the remaining L− L̃ reactions have one or more product particles.
Let Di label the diffusion coefficient for the ith molecule, taking values in {D1, . . . , DJ}, where Dj is the

diffusion coefficient for species Sj , j = 1, · · · , J . We denote by Qi
t ∈ Rd the position of the ith molecule,

i ∈ N+, at time t. A particle’s state can be represented as a vector in P̂ = Rd × S, the combined space

encoding particle position and type. This state vector is subsequently denoted by Q̂i
t
def
= (Qi

t, pi).
We now formulate our representation for the (number) concentration, equivalently number density, fields

of each species. Let E be a complete metric space and M(E) the collection of measures on E. Let M(E)
be the subset of M(E) consisting of all finite, non-negative point measures

M(E) =

{
N∑
i=1

δQi , N ≥ 1, Q1, · · · , QN ∈ E

}
.

For f : E 7→ R and µ ∈ M(E), define

⟨f, µ⟩E =

∫
x∈E

f(x)µ(dx).

We will frequently have E = Rd. In this case we omit the subscript E and simply write ⟨f, µ⟩. For each
t ≥ 0, we define the concentration of particles in the system at time t by the distribution

(3.1) νt =

N(t)∑
i=1

δQ̂i
t
=

N(t)∑
i=1

δQi
t
δpi ,

where, borrowing notation from [BM15], N(t) = ⟨1, νt⟩P̂ represents the stochastic process for the total
number of particles at time t. To investigate the behavior of different types of particles, we denote the
marginal distribution on the jth type, i.e. the concentration field for species j, by

νjt (·) = νt(· × {Sj}) ∈ M(Rd),

a distribution on Rd. Nj(t) =
〈
1, νjt

〉
will label the total number of particles of type Sj at time t. Note that

in the remainder, in any rigorous calculation νt and νjt will be measures and treated as such. However, we
will abuse notation and also refer to them as concentration fields, i.e. number densities. Strictly speaking,
the latter should refer to the densities associated with such measures, but we ignore this distinction in
subsequent discussions. For ν any fixed particle distribution of the form (3.1), we will also use an alternative
representation in terms of the marginal distributions νj ∈ M(Rd) for particles of type j,

(3.2) ν =
J∑

j=1

νjδSj
∈ M(P̂ ).

5



In addition to having notations for representing particle concentration fields, we will also often make use
of state vectors for the positions of particles of a given type. Following the notation established in [BM15]

(see Section 6.3 therein), we let N∗ = N \ {0} and let H = (H1, · · · , Hk, · · · ) : M 7→
(
Rd
)N∗

be defined by

H

(
N∑
i=1

δQi

)
=
(
Qσ(1), · · · , Qσ(N), 0, 0, · · ·

)
(3.3)

where σ is a permutation such that Qσ(1) ⪯ · · · ⪯ Qσ(N), arising from an (assumed) fixed underlying
ordering on Rd. As commented in [BM15], this function H allows us to address a notational issue. In
particular, choosing a particle of a certain type uniformly among all particles in ν ∈ M amounts to basically
choosing uniformly in the set {1, · · · , ⟨1, ν⟩} and then choosing the individual particle from the arbitrary
fixed ordering.

In our specific case, define the particle index maps {σj(k)}
Nj(t)
k=1 , which encode a fixed ordering for particles

of species j, Q
σj(1)
t ⪯ · · · ⪯ Q

σj(Nj(t))
t , arising from an (assumed) fixed underlying ordering on Rd, and we

shall consider

H(νjt ) =
(
Q

σj(1)
t , · · · , Qσj(Nj(t))

t , 0, 0, · · ·
)

(3.4)

the position state vector for type j particles, using the same ordering on Rd, with Hi(νjt ) ∈ Rd labeling the

ith entry in H(νjt ). Note, as particles of the same type are assumed indistinguishable, there is no ambiguity

in the value of H(νjt ) in the case that two particles of type j have the same position.
With the preceding definitions, we finally introduce a system of notation to encode reactant and particle

positions and configurations that are needed to later specify reaction processes.

Definition 3.1. In describing the dynamics of νt, we will sample vectors containing the indices of the specific
reactant particles participating in a single ℓ-type reaction from the reactant index space

I(ℓ) = (N \ {0})|α
(ℓ)|

.

For the allowable reactions considered in this work we label the elements of I(ℓ) in a manner that shows which
species they belong to:

(1) For Rℓ of the form ∅ → · · ·
I(ℓ) = ∅.

(2) For Rℓ of the form Sj → · · ·
I(ℓ) = {i(j)1 ∈ N \ {0}}

(3) For Rℓ of the form Sj + Sk → · · · with j < k

I(ℓ) = {(i(j)1 , i
(k)
1 ) ∈ (N \ {0})2}

(4) For Rℓ of the form 2Sj → · · ·

I(ℓ) = {(i(j)1 , i
(j)
2 ) ∈ (N \ {0})2}.

A generic element i ∈ I(ℓ) can then be written as i = (i
(1)
1 , · · · , i(1)αℓ1 , · · · , i

(J)
1 , · · · , i(J)αℓJ ).

Definition 3.2. We define the product index space J(ℓ) analogously to I(ℓ), with j ∈ J(ℓ) given by j =

(j
(1)
1 , · · · , j(1)βℓ1

, · · · , j(J)1 , · · · , j(J)βℓJ ).

Definition 3.3. We define the reactant particle position space analogously to I(ℓ),

X(ℓ) =
(
Rd
)|α(ℓ)|

,

with an element x ∈ X(ℓ) written as x = (x
(1)
1 , · · · , x(1)

αℓ1 , · · · , x
(J)
1 , · · · , x(J)

αℓJ ). For x ∈ X(ℓ) a sampled

reactant position configuration for one individual Rℓ reaction, x
(j)
r then labels the sampled position for the

rth reactant particle of species j involved in the reaction. Let dx =
(∧J

j=1(
∧αℓj

r=1 dx
(j)
r )
)
be the corresponding

volume form on X(ℓ), which also naturally defines an associated Lebesgue measure.
6



Definition 3.4. For reaction Rℓ with L̃ + 1 ≤ ℓ ≤ L, i.e. having at least one product particle, define the
product position space analogously to X(ℓ),

Y(ℓ) =
(
Rd
)|β(ℓ)|

,

with an element y ∈ Y(ℓ) written as y = (y
(1)
1 , · · · , y(1)βℓ1

, · · · , y(J)1 , · · · , y(J)βℓJ
). Let dy =

(∧J
j=1(

∧βℓj

r=1 dy
(j)
r )
)

be the corresponding volume form on Y(ℓ), which also naturally defines an associated Lebesgue measure.

Definition 3.5. Consider a fixed reaction Rℓ, with i ∈ I(ℓ) and ν corresponding to a fixed particle distribution
given by (3.1) with representation (3.2). We define the ℓth projection mapping P(ℓ) : M(P̂ )× I(ℓ) → X(ℓ) as

P(ℓ)(ν, i) = (Hi
(1)
1 (ν1), · · · , Hi(1)αℓ1 (ν1), · · · , Hi

(J)
1 (νJ), · · · , Hi(J)

αℓJ (νJ)).

When reactants with indices i in particle distribution ν are chosen to undergo a reaction of type ℓ, P(ℓ)(ν, i)
then gives the vector of the corresponding reactant particles’ positions. For simplicity of notation, in the
remainder we will sometimes evaluate P(ℓ) with inconsistent particle distributions and index vectors. In all
of these cases the inconsistency will occur in terms that are zero, and hence not matter in any practical way.

Definition 3.6. Consider a fixed reaction Rℓ, with ν a fixed particle distribution given by (3.1) with rep-
resentation (3.2). Using the notation of Def. 3.1, we define the allowable reactant index sampling space
Ω(ℓ)(ν) ⊂ I(ℓ) as

Ω(ℓ)(ν) =


∅,

∣∣α(ℓ)
∣∣ = 0,

{i = i
(j)
1 ∈ I(ℓ) | i(j)1 ≤

〈
1, νj

〉
},

∣∣α(ℓ)
∣∣ = αℓj = 1,

{i = (i
(j)
1 , i

(j)
2 ) ∈ I(ℓ) | i(j)1 < i

(j)
2 ≤

〈
1, νj

〉
},

∣∣α(ℓ)
∣∣ = αℓj = 2,

{i = (i
(j)
1 , i

(k)
1 ) ∈ I(ℓ) | i(j)1 ≤

〈
1, νj

〉
, i

(k)
1 ≤

〈
1, νk

〉
},

∣∣α(ℓ)
∣∣ = 2, αℓj = αℓk = 1, j < k.

Note that in the calculations that follow Ω(ℓ)(ν) will change over time due to the fact that ν = νt changes
over time, but this will not be explicitly denoted for notational convenience.

Definition 3.7. Consider a fixed reaction Rℓ, with ν any element of M(P̂ ) having the representation (3.2).

We define the ℓth reactant measure mapping λ(ℓ)[ · ] : M(P̂ ) → M(X(ℓ)) evaluated at x ∈ X(ℓ) via λ(ℓ)[ν](dx) =

⊗J
j=1(⊗

αℓj

r=1ν
j(dx

(j)
r )).

Definition 3.8. For reaction Rℓ, define a subspace X̃(ℓ) ⊂ X(ℓ) by removing all particle reactant position
vectors in X(ℓ) for which two particles of the same species have the same position. That is

X̃(ℓ) = X(ℓ) \ {x ∈ X(ℓ) |x(j)
r = x

(j)
k for some 1 ≤ j ≤ J, 1 ≤ k ̸= r ≤ αℓj}.

4. Previous Results and Assumptions for the Mean Field Limit

In this section we review our previous results on the mean field large-population limit from [IMS22] that
are relevant to the current work.

Let us consider the time evolution of the processes νζ,jt (x) =
∑Nζ(t)

i=1 δQi
t
(x)1pi=Sj

which give the spatial

distribution of particles of type j (i.e. number density or concentration). Here Nζ(t) =
∑J

j=1 N
ζ,j(t) denotes

the total number of particles in the system at time t, with Nζ,j(t) =
〈
1, νζ,jt

〉
the number of particles of

type j at time t. ζ = ( 1γ , η) ∈ (0, 1)2 is a two-vector consisting of a scaling parameter, γ, and a displacement

range parameter, η (which will be explained in Section 4.2).
In the large population limit we consider γ plays the role of a system size, and is considered to be

large (e.g. Avogadro’s number, or in bounded domains the product of Avogadro’s number and the domain
volume) [DK15]. On the other hand, η is a regularizing parameter allowing us to be able to consider and
rigorously handle delta-function placement measures for reaction products (a common choice in many PBSRD
simulation methods). We will further clarify these parameters later on, focusing on the (large-population)
limit that γ → ∞ and η → 0 jointly, denoted as ζ → 0.
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4.1. Generator and process level description. To formulate the process-level model, it is necessary to
specify more concretely the reaction process between individual particles. For reaction Rℓ, denote by Kγ

ℓ (x)

the rate (i.e. probability per time) that reactant particles with positions x ∈ X(ℓ) react. As described in
the next section, we assume this rate function has a specific scaling dependence on γ. Let mη

ℓ (y |x) be

the placement measure when the reactants at positions x ∈ X(ℓ) react and generate products at positions
y ∈ Y(ℓ). We assume this placement measure depends on the displacement range parameter η.

To describe a reaction Rℓ with no products, i.e. 1 ≤ ℓ ≤ L̃, we associate with it a Poisson point measure

dNℓ(s, i, θ) on R+ × I(ℓ) × R+. Here i ∈ I(ℓ) gives the sampled reactant configuration, with i
(j)
r labeling

the rth sampled index of species j. The corresponding intensity measure of dNℓ is given by dN̄ℓ(s, i, θ) =

ds
(∧J

j=1

(∧αℓj

r=1

(∑
k≥0 δk(i

(j)
r )
)))

dθ. Analogously, for each reaction Rℓ with products, i.e. L̃+1 ≤ ℓ ≤ L,

we associate with it a Poisson point measure dNℓ(s, i,y, θ1, θ2) on R+ × I(ℓ) × Y(ℓ) × R+ × R+. Here

i ∈ I(ℓ) gives the sampled reactant configuration, with i
(j)
r labeling the rth sampled index of species j.

y ∈ Y(ℓ) gives the sampled product configuration, with y
(j)
r labeling the sampled position for the rth

newly created particle of species j. The corresponding intensity measure is given by dN̄ℓ(s, i,y, θ1, θ2) =

ds
(∧J

j=1

(∧αℓj

r=1

(∑
k≥0 δk(i

(j)
r )
)))

dy dθ1 dθ2.

The existence of the Poisson point measure follows as the intensity measure is σ-finite (see Chapter I - The-

orem 8.1 in [NW14] or Corollary 9.7 in [K01]). Let dÑℓ(s, i,y, θ1, θ2) = dNℓ(s, i,y, θ1, θ2)−dN̄ℓ(s, i,y, θ1, θ2)

be the compensated Poisson measure, for L̃+1 ≤ ℓ ≤ L. For any measurable set A ∈ I(ℓ)×Y(ℓ)×R+×R+ such

that N̄ℓ(·, A) < ∞, which is true if for example A is bounded, Nℓ( · , A) is a Poisson process and Ñℓ( · , A) is

a martingale (see Proposition 9.18 in [K01]). Similarly, we can define dÑℓ(s, i, θ) = dNℓ(s, i, θ)−dN̄ℓ(s, i, θ),

for 1 ≤ ℓ ≤ L̃. In this case, given any measurable set A ∈ I(ℓ) × R+ such that N̄ℓ(·, A) < ∞, we then have

that Nℓ( · , A) is a Poisson process and Ñℓ( · , A) is a martingale.

With the preceding definitions, we can formulate a weak representation for the dynamics of νζt and the

concentration (i.e. number density) fields for each species, νζ,jt , see [IMS22] for the resulting equations.

Note, here by weak representation we mean that the time evolution of µζ
t is given in terms of pairings

with appropriate test functions, see (4.1). In this work we only require a weak representation for the time

evolution of the scaled empirical measures, i.e. the molar concentration field for species j, µζ,j
t = 1

γ ν
ζ,j
t with

j = 1, · · · , J . Note, with this definition µζ
t = 1

γ ν
ζ
t =

∑J
j=1 µ

ζ,j
t δSj

.

Let us denote {Wn,j
t }n∈N+

as a countable collection of standard independent Brownian motions in Rd for
species j, j = 1, 2, · · · , J . We can write the marginal distribution (molar concentration) of species j as

µζ,j
t (dx) =

1

γ

γ⟨1,µζ,j
t ⟩∑

i=1

δHi(γµζ,j
t )(dx), j ∈ {1, . . . , J},

which, for f ∈ C2
b (Rd), satisfies the coupled system

(4.1)〈
f, µζ,j

t

〉
=
〈
f, µζ,j

0

〉
+

1

γ

∑
i≥1

∫ t

0

1{i≤γ⟨1,µζ,j
s−⟩}

√
2Dj

∂f

∂Q
(Hi(γµζ,j

s−))dW i,j
s +

1

γ

∫ t

0

γ⟨1,µζ,j
s−⟩∑

i=1

Dj
∂2f

∂Q2
(Hi(γµζ,j

s−))ds

− 1

γ

L̃∑
ℓ=1

∫ t

0

∫
I(ℓ)

∫
R+

〈
f,

αℓj∑
r=1

δ
Hi

(j)
r (γµζ,j

s− )

〉
1{i∈Ω(ℓ)(γµζ

s−)}1{θ≤Kγ
ℓ (P(ℓ)(γµζ

s−,i))}dNℓ(s, i, θ)

+
1

γ

L∑
ℓ=L̃+1

∫ t

0

∫
I(ℓ)

∫
Y(ℓ)

∫
R2

+

〈
f,

βℓj∑
r=1

δ
y
(j)
r

−
αℓj∑
r=1

δ
Hi

(j)
r (γµζ,j

s− )

〉
1{i∈Ω(ℓ)(γµζ

s−)}

× 1{θ1≤Kγ
ℓ (P(ℓ)(γµζ

s−,i))}1{θ2≤mη
ℓ (y | P(ℓ)(γµζ

s−,i))}dNℓ(s, i,y, θ1, θ2),

for j ∈ {1, . . . , J}.
8



In this formulation, one important fact is that for fixed ζ, γ
〈
1, µζ,j

s−

〉
is assumed finite, see Assumption 4.9

in the next section, which provides exchangeability of the sum and Lebesgue integral. It also implies that
the stochastic integrals with respect to Brownian motions in (4.1) are martingales (for a fixed ζ).

Relation (4.1) captures the dynamics of our particle system. We refer the interested reader to Remark 5.3
of [IMS22] for a discussion on well posedness of (4.1) and note that for the purposes of this paper, we assume
that we work with reaction networks for which well posedness of (4.1) holds. We also refer the interested
reader to the very recent article [C23], where well-posedness of systems related to (4.1) is proven.

4.2. Assumptions for the Mean Field Limit. In this section we summarize the assumptions we pre-
viously used in proving the mean field large population limit [IMS22]. We will assume they hold in the
remainder in studying the fluctuation corrections.

Assumption 4.1. We assume that for all 1 ≤ ℓ ≤ L, the reaction rate kernel Kℓ(x) is uniformly bounded
for all x ∈ X(ℓ). We denote generic constants that depend on this bound by C(K).

Assumption 4.2. We assume that for any η ≥ 0, L̃ + 1 ≤ ℓ ≤ L, y ∈ Y(ℓ) and x ∈ X(ℓ), the placement
density mη

ℓ (y |x) is uniformly bounded in x and y, and a probability density in y, i.e.
∫
Y(ℓ) m

η
ℓ (y |x) dy = 1.

We want to allow for placement densities involving delta-functions. To do so in a mathematically rig-
orous way we introduced the displacement (i.e. smoothing) parameter η, through which we can define a
corresponding mollifier in a standard way, as given by Definition (4.1) below. This is needed for (4.1) to

be well-defined, since expressions like {θ2 ≤ mη
ℓ

(
y | P(ℓ)(νζs−, i)

)
} are nonsensical when η = 0 and the

placement density is a Dirac delta function.

Definition 4.1. For x ∈ Rd, let G(x) denote a standard positive mollifier and Gη(x) = η−dG(x/η). That
is, G(x) is a smooth function on Rd satisfying the following four requirements

(1) G(x) ≥ 0,
(2) G(x) is compactly supported in B(0, 1), the unit ball in Rd,
(3)

∫
Rd G(x) dx = 1,

(4) limη→0 Gη(x) = limη→0 η
−dG(x/η) = δ0(x), where δ0(x) is the Dirac delta function and the limit is

taken in the space of Schwartz distributions.

The allowable forms of the placement density for each possible reaction are given by Assumptions 4.3-4.6:

Assumption 4.3. If Rℓ is a first order reaction of the form Si → Sj, we assume that the placement density
mη

ℓ (y |x) takes the mollified form of
mη

ℓ (y |x) = Gη(y − x).

Note that its distributional limit as η → 0 is given by

mℓ(y |x) = δx(y).

This describes that the newly created Sj particle is placed at the position of the reactant Si particle.

Assumption 4.4. If Rℓ is a second order reaction of the form Si + Sk → Sj, we assume that the binding
placement density mℓ(z |x, y) takes the mollified form of

mη
ℓ (z |x, y) =

I∑
i=1

pi ×Gη (z − (αix+ (1− αi)y)) .

Note that its distributional limit as η → 0 is given by

mℓ(z |x, y) =
I∑

i=1

pi × δ (z − (αix+ (1− αi)y)) ,

where I is a fixed finite integer and
∑

i pi = 1. This describes that the creation of particle Sj is always on the
segment connecting the reactant Si and reactant Sk particles, but allows some random choice of position. A
special case would be I = 2, pi =

1
2 , α1 = 0 and α2 = 1, which corresponds to placing the particle randomly

at the position of one of the two reactants. One common choice is taking I = 1, p1 = 1 and choosing α1 to
be the diffusion weighted center of mass [IZ18].
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Assumption 4.5. If Rℓ is a second order reaction of the form Si + Sk → Sj + Sr, we assume that the
placement density mℓ(z, w |x, y) takes the mollified form of

mη
ℓ (z, w |x, y) = p×Gη (x− z)⊗Gη (y − w) + (1− p)×Gη (x− w)⊗Gη (y − z) .

Note that its distributional limit as η → 0 is given by

mℓ(z, w |x, y) = p× δ(x,y) ((z, w)) + (1− p)× δ(x,y) ((w, z)) .

This describes that newly created product Sj and Sr particles are always at the positions of the reactant Si

and Sk particles. p is typically either 0 or 1, depending on the underlying physics of the reaction.

Assumption 4.6. If Rℓ is a first order reaction of the form Si → Sj + Sk, we assume the unbinding
displacement density is in the mollified form of

mη
ℓ (x, y | z) = ρ(|x− y|)

I∑
i=1

pi ×Gη (z − (αix+ (1− αi)y)) ,

with
∑

i pi = 1. Here we assume the relative separation of the product Sj and Sk particles, |x− y|, is sampled
from the probability density ρ(|x− y|). Their (weighted) center of mass is sampled from the density encoded
by the sum of δ functions. Such forms are common for detailed balance preserving reversible bimolecular
reactions [IZ18].

Note that the distributional limit of mη
ℓ (x, y | z) as η → 0 is given by

mℓ(x, y | z) = ρ(|x− y|)
I∑

i=1

pi × δ (z − (αix+ (1− αi)y)) .

We further assume some regularity of the separation placement density, ρ(r), introduced in Assump-
tion 4.6:

Assumption 4.7. For Assumption 4.2 to be true, we’ll need that the probability density ρ is normalized,
i.e. ∫

Rd

ρ(|w|) dw = 1.

In the remainder we abuse notation, and write ρ ∈ L1(Rd) to mean ρ(|·|) ∈ L1(Rd).

Though mη
ℓ (x, y | z) is not a direct mollification of mℓ(x, y | z), with this assumption it is still properly

normalized with respect to x and y as∫
R2d

mη
ℓ (x, y | z) dx dy =

I∑
i=1

pi

∫
R2d

ρ(|w|)δ(z − y − αiw) dw dy = 1.

Finally, to study the large-population limit of the population density measures, we must specify how the
reaction kernels depend on the scaling parameter (i.e. system size parameter) γ. Motivated by the classical
spatially homogeneous reaction network large-population limit [DK15], we choose

Assumption 4.8. The reaction kernel is assumed to have the explicit γ dependence that

Kγ
ℓ (x) = γ1−|α(ℓ)|Kℓ(x)

for any x ∈ X(ℓ), 1 ≤ ℓ ≤ L.

Recall that |α(ℓ)| represents the number of reactant particles needed for the ℓ-th reaction. As we assume

|α|ℓ ≤ 2, we obtain three scalings for the three allowable reaction orders:

• |α(ℓ)| = 0 corresponds to a pure birth reaction. By Assumption 4.8, the scaling is γ; i.e. a larger
system size implies more births. In a well-mixed model this would imply that as γ and the initial
number of molecules are increased, we maintain a fixed rate with units of molar concentration per
time for the birth reaction to occur.

• |α(ℓ)| = 1 corresponds to a unimolecular reaction. By Assumption 4.8, there’s no rescaling as it’s
linear. We assume the rates of first order reactions are internal processes to particles, and as such
independent of the system size.
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• |α(ℓ)| = 2 corresponds to a bimolecular reaction. By Assumption 4.8, the scaling of reaction kernel
is γ−1. As the system size increases it is harder for two individual reactant particles to encounter
each other and react.

See [IMS22] for a more detailed discussion on how such scalings could arise.

Finally, we made two assumptions on the molar concentration fields, µj
t , in [IMS22], requiring boundedness

of the amount of particles in the system and convergence of the initial conditions in the large-population
limit.

Assumption 4.9. for all t < ∞ We assume that the total (molar) population concentration satisfies∑J
j=1

〈
1, µζ,j

t

〉
≤ C◦ < ∞ for all t < ∞, i.e. are uniformly bounded in time by some deterministic constant

C◦. In the remainder we abuse notation and also denote generic constants that depend on this bound by C◦.

Assumption 4.10. We assume that the initial distribution µζ,j
0 → ξj0 weakly as ζ → 0, where ξj0 is a

compactly supported measure with finite mass, for all 1 ≤ j ≤ J .

4.3. Mean Field Limit. In [IMS22], we proved the following mean field limit result. Let MF (Rd) be the
space of finite measures endowed with the weak topology and DMF (Rd)[0, T ] be the space of cadlag paths

with values in MF (Rd) endowed with Skorokhod topology.

Theorem 4.11. (Mean field large-population limit) Given Assumptions 4.1-4.10, the sequence of measure-

valued processes {(µζ,1
t , · · · , µζ,J

t )}t∈[0,T ] ∈ D⊗J
j=1MF (Rd)([0, T ]) is relatively compact in D⊗J

j=1MF (Rd)([0, T ])

for each j = 1, 2, · · · , J . It converges in distribution to {(µ̄1
t , · · · , µ̄J

t )}t∈[0,T ] ∈ C⊗J
j=1MF (Rd)([0, T ]) as ζ → 0,

respectively being with j = 1, · · · , J the unique solution to the system〈
f, µ̄j

t

〉
=
〈
f, µ̄j

0

〉
+

∫ t

0

〈
(Ljf)(x), µ̄

j
s(dx)

〉
ds

−
L̃∑

ℓ=1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

(αℓj∑
r=1

f(x(j)
r )

)
λ(ℓ)[µ̄s](dx) ds

+
L∑

ℓ=L̃+1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )

mℓ (y |x) dy −
αℓj∑
r=1

f(x(j)
r )

 λ(ℓ)[µ̄s](dx) ds.(4.2)

for each f ∈ C2
b (Rd). Here Lj := Dj∆x denotes the diffusion operator associated with a particle of type j.

Note that since the limit (4.2) is deterministic, we have actually established convergence in probability
since weak convergence to constants implies convergence in probability.

In [IMS21] assumptions on the structure of the chemical-reaction network are posed under which µ̄j has
a density that is well-defined either locally or globally in time. For example, global well-posedness can be
shown at least in the cases of A + B ⇄ C + D and A + B ⇄ C (the latter under specific choices for the
placement measures), see [IMS21]. In general though, only local in time well-posedness can be claimed, see
[IMS21].

5. Main result: fluctuation theorem

In this work, we aim to prove a central limit theorem result for the particle-based stochastic reaction
diffusion (PBSRD) model. We define the fluctuation process by

Ξζ,j
t =

√
γ(µζ,j

t − µ̄j
t ), j = 1, · · · , J.

In Theorem 5.6 we show that the signed measure-valued process
{(

Ξζ,1
t , · · · ,Ξζ,J

t

)
, t ∈ [0, T ]

}
ζ∈(0,1)2

con-

verges in law to a limit point {
(
Ξ̄1
t , · · · , Ξ̄J

t

)
, t ∈ [0, T ]} as ζ → 0 in the appropriate space.

As is commonly found for problems involving fluctuation analysis of interacting particle systems, weighted
Sobolev spaces are needed to control behavior of the fluctuation process as x → ∞. Such spaces have been
previously used to study central limit theorems of mean field systems in a variety of studies, include [FM97],

[KX04] and [SSG14]. The weighted spaces introduced in [FM97], denoted by WΓ,a
0 = WΓ,a

0 (Rd), are what
11



is needed for our analysis. We subsequently denote by W−Γ,a = W−Γ,a(Rd) the dual space to WΓ,a
0 . In

Section 6 we review the precise definitions and key properties of such spaces.
A number of constants will appear in the sequel. For bookkeeping purposes and for easier reference to

the reader we have gathered them and their relations in Assumption 5.1 below.

Assumption 5.1. In the remainder we will make use of the non-negative integer parameters {D,Γ,Γ1, a, b}
in specifying weighted Sobolev spaces. These parameters are chosen to satisfy the following constraints:

(1) D = 1 + ⌈d/2⌉
(2) Γ ≥ 2D + 2
(3) Γ1 = Γ− 1 ≥ 2D + 1
(4) a ≥ D
(5) b > max

{
a+ d

2 , 2D
}

In order to prove the fluctuations theorem, we make a few additional assumptions:

Assumption 5.2. We assume the large population limit γ → ∞ is taken such that
√
γη → 0. As such

η → 0 simultaneously and we write ζ → 0 for the dual limit.

Assumption 5.3. For the density ρ, in addition to Assumption 4.7 we assume
∫
Rd |w|8Dρ(w)dw < ∞.

Assumption 5.4. For Γ = 2D+ 2, we assume that Kℓ ∈ CΓ(X(ℓ)), that maxj≤Γ ∥∂(j)
x Kℓ∥∞ < ∞, and that

Kℓ(x) is symmetric with respect to permutations in the ordering of components of x that correspond to the

same species (e.g. to interchanging x
(j)
k with x

(j)
k′ ).

Note that this assumption means our results do not rigorously encompass the commonly used Doi bi-
molecular reaction model for an A + B → C reaction, in which an A at x and B at y would react with
probability per time λ when separated by ε or less, i.e. K(x, y) = λ1[0,ε](|x− y|). Similar to how we have
introduced η as a regularization of the δ-functions that arise in the particle placement densities and then
incorporated the limit η → 0 in our analysis, we could have introduced a second regularization parameter
into the Doi rate function K(x, y). For simplicity of exposition we have chosen to ignore this additional
complication, but note that our results would hold for any mollification of such a Doi kernel. We expect
these smoothness requirements are an artifact of our method of proof, and not intrinsic to the existence of
a limiting fluctuation process correction.

Assumption 5.5. Let Γ = 2D+2 and a = D. We assume that supζ∈(0,1)2
∑J

j=1 E∥Ξ
ζ,j
0 ∥−Γ,a < C for some

C < ∞. In addition, we assume that
∑J

j=1 E
〈
| · |8D, µζ,j

t

〉
< ∞ for t ∈ [0, T ], and that this moment is well-

defined via the density associated with the corresponding forward equation (i.e. the Fock-space representation
for the forward equation, see Appendix A).

Note that Assumption 5.5 does not assume uniform boundedness of
∑J

j=1 E
〈
| · |8D, µζ,j

t

〉
< ∞ with

respect to ζ ∈ (0, 1)2. It only assumes that for each ζ ∈ (0, 1)2, the spatial moment is finite. As a matter of
fact we shall prove in Section 8.2 that these moments (assuming that they are well defined per Assumption
5.5) are indeed uniformly bounded in ζ ∈ (0, 1)2.

The assumed existence and finiteness of the spatial moment,
∑J

j=1 E
〈
| · |8D, µζ,j

t

〉
, is motivated by physi-

cal considerations. Particles move by diffusion, and we have assumed the underlying reaction network is one
such that the number of particles stays uniformly bounded for all times. Moreover, the most commonly used
reaction kernel K(x, y), the Doi kernel, has compact support, which would then lead to ρ(x) also having
compact support for models that are consistent with detailed balance of reversible reactions [ZI22]. Com-
bined with the standard delta-function based placement models described in the previous section, reactions
should not induce particles to jump more than a bounded distance with each occurrence. As the number
of reaction occurrences for typical reaction systems studied in practice should be bounded over any finite
interval, we would not anticipate that the reaction components of the model could lead to unbounded spatial
moments. That said, it is an open problem to rigorously establish the existence of spatial moments, which
to our knowledge has not been investigated for the class of PBSRD models considered in this work. (In
actuality, there is limited work establishing the boundedness of simpler population number moments such as
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E
〈
1, µζ,j

t

〉p
, see for example [BM15, Chapter 7] and the very recent work [C23] for some results in particular

reaction systems.)
For reasons that will become clearer in Subsection 8.1 we have the following definition.

Definition 5.1. For any ℓ-th reaction, particle distribution ν =
∑J

j=1 ν
jδSj

∈ M(P̂ ) and particle fluctuation

distribution Ξ =
∑J

j=1 Ξ
jδSj

∈ M(P̂ ) , define the ℓ-th reactant mapping ∆(ℓ)[ · , · ] : M(P̂ ) × M(P̂ ) →
M(X(ℓ)) via

(5.1) ∆(ℓ)[ν, Ξ] =

{
Ξk(x) if the ℓ-th reaction is of the form Sk → · · ·
Ξk(x)νr(y) + νk(x)Ξr(y) if the ℓ-th reaction is of the form Sk + Sr → · · ·

Theorem 5.6. Assume T < ∞. Given Assumptions 4.1-4.10 as well as Assumptions 5.1-5.5, the sequence{(
Ξζ,1
t , · · · ,Ξζ,J

t

)
, t ∈ [0, T ]

}
ζ∈(0,1)2

is relatively compact in D(W−Γ,a(Rd))⊗J ([0, T ]). For any subsequence of

this sequence, there is a further subsubsequence that converges in law to the distribution-valued stochastic
process {

(
Ξ̄1
t , · · · , Ξ̄J

t

)
, t ∈ [0, T ]} as ζ → 0 satisfying in W−(2+Γ),a the evolution equation〈

f, Ξ̄j
t

〉
=
〈
f, Ξ̄j

0

〉
+

∫ t

0

〈
(Ljf)(x), Ξ̄

j
s(dx)

〉
ds+ M̄ j

t (f)

−
L̃∑

ℓ=1

∫ t

0

∫
X̃(ℓ)

1
α(ℓ)!

Kℓ (x)

(αℓj∑
r=1

f(x(j)
r )

)
∆(ℓ)[µ̄s, Ξ̄s](dx) ds(5.2)

+

L∑
ℓ=L̃+1

∫ t

0

∫
X̃(ℓ)

1
α(ℓ)!

Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )

mℓ (y |x) dy −
αℓj∑
r=1

f(x(j)
r )

∆(ℓ)[µ̄s, Ξ̄s](dx) ds

for j = 1, · · · , J and any f ∈ W 2+Γ,a
0 (Rd). Here

(
M̄1

t , · · · , M̄J
t

)
is a distribution-valued mean-zero Gaussian

martingale with marginal variance covariance structure for 0 ≤ s, t ≤ T and f, g ∈ W 2+Γ,a
0 (Rd)

(5.3)

Cov[M̄ j
t (f), M̄

k
s (g)] =

L̃∑
ℓ=1

∫ s∧t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

(αℓj∑
r=1

f(x(j)
r )

)(
αℓk∑
r=1

g(x(k)
r )

)
λ(ℓ)[µ̄s′ ](dx) ds

′

+

L∑
ℓ=L̃+1

∫ s∧t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )−
αℓj∑
r=1

f(x(j)
r )


×

(
βℓk∑
r=1

g(y(k)r )−
αℓk∑
r=1

g(x(k)
r )

)
mℓ (y |x) dy

)
λ(ℓ)[µ̄s′ ](dx) ds

′

+

∫ s∧t

0

〈
2Dj

∂f

∂Q
(x)

∂g

∂Q
(x), µ̄j

s′(dx)

〉
1{k=j} ds

′.

Finally, the limiting stochastic evolution equation has a unique solution in
(
W−(2+Γ),a

)⊗J
for t ∈ [0, T ],

and thus the limit accumulation point {
(
Ξ̄1
t , · · · , Ξ̄J

t

)
, t ∈ [0, T ]} is unique.

Here by uniqueness for (5.2) we mean that for a given (M̄1
t (f), · · · , M̄J

t (f)) there is a unique {(Ξ1
· , · · · ,ΞJ

· )}
in
(
W−(2+Γ),a(Rd)

)⊗J
(see Theorem 8.16 for the precise statement.) We also note that equations (5.2)-(5.3)

characterize the limit of
{(

Ξζ,1
t , · · · ,Ξζ,J

t

)
, t ∈ [0, T ]

}
ζ∈(0,1)2

in a weak sense, i.e., in terms of appropriate

test functions. Due to the presence of the reaction terms, the general existence of a strong formulation is
an open problem. However, as we demonstrate in Subsection 7.3, one can at least identify formal stronger
representations for specific reaction systems.

6. On the appropriate Sobolev space

We study convergence in Sobolev spaces, see for example [A78] for a general exposition. The weighted
Sobolev spaces introduced in [FM97] are designed to control growth as x → ∞, and are just what is needed
for the problem at hand. In this section, we recall their definitions and main properties.
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For any integers Γ, a ∈ N, consider the space of real valued functions f with partial derivatives up to order
Γ which satisfy

∥f∥Γ,a =

( ∑
|k|≤Γ

∫
Rd

∣∣Dkf(x)
∣∣2

1 + |x|2a
dx

)1/2

< ∞.

Define the space WΓ,a
0 as the closure of functions of class C∞

0 in the norm defined above, where C∞
0 is the

space of all functions in C∞ with compact support. WΓ,a
0 is a Hilbert space (see Theorem 3.5 and Remark

3.33 in [A78] and also [FM97] for the weighted version) and has the inner product

⟨f, g⟩Γ,a =
∑
|k|≤Γ

∫
Rd

Dkf(x)Dkg(x)

1 + |x|2a
dx.

When Γ, a = 0, we write ⟨f, g⟩0 = ⟨f, g⟩. W−Γ,a denotes the dual space of WΓ,a
0 that is equipped with the

norm

∥f∥−Γ,a = sup
{g∈WΓ,a

0 | g ̸=0}

∣∣ ⟨f, g⟩ ∣∣
∥g∥Γ,a

.

Let CΓ,a denote the space of continuous functions f that have continuous partial derivatives up to order
Γ such that

lim
|x|→∞

|Djf(x)|
1 + |x|a

= 0, for all j ≤ Γ.

The norm of this space is

∥f∥CΓ,a =
∑
j≤Γ

sup
x∈Rd

|Djf(x)|
1 + |x|a

.

We refer the interested to [FM97] for details on this class of weighted spaces.
A few properties that we will use in this paper include the embeddings that

Wm+j,a
0 ↪→ Cj,a, m > d/2, j ≥ 0, a ≥ 0.

and

Wm+j,a
0 ↪→ W j,a+b

0 , m > d/2, j ≥ 0, a ≥ 0, b > d/2.

A key property we will subsequently make use of is that the latter is Hilbert-Schmidt, and implies that the
embedding

W−j,a+b ↪→ W−m−j,a, m > d/2, j ≥ 0, a ≥ 0, b > d/2

is also Hilbert-Schmidt.
The need to introduce weights becomes apparent when we derive the necessary a-priori bounds for {Ξζ,j

t }
that then lead to the tightness claims in Section 8.3. A representative calculation where the need for weights
is clear is the bound in (8.23). As illustrated there, by providing control over the |x| → ∞ behavior of
integrands, the weights allow us to leverage uniform moment and kernel bounds when estimating integrals
over Rd.

7. Numerical results

In this section, we numerically compare the mean field with fluctuation corrections SPIDE system to the
underlying PBSRD model for a 1D (d = 1) model of the three species

A+B
λK(x,y)
⇌
µ

C

reversible reaction. The model we consider corresponds to that presented in Section 2, with the specific
choice of reaction kernels and placement densities summarized in Section 7.1.

We start by describing the model problem and discretization schemes for the SPIDE and PBSRD models
in detail before giving numerical results. Note that our notation in this section differs slightly from the
more abstract notation used previously; for example, we parametrize the particle types by uppercase letters
A,B,C instead of natural numbers S1, S2, S3.
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We demonstrate that for the total molar mass (i.e., the integral or L1-norm of the molar concentration
field) of the type C particles, the fluctuation process gives an increasingly accurately approximation of the
PBSRD variance as γ increases. For γ = 8000, the largest value of γ that we consider, the variances for the
two models agree to statistical error. Since the concentration field is a Gaussian process, the distribution
of the molar mass is Gaussian at each time t. We observe empirically that the PBSRD molar mass is also
approximately Gaussian for large γ, and so, given the close agreement of the means and variances, we also
see close agreement between the entire statistical distribution for the molar mass for large enough γ.

Throughout the following section, we use the terms PBSRD and particle model interchangeably. We
refer to the jump process discretization of the particle model that we actually simulate as the CRDME
(see discretization section). Finally, we subsequently refer to the solution of the combined mean field with
fluctuation correction SPIDE model as the fluctuation process.

7.1. Description of model problem. We restrict the reaction system to the periodic domain Ω = (0, 2π).
The function λK(x, y) denotes the forward reaction kernel, i.e., the probability per unit time that a forward
reaction A+B → C occurs given an A at x and a B at y, where K(x, y) is a normalized function giving the
spatial distribution and λ > 0 is the total reaction rate. Here we use the Gaussian

K(x, y) =
1

Z

e−
|x−y|2

2ε2

√
2πε2

,

with ε a parameter determining the kernel width, |x− y| the periodic distance between x, y ∈ Ω, i.e.

|x− y| = min{|x− y|, 2π − |x− y|},

and Z a normalization constant,

Z =
1√
2πε2

∫ 2π

0

e−
|x−y|2

2ε2 dx.

For the placement density m(z|x, y), the probability of placing a C at z given a reaction between an A at x
and B at y, we use the combination of δ-functions

(7.1) m(z|x, y) = 1

2
δ(x− z) +

1

2
δ(y − z),

meaning that in the event of an A+B → C reaction the product C is placed at the location of the A or the
B each with probability 1

2 . Note, in the simulations that follow we do not regularize this density, so that
η = 0 in the notation of previous sections. This is common when simulating particle models, where such a
regularization is not needed (it’s use in the MVSP formulation is solely to ensure that representation of the
model is well-defined as described in Section 4).

Reversibility (equivalently detailed balance) implies that the reverse reaction in which a C at z unbinds
into an A at x and a B at y occurs with rate µK(x, y)m(z|x, y), where µ > 0 is a constant [ZI22]. Integrating
over x and y, we find that the probability per time of an unbinding reaction for a C at z is given by

µ

∫
Ω2

K(x, y)m(z|x, y)dxdy =
µ

2

∫
Ω

K(z, y)dy +
µ

2

∫
Ω

K(x, z)dz = µ.

Similarly, we can derive that given an unbinding reaction of a C at z, either the A or B is placed at z with
probability 1

2 and the other molecule is placed with the Gaussian distribution K(x, z) (respectively K(z, y))
centered at z.

In the results that will follow, we have used the parameters DA = 1, DB = .5, and DC = .1. We also set
λ = 1, µ = .05, and ε = 2−7. We will also need an initial condition, which we set to be proportional to

A(x, 0) = e−10(x−1)2 ,

B(x, 0) = e−10(x−2)2 ,

C(x, 0) = 0.

We use this initial condition for the PIDEs satisfied by the mean-field concentration fields, and to generate
initial conditions for the particle model (see the next section). The initial conditions for the SPIDEs that
correspond to the fluctuation corrections, a scaled difference between the particle and mean-field initial
conditions, were therefore zero.
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7.2. Discretization of particle model. We numerically study the particle model using the convergent
reaction-diffusion master equation (CRDME), a convergent spatial discretization of the forward Kolmogorov
equation associated with the PBSRD model [I13, IZ18]. The CRDME corresponds to the forward equation
for a system of continuous-time jump processes on a mesh, and we therefore simulate the particle system via
simulations of these jump processes using optimized versions of the stochastic simulation algorithm (SSA),
also known as Gillespie’s method or Kinetic Monte Carlo [G76]. The PBSRD particles’ Brownian motions
are then approximated by continuous-time random walks on a grid, and their reactive interactions by jump
processes that depend on the relative positions of reactants on the mesh. As discussed in [I13, IZ18], statistics
obtained from simulations of the CRDME should then converge to those of the underlying PBSRD model
as the mesh spacing is taken to zero. For these simulations we use a uniform mesh with nodes {xi}Ni=1 ⊆ Ω,
where xi = (i − 1)h, i = 1, ..., N , and h = 2π

N . We denote the compartments, or voxels, that particles hop

between by Vi, i = 1, ..., N , given by Vi = (xi − h
2 , xi +

h
2 ).

As we require integer numbers of particles for each simulation, we converted from the molar concentration
field at xi to the number of particles, ai, in voxel Vi as

1: m := γhA(xi, 0), m̄ := ⌊m⌋
2: r ∼ Bernoulli(m− m̄).
3: ai = m̄+ r.

This choice ensured the average number of particles of species A in the ith voxel is γhA(xi, 0), consistent with
the mean-field model’s initial condition. The mean number of particles of species A in our initial condition

is therefore γ
∑N

i=1 hA(xi, 0), which is proportional (but not equal) to γ for fixed h. The initial number of
particles of species B and C were chosen similarly.

The diffusion rate for each species s ∈ {A,B,C} from one voxel Vi to either of its neighbors is given
by Ds

h2 , where h is the distance between the centers of neighboring voxels. Pair reaction rates between a

molecule of type A in voxel Vi and a molecule of type B in voxel Vj are computed as λKγ(xi, yj) =
K(xi,yj)

γ .

The resulting C is placed in voxel Vi or Vj with probability 1
2 each. When a C at location Vk unbinds, an

A or B is placed in Vk with probability 1
2 . The location of the other product particle is determined by the

(unnormalized) discrete distributions {K(zk, yj)}Nj=1 = {K(xi, zk)}Ni=1 over the voxel sites. The total rate of
unbinding in the CRDME model then is given by the discrete marginal integral of the reaction kernel,

µ

N∑
i=1

hK(xi, zk),

which for our chosen parameters is essentially µ (i.e. to numerical precision). Specifying the rates with
the midpoint rule quadrature scheme as we have just described preserves detailed balance and also O(h2)
convergence for statistics as compared to the version of the CRDME presented in [IZ18]. We note that the
product-particle placement mechanisms in our discrete model directly simulate the unmollified δ-function
placement mechanism (7.1) from the continuum model.

The CRDME is simulated as a continuous-time jump process using a variant of the direct Gillespie
stochastic simulation algorithm (SSA) in which we view the simulation mesh as the top level (also referred
to as the fine grid) of a nested hierarchy of uniform meshes

ΩI ⊇ ΩI−1 ⊇ ... ⊇ Ω1,

so that |Ωi| = 2i. We keep track of the total reaction rate for each subvolume on each mesh throughout the
simulation, which allows us to identify the next fine grid subvolume where a reaction occurs in logarithmic
time using a binary search. When a reaction or a diffusion event occurs, we update the total reaction rate for
each subvolume on each mesh that contains a fine grid subvolume involved in the reaction. The complexity
for these updates is also logarithmic, although the total cost of rate updates after a B molecule reacts or
diffuses will be O(N logN) (with a small constant) due to the cost of updating the reaction rate for all A in
the range of the reaction kernel.

In our CRDME simulations, we chose I = 10 so that the simulations used N = 210 voxels. This choice
was informed by looking at successive differences of statistics for simulations at different mesh resolutions
to check for convergence, and also by the requirement for the mesh spacing h = 2π

N to be below the kernel

spacing ε in order to achieve asymptotic O(h2) convergence rates. In these informal experiments, we found
the required value of h to be independent of the system size γ.
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7.3. Fluctuation Process Model and Discretization. The mean field model for the reversible reaction
is given by the system of PIDEs

∂A

∂t
(x, t) = DA∆A(x, t)− λ(K ∗B)(x, t)A(x, t) +

µ

2
[(K ∗ C)(x, t) + C(x, t)],

∂B

∂t
(y, t) = DB∆B(y, t)− λ(K ∗A)(y, t)B(y, t) +

µ

2
[(K ∗ C)(y, t) + C(y, t)],

∂C

∂t
(z, t) = DC∆C(z, t)− µC(z, t) +

λ

2
[(K ∗B)(z, t)A(z, t) + (K ∗A)(z, t)B(z, t)],

where A, B, and C are the mean field molar concentrations for the corresponding particle types, and we
define the integral operator (K ∗ f)(x, t) for a function f(x, t) by

(K ∗ f)(x, t) =
∫
Ω

K(x, y)f(y, t) dy.

This model has been previously explored and compared to CRDME simulations of the PBSRD model
in [IMS21].

We denote by Ā, B̄, and C̄ the fluctuation corrections that correspond to the limiting process in Theo-
rem 5.6. By augmenting the mean field solution with the fluctuation corrections, we obtain the fluctuation
processes

Aγ(x, t) := A(x, t) +
1
√
γ
Ā(x, t),

Bγ(y, t) := B(y, t) +
1
√
γ
B̄(y, t),

Cγ(z, t) := C(z, t) +
1
√
γ
C̄(z, t),

which we expect to provide an improved approximation of the particle model for finite γ compared to the
mean field model. We note that the fluctuation processes are Gaussian processes.

From the rigorous weak MVSP equations (5.2) and (5.3) we obtain by integration by parts the following
(formal) strong form representation the fluctuation corrections should satisfy

∂Ā

∂t
(x, t) = DA∆Ā(x, t)− λ[(K ∗B)(x, t)Ā(x, t) + (K ∗ B̄)(x, t)A(x, t)] +

µ

2

[
(K ∗ C̄)(x, t) + C̄(x, t)

]
+ ξAt ,

∂B̄

∂t
(y, t) = DB∆B̄(y, t)− λ[(K ∗A)(y, t)B̄(y, t) + (K ∗ Ā)(x, t)B(x, t) +

µ

2

[
(K ∗ C̄)(x, t) + C̄(x, t)

]
+ ξBt ,

∂C̄

∂t
(z, t) = DC∆C̄(z, t)− µC̄(z, t) +

λ

2

[
(K ∗B)(z, t)Ā(z, t) + (K ∗A)(z, t)B̄(z, t) + (K ∗ Ā)(z, t)B(z, t)

+ (K ∗ B̄)(z, t)A(z, t)
]
+ ξCt .

Here the noise terms, ξAt , ξ
B
t , ξCt , are mean zero Gaussian processes with covariance structure

Cov[
〈
f, ξAt

〉 〈
g, ξAt

〉
] =

∫ t

0

2DA

〈
∂f

∂Q
A(s),

∂g

∂Q

〉
+ λ ⟨A(s)f, (K ∗B)(s)g⟩+ µ

2
[⟨f(C ∗K)(s), g⟩+ ⟨C(s)f, g⟩]ds

Cov[
〈
f, ξCt

〉 〈
g, ξCt

〉
] =

∫ t

0

2DC

〈
∂f

∂Q
C(s),

∂g

∂Q

〉
+ µ ⟨fC(s), g⟩+ λ

2
[⟨fA(s), g(K ∗B)(s)⟩+ ⟨fB(s), g(K ∗A)(s)⟩ ds

Cov[
〈
f, ξAt

〉 〈
g, ξBt

〉
] =

∫ t

0

λ ⟨(K ∗ fA)(s), gB(s)⟩+ µ

2
[⟨(K ∗ fC)(s), g⟩+ ⟨(K ∗ gC)(s), f⟩]ds

Cov[
〈
f, ξAt

〉 〈
g, ξCt

〉
] = −

∫ t

0

(
λ
2 [⟨fA(s), g(K ∗B)(s)⟩+ ⟨fA, (K ∗ gB)(s)⟩] + µ

2 [⟨K ∗ f, C(s)g⟩+ ⟨fC(s), g⟩]
)
ds,

with the remaining covariances following by symmetry. In deriving those equations we assume densities
associated with the fluctuation measures exist. Note that in the preceding formula we have suppressed
writing the spatial dependence of the mean field solutions and test functions, and we have denoted by ⟨., .⟩
the L2 inner-product on Ω.
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To compute the SPIDE solution first requires the mean field solution. We use Fourier spectral discretiza-

tions for both problems. For the mean field solver, we use a total of 29 basis functions {einx}2
9−1

n=0 to represent
the concentration fields for each of the three species. We use fast Fourier transforms provided by Scipy to
convert between Fourier representations and values at collocation points and compute all integrals using the
midpoint rule on intervals centered at collocation points.

Solving for the fluctuation process is more computationally expensive because of the covariance matrix
computation and factorization, and the large number of trials required to resolve statistics to sufficient accu-
racy for convergence testing. We therefore used 61 basis functions {sin(nx), cos(nx), 1}30n=1 for approximating
the fluctuation corrections. Quadratures were computed at the original 29 collocation points for integrals
involving the mean field solution using the midpoint rule.

For the time discretization we used a one step IMEX Euler method for both the mean field and fluctuation
processes, treating the reaction and noise terms explicitly and the diffusion terms implicitly. In both solvers
we used a time step of .001.

7.4. Numerical results. In this section we present numerical results for the reversible A+B ⇆ C reaction
using the CRDME approximation to the particle model, and Fourier spectral approximation to the fluctu-
ation process SPIDEs, as previously described. We examine several statistics that are not available from
the (deterministic) mean-field approximation, to illustrate the additional information gained by having the
fluctuation corrections. To generate the empirical variances and distributions, we used 280,000 simulations
for the CRDME and 1,600,000 simulations for the fluctuation process for each individual set of parameter
values.

We first compare the variance of the (
√
γ-scaled) molar mass within the interval for the fluctuation process

at various times t. Denote by VSPIDE(t) the variance of the total (scaled) molar mass of C molecules from
the fluctuation process, i.e.

VSPIDE(t) = γ E

[(∫
Ω

(Cγ(x, t)− C(x, t)) dx

)2
]
= E

[(∫
Ω

C̄(x, t) dx

)2
]
.

We denote by V γ
CRDME(t) the raw (unscaled) variance of the CRDME molar mass for a given γ at time t,

i.e.

V γ
CRDME(t) = E

[(∫
Ω

(Cγ
CRDME(x, t)− E [Cγ

CRDME(x, t)]) dx

)2
]
,

where Cγ
CRDME(x, t) is the molar concentration field process in the CRDME. Then γV γ

CRDME(t) denotes the
rescaled variance of the CRDME molar mass, which is directly comparable to VSPIDE(t). That is, we expect
γV γ

CRDME(t) → VSPIDE(t) as γ → ∞. Directly comparing the unscaled variances would be more difficult
as we expect the unscaled CRDME variance V γ

CRDME(t) → 0 and unscaled SPIDE variance VSPIDE/γ → 0
as γ → 0.

The top panels in Figure 1 show the rescaled CRDME variances over the whole time interval [0, 1] (top
left) and over the shorter time interval [.75, 1] (top right), alongside the (scaled) SPIDE variance VSPIDE .
The top right plot is a zoomed-in version of the top left plot, to show more clearly the increasing agreement
between the variances computed of the particle model with the variances computed by the SPDE as γ
increases. We see that by γ = 8000, the variances agree within sampling error. The bottom panels show
the difference |VSPIDE(t)− γV γ

CRDME(t)| over time (left) and at t = 1 (right). We see from the left bottom
panel that over the entire interval [0, 1] the difference between the variances decreases as γ increases. In
the right bottom panel we observe a noisy but roughly consistent rate of convergence as we increase γ. The
orange line represents an O(γ− 3

4 ) convergence rate, which is similar to the best fit rate of convergence for
the first five values of γ of γ−.71.

As a final demonstration of the accuracy of the SPIDE solution, in Figure 2 we show the entire distribution
of the CRDME C particle counts, i.e., the distribution of

γ

∫
Ω

Cγ
CRDME(x, t) dx

compared to the distribution of the γ-scaled fluctuation process molar mass, i.e., the distribution of

γ

∫
Ω

Cγ(x, t) dx.
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Figure 1. Scaled variance for fluctuation process, VSPIDE(t), compared to rescaled
CRDME variances γV γ

CRDME(t) for t ∈ [0, 1] (top left) and t ∈ [.75, 1] (top right, zoomed-in
plot of the last quarter of the left panel). The bottom row shows the difference between
these two statistics vs. time (bottom left) and at t = 1 vs. γ (bottom right). The latter
illustrates how γV γ

CRDME(t) → VSPIDE(t) as γ → ∞.

In the figure we have converted the raw molar mass data to have units of particle counts by multiplying by
γ. We generated the SPIDE curve by partitioning the data produced by our simulations into equally sized
bins using the hist function from the Python visualization library matplotlib, pairing each bin center
with the corresponding bin count to create a series of equispaced data points, and interpolating linearly
between consecutive data points. We then normalized the SPIDE curve to have an integral of (number of
CRDME trials) / γ. We see that, as expected, the SPIDE particle counts have an approximately Gaussian
distribution. For large γ, the SPIDE and CRDME distributions have very little visible difference.

In our tests, the SPIDE solver is about 100 times faster than the CRDME simulation for large enough
γ; it took approximately 21 hours on 28 threads for 1,600,000 SPIDE simulations, or 588 compute hours,
for an approximate time of 1.3s/simulation. On the other hand, the γ = 8000 CRDME simulations took
around 132s/trial. Hence, the SPIDE provides an intermediate fidelity model, more accurate and more
computationally expensive than the mean field model, but less accurate and less computationally expensive
than the PBSRD model. As the figures show, the fluctuation process can very accurately capture the overall
distribution for statistics of interest at a reduced computational cost when γ is sufficiently large.

8. Proof of the fluctuations result, Theorem 5.6

In this section we prove Theorem 5.6. We begin in the next section by formulating an evolution equation

for the fluctuation process, Ξζ,j
t . In Section 8.2 we prove a lemma giving moment bounds for the pre-limit

measures, µζ,j
t , and the post-limit mean-field measures, µ̄ζ,j

t . We then prove tightness for the fluctuation
19
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Figure 2. CRDME bar plot of particle counts and fluctuation process particle count den-
sity for γ = 250, 500, 1000, 2000, 4000, 8000 at t = 1 (plotted left to right top to bottom).
The vertical dashed line shows the average number of C particles predicted by the mean-
field limit (i.e. the γ → ∞ limit). The raw fluctuation process and mean-field data have
been multiplied by γ to convert their original units of molar mass to particle counts. Each
fluctuation process curve has also been normalized to have the same integral as the corre-
sponding CRDME box plot (the number of CRDME trials multiplied by 1

γ ).

process in Section 8.3, identify the limiting equation it satisfies in Section 8.4, and finally prove uniqueness
of the solution to this equation in Section 8.5.

8.1. Preliminary calculations for the prelimit fluctuation process. From Eqs. (4.1) and (4.2), we
directly obtain〈
f,Ξζ,j

t

〉
=
〈
f,Ξζ,j

0

〉
+

∫ t

0

〈
(Ljf)(x),Ξ

ζ,j
s−(dx)

〉
ds+

1
√
γ

∑
i≥1

∫ t

0

1{i≤γ⟨1,µζ,j
s−⟩}

√
2Dj

∂f

∂Q
(Hi(γµζ,j

s−))dW i,j
s

− 1

γ

√
γ

L̃∑
ℓ=1

∫ t

0

∫
I(ℓ)

∫
R+

〈
f,

αℓj∑
r=1

δ
Hi

(j)
r (γµζ,j

s− )

〉
1{i∈Ω(ℓ)(γµζ

s−)}1{θ≤Kγ
ℓ (P(ℓ)(γµζ

s−,i))}dÑℓ(s, i, θ)

+
√
γ
1

γ

L∑
ℓ=1+L̃

∫ t

0

∫
I(ℓ)

∫
Y(ℓ)

∫
R2

+

〈
f,

βℓj∑
r=1

δ
y
(j)
r

−
αℓj∑
r=1

δ
Hi

(j)
r (γµζ,j

s− )

〉
1{i∈Ω(ℓ)(γµζ

s−)}

× 1{θ1≤Kγ
ℓ (P(ℓ)(γµζ

s−,i))} × 1{θ2≤mη
ℓ (y | P(ℓ)(γµζ

s−,i))}dÑℓ(s, i,y, θ1, θ2),

−
L̃∑

ℓ=1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

(αℓj∑
r=1

f(x(j)
r )

)
√
γ
(
λ(ℓ)[µζ

s ](dx)− λ(ℓ)[µ̄s](dx)
)
ds

+
√
γ

L∑
ℓ=L̃+1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )

mη
ℓ (y |x) dy −

αℓj∑
r=1

f(x(j)
r )

 λ(ℓ)[µζ
s ](dx) ds

−√
γ

L∑
ℓ=L̃+1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )

mℓ (y |x) dy −
αℓj∑
r=1

f(x(j)
r )

 λ(ℓ)[µ̄s](dx) ds
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=
〈
f,Ξζ,j

0

〉
+

∫ t

0

〈
(Ljf)(x),Ξ

ζ,j
s−(dx)

〉
ds+Mζ,j

t (f)

−
L̃∑

ℓ=1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

(αℓj∑
r=1

f(x(j)
r )

)
√
γ
(
λ(ℓ)[µζ

s ](dx)− λ(ℓ)[µ̄s](dx)
)
ds

+
L∑

ℓ=L̃+1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )

mℓ (y |x) dy −
αℓj∑
r=1

f(x(j)
r )


×√

γ
(
λ(ℓ)[µζ

s ](dx)− λ(ℓ)[µ̄s](dx)
)
ds

+
L∑

ℓ=L̃+1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )

√
γ (mη

ℓ (y |x)−mℓ (y |x)) dy

 λ(ℓ)[µζ
s ](dx) ds.

(8.1)

Note that in the last equality of Eq. (8.1), we are using the notation

(8.2) Mζ,j
t (f) = Cζ,j

t (f) +Dζ,j
t (f),

as the martingale part with quadratic variation

(8.3)
〈
Mζ,j

〉
t
(f) =

〈
Cζγ,j

〉
t
(f) +

〈
Dζ,j

〉
t
(f),

where

(8.4) Cζ,j
t (f) =

1
√
γ

∑
i≥1

∫ t

0

1{i≤γ⟨1,µζ,j
s−⟩}

√
2Dj

∂f

∂Q
(Hi(γµζ,j

s−))dW i,j
s ,

denotes the continuous part, i.e. Brownian motion, of the martingale and

(8.5)

Dζ,j
t (f) = − 1

√
γ

L̃∑
ℓ=1

∫ t

0

∫
I(ℓ)

∫
R+

〈
f,

αℓj∑
r=1

δ
Hi

(j)
r (γµζ,j

s− )

〉
1{i∈Ω(ℓ)(γµζ

s−)}1{θ≤Kγ
ℓ (P(ℓ)(γµζ

s−,i))}dÑℓ(s, i, θ)

+
1
√
γ

L∑
ℓ=L̃+1

∫ t

0

∫
I(ℓ)

∫
Y(ℓ)

∫
R2

+

〈
f,

βℓj∑
r=1

δ
y
(j)
r

−
αℓj∑
r=1

δ
Hi

(j)
r (γµζ,j

s− )

〉
1{i∈Ω(ℓ)(γµζ

s−)}

× 1{θ1≤Kγ
ℓ (P(ℓ)(γµζ

s−,i))}1{θ2≤mη
ℓ (y | P(ℓ)(γµζ

s−,i))}dÑℓ(s, i,y, θ1, θ2),

denotes the discrete part, i.e. Poisson process, of the martingale.

The quadratic variation of Cζ,j
t (f) is

(8.6)
〈
Cζ,j

〉
t
(f) =

∫ t

0

〈
2Dj

(
∂f

∂Q
(x)

)2

, µζ,j
s−(dx)

〉
ds,

and the quadratic variation of Dζ,j
t (f) is

〈
Dζ,j

〉
t
(f) =

L̃∑
ℓ=1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

(αℓj∑
r=1

f(x(j)
r )

)2

λ(ℓ)[µζ
s−](dx) ds

+
L∑

ℓ=L̃+1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )−
αℓj∑
r=1

f(x(j)
r )

2

mη
ℓ (y |x) dy

 λ(ℓ)[µζ
s−](dx) ds.(8.7)

Notice that in Eq. (8.1), {Ξζ,j
t }Jj=1 evolves through

√
γ
(
λ(ℓ)[µζ

s ](x)− λ(ℓ)[µ̄s](x)
)
. In particular, we have

the following cases. If the ℓ-th reaction is a first order reaction, Ak → · · · ,

√
γ
(
λ(ℓ)[µζ

s ](x)− λ(ℓ)[µ̄s](x)
)
= Ξζ,k

s .
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If the ℓ-th reaction is a second order reaction, Ak +Ar → · · · ,

√
γ
(
λ(ℓ)[µζ

s ](x, y)− λ(ℓ)[µ̄s](x, y)
)
=

√
γ
(
µζ,k
s (x)µζ,r

s (y)− µ̄k
s(x)µ̄

r
s(y)

)
= Ξζ,k

s (x)µζ,r
s (y) + µ̄k

s(x)Ξ
ζ,r
s (y).

When ζ → 0, we have that µζ,j
s → µ̄j

s for all j = 1, · · · , J in probability. These considerations led to the
notation used in Definition 5.1.

For the remainder of the proof of Theorem 5.6, and without loss of generality, we assume that L̃ = 0. The
case when L̃ > 0 follows by similar arguments.

8.2. Preliminary moment bounds. The purpose of this section is to obtain moment bounds on µζ,j
t that

are uniform with respect to ζ, and on the limit measure µ̄j
t , for all t ∈ [0, T ] for any T < ∞.

We are interested in obtaining a uniform bound with respect to ζ ∈ (0, 1)2 of the quantity

θζ,j,4Dt = E sup
s∈[0,t]

〈
| · |4D, µζ,j

s

〉
.

For this purpose, we have the following lemma.

Lemma 8.1. Let us assume ρ ∈ L1(Rd) and that Assumptions 4.9, 5.3, 5.4, 5.5 hold. Then, we have that
there exists a finite constant C(C◦,K, ρ, T,D) < ∞ that depends on the upper bounds of the quantities that
appear in those assumptions, such that the following moment bound holds

J∑
j=1

θζ,j,4DT =
J∑

j=1

E sup
t∈[0,T ]

〈
| · |4D, µζ,j

t

〉
≤ C(C◦,K, ρ, T,D) < ∞,

uniformly with respect to ζ. In addition, we also have that

sup
t∈[0,T ]

J∑
j=1

〈
| · |8D, µ̄j

t

〉
≤ C(C◦,K, ρ, T,D) < ∞.

Proof of Lemma 8.1. We will only prove the statement for the moments associated with the prelimit measure

µζ,j
· . The statement for the moments of the limit measure µ̄j

· follows by a similar argument.
Without loss of generality we assume L̃ = 0. We start by defining

hζ,j,8D
t = E

〈
| · |8D, µζ,j

t

〉
.

Note that by Assumption 5.5 we have that hζ,j,8D
0 < ∞. We will first prove that supt∈[0,T ]

∑J
j=1 h

ζ,j,8D
t < C

for some finite constant C < ∞ that is uniform with respect to ζ ∈ (0, 1)2. Note that in Assumption 5.5
we merely assume that such spatial moments are finite (not necessarily uniformly bounded in ζ ∈ (0, 1)2).
Now, we shall prove they in fact are uniformly bounded in ζ ∈ (0, 1)2.

Beginning with the equivalent Fock space forward equation representation of (4.1), i.e. the forward
Kolmogorov equation for the stochastic processes for the number of particles of each type and their positions,

we show in Appendix A that for f(x) = |x|8D we have that E
〈
f, µζ,j

t

〉
satisfies the equation

(8.8) E
〈
f, µζ,j

t

〉
= E

〈
f, µζ,j

0

〉
+

∫ t

0

E
〈
(Ljf)(x), µ

ζ,j
s (dx)

〉
ds

+
L∑

ℓ=1

E
∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )

mη
ℓ (y |x) dy −

αℓj∑
r=1

f(x(j)
r )

 λ(ℓ)[µζ
s ](dx) ds.

Note that implicit in deriving this equation is the assumed existence of the spatial moment via Assump-
tion 5.5.

Now we derive an a-priori bound that is uniform with respect to ζ ∈ (0, 1)2 and t ∈ [0, T ]. We use (8.8)

with f(x) = |x|8D and we note that by Assumption 4.9 we have that
〈
1, µζ,j

t

〉
≤ C◦ and by Assumption 5.5

that hζ,j,8D
0 ≤ C < ∞. We then obtain

hζ,j,8D
t = hζ,j,8D

0 + 8D(8D + d− 2)Dj

∫ t

0

hζ,j,8D−2
s ds
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+
L∑

ℓ=1

E
∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

|y(j)r |8D
mℓ (y |x) dy −

αℓj∑
r=1

|x(j)
r |8D

 λ(ℓ)[µζ
s ](dx) ds

+
L∑

ℓ=1

E
∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

|y(j)r |8D
 (mη

ℓ (y |x)−mℓ (y |x)) dy

 λ(ℓ)[µζ
s ](dx) ds.

≤ hζ,j,8D
0 + 8D(8D + d− 2)Dj

∫ t

0

hζ,j,8D−2
s ds(8.9)

+
L∑

ℓ=1

E
∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

|y(j)r |8D
mℓ (y |x) dy

 λ(ℓ)[µζ
s ](dx) ds

+
L∑

ℓ=1

E
∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

|y(j)r |8D
 (mη

ℓ (y |x)−mℓ (y |x)) dy

 λ(ℓ)[µζ
s ](dx) ds.

We first estimate

I := E
∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

|y(j)r |8D
mℓ (y |x) dy

λ(ℓ)[µζ
s ](dx)

by analyzing all possible cases.

(1) If the ℓ-th reaction is of the form Si → Sj , so that αℓ,i = βℓ,j = 1, then

I = E
∫
Rd

Kℓ (x) |x|8Dµζ,i
s (dx) ≤ C(K)hζ,i,8D

s .

(2) If the ℓ-th reaction is of the form Si → Sj + Sn,

I =

{
E
∫
Rd Kℓ(x)

(∫
R2d |y|8Dmℓ (y, z |x) dy dz

)
µζ,i
s (dx), (βℓj = 1)

E
∫
Rd Kℓ (x)

(∫
R2d

(
|y|8D + |z|8D

)
mℓ (y, z |x) dy dz

)
µζ,i
s (dx), (βℓj = 2)

≤ E
∫
Rd

Kℓ(x)

(∫
R2d

(
|y|8D + |z|8D

)
ρ(y − z)

I∑
i=1

piδ (x− (αiy + (1− αi)z)) dy dz

)
µζ,i
s (dx)

=

I∑
i=1

piE
∫
Rd

Kℓ(x)

(∫
R2d

(
|w + z|8D + |z|8D

)
ρ(w)δ (x− (αiw + z)) dz dw

)
µζ,i
s (dx)

=
I∑

i=1

piE
∫
Rd

Kℓ(x)

(∫
Rd

(
|x+ (1− αi)w|8D + |x− αiw|8D

)
ρ(w) dw

)
µζ,i
s (dx)

≤ C
I∑

i=1

piE
∫
Rd

Kℓ(x)

(∫
Rd

(
|x|8D + |w|8D

)
ρ(w) dw

)
µζ,i
s (dx)

≤ C∥Kℓ∥∞
I∑

i=1

piE
[〈
|x|8D, µζ,i

s (dx)
〉
+

∫
Rd

|w|8D ρ(w) dw
〈
1, µζ,i

s

〉]
≤ C(C◦,K)(1 + hζ,i,8D

s ).

Here in obtaining the second to last inequality we made use of Assumption 5.3.
(3) If the ℓ-th reaction is of the form Si + Sn → Sj ,

I = E
∫
R2d

Kℓ (x, y)

(∫
Rd

|z|8Dmℓ (z|x, y) dz
)
µζ,n
s (dx)µζ,i

s (dy)

=
I∑

i=1

piE
∫
R2d

Kℓ (x, y) |αix+ (1− αi)y|8Dµζ,n
s (dx)µζ,i

s (dy)
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≤ C(C◦,K)
J∑

j=1

hζ,j,8D
s .

(4) If the ℓ-th reaction is of the form Si + Sn → Sj + Sr,

I =

{
1
2E
∫
R2d Kℓ (x, y)

(∫
R2d |z|8D mℓ (z, w |x, y) dz dw

)
µζ,n
s (dx)µζ,i

s (dy), (βℓj = 1)
1
2E
∫
R2d Kℓ (x, y)

(∫
R2d

(
|z|8D + |w|8D

)
mℓ (z, w |x, y) dz dw

)
µζ,n
s (dx)µζ,i

s (dy), (βℓj = 2)

≤ 1
2E
∫
R2d

Kℓ(x, y)
(
|x|8D + |y|8D

)
µζ,n
s (dx)µζ,i

s (dy)

≤ C(C◦,K)
J∑

j=1

hζ,j,8D
s .

Thus, we obtain that

I ≤ C(C◦,K)

1 +
J∑

j=1

hζ,j,8D
s

 .(8.10)

It remains to bound the second term in (8.9),

E
∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

|y(j)r |8D
 (mη

ℓ (y |x)−mℓ (y |x)) dy

 λ(ℓ)[µζ
s ](dx) ds.

The analysis of the innermost integral is done as in the proof of Lemma B.2 of [IMS22] using the decom-
position in terms of the different types of reactions (similar to the approach above). The role of the test

function f(y) in that lemma is played here by f(y) =
∑βℓj

r=1 |y
(j)
r |8D. The primary change in the estimates

is that we can not use the uniform C1
b (Rd) norm when bounding |f(y)− f(x)| over balls about x, since the

moments are unbounded over free-space. We instead use x-dependent estimates over the balls combined
with Assumption 5.3 to obtain bounds of the form∣∣∣∣∫

Y(ℓ)

|y(j)r |8D (mη
ℓ (y |x)−mℓ (y |x)) dy

∣∣∣∣ ≤ C(D)η

(
1 +

∣∣∣x(j)
r

∣∣∣8D−1
)
.

Using such modifications, and the assumption that
∑

t∈[0,T ]

∑J
j=1

〈
1, µζ,j

t

〉
is bounded, one gets that there

exists a constant C = C(C◦,K,D) which depends on
∑

t∈[0,T ]

∑J
j=1

〈
1, µζ,j

t

〉
and on the upper uniform

bound for the reaction kernel Kℓ (x) such that

E
∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

|y(j)r |8D
 (mη

ℓ (y |x)−mℓ (y |x)) dy

 λ(ℓ)[µζ
s ](dx) ds

≤ ηC(C◦,K,D)

∫ t

0

1 +
J∑

j=1

hζ,j,8D−1
s

 ds.

Combining now the last bound with (8.10) implies the following bound for (8.9)

hζ,j,8D
s ≤ hζ,j,8D

0 + 8D(8D + d− 2)Dj

∫ t

0

hζ,j,8D−2
s ds+ C(C◦,K,D)

t+ J∑
j=1

∫ t

0

(
hζ,j,8D
s + ηhζ,j,8D−1

s

)
ds


≤ C(C◦,K,D)

hζ,j,8D
0 + t+

J∑
j=1

∫ t

0

hζ,j,8D
s ds


by bounding the lower moments by C(1+hζ,j,8D

s ). Summing over all j ∈ {1, · · · , J} and using Grownwall’s in-

equality, we find that there exists some constant C(C◦,K, ρ, T,D) < ∞ that depends on supt∈[0,T ]

∑J
j=1

〈
1, µζ,j

t

〉
,
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on the upper uniform bound for the reaction kernel Kℓ (x), on
∫
Rd |w|8Dρ(w)dw, on ∥ρ∥L1(Rd), and on T < ∞,

such that

sup
t∈[0,T ]

J∑
j=1

hζ,j,8D
t ≤ C(C◦,K, ρ, T,D) < ∞.(8.11)

So, indeed starting with equation (8.9) and recalling the uniform bound at time t = 0 by Assumption 5.5,

we obtain in (8.11) the a-priori uniform bound in ζ ∈ (0, 1)2 and t ∈ [0, T ] of hζ,j,8D
t .

We now prove the uniform bound for θζ,j,4Dt . Recall that we can assume, without loss of generality, that

L̃ = 0. Due to the preceding bound, we can now write (4.1) for f(x) = |x|4D
(8.12)〈

f, µζ,j
t

〉
=
〈
f, µζ,j

0

〉
+

∫ t

0

〈
(Ljf)(x), µ

ζ,j
s−(dx)

〉
ds+

1
√
γ
Mζ,j

t (f)

+
L∑

ℓ=1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )

 (mη
ℓ (y |x)−mℓ (y |x)) dy

 λ(ℓ)[µζ
s ](dx) ds,

where Mζ,j
t (f) = Cζ,j

t (f) + Dζ,j
t (f) is the martingale given by (8.2). By the Burkoholder-Davis-Gundy

inequality with f(x) = |x|4D, we have that there exists a finite constant C that depends on Dj and D, such
that

E sup
t∈[0,T ]

|Cζ,j
t (| · |4D)|2 ≤ C

∫ T

0

hζ,j,8D−2
s− ds.(8.13)

Similarly, using Doob’s maximal inequality and calculations for the different reaction possibilities as before,

we obtain that there exists a constant C < ∞ that may depend on
∑

t∈[0,T ]

∑J
j=1

〈
1, µζ,j

t

〉
, on the upper

uniform bound for the reaction kernel Kℓ (x) , on
∫
Rd |w|8Dρ(w)dw, on ∥ρ∥L1(Rd), and on T < ∞ such that

E sup
t∈[0,T ]

|Dζ,j
t (| · |4D)|2

≤ CE
L∑

ℓ=1

∫ T

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

|y(j)r |4D −
αℓj∑
r=1

|x(j)
r |4D

2

mη
ℓ (y |x) dy

 λ(ℓ)[µζ
s−](dx) ds.

≤ C
J∑

j=1

∫ T

0

hζ,j,8D
s ds.

Using then the bound (8.11), we obtain that

E sup
t∈[0,T ]

|Mζ,j
t (| · |4D)|2 ≤ C,(8.14)

for some constant C < ∞ that may depend on
∑

t∈[0,T ]

∑J
j=1

〈
1, µζ,j

t

〉
, on the upper uniform bound for the

reaction kernel Kℓ (x) , on
∫
Rd |w|8Dρ(w)dw, on ∥ρ∥L1(Rd), and on T < ∞, but not on ζ.

Taking now supremum over t ∈ [0, T ] and then the expectation operator in (8.12), using (8.14) for the
martingale terms and (8.11) to bound the supremum of the Riemann integral terms, we obtain the desired
bound

J∑
j=1

θζ,j,4DT =
J∑

j=1

E sup
t∈[0,T ]

〈
| · |4D, µζ,j

t

〉
≤ C(C◦,K, ρ, T,D) < ∞,

concluding the proof of the lemma. □

8.3. Tightness. In this section, we aim to rigorously show the relative compactness of the fluctuation process{(
Ξζ,1
t , · · · ,Ξζ,J

t

)
, t ∈ [0, T ]

}
ζ∈(0,1)2

and of the martingale vector
{(

Mζ,1
t , · · · ,Mζ,J

t

)
, t ∈ [0, T ]

}
ζ∈(0,1)2

in

D(W−Γ,a(Rd))⊗J ([0, T ]).
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Let κ > 0, q ≥ 0 and define the stopping time

θqζ,κ = inf

t ≥ 0 :
J∑

j=1

〈
| · |q, µζ,j

t

〉
≥ κ

 .(8.15)

The estimate in Lemma 8.1 implies that for T < ∞ and q = 4D ≥ 0, we have that

lim
κ→∞

sup
ζ∈(0,1)2

P(θqζ,κ ≤ T ) = 0.(8.16)

Thus, for an appropriately chosen q ≥ 0, it is enough to prove tightness for
{(

Ξζ,1
t∧θq

ζ,κ
, · · · ,Ξζ,J

t∧θq
ζ,κ

)}
t∈[0,T ]

and of the martingales
{(

Mζ,1
t∧θq

ζ,κ
, · · · ,Mζ,J

t∧θq
ζ,κ

)}
t∈[0,T ]

in D(W−Γ,a(Rd))⊗J ([0, T ]).

8.3.1. Uniform Bound on the Fluctuation Process
{(

Ξζ,1

t∧θ2b
ζ,κ

, · · · ,Ξζ,J

t∧θ2b
ζ,κ

)}
t∈[0,T ]

. Before we prove our main

Lemma 8.9, let us first present the technical Lemmas 8.2 to 8.5.

Lemma 8.2. Let {fp}p≥1 be a complete orthonormal system in WΓ1,a
0 (Rd) of class C∞

0 (Rd). For a fixed γ,
and assuming from Assumption 5.1 that b > a+ d/2, Γ1 ≥ 2D + 1, and a ≥ D, we have that

∑
p≥1

∫ t∧θ2b
ζ,κ

0

〈
fp,Ξ

ζ,j
s−

〉
dCζ,j

s (fp)

is a square integrable martingale with the expected value of its quadratic variation bounded by

C(Dj , κ)E
∫ t∧θ2b

ζ,κ

0

||Ξζ,j
s− ||2−Γ1,a ds

for a finite constant C < ∞.

Proof. For a fixed γ,

||Ξζ,j
s ||−Γ1,a = sup

||f ||Γ1,a=1

〈
f,Ξζ,j

s

〉
=

√
γ sup

||f ||Γ1,a=1

〈
f, µζ,j

s − µ̄j
s

〉
≤ C

√
γ sup

||f ||Γ1,a=1

||f ||C0,a ≤ C
√
γ < ∞,(8.17)

where we used the moment bound from Lemma 8.1 and Sobolev embedding since Γ1 > d/2. For a fixed γ,

b > a + d/2, by Eq. (8.6), we have that
∑

p≥1

∫ t∧θ2b
ζ,κ

0

〈
fp,Ξ

ζ,j
s−

〉
dCζ,j

s (fp) is a square integrable martingale

with quadratic variation having expected value

E
∑
p≥1

∫ t∧θ2b
ζ,κ

0

〈
fp,Ξ

ζ,j
s−

〉2
d
〈
Cζ,j

〉
s
(fp) = 2DjE

∑
p≥1

∫ t∧θ2b
ζ,κ

0

〈
fp,Ξ

ζ,j
s−

〉2〈(∂fp
∂Q

(x)

)2

, µζ,j
s−(dx)

〉
ds

≤ 2Dj

∑
p≥1

||fp||2C1,b

E
∫ t∧θ2b

ζ,κ

0

(
||Ξζ,j

s− ||2−Γ1,a

)
κ ds

≤ C(Dj , κ)

∑
p≥1

||fp||21+D,b

E
∫ t∧θ2b

ζ,κ

0

(
||Ξζ,j

s− ||2−Γ1,a

)
ds < ∞.

The derivation of the last line used the Sobolev embedding theorem, and that since Γ1 − (1 +D) > d/2 and

b − a > d/2 the embedding WΓ1,a
0 ↪→ W 1+D,b

0 is of Hilbert-Schmidt type, so
∑

p≥1 ||fp||21+D,b < ∞. This
concludes the proof of the lemma. □
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We now develop several useful bounds involving the function

(8.18) gℓ,j,f,µ
ζ

(s, i,y, θ1, θ2) =
1
√
γ

〈
f,

βℓj∑
r=1

δ
y
(j)
r

−
αℓj∑
r=1

δ
Hi

(j)
r (γµζ,j

s− )

〉
× 1{i∈Ω(ℓ)(γµζ

s−)}1{θ1≤Kγ
ℓ (P(ℓ)(γµζ

s−,i))}1{θ2≤mη
ℓ (y | P(ℓ)(γµζ

s−,i))},

representing the ”jump” at time s. Notice that it is uniformly bounded and of order O( 1√
γ ) for f ∈ C∞

0 (Rd).

Lemma 8.3. For any fp ∈ WD,b
0 (Rd) ∩ C∞

0 (Rd), there is a finite constant C such that

E sup
t∈[0,T ]

L∑
ℓ=1

∫ t∧θ2b
ζ,κ

0

∫
I(ℓ)

∫
Y(ℓ)

∫
R2

+

((〈
fp,Ξ

ζ,j
s−

〉
+ gℓ,j,fp,µ

ζ

(s, i,y, θ1, θ2)
)2

−
〈
fp,Ξ

ζ,j
s−

〉2
−2gℓ,j,fp,µ

ζ

(s, i,y, θ1, θ2)
〈
fp,Ξ

ζ,j
s−

〉)
dN̄ℓ(s, i,y, θ1, θ2)

≤ TC||fp||2D,b

is uniformly bounded in ζ ∈ (0, 1)2. The constant C depends on L,C(K), 22), κ and the upper bound from
the moment bound of Lemma 8.1.

Proof. We write
(8.19)

E sup
t∈[0,T ]

L∑
ℓ=1

∫ t∧θ2b
ζ,κ

0

∫
I(ℓ)

∫
Y(ℓ)

∫
R2

+

((〈
fp,Ξ

ζ,j
s−

〉
+ gℓ,j,fp,µ

ζ

(s, i,y, θ1, θ2)
)2

−
〈
fp,Ξ

ζ,j
s−

〉2
−2gℓ,j,fp,µ

ζ

(s, i,y, θ1, θ2)
〈
fp,Ξ

ζ,j
s−

〉)
dN̄ℓ(s, i,y, θ1, θ2)

= E sup
t∈[0,T ]

L∑
ℓ=1

∫ t∧θ2b
ζ,κ

0

∫
I(ℓ)

∫
Y(ℓ)

∫
R2

+

(
gℓ,j,fp,µ

ζ

(s, i,y, θ1, θ2)
)2

dN̄ℓ(s, i,y, θ1, θ2)

= γ−1E sup
t∈[0,T ]

L∑
ℓ=1

∫ t∧θ2b
ζ,κ

0

∫
I(ℓ)

∫
Y(ℓ)

∫
R2

+

 βℓj∑
r=1

fp(y
(j)
r )−

αℓj∑
r=1

fp(H
i(j)r (γµζ,j

s− ))

2

× 1{i∈Ω(ℓ)(γµζ
s−)}1{θ1≤Kγ

ℓ (P(ℓ)(γµζ
s−,i))}1{θ2≤mη

ℓ (y | P(ℓ)(γµζ
s−,i))} dN̄ℓ(s, i,y, θ1, θ2)

= E sup
t∈[0,T ]

L∑
ℓ=1

∫ t∧θ2b
ζ,κ

0

∫
X̃(ℓ)

1

α(ℓ)!

∫
Y(ℓ)

 βℓj∑
r=1

fp(y
(j)
r )−

αℓj∑
r=1

fp(x
(j)
r )

2

mη
ℓ (y |x) dy

Kℓ(x)λ
(ℓ)[µζ

s ](dx) ds

< CT ||fp||2C0,b

< CT ||fp||2D,b < ∞

which follows using the Sobolev embedding theorem as D > d/2, using Assumption 4.8 on the γ-scaling of
Kγ

ℓ (x), and using the uniform bound on the moments of µζ
s from Lemma 8.1.

Note, in the preceding estimate the final bound has no γ dependence. □

Lemma 8.4. For a fixed γ, and any fp ∈ WD,b
0 (Rd) ∩ C∞

0 (Rd),

L∑
ℓ=1

∫ t∧θ2b
ζ,κ

0

∫
I(ℓ)

∫
Y(ℓ)

∫
R2

+

((〈
fp,Ξ

ζ,j
s−

〉
+ gℓ,j,fp,µ

ζ

(s, i,y, θ1, θ2)
)2

−
〈
fp,Ξ

ζ,j
s−

〉2)
dÑℓ(s, i,y, θ1, θ2)

is a square integrable martingale with quadratic variation bounded by

1

γ
Ct||fp||4D,b + C||fp||2D,b

∫ t∧θ2b
ζ,κ

0

(〈
fp,Ξ

ζ,j
s−

〉)2
ds.

The constant C depends on L,C(K), C◦, κ, and the upper bound from the moment bound of Lemma 8.1.
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Proof. As shown in Eq. (8.17), for a fixed γ, ||Ξζ,1
s ||−Γ1,a < ∞, so that the quadratic variation

L∑
ℓ=1

∫ t∧θ2b
ζ,κ

0

∫
I(ℓ)

∫
Y(ℓ)

∫
R2

+

((〈
fp,Ξ

ζ,j
s−

〉
+ gℓ,j,fp,µ

ζ

(s, i,y, θ1, θ2)
)2

−
〈
fp,Ξ

ζ,j
s−

〉2)2

dN̄ℓ(s, i,y, θ1, θ2)

=
L∑

ℓ=1

∫ t∧θ2b
ζ,κ

0

∫
I(ℓ)

∫
Y(ℓ)

∫
R2

+

((
gℓ,j,fp,µ

ζ

(s, i,y, θ1, θ2)
)2

+ 2
〈
fp,Ξ

ζ,j
s−

〉
gℓ,j,fp,µ

ζ

(s, i,y, θ1, θ2)

)2

dN̄ℓ(s, i,y, θ1, θ2)

≤ 2
L∑

ℓ=1

∫ t∧θ2b
ζ,κ

0

∫
I(ℓ)

∫
Y(ℓ)

∫
R2

+

(
gℓ,j,fp,µ

ζ

(s, i,y, θ1, θ2)
)4

dN̄ℓ(s, i,y, θ1, θ2)

+ 8
L∑

ℓ=1

∫ t∧θ2b
ζ,κ

0

∫
I(ℓ)

∫
Y(ℓ)

∫
R2

+

(
gℓ,j,fp,µ

ζ

(s, i,y, θ1, θ2)
〈
fp,Ξ

ζ,j
s−

〉)2
dN̄ℓ(s, i,y, θ1, θ2)

(Similarly as Eq. (8.19), we can get)

≤ 2

γ
Ct||fp||4D,b + C||fp||2D,b

∫ t∧θ2b
ζ,κ

0

(〈
fp,Ξ

ζ,j
s−

〉)2
ds < ∞.

(8.20)

□

Lemma 8.5. For Ξ ∈ W−Γ1,a and a ≥ 1, recalling that Lj = Dj∆x, we have that〈
Ξ,L∗

jΞ
〉
−Γ1,a

≤ C||Ξ||2−Γ1,a.

Proof. By the Riesz Representation Theorem for Hilbert spaces, there exists a unique Ψ ∈ WΓ1,a
0 such that

⟨f,Ξ⟩ = ⟨f,Ψ⟩Γ1,a
, for all f ∈ WΓ1,a

0 .

Let us denote F (Ξ) = Ψ, and note that S := {Ξ ∈ W−Γ1,a : F (Ξ) ∈ WΓ1+2,a
0 } is dense in W−Γ1,a. We will

first focus on such Ξ ∈ S. Then LjF (Ξ) ∈ WΓ1,a
0 and〈

Ξ,L∗
jΞ
〉
−Γ1,a

=
〈
F (Ξ),L∗

jΞ
〉
= ⟨LjF (Ξ),Ξ⟩ = ⟨LjF (Ξ), F (Ξ)⟩Γ1,a

.

Then, by Lemma B.1 we obtain that for some constant C < ∞〈
Ξ,L∗

jΞ
〉
−Γ1,a

= ⟨LjF (Ξ), F (Ξ)⟩Γ1,a
≤ C||F (Ξ)||2Γ1,a = C||Ξ||2−Γ1,a

By a density argument, the above result holds for any Ξ ∈ W−Γ1,a. □

Lemma 8.6. Let {fp}p≥1 be a complete orthonormal system in WΓ1,a
0 (Rd) of class C∞

0 (Rd). Under As-
sumptions 5.1 and 5.3 we have that there exists a finite constant C < ∞ such that

E sup
t∈[0,T ]

∑
p≥1

L∑
ℓ=1

∫ t∧θ2a
ζ,κ

0

〈
fp,Ξ

ζ,j
s

〉 ∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

fp(y
(j)
r )

mℓ (y |x) dy −
αℓj∑
r=1

fp(x
(j)
r )


×√

γ
(
λ(ℓ)[µζ

s ](dx)− λ(ℓ)[µ̄s](dx)
)
ds

≤ CE
∫ T∧θ2a

ζ,κ

0

J∑
j=1

||Ξζ,j
s ||2−Γ1,a ds

(8.21)

Proof. We begin by considering the term

I =

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

(αℓj∑
r=1

fp(x
(j)
r )

)
√
γ
(
λ(ℓ)[µζ

s ](dx)− λ(ℓ)[µ̄s](dx)
)
.

(1) If the ℓ-th reaction is a unimolecular reaction Sj → · · · ,

I =

∫
Rd

Kℓ (x) fp(x)
√
γ
(
µζ,j
s (dx)− µ̄j

s(dx)
)
=

∫
Rd

Kℓ(x)fp(x) Ξ
ζ,j
s (dx) =

〈
Kℓfp,Ξ

ζ,j
s

〉
.
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(2) If the ℓ-th reaction is a bimolecular reaction 2Sj → · · · ,

I = 1
2

∫
R2d

Kℓ (x, y) (fp(x) + fp(y))
(
Ξζ,j
s (dx)µζ,j

s (dy) + µ̄j
s(dx)Ξ

ζ,j
s (dy)

)
= 1

2

[〈〈
Kℓ, µ

ζ,j
s

〉
fp,Ξ

ζ,j
s

〉
+
〈〈
Kℓfp, µ̄

j
s

〉
,Ξζ,j

s

〉
+
〈〈
Kℓfp, µ

ζ,j
s

〉
,Ξζ,j

s

〉
+
〈〈
Kℓ, µ̄

j
s

〉
fp,Ξ

ζ,j
s

〉]
(3) If the ℓ-th reaction is a bimolecular reaction Si + Sj → · · · , with i ̸= j

I =

∫
R2d

Kℓ (x, y) fp(y)
(
Ξζ,i
s (dx)µζ,j

s (dy) + µ̄i
s(dx)Ξ

ζ,j
s (dy)

)
=
[〈〈

Kℓfp, µ
ζ,j
s

〉
,Ξζ,i

s

〉
+
〈〈
Kℓ, µ̄

i
s

〉
fp,Ξ

ζ,j
s

〉]
Next, we simplify

II =

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

fp(y
(j)
r )

mℓ (y |x) dy

√
γ
(
λ(ℓ)[µζ

s ](dx)− λ(ℓ)[µ̄s](dx)
)

by expanding out all the allowable reaction types:

(1) If the ℓ-th reaction is of the form Si → Sj ,

II =

∫
X̃(ℓ)

Kℓ (x)

(∫
Rd

fp(y)mℓ (y |x) dy
)
√
γ
(
µζ,i
s (dx)− µ̄i

s(dx)
)

=

∫
Rd

Kℓ (x) fp(x)Ξ
ζ,i
s (dx) =

〈
Kℓfp,Ξ

ζ,i
s

〉
.

(2) If the ℓ-th reaction is of the form Si → 2Sj , we set the operator

D(1−αi)
1 fp(x) = Kℓ (x)

(∫
Rd

fp (x+ (1− αi)w) ρ(w) dw

)
and we have

II =

∫
Rd

Kℓ (x)

(∫
R2d

(fp(y) + fp(z))mℓ (y, z |x) dy dz
)
Ξζ,i
s (dx)

=

∫
Rd

Kℓ (x)

(∫
R2d

(fp(y) + fp(z)) ρ(y − z)

I∑
k=1

pkδ (x− (αky + (1− αk)z)) dy dz

)
Ξζ,i
s (dx)

=
I∑

k=1

pk

∫
Rd

Kℓ(x)

(∫
R2d

(fp(w + z) + f(z)) ρ(w)δ (x− (αkw + z)) dz dw

)
Ξζ,i
s (dx)

=
I∑

k=1

pk

∫
Rd

Kℓ(x)

(∫
Rd

(fp (x+ (1− αk)w) + f(x− αkw)) ρ(w) dw

)
Ξζ,i
s (dx)

=

I∑
k=1

pk

[〈
D(1−αk)

1 fp,Ξ
ζ,i
s

〉
+
〈
D(−αk)

1 fp,Ξ
ζ,i
s

〉]
.

(3) If the ℓ-th reaction is of the form Si → Sj + Sk for j ̸= n, mimicking the previous case we find

II =

∫
Rd

Kℓ (x)

(∫
R2d

fp(y)mℓ (y, z |x) dy dz
)
Ξζ,i
s (dx)

=
I∑

n=1

pn

〈
D(1−αn)

1 fp,Ξ
ζ,i
s

〉
.

(4) If the ℓ-th reaction is of the form Si + Sk → Sj ,

II = 1
α(ℓ)!

∫
R2d

Kℓ (x, y)

(∫
Rd

fp(z)mℓ (z|x, y) dz
)(

Ξζ,k
s (dx)µζ,i

s (dy) + µ̄k
s(dx)Ξ

ζ,i
s (dy)

)
= 1

α(ℓ)!

I∑
n=1

pn

∫
R2d

Kℓ (x, y) fp (αnx+ (1− αn)y)
(
Ξζ,k
s (dx)µζ,i

s (dy) + µ̄k
s(dx)Ξ

ζ,i
s (dy)

)
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= 1
α(ℓ)!

I∑
n=1

pn

[ 〈〈
Kℓ(x, y)fp (αnx+ (1− αn)y)µ

ζ,i
s (dy)

〉
,Ξζ,k

s (dx)
〉

+
〈〈
Kℓ(x, y)fp (αnx+ (1− αn)y) µ̄

k
s(dx)

〉
,Ξζ,i

s (dy)
〉 ]

.

(5) If the ℓ-th reaction is of the form Si + Sk → 2Sj ,

II = 1
α(ℓ)!

∫
R2d

Kℓ(x, y)

(∫
R2d

(fp(z) + fp(w))mℓ (z, w |x, y) dz dw
)(

Ξζ,k
s (dx)µζ,i

s (dy) + µ̄k
s(dx)Ξ

ζ,i
s (dy)

)
= 1

α(ℓ)!

∫
R2d

Kℓ(x, y) (fp(x) + fp(y))
(
Ξζ,k
s (dx)µζ,i

s (dy) + µ̄k
s(dx)Ξ

ζ,i
s (dy)

)
= 1

α(ℓ)!

[〈〈
Kℓ, µ

ζ,i
s

〉
fp,Ξ

ζ,k
s

〉
+
〈〈
Kℓfp, µ̄

k
s

〉
,Ξζ,i

s

〉
+
〈〈
Kℓfp, µ

ζ,i
s

〉
,Ξζ,k

s

〉
+
〈〈
Kℓ, µ̄

k
s

〉
fp,Ξ

ζ,i
s

〉]
(6) If the ℓ-th reaction is of the form Si + Sk → Sj + Sr for r ̸= j, mimicking the previous case we find

II = 1
α(ℓ)!

∫
R2d

Kℓ(x, y)

(∫
R2d

fp(z)mℓ (z, w |x, y) dz dw
)(

Ξζ,k
s (dx)µζ,i

s (dy) + µ̄k
s(dx)Ξ

ζ,i
s (dy)

)
= 1

α(ℓ)!

(〈〈
Kℓ, µ

ζ,i
s

〉
fp,Ξ

ζ,k
s

〉
+
〈〈
Kℓfp, µ̄

k
s

〉
,Ξζ,i

s

〉)
.

In each case studied above, the upper bound is of the form
〈
Dfp,Ξ

ζ
s

〉
where the operator D is either a

local operator as Dfp(x) = Kℓ(x)fp(x), Dfp(x, s) =
〈
Kℓ(x), µ

ζ,i
s

〉
fp(x) or a non-local operator of the form

Dfp(x) = D(1−αn)
1 fp(x) (as defined above) or of the form Dfp(x, s) =

〈
Kℓfp, µ

ζ,i
s

〉
. Due to Assumption 5.4

and for the operator D = D(1−αn)
1 Assumption 5.3 as well, in all of the cases, the operators D are linear

operators from WΓ1,a
0 into WΓ1,a

0 .
Examining the left hand side of (8.21), for such operators D we see that in all of these cases estimates of

the following form hold:

(8.22)

∫ t∧θ2a
ζ,κ

0

∑
p≥1

〈
fp,Ξ

ζ,j
s

〉 〈
Dfp,Ξ

ζ,i
s

〉
ds =

∫ t∧θ2a
ζ,κ

0

〈
Ξζ,j
s ,D∗Ξζ,i

s

〉
−Γ1,a

ds

≤ C

∫ t∧θ2a
ζ,κ

0

[
∥Ξζ,j

s ∥2−Γ1,a + ∥Ξζ,i
s ∥2−Γ1,a

]
ds.

Let us prove this for one possible form of the operators D, say for Dfp(x, s; ζ, i) =
〈
Kℓ(x, y)fp(y), µ

ζ,i
s (dy)

〉
.

The rest of the cases can being treated similarly1. Let us first show that D : WΓ1,a
0 7→ WΓ1,a

0 and for

fp ∈ WΓ1,a
0 the bound ∥Dfp∥2Γ1,a

≤ C∥fp∥2Γ1,a
holds, for some unimportant constant C < ∞. Indeed, the

following computation holds

∥Dfp∥2Γ1,a = ∥
〈
Kℓ(x, ·)fp, µζ,i

s

〉
∥2Γ1,a

=
∑
k≤Γ1

∫
Rd

1

1 + |x|2a
(〈

Kℓ(x, ·)fp, µζ,i
s

〉(k))2
dx

=
∑
k≤Γ1

∫
Rd

1

1 + |x|2a
(〈

K
(k)
ℓ (x, ·)fp, µζ,i

s

〉)2
dx

≤ C
∑
k≤Γ1

∥∂(k)
x Kℓ∥2∞

∫
Rd

1

1 + |x|2a
〈
(fp)

2, µζ,i
s

〉
dx

≤ C
∑
k≤Γ1

∥∂(k)
x Kℓ∥2∞

(
sup
x∈Rd

(fp(x))
2

1 + |x|2a

)〈
1 + |x|2a, µζ,i

s

〉 ∫
Rd

1

1 + |x|2a
dx

≤ C

∑
k≤Γ1

∥∂(k)
x Kℓ∥2∞

〈
1 + |x|2a, µζ,i

s

〉 ∫
Rd

1

1 + |x|2a
dx

 ∥fp∥2Γ1,a

1Even though we do not show this here, showing the desired bound for the choice Dfp(x) = Di
(1−αn)

fp(x) leads to the

requirements ∥ρ∥L1 < ∞ and
∫
Rd |w|2aρ(w)dw < ∞.
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≤ C

∑
k≤Γ1

∥∂(k)
x Kℓ∥2∞

〈
1 + |x|2a, µζ,i

s

〉 ∥fp∥2Γ1,a

= C∥fp∥2Γ1,a,(8.23)

where we have used the Sobolev embedding theorem, the boundedness of maxk≤Γ1 ∥∂
(k)
x Kℓ∥2∞, and that

2a > d by assumption. This estimate also demonstrates why weighted spaces are needed. In particular,
without weights (take for example a = 0) the bound on the second inequality would have been in terms of∫
Rd dx = ∞ instead of

∫
Rd

1
1+|x|2a dx < ∞.

Then, as in Lemma 8.5, the Riesz representation theorem for Hilbert spaces allows us to show that there

exists a unique Ψj ,Ψi ∈ WΓ1,a
0 such that (omitting the ζ for notational simplicity)〈

Ξj ,D∗Ξi
〉
−Γ1,a

=
〈
Ψj ,D∗Ξi

〉
=
〈
DΨj ,Ξi

〉
=
〈
DΨj ,Ψi

〉
Γ1,a

.

Hence, using Young’s inequality, pulling the supremum of ∂
(k)
x Kℓ outside the integration and omitting the

time dependence for now, we shall have (following a similar computation as in (8.23))〈
Ξj ,D∗Ξi

〉
−Γ1,a

=
〈
DΨj ,Ψi

〉
Γ1,a

=
∑
k≤Γ1

∫
Rd

1

1 + |x|2a
〈
Kℓ(x, ·)Ψj , µζ,i

s

〉(k)
(Ψi(x))(k)dx

≤ 1

2

∑
k≤Γ1

∫
Rd

1

1 + |x|2a
(〈

Kℓ(x, ·)Ψj , µζ,i
s

〉(k))2
dx+

1

2
∥Ψi∥2Γ1,a

≤ C

∑
k≤Γ1

∥∂(k)
x Kℓ∥2∞

〈
1 + |x|2a, µζ,i

s

〉 ∥Ψj∥2Γ1,a +
1

2
∥Ψi∥2Γ1,a

≤ C

∑
k≤Γ1

∥∂(k)
x Kℓ∥2∞

〈
1 + |x|2a, µζ,i

s

〉 ∥Ξj∥2−Γ1,a +
1

2
∥Ξi∥2−Γ1,a,

where to go from the first inequality to the second we did the same computation as in (8.23). From the
preceding estimate we find

E sup
t∈[0,T ]

∫ t∧θ2a
ζ,κ

0

〈
Ξj
s,D∗Ξi

s

〉
−Γ1,a

ds ≤ CE
∫ T∧θ2a

ζ,κ

0

(
∥Ξj

s∥2−Γ1,a + ∥Ξi
s∥2−Γ1,a

)
ds.(8.24)

We conclude that there is a constant C < ∞ that depends on κ,C(K), C◦, ∥ρ∥L1 ,
∫
Rd(1 + |x|2a)ρ(x)dx,

and the moment bound from Lemma 8.1 such that

E sup
t∈[0,T ]

∑
p≥1

L∑
ℓ=1

∫ t∧θ2a
ζ,κ

0

〈
fp,Ξ

ζ,j
s

〉 ∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

fp(y
(j)
r )

mℓ (y |x) dy −
αℓj∑
r=1

fp(x
(j)
r )


×√

γ
(
λ(ℓ)[µζ

s ](dx)− λ(ℓ)[µ̄s](dx)
)
ds

≤ CE
∫ T∧θ2a

ζ,κ

0

J∑
j=1

||Ξζ,j
s ||2−Γ1,a ds.

□

Lemma 8.7. Let {fp}p≥1 be a complete orthonormal system in WΓ1,a
0 (Rd) of class C∞

0 (Rd). Then, with
b > a+ d/2, we have that there exists a finite constant C < ∞ such that

E sup
t∈[0,T ]

∑
p≥1

L∑
ℓ=1

∫ t∧θ2b
ζ,κ

0

〈
fp,Ξ

ζ,j
s

〉 ∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

fp(y
(j)
r )

√
γ (mη

ℓ (y |x)−mℓ (y |x)) dy

 λ(ℓ)[µζ
s ](dx) ds
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≤ C

[
E
∫ T∧θ2b

ζ,κ

0

||Ξζ,j
s ||2−Γ1,ads+ |√γη|2

]
.

(8.25)

The constant C < ∞ depends on κ,C(K), C◦, ∥ρ∥L1 ,
∫
Rd(1+|x|2a)ρ(x)dx and the moment bound from Lemma

8.1.

Proof. By Young’s inequality, Lemma B.2 and the proof of Lemma B.1 in [IMS22], and the moment bound
Lemma 8.1, we have for b > a+ d/2 that

2E sup
t∈[0,T ]

∑
p≥1

L∑
ℓ=1

∫ t∧θ2b
ζ,κ

0

〈
fp,Ξ

ζ,j
s

〉 ∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

fp(y
(j)
r )

√
γ (mη

ℓ (y |x)−mℓ (y |x)) dy

 λ(ℓ)[µζ
s ](dx) ds

≤ E sup
t∈[0,T ]

∑
p≥1

L∑
ℓ=1

∫ t∧θ2b
ζ,κ

0

〈
fp,Ξ

ζ,j
s

〉2
ds

+ E sup
t∈[0,T ]

∑
p≥1

L∑
ℓ=1

∫ t∧θ2b
ζ,κ

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

fp(y
(j)
r )

√
γ (mη

ℓ (y |x)−mℓ (y |x)) dy

 λ(ℓ)[µζ
s ](dx)

2

ds

≤ C

E ∫ T∧θ2b
ζ,κ

0

||Ξζ,j
s ||2−Γ1,ads+ γη2

∑
p≥1

∥fp∥2C1,b


≤ C

E ∫ T∧θ2b
ζ,κ

0

||Ξζ,j
s ||2−Γ1,ads+ γη2

∑
p≥1

∥fp∥21+D,b

 ,

where the last line follows by Sobolev embedding with D > d/2. Now because Γ1 > d/2 + 1 + D and

b − a > d/2, the embedding WΓ1,a
0 ↪→ W 1+D,b

0 is of Hilbert-Schmidt type, so
∑

p≥1 ||fp||21+D,b < ∞. This
concludes the proof. □

Lemma 8.8. Let a ≥ D, b ≥ 2D and Γ1 ≥ 2D + 1, D = 1 + ⌈d/2⌉. For all
√
γη sufficiently small, see

Assumption 5.2, there exists a constant C such that

(8.26) sup
ζ∈(0,1)2

E[ sup
t∈[0,T ]

||Ξζ,j

t∧θ2b
ζ,κ

||2−Γ1,a] < C,

for j = 1, 2, · · · , J .

Proof. Let {fp}p≥1 be a complete orthonormal system in WΓ1,a
0 (Rd) of class C∞

0 (Rd). By applying Ito’s
formula on Eq. (8.1), we can obtain〈
fp,Ξ

ζ,j
t

〉2
=
〈
fp,Ξ

ζ,j
0

〉2
+ 2

∫ t

0

〈
fp,Ξ

ζ,j
s

〉 〈
(Ljfp)(x),Ξ

ζ,j
s−(dx)

〉
ds

+ 2

∫ t

0

〈
fp,Ξ

ζ,j
s−

〉
dCζ,j

s (fp) +
〈
Cζ,j

〉
t
(fp)

+ 2
L∑

ℓ=1

∫ t

0

〈
fp,Ξ

ζ,j
s

〉 ∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

fp(y
(j)
r )

mℓ (y |x) dy −
αℓj∑
r=1

fp(x
(j)
r )


×√

γ
(
λ(ℓ)[µζ

s ](dx)− λ(ℓ)[µ̄s](dx)
)
ds

+ 2
L∑

ℓ=1

∫ t

0

〈
fp,Ξ

ζ,j
s

〉 ∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

fp(y
(j)
r )

√
γ (mη

ℓ (y |x)−mℓ (y |x)) dy

 λ(ℓ)[µζ
s ](dx) ds

+
L∑

ℓ=1

∫ t

0

∫
I(ℓ)

∫
Y(ℓ)

∫
R2

+

((〈
fp,Ξ

ζ,j
s−

〉
+ gℓ,j,fp,µ

ζ

(s, i,y, θ1, θ2)
)2

−
〈
fp,Ξ

ζ,j
s−

〉2)
dÑℓ(s, i,y, θ1, θ2)
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+
L∑

ℓ=1

∫ t

0

∫
I(ℓ)

∫
Y(ℓ)

∫
R2

+

((〈
fp,Ξ

ζ,j
s−

〉
+ gℓ,j,fp,µ

ζ

(s, i,y, θ1, θ2)
)2

−
〈
fp,Ξ

ζ,j
s−

〉2
−2gℓ,j,fp,µ

ζ

(s, i,y, θ1, θ2)×
〈
fp,Ξ

ζ,j
s−

〉)
dN̄ℓ(s, i,y, θ1, θ2)

(8.27)

We will sum over all p ≥ 1, take the supremum over t ∈ [0, T ] and then take expectations on both sides
of Eq. (8.27). Using Parseval’s identity, the first line of Eq. (8.27)’s right side becomes

E
∑
p≥1

〈
fp,Ξ

ζ,j
0

〉2
+ 2E sup

t∈[0,T ]

∑
p≥1

∫ t∧θ2b
ζ,κ

0

〈
fp,Ξ

ζ,j
s−

〉〈
(L1fp)(x),Ξ

ζ,j
s−(dx)

〉
ds

= E
∑
p≥1

〈
fp,Ξ

ζ,j
0

〉2
+ 2E sup

t∈[0,T ]

∫ t∧θ2b
ζ,κ

0

∑
p≥1

〈
fp,Ξ

ζ,j
s−

〉〈
fp,L∗

1Ξ
ζ,j
s−

〉
dt

= E
∑
p≥1

〈
fp,Ξ

ζ,j
0

〉2
+ 2E sup

t∈[0,T ]

∫ t∧θ2b
ζ,κ

0

〈
Ξζ,j
s− ,L∗

1Ξ
ζ,j
s−

〉
dt

≤ E||Ξζ,j
0 ||2−Γ1,a + CE

∫ T∧θ2b
ζ,κ

0

||Ξζ,j
s− ||2−Γ1,a dt (by Lemma 8.5)

In the second line of Eq. (8.27), by Lemma 8.2, the stochastic integral 2
∫ t∧θ2b

ζ,κ

0

〈
fp,Ξ

ζ,j
s−

〉
dCζ,j

s (fp) is a

martingale. By Jensen’s inequality, Doob’s martingale inequality (see Lemma 8.2), we get

(8.28)

E sup
t∈[0,T ]

∑
p≥1

∫ t∧θ2b
ζ,κ

0

〈
fp,Ξ

ζ,j
s−

〉
dCζ,j

s (fp) ≤ C(Dj , κ)

√
E
∫ T∧θ2b

ζ,κ

0

||Ξζ,j
s− ||2−Γ1,a

ds

≤ C

(
1 + E

∫ T∧θ2b
ζ,κ

0

||Ξζ,j
s− ||2−Γ1,a ds

)
.

By Eq. (8.6), the term arising from
〈
Cζ,j

〉
t∧θ2b

ζ,κ

(fp) on the second line of Eq. (8.27) is bounded by

E sup
t∈[0,T ]

∑
p≥1

〈
Cζ,j

〉
t∧θ2b

ζ,κ

(fp) = E
∑
p≥1

∫ T∧θ2b
ζ,κ

0

〈
2Dj

(
∂fp
∂Q

(x)

)2

, µζ,j
s−(dx)

〉
ds

≤
(
2DjT sup

t≤T
hζ,j,2b
t

)∑
p≥1

||fp||21+D,b.

For the third line of Eq. (8.27), using Lemma 8.6 we obtain the bound

2E sup
t∈[0,T ]

∑
p≥1

L∑
ℓ=1

∫ t∧θ2b
ζ,κ

0

〈
fp,Ξ

ζ,j
s

〉 ∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

fp(y
(j)
r )

mℓ (y |x) dy −
αℓj∑
r=1

fp(x
(j)
r )


×√

γ
(
λ(ℓ)[µζ

s ](dx)− λ(ℓ)[µ̄s](dx)
)
ds

≤ CE
∫ T∧θ2b

ζ,κ

0

J∑
k=1

||Ξζ,k
s ||2−Γ1,a ds
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For the fourth line, using Lemma 8.7 we obtain the bound

2E sup
t∈[0,T ]

∑
p≥1

L∑
ℓ=1

∫ t∧θ2b
ζ,κ

0

〈
fp,Ξ

ζ,j
s

〉 ∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

fp(y
(j)
r )

√
γ (mη

ℓ (y |x)−mℓ (y |x)) dy


× λ(ℓ)[µζ

s ](dx) ds

≤ C

(
E
∫ T∧θ2b

ζ,κ

0

||Ξζ,j
s ||2−Γ1,ads+ (

√
γη)2

)
The fifth line in Eq. (8.27) is a martingale by Lemma 8.4 and thus by applying Jensen’s inequality, Doob’s
martingale inequality, and Young’s inequality, similarly to the derivation of Eq. (8.28), it is bounded by

C1

∑
p≥1

√√√√E

(
2

γ
CT ||fp||4D,b + C||fp||2D,b

∫ T∧θ2b
ζ,κ

0

(〈
fp,Ξ

ζ,j
s−

〉)2
ds

)

≤ C
∑
p≥1

√T

γ
||fp||2D,b +

√
||fp||2D,bE

∫ T∧θ2b
ζ,κ

0

(〈
fp,Ξ

ζ,j
s−

〉)2
ds


≤ C

∑
p≥1

√
T

γ
||fp||2D,b +

∑
p≥1

||fp||2D,b + E
∫ T∧θ2b

ζ,κ

0

||Ξζ,j
s− ||2−Γ1,a ds

 .

The last term in Eq. (8.27) by Lemma 8.3 is bounded by

CT
∑
p≥1

||fp||2D,b.

Therefore, for some finite constant C that depends on κ, C(K), C◦, T , ∥ρ∥L1 , b, D,
∫
Rd |x|2aρ(x)dx and

on the upper bound of Lemma 8.1 for the moments, we find that

(8.29) E sup
t∈[0,T ]

∑
p≥1

〈
fp,Ξ

ζ,j

t∧θ2b
ζ,κ

〉2
≤ E||Ξζ,j

0 ||2−Γ1,a + C + CE
∫ T∧θ2b

ζ,κ

0

J∑
k=1

||Ξζ,k
s− ||2−Γ1,a ds

+ C
∑
p≥1

||fp||21+D,b + C(
√
γη)2

As Γ1 > 1 + d/2 + D and b − a > d/2, the embedding WΓ1,a
0 ↪→ W 1+D,b

0 is of Hilbert-Schmidt type, so∑
p≥1 ||fp||21+D,b < ∞. Summing over j = 1, · · · , J , using Parseval’s identity, and using Assumption 5.2 to

make
√
γη sufficiently small, we find

(8.30)

J∑
j=1

E sup
t∈[0,T ]

||Ξζ,j

t∧θ2b
ζ,κ

||2−Γ1,a ≤ C1 +
J∑

j=1

E||Ξζ,j
0 ||2−Γ1,a + C2

∫ T∧θ2b
ζ,κ

0

J∑
k=1

E sup
s∈[0,t]

||Ξζ,k
s− ||2−Γ1,adt

= C1 +
J∑

j=1

E||Ξζ,j
0 ||2−Γ1,a + C2

∫ T

0

J∑
k=1

E sup
s∈[0,t]

||Ξζ,k
s− ||2−Γ1,aχ{θ2b

ζ,κ≥t}dt

≤ C1 +
J∑

j=1

E||Ξζ,j
0 ||2−Γ1,a + C2

∫ T

0

J∑
k=1

E sup
s∈[0,t]

||Ξζ,k

s∧θ2b
ζ,κ−

||2−Γ1,adt

for some generic constant C1, C2 independent of ζ. Applying Gronwall’s inequality to Eq. (8.30), we obtain

the desired result Eq. (8.26) since by Assumption 5.5 E||Ξζ,j
0 ||2−Γ1,a

is uniformly bounded.
□

8.3.2. Uniform Bound on the martingales
{(

Mζ,1

t∧θ2b
ζ,κ

, · · · ,Mζ,J

t∧θ2b
ζ,κ

)}
t∈[0,T ]

.
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Lemma 8.9. There exists a finite constant C < ∞ such that

(8.31) sup
ζ∈(0,1)2

E[ sup
t∈[0,T ]

||Mζ,j

t∧θ2b
ζ,κ

||2−Γ1,a] < C,

for j = 1, · · · , J .

Proof. Notice that the quadratic variation of Mζ,j

t∧θ2b
ζ,κ

(f) is

〈
Mζ,j

〉
t∧θ2b

ζ,κ

(f) =

∫ t∧θ2b
ζ,κ

0

〈
2Dj

(
∂f

∂Q
(x)

)2

, µζ,j
s−(dx)

〉
ds

+
L∑

ℓ=1

∫ t∧θ2b
ζ,κ

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )−
αℓj∑
r=1

f(x(j)
r )

2

mη
ℓ (y |x) dy

 λ(ℓ)[µζ
s−](dx) ds

≤ C||f ||2C1,b + C||f ||2C0,b

≤ C||f ||21+D,b

with D > d/2, for some C1 depending on D′
js, C◦, C(K), T, L, κ but independent of ζ. Above the last

inequality is due to the Sobolev embedding theorem since m > d/2. Doob’s martingale inequality gives

E

[
sup

t∈[0,T ]

(
Mζ,j

t∧θ2b
ζ,κ

(f)
)2]

≤ 2E
[(

Mζ,j

T∧θ2b
ζ,κ

(f)
)2]

≤ C||f ||21+D,b,

for j = 1, · · · , J . Now let {fp}p≥1 be a complete orthonormal system in WΓ1,a
0 (Rd) of class C∞

0 (Rd)

for Γ1 ≥ 2D and b − a > d/2. Then, the embedding WΓ1,a
0 ↪→ W 1+D,b

0 is of Hilbert-Schmidt type, so∑
p≥1 ||fp||21+D,b < ∞. Thus, by Parseval’s identity, we obtain

sup
ζ>0

E[ sup
t∈[0,T ]

||Mζ,j

t∧θ2b
ζ,κ

||2−Γ1,a] ≤ C
∑
p≥1

||f ||21+D,b < ∞,

concluding the proof of the lemma. □

8.3.3. Control of the increments. Since we showed Lemmas 8.8 and 8.9, to show tightness (see [FM97] pg.
46), we only need to verify the following Aldous conditions.

Lemma 8.10 (Aldous condition for martingale). For every ε1, ε2 > 0, there exists δ > 0 and an integer n0

such that for every Fn
t -stopping time τn < T , j = 1, · · · , J ,

(8.32) sup
n≥n0

sup
σ≤δ

P(||Mζ,j

(τn+σ)∧θ2b
ζ,κ

−Mζ,j

τn∧θ2b
ζ,κ

||−Γ1,a ≥ ε1) ≤ ε2.

Proof. Let {fp}p≥1 be a complete orthonormal system in WΓ1,a
0 (Rd) of class C∞

0 (Rd). Then

E
∑
p≥1

〈
fp,M

ζ,j

(τn+σ)∧θ2b
ζ,κ

−Mζ,j

τn∧θ2b
ζ,κ

〉2
= E

∑
p≥1

⟨M⟩ζ,j
(τn+σ)∧θ2b

ζ,κ
(fp)− ⟨M⟩ζ,j

τn∧θ2b
ζ,κ

(fp)

= E
∫ (τn+σ)∧θ2b

ζ,κ

τn∧θ2b
ζ,κ

〈
2Dj

(
∂fp
∂Q

(x)

)2

, µζ,j
s−(dx)

〉
ds+ E

L∑
ℓ=1

∫ (τn+σ)∧θ2b
ζ,κ

τn∧θ2b
ζ,κ

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

×

∫
Y(ℓ)

 βℓj∑
r=1

fp(y
(j)
r )−

αℓj∑
r=1

fp(x
(j)
r )

2

mη
ℓ (y |x) dy

 λ(ℓ)[µζ
s−](dx) ds

≤ C
∑
p≥1

||fp||2C1,b × σ

≤ C
∑
p≥1

||fp||21+D,b × σ

with D > d/2, for some C depending on the Dj ’s, C◦, C(K), T , L, and κ, but independent of ζ. Here the
last inequality is due to Sobolev embedding theorem since D > d/2.
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Since {fp}p≥1 is a complete orthonormal system in WΓ1,a
0 (Rd) of class C∞

0 (Rd) for Γ1 ≥ 2D and b− a >

d/2, the embedding WΓ1,a
0 ↪→ W 1+D,b

0 is of Hilbert-Schmidt type, so
∑

p≥1 ||fp||21+D,b < ∞. Thus, by
Parseval’s identity, we obtain

(8.33) E||Mζ,j

(τn+σ)∧θ2b
ζ,κ

−Mζ,j

τn∧θ2b
ζ,κ

||2−Γ1,a ≤ Cσ

where C is a constant depending on C(K), C◦, and the Dj ’s. By the Markov inequality, we have

sup
n≥n0

sup
σ≤δ

P(||Mζ,j

(τn+σ)∧θ2b
ζ,κ

−Mζ,j

τn∧θ2b
ζ,κ

||−Γ1,a ≥ ε1)

≤ sup
n≥n0

sup
σ≤δ

1

ε21
E||Mζ,j

(τn+σ)∧θ2b
ζ,κ

−Mζ,j

τn∧θ2b
ζ,κ

||2−Γ1,a

≤ sup
n≥n0

sup
σ≤δ

1

ε21
Cδ ≤ ε2,

j = 1, · · · , J , for δ sufficiently small. □

Lemma 8.11 (Aldous condition). For every ε1, ε2 > 0, there exists δ > 0 and an integer n0 such that for
every Fn

t -stopping time τn < T , j = 1, · · · , J ,

(8.34) sup
n≥n0

sup
σ≤δ

P(||Ξζ,j

(τn+σ)∧θ2b
ζ,κ

− Ξζ,j

τn∧θ2b
ζ,κ

||−Γ1,a ≥ ε1) ≤ ε2.

Proof. By the Markov inequality, we have

sup
n≥n0

sup
σ≤δ

P(||Ξζ,j

(τn+σ)∧θ2b
ζ,κ

− Ξζ,j

τn∧θ2b
ζ,κ

||−Γ1,a ≥ ε1)

≤ sup
n≥n0

sup
σ≤δ

1

ε21
E||Ξζ,j

(τn+σ)∧θ2b
ζ,κ

− Ξζ,j

τn∧θ2b
ζ,κ

||2−Γ1,a

≤ sup
n≥n0

sup
σ≤δ

1

ε21

(
C1σ + C2

√
σ
)
≤ C1δ + C2

√
δ

ε21
≤ ε2

as long as we choose δ sufficiently small, using the following argument to derive the bound on E||Ξζ,j

(τn+σ)∧θ2b
ζ,κ

−

Ξζ,j

τn∧θ2b
ζ,κ

||2−Γ1,a
.

Let {fp}p≥1 denote a complete orthonormal system in WΓ1,a
0 (Rd) of class C∞

0 (Rd). By definition (let us
ignore the stopping time θ2bζ,κ for the moment),〈

fp,Ξ
ζ,j
τn+σ − Ξζ,j

τn

〉
=

∫ τn+σ

τn

〈
(Ljfp)(x),Ξ

ζ,j
s−(dx)

〉
ds+ Cζ,j

τn+σ(fp)− Cζ,j
τn (fp) +Dζ,j

τn+σ(fp)−Dζ,j
τn (fp)

+
L∑

ℓ=1

∫ τn+σ

τn

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )

mℓ (y |x) dy −
αℓj∑
r=1

f(x(j)
r )


×√

γ
(
λ(ℓ)[µζ

s ](dx)− λ(ℓ)[µ̄s](dx)
)
ds

+

L∑
ℓ=1

∫ τn+σ

τn

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )

√
γ (mη

ℓ (y |x)−mℓ (y |x)) dy

 λ(ℓ)[µζ
s ](dx) ds.

Applying Ito’s formula, we obtain〈
fp,Ξ

ζ,j
τn+σ − Ξζ,j

τn

〉2
= 2

∫ τn+σ

τn

〈
fp,Ξ

ζ,j
s−

〉〈
(Ljfp)(x),Ξ

ζ,j
s−(dx)

〉
ds

+ 2

∫ τn+σ

τn

〈
fp,Ξ

ζ,j
s−

〉
dCζ,j

s (fp) +
〈
Cζ,j

〉
τn+σ

(fp)−
〈
Cζ,j

〉
τn

(fp)

+ 2

L∑
ℓ=1

∫ τn+σ

τn

〈
fp,Ξ

ζ,j
s

〉 ∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

fp(y
(j)
r )

mℓ (y |x) dy −
αℓj∑
r=1

fp(x
(j)
r )


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×√
γ
(
λ(ℓ)[µn

s ](dx)− λ(ℓ)[µ̄s](dx)
)
ds

+ 2
L∑

ℓ=1

∫ τn+σ

τn

〈
fp,Ξ

ζ,j
s

〉 ∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

fp(y
(j)
r )

√
γ (mη

ℓ (y |x)−mℓ (y |x)) dy

 λ(ℓ)[µn
s ](dx) ds

+
L∑

ℓ=1

∫ τn+σ

τn

∫
I(ℓ)

∫
Y(ℓ)

∫
R2

+

((〈
fp,Ξ

ζ,j
s−

〉
+ gℓ,j,fp,µ

ζ

(s, i,y, σ1, σ2)
)2

−
〈
fp,Ξ

ζ,j
s−

〉2)
dÑℓ(s, i,y, σ1, σ2)

+
L∑

ℓ=1

∫ τn+σ

τn

∫
I(ℓ)

∫
Y(ℓ)

∫
R2

+

((〈
fp,Ξ

ζ,j
s−

〉
+ gℓ,j,fp,µ

ζ

(s, i,y, σ1, σ2)
)2

−
〈
fp,Ξ

ζ,j
s−

〉2
−2gℓ,j,fp,µ

ζ

(s, i,y, σ1, σ2)×
〈
fp,Ξ

ζ,j
s−

〉)
dN̄ℓ(s, i,y, σ1, σ2).

(8.35)

Similar to the derivation of Eq. (8.29) from Eq. (8.27), we will sum over all p ≥ 1 in Eq. (8.35), and take
expectations. Let us also reintroduce the stopping time, θ2bζ,κ. Then the first line of Eq. (8.35)’s righthand
side becomes

2E
∑
p≥1

∫ (τn+σ)∧θ2b
ζ,κ

τn∧θ2b
ζ,κ

〈
fp,Ξ

ζ,j
s−

〉〈
(Ljfp),Ξ

ζ,j
s−

〉
ds = 2E

∫ (τn+σ)∧θ2b
ζ,κ

τn∧θ2b
ζ,κ

〈
Ξζ,j
s− ,L∗

jΞ
ζ,j
s−

〉
ds.

In the second line of Eq. (8.35), by Lemma 8.2, the stochastic integral 2
∫ (τn+σ)∧θ2b

ζ,κ

τn∧θ2b
ζ,κ

〈
fp,Ξ

ζ,j
s−

〉
dCζ,j

s (fp)

is a martingale and therefore its expectation is zero. By Eq. (8.6), the term
〈
Cζ,j

〉
(τn+σ)∧θ2b

ζ,κ

(fp) −〈
Cζ,j

〉
τn∧θ2b

ζ,κ

(fp) from the second line of Eq. (8.35) is bounded by (using the Sobolev embedding theorem

with m > d/2)

E
∑
p≥1

(〈
Cζ,j

〉
(τn+σ)∧θ2b

ζ,κ

(fp)−
〈
Cζ,j

〉
τn∧θ2b

ζ,κ

(fp)
)
≤ Cσ

∑
p≥1

||fp||21+D,b.

The third line of Eq. (8.35), according to Lemma 8.6, is bounded by

2E
∑
p≥1

L∑
ℓ=1

∫ (τn+σ)∧θ2b
ζ,κ

τn∧θ2b
ζ,κ

〈
fp,Ξ

ζ,j
s

〉 ∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

fp(y
(j)
r )

mℓ (y |x) dy −
αℓj∑
r=1

fp(x
(j)
r )


×√

γ
(
λ(ℓ)[µn

s ](dx)− λ(ℓ)[µ̄s](dx)
)
ds

≤ CE
∫ (τn+σ)∧θ2b

ζ,κ

τn∧θ2b
ζ,κ

J∑
k=1

||Ξζ,k
s ||2−Γ1,a ds.

The fourth line of Eq. (8.35), by Lemma 8.7, is bounded by

2E
∑
p≥1

L∑
ℓ=1

∫ (τn+σ)∧θ2b
ζ,κ

τn∧θ2b
ζ,κ

〈
fp,Ξ

ζ,j
s

〉 ∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

fp(y
(j)
r )

√
γ (mη

ℓ (y |x)−mℓ (y |x)) dy

 λ(ℓ)[µζ
s ](dx) ds

≤ C

(
(
√
γη)2σ + E

∫ (τn+σ)∧θ2b
ζ,κ

τn∧θ2b
ζ,κ

||Ξζ,j
s ||2−Γ1,ads

)
.

(8.36)

The second to last line in Eq. (8.35) is a martingale by Lemma 8.4 and its expectation is zero. The last term
in Eq. (8.35) by Lemma 8.3 is bounded by

C
∑
p≥1

||fp||2D,bσ.

Therefore, we obtain
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E
∑
p≥1

〈
fp,Ξ

ζ,j

(τn+σ)∧θ2b
ζ,κ

− Ξζ,j

τn∧θ2b
ζ,κ

〉2
≤ 2E

∫ (τn+σ)∧θ2b
ζ,κ

τn∧θ2b
ζ,κ

〈
Ξζ,j
s− ,L∗

jΞ
ζ,j
s−

〉
ds+ Cσ

∑
p≥1

||fp||21+D,b

+ C(
√
nη)2σ + CE

∫ (τn+σ)∧θ2b
ζ,κ

τn∧θ2b
ζ,κ

J∑
k=1

||Ξζ,k
s ||2−Γ1,a ds.

Let Γ1 ≥ 2D and b − a > d/2 so that the embedding WΓ1,a
0 ↪→ W 1+D,b

0 is of Hilbert-Schmidt type, and
hence

∑
p≥1 ||fp||21+D,b < ∞. By Parseval’s identity, Lemma 8.8, and Lemma 8.5, we obtain

(8.37) E||Ξζ,j

(τn+σ)∧θ2b
ζ,κ

− Ξζ,j

τn∧θ2b
ζ,κ

||2−Γ1,a ≤ Cσ

where C is a constant which only depends on
√
γη, C(K), C◦, κ, and supn>n0

E[supt∈[0,T ] ||Ξ
ζ,j
t ||2−Γ1,a

] <
∞. □

Theorem 8.12. The martingale process
{(

Mζ,1
t , · · · ,Mζ,J

t

)
, t ∈ [0, T ]

}
ζ∈(0,1)2

and fluctuation process{(
Ξζ,1
t , · · · ,Ξζ,J

t

)
, t ∈ [0, T ]

}
ζ∈(0,1)2

, are tight in the space of D(W−Γ1−1,a(Rd))⊗J ([0, T ]).

Proof. By Lemma 8.8 and the fact that the set {ϕ ∈ W−Γ1−1,a(Rd) : ||ϕ||−Γ1,a ≤ Cε} is a compact subset of

W−Γ1−1,a we get that the compact containment condition for
{(

Ξζ,1
t , · · · ,Ξζ,J

t

)
, t ∈ [0, T ]

}
ζ∈(0,1)2

holds.

Similarly, due to Lemma 8.9 we obtain that the compact containment condition for
{(

Mζ,1
t , · · · ,Mζ,J

t

)
, t ∈ [0, T ]

}
ζ∈(0,1)2

also holds. These facts together with Lemma Lemma 8.10 and Lemma 8.11 show that the tightness conditions
in D(W−Γ1−1,a(Rd))⊗J ([0, T ]) are satisfied. □

8.4. Identification of the Limit.

Lemma 8.13. Any limiting process of
{(

Ξζ,1
t , · · · ,Ξζ,J

t

)}
t∈[0,T ]

is continuous in time, i.e. takes value in

the space of C([0, T ],
(
W−Γ,a(Rd)

)⊗J
).

Proof. It suffices to show that for j = 1, · · · , J ,

(8.38) lim
ζ→0

E[ sup
t∈[0,T ]

||Ξζ,j
t − Ξζ,j

t− ||2−Γ,a] = 0.

Now let {fp}p≥1 be a complete orthonormal system in WΓ,a
0 (Rd) of class C∞

0 (Rd). By construction, the

discontinuity of
〈
fp,Ξ

ζ,j
t

〉
comes from the Poisson martingale part Dζ,j

t (fp) defined in Eq. (8.5). Notice that

the jump size of Eq. (8.18) is uniformly bounded by O( 1√
γ ). Then we can get

(8.39)
〈
fp,Ξ

ζ,j
t − Ξζ,j

t−

〉2
≤ C

√
γ
||fp||2D,b,

for some generic finite constant C < ∞ and b > a + d/2. Since Γ ≥ 2D > D + d/2 and b − a > d/2, the

embedding WΓ,a
0 ↪→ WD,b

0 is of Hilbert-Schmidt type, so
∑

p≥1 ||fp||2D,b < ∞. Thus, by Parseval’s identity,
we obtain,

(8.40) E[ sup
t∈[0,T ]

||Ξζ,j
t − Ξζ,j

t− ||2−Γ,a] ≤
C
√
γ
,

and therefore

(8.41) lim
ζ→0

E[ sup
t∈[0,T ]

||Ξζ,j
t − Ξζ,j

t− ||2−Γ,a] = 0.

□
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Lemma 8.14. For every f, g ∈ WΓ,a
0 , the process

(
Mζ,1

t , · · · ,Mζ,J
t

)
defined by Eq. (8.2) is a martingale in(

W−Γ,a(Rd)
)⊗J

that converges in distribution in D(W−Γ,a(Rd))⊗J ([0, T ]) to a mean-zero Gaussian martingale(
M̄1

t , · · · , M̄J
t

)
with covariance structure

(8.42)

Cov[M̄ j
t (f), M̄

k
s (g)] =

L∑
ℓ=1

∫ s∧t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )−
αℓj∑
r=1

f(x(j)
r )


×

(
βℓk∑
r=1

g(y(k)r )−
αℓk∑
r=1

g(x(k)
r )

)
mℓ (y |x) dy

)
λ(ℓ)[µ̄r](dx) dr

+

∫ s∧t

0

〈
2Dj

∂f

∂Q
(x)

∂g

∂Q
(x), µ̄j

r(dx)

〉
1{k=j} dr

for ≤ s, t ≤ T .

Proof. Let fk ∈ WΓ,a
0 , k = 1, · · · , J . Consider the martingale

∑J
k=1 σkM

ζ,k
t (fk), for some σk ∈ R, k =

1, · · · , J . By definition of Mζ,k
t (fk) in Eq. (8.2), we see that

J∑
k=1

σkM
ζ,k
t (fk) =

J∑
k=1

σk
1
√
γ

∑
i≥1

∫ t

0

1{i≤γ⟨1,µζ,k
s− ⟩}

√
2Dk

∂fk
∂Q

(Hi(γµζ,j
s−))dW i,k

s

+
J∑

k=1

σk
√
γ

L∑
ℓ=1

∫ t

0

∫
I(ℓ)

∫
Y(ℓ)

∫
R2

+

(〈
σkfk, µ

ζ,k
s− − 1

γ

αℓk∑
r=1

δ
Hi

(k)
r (γµζ,k

s− )
+

1

γ

βℓk∑
r=1

δ
y
(k)
r

〉
−
〈
σkfk, µ

ζ,k
s−

〉)
× 1{i∈Ω(ℓ)(γµζ

s−)} × 1{θ1≤Kγ
ℓ (P(ℓ)(γµζ

s−,i))} × 1{θ2≤mη
ℓ (y | P(ℓ)(γµζ

s−,i))}dÑℓ(s, i,y, θ1, θ2).

with quadratic variation〈
J∑

k=1

σkM
ζ,k(fk)

〉
t

=
J∑

k=1

σ2
k

∫ t

0

〈
2Dk

(
∂fk
∂Q

(x)

)2

, µζ,k
s− (dx)

〉
ds

+
L∑

ℓ=1

∫ t

0

∫
X̃(ℓ)

∫
Y(ℓ)

(
J∑

k=1

βℓk∑
r=1

σkfk(y
(k)
r )−

J∑
k=1

αℓk∑
r=1

σkfk(x
(k)
r )

)2

mη
ℓ (y |x) dy


× 1

α(ℓ)!
Kℓ (x)λ

(ℓ)[µζ
s−](dx) ds.

For two different species, Si and Sj , their Brownian motions are independent, and therefore there are no
cross terms in the quadratic variation arising from the integrals with respect to Brownian motions that
involve Si and Sj (see Chapter 3 Proposition 2.17 in [KS98]). Note, however, species can share the same
Poisson ”random generators” via reactions in which they both participate.

We know that
(
µζ,1
s , · · · , µζ,J

s

)
→
(
µ̄1
s, · · · , µ̄J

s

)
in probability in D([0, T ],MF (Rd)⊗J ). Applying the

continuous mapping theorem, we can get that as ζ → 0,
〈∑J

k=1 σkM
ζ,k(fk)

〉
t
converges in probability to

J∑
k=1

σ2
k

∫ t

0

〈
2Dk

(
∂fk
∂Q

(x)

)2

, µ̄k
s−(dx)

〉
ds

+
L∑

ℓ=1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

(
J∑

k=1

βℓk∑
r=1

σkfk(y
(k)
r )−

J∑
k=1

αℓk∑
r=1

σkfk(x
(k)
r )

)2

mη
ℓ (y |x) dy

λ(ℓ)[µ̄s−](dx) ds.

=
J∑

k=1

σ2
k

∫ t

0

〈
2Dk

(
∂fk
∂Q

(x)

)2

, µ̄k
s−(dx)

〉
ds

+
J∑

k=1

σ2
k

L∑
ℓ=1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

(
βℓk∑
r=1

fk(y
(k)
r )−

αℓk∑
r=1

fk(x
(k)
r )

)2

mη
ℓ (y |x) dy

λ(ℓ)[µ̄s−](dx) ds
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+
J∑

k=1

∑
j ̸=k

σkσj

L∑
ℓ=1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

fj(y
(j)
r )−

αℓj∑
r=1

fj(x
(j)
r )


×

(
βℓk∑
r=1

fk(y
(k)
r )−

αℓk∑
r=1

fk(x
(k)
r )

)
mℓ (y |x) dy

)
λ(ℓ)[µ̄s](dx) ds.

(8.43)

As the jump size in the Poisson martingale part is uniformly bounded by O( 1√
γ ), by a similar argument

as in Lemma 8.13, we can show that

(8.44) lim
γ→∞

E

[
sup

t∈[0,T ]

∣∣∣∣∣
J∑

k=1

σkM
ζ,k
t (fk)−

J∑
k=1

σkM
ζ,k
t− (fk)

∣∣∣∣∣
]
= 0.

Therefore
∑J

k=1 σkM
ζ,k
t (fk) converges in distribution to a mean-zero Gaussian martingale

∑J
k=1 σkM̄

k
t (fk)

with the quadratic variation Eq. (8.43).
Since this is true for arbitrary σ′

ks, by Cramer-Wold theorem, see Theorem 29.4 in [B95], the vector(
Mζ,1

t , · · · ,Mζ,J
t

)
converges to

(
M̄1

t , · · · , M̄J
t

)
in W−Γ,a(Rd)⊗J with covariance structure Eq. (8.42).

□

Theorem 8.15. For any f ∈ WΓ,a
0 ,

{(
Ξζ,1
t , · · · ,Ξζ,J

t

)
, t ∈ [0, T ]

}
ζ∈(0,1)2

converges in law in the space

C([0, T ],
(
W−Γ,a(Rd)

)⊗J
) to the process {

(
Ξ̄1
t , · · · , Ξ̄J

t

)
}t∈[0,T ] that must satisfy in W−(2+Γ),a the stochastic

evolution equation

(8.45)
〈
f, Ξ̄j

t

〉
=
〈
f, Ξ̄j

0

〉
+

∫ t

0

〈
(Ljf)(x), Ξ̄

j
s(dx)

〉
ds+ M̄ j

t (f)

+
L∑

ℓ=1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )

mℓ (y |x) dy −
αℓj∑
r=1

f(x(j)
r )

 ∆(ℓ)[µ̄s, Ξ̄s](dx) ds

for j = 1, · · · , J , where
(
M̄1

t , · · · , M̄J
t

)
is a mean-zero Gaussian process defined in Lemma 8.14.

Proof. By Theorem 8.12 and Lemma 8.14, the sequence (Ξζ,1
t , · · · ,Ξζ,J

t , µζ,1
t , · · · , µζ,J

t ,Mζ,1
t , · · · ,Mζ,J

t ) is
relatively compact in D([0, T ],W−Γ,a(Rd)⊗J ×MF (Rd)⊗J ×W−Γ,a(Rd)⊗J ). Since W−Γ,a ↪→ W−(2+Γ),a, it
follows that it is also relatively compact in D([0, T ],W−(2+Γ),a(Rd)⊗J × MF (Rd)⊗J × W−(2+Γ),a(Rd)⊗J ).
Note also, as for any i ∈ {1, · · · , J}

∥Lif∥Γ,a ≤ C∥f∥2+Γ,a

the integral
∫ t

0
(Li)

∗Ξζ,i
s ds makes sense as a Bochner integral in W−(2+Γ),a.

Let us recall now the equation that (Ξζ,1
t , · · · ,Ξζ,J

t , µζ,1
t , · · · , µζ,J

t ,Mζ,1
t , · · · ,Mζ,J

t ) satisfies for f ∈
W 2+Γ,a

0

(8.46)〈
f,Ξζ,j

t

〉
=
〈
f,Ξζ,j

0

〉
+

∫ t

0

〈
(Ljf)(x),Ξ

ζ,j
s−(dx)

〉
ds+Mζ,j

t (f)

+
L∑

ℓ=1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )

mℓ (y |x) dy −
αℓj∑
r=1

f(x(j)
r )


×√

γ
(
λ(ℓ)[µζ

s ](dx)− λ(ℓ)[µ̄s](dx)
)
ds

+

L∑
ℓ=1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )

√
γ (mη

ℓ (y |x)−mℓ (y |x)) dy

 λ(ℓ)[µζ
s ](dx) ds.
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In the second to last line, we rewrite

√
γ
(
λ(ℓ)[µζ

s ](dx)− λ(ℓ)[µ̄s](dx)
)
=

{
Ξζ,k
t (x), reaction ℓ is: Sk → . . .

Ξζ,k
t (x)µζ,r(y) + µ̄ζ,k(x)Ξζ,r

t (y), reaction ℓ is: Sk + Sr → . . .

to look like an approximation to ∆(ℓ)
[
µ̄, Ξ̄

]
, see (5.1). Notice, these expressions depend linearly on {µζ,j

t }
and {Ξζ,j

t }.
The last line of Eq. (8.46) may depend quadratically on {µζ,j

t } but can be rewritten as a sum of two
terms, I + II. Here

I =
L∑

ℓ=1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )

√
γ (mη

ℓ (y |x)−mℓ (y |x)) dy

 λ(ℓ)[µ̄s](dx) ds

does not depend on {µζ,j
t } and {Ξζ,j

t } and goes to zero as γ → ∞ and η → 0 due to the constraint
√
γη → 0.

The second term,

II =
L∑

ℓ=1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )

√
γ (mη

ℓ (y |x)−mℓ (y |x)) dy


×
(
λ(ℓ)[µζ

s ](dx)− λ(ℓ)[µ̄s](dx)
)
ds,

again depends linearly on {µζ,j
t } and {Ξζ,j

t }.
Due to the linearity, we can directly obtain that (Ξ̄1

t , · · · , Ξ̄J
t , µ̄

1
t , · · · , µ̄J

t , M̄
1
t , · · · , M̄J

t ) solves Eq. (8.45)
by Lemma 8.14 and Theorem 5.5 in [KP96]. □

8.5. Uniqueness of Limiting Solution.

Theorem 8.16. The process {
(
Ξ̄1
t , · · · , Ξ̄J

t

)
}t∈[0,T ] satisfying

(8.47)
〈
f, Ξ̄j

t

〉
=
〈
f, Ξ̄j

0

〉
+

∫ t

0

〈
(Ljf)(x), Ξ̄

j
s(dx)

〉
ds+ M̄ j

t (f)

+

L∑
ℓ=1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )

mℓ (y |x) dy −
αℓj∑
r=1

f(x(j)
r )

 ∆(ℓ)[µ̄s, Ξ̄s](dx) ds

for j = 1, · · · , J and any f ∈ W 2+Γ,a
0 , is unique in

(
W−(2+Γ),a(Rd)

)⊗J
.

Proof. We start by making a couple of general observations. First, since for any i ∈ {1, · · · , J}
∥Lif∥Γ,a ≤ C∥f∥2+Γ,a

the integral
∫ t

0
(Li)

∗Ξ̄j
sds makes sense as a Bochner integral in W−(2+Γ),a. Second, it follows by Lemma 8.8

that there exists a constant C such that

E[ sup
t∈[0,T ]

||Ξ̄j
t ||2−Γ,a] ≤ C,

for j = 1, 2, · · · , J . In addition, since W−Γ,a ↪→ W−(2+Γ),a we also have that

E[ sup
t∈[0,T ]

||Ξ̄j
t ||2−(2+Γ),a] ≤ E[ sup

t∈[0,T ]

||Ξ̄j
t ||2−Γ,a] ≤ C.

Suppose now that there are two solutions {
(
Ξ̄1
t , · · · , Ξ̄J

t

)
} and {

(
Ξ̃1
t , · · · , Ξ̃J

t

)
} satisfying Eq. (8.47) with

the same initial condition. We consider the evolution of Φj
t := Ξ̄j

t − Ξ̃j
t that solves〈

f,Φj
t

〉
=

∫ t

0

〈
(Ljf)(x),Φ

j
s(dx)

〉
ds

+
L∑

ℓ=1

∫ t

0

∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )

mℓ (y |x) dy −
αℓj∑
r=1

f(x(j)
r )

 ∆(ℓ)[µ̄s,Φs](dx) ds
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with
〈
f,ΦJ

0

〉
= 0. By the chain rule we have〈

f,Φj
t

〉2
= 2

∫ t

0

〈
f,Φj

s

〉 〈
(Ljf)(x),Φ

j
s(dx)

〉
ds

+ 2
L∑

ℓ=1

∫ t

0

〈
f,Φj

s

〉 ∫
X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )

mℓ (y |x) dy −
αℓj∑
r=1

f(x(j)
r )


×∆(ℓ)[µ̄s,Φs](dx) ds.

Let {fp}p≥1 be a complete orthonormal system in W 2+Γ,a
0 (Rd) of class C∞

0 (Rd). Then, similar to the proof
of Eq. (8.26), taking f = fp, summing over p ≥ 0 and j = 1, · · · , J , and using the bounds of Lemmas 8.5
and 8.6 we find that

J∑
j=1

||Φj
t ||2−(2+Γ),a ≤ C

∫ t

0

J∑
k=1

||Φk
s ||2−(2+Γ),a ds,

for some generic constant C depending on J , Dj ’s, C◦, C(K), ∥K∥CΓ , ∥ρ∥L1(R)d , and
∫
Rd |w|2aρ(w)dw < ∞.

By Gronwall’s inequality with the initial condition ∥Φj
0∥2−(2+Γ),a = 0, we obtain that for all t ∈ [0, T ]

J∑
j=1

||Φj
t ||2−(2+Γ),a = 0,

and therefore, uniqueness holds. □

A. Forward Equation Fock Space Representation

Our goal in this appendix is to derive (8.8) given Assumption 5.5. Our basic approach is to begin with
the forward equation Fock space representation for the dynamics, derive the analogous equation in the Fock
space representation, and then show it is equivalent under a change of notation to (8.8). This approach
allows us to bypass estimates that would be needed to rigorously derive (8.8) directly from (4.1) in the case
that the test function can be unbounded (as needed for moment estimates).

To describe the Fock space representation, we first define some alternative notation for representing the
numbers of particles of each species and their positions. Let

N(t) := (N1(t), . . . , NJ(t))

=
(〈
1, ν1t

〉
, . . . ,

〈
1, νJt

〉)
= γ

(〈
1, µ1

t

〉
, . . . ,

〈
1, µJ

t

〉)
denote the vector stochastic process for the number of each species at time t, with n = (n1, . . . , nJ) a possible

value for this process. We treat N(t) as a multi-index, so that N(t) =
∑J

j=1 Nj(t) = |N(t)| gives the total

number of particles at time t.
∑

j nj = |n| is defined analogously. Note, we previously used Nℓ to denote a

Poisson random measure, but within this appendix Nj(t) will always denote the stochastic process for the
number of type j molecules at time t.

We denote by Q
Nj(t)
i (t) = Hi(νjt ) ⊂ Rd the stochastic process for the position of the ith particle of species

j at time t, with

QNj(t)(t) =
(
Q

Nj(t)
1 (t), . . . , Q

Nj(t)

Nj(t)
(t)
)
⊂ RdNj(t)

the stochastic process for the state vector of species J and

QN(t)(t) =
(
QN1(t)(t), . . . ,QNJ (t)(t)

)
⊂ RdN(t)

the stochastic process for the state vector of all particles. Possible values for each of these are given by q
nj

i ,
qnj and qn respectively.

With these definitions we denote by Pn(qn, t) the probability density that N(t) = n with QN(t)(t) = qn,
and define the Fock space probability vector P (t) = {Pn(qn, t)}n. Note that because particles of the same
species are assumed to be identical, Pn(qn, t) is symmetric with respect to reorderings of the particle
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positions of type j within qnj . As in [IMS22], we consider P (t) for t fixed to be an element of an L2 Fock
space, F = L2(X), where

X =
⊕
n

Rd|n|.

Note that Assumption 4.9 implies N(t) is bounded from above, and hence X is finite dimensional. Letting

G = {Gn}n ∈ F and G̃ = {G̃n}n ∈ F , we construct an inner product on F by〈
G, G̃

〉
F
=
∑
n

1

n!

∫
Rd|n|

Gn(qn)G̃n(qn) dqn,

where n! is defined in the usual multi-index sense.
The forward equation for P (t) is then given in strong form by

(A.1)
d

dt
P (t) = (L+R)P (t),

where L denotes a diffusion operator and R a reaction operator. The former is defined by

(LP )n(qn, t) =
J∑

j=1

Dj∆qnjPn(qn, t),

where ∆qnj denotes the Laplacian in qnj .
To define the reaction operator we need to introduce notation for adding and removing particles from a

state qn, which requires notation for configurations of particles that could have been substrates or products
of one reaction. Abusing notation, we let Ω(ℓ)(n) := Ω(ℓ)(ν), see Definition 3.6, label the collection of
allowable reactant particle indices when there are n particles in the system, and note that the number of
elements in this set is given by ∣∣∣Ω(ℓ)(n)

∣∣∣ = ( n
α(ℓ)

)
.

We define the allowable product index sampling space Ω̃(ℓ)(n) ⊂ J(ℓ) by

Ω̃(ℓ)(n) =


∅,

∣∣β(ℓ)
∣∣ = 0,

{i = i
(j)
1 ∈ J(ℓ) | i(j)1 ≤ nj},

∣∣β(ℓ)
∣∣ = βℓj = 1,

{i = (i
(j)
1 , i

(j)
2 ) ∈ J(ℓ) | i(j)1 ̸= i

(j)
2 , i

(j)
k ≤ nj , k = 1, 2},

∣∣β(ℓ)
∣∣ = βℓj = 2,

{i = (i
(j)
1 , i

(k)
1 ) ∈ J(ℓ) | i(j)1 ≤ nj , i

(k)
1 ≤ nk},

∣∣β(ℓ)
∣∣ = 2, βℓj = βℓk = 1, j < k.

Note, this is a slightly different definition than that of Ω(ℓ)(n), needed due to our choice of normalization

for mℓ (y |x). The number of elements in Ω̃(ℓ)(n) is∣∣∣Ω̃(ℓ)(n)
∣∣∣ = n!

(n− β(ℓ))!
.

Given the current state of a system, qn, we will write qn
i for i ∈ Ω(ℓ)(n) to label the position of the

substrates for the ℓth reaction determined by i. Similarly, for j ∈ Ω̃(ℓ)(n), qn
j will denote one product

collection of particles in qn that could have been produced through one occurrence of reaction ℓ. To
represent the state vector with particles qn

i removed from qn we use the notation qn \ qn
i . We analogously

use the notation qn ∪ x to denote adding the particles in x into the state vector qn. Finally, we define the
overall reaction interaction function, encoding both the rate of a reaction and the placement of products, by

Kγ
ℓ (y |x) = Kγ

ℓ (x)m
η
ℓ (y |x) ,

and note that ∫
Y(ℓ)

Kγ
ℓ (y |x) dy = Kγ

ℓ (x)

by assumption. With these notations, the reaction operator is given by

(RP )n(qn, t) =
∑
ℓ

[
−
∑

i∈Ω(ℓ)(n)

Kγ
ℓ (q

n
i )P

n(qn, t) +
1

α(ℓ)!

∑
i∈Ω̃(ℓ)(n)

∫
X̃(ℓ)

Kγ
ℓ (qn

i |x)Pn−υ(ℓ)

(qn \ qn
i ∪ x, t) dx

]
,

where υ(ℓ) = β(ℓ) −α(ℓ) is the net stoichiometry vector for the ℓth reaction.
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In the special case of the A+B ⇆ C reaction, we proved in [IMS22] that P (t) is non-negative, normalized
in time, i.e. ∑

n

1

n!

∫
Rd|n|

Pn(qn, t) dqn = 1

and that the mild form of (A.1),

(A.2) P (t) = eLtP (0) +

∫ t

0

eL(t−s)(RP )(s) ds,

has a unique solution in C([0, T ] , H2(X)) if P (0) ∈ H1(X). LetD(L) denote the domain of L. Assuming that
P (0) ∈ D(L)∩H1(x), we have that this mild solution is actually a strong solution to (A.1) in C([0, T ] , D(L)∩
H2(X))∩C1([0, T ] , L2(X)), see Proposition 4.3.9 of [CH98]. We do not show here, but subsequently assume,
that these properties still hold for the general class of reaction systems considered in this work under the
assumptions of our main result, Theorem 5.6. Recall this includes an assumption that the total number of
molecules is uniformly bounded from above, which rules out finite-time blowup.

In the calculations that follow, we assume that we are working with a function f ∈ C2(Rd) for which
the involved quantities are finite and well defined for the corresponding chemical reaction network. More

specifically, the case needed for establishing (8.8) in the context of Lemma 8.1 is f(x) = |x|8D, for which
Assumption 5.5 assumes finiteness. To derive (8.8), we begin by noting that for a given scalar test function
f ∈ C2(Rd), we have that

E
〈
f, γµj

t

〉
= E

Nj(t)∑
i=1

f
(
Q

Nj(t)
i (t)

) = ⟨G,P (t)⟩F ,

where

Gn(qn) =

nj∑
i=1

f
(
q
nj

i

)
.

From (A.1) we then have that

⟨G,P (t)⟩F = ⟨G,P (0)⟩F +

∫ t

0

⟨G, (L+R)P (t)⟩F .

We note that L is self-adjoint, see [IMS22], so that

(A.3)

⟨G, LP (t)⟩F = ⟨LG,P (t)⟩F

=
∑
n

1

n!

∫
Rd|n|

nj∑
i=1

Dj∆q
nj
i
f(q

nj

i )Pn(qn, t) dqn

= E

Nj(t)∑
i=1

Dj(∆f)
(
Q

Nj(t)
i

)
(t)


= E

〈
(Ljf)(x), γµ

j
t

〉
.

In considering the reaction operator, let i1 ∈ Ω̃(ℓ)(n) denote one fixed configuration of product particle
indices, so that the symmetry of Gn, Kγ

ℓ , and Pn with respect to permutations in orderings of particles of
the same species implies

∑
n

1

n!

∫
Rd|n|

Gn(qn)

 1

α(ℓ)!

∑
i∈Ω̃(ℓ)(n)

∫
X̃(ℓ)

Kγ
ℓ (qn

i |x)Pn−υ(ℓ)

(qn \ qn
i ∪ x, t) dx

 dqn

=
∑
n

∣∣∣Ω̃(ℓ)(n)
∣∣∣

n!α(ℓ)!

∫
Rd|n|

∫
X̃(ℓ)

Gn(qn)Kγ
ℓ

(
qn
i1

∣∣x)Pn−υ(ℓ)

(qn \ qn
i1 ∪ x, t) dx dqn

=
∑
n

∑
i∈Ω(ℓ)(n−υ(ℓ))

|Ω̃(ℓ)(n)|
n!α(ℓ)! |Ω(ℓ)(n−υ(ℓ))|
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×
∫
Rd|n−υ(ℓ)|

∫
Y(ℓ)

Gn
(
qn−υ(ℓ)

\qn−υ(ℓ)

i ∪y
)
Kγ

ℓ

(
y
∣∣∣ qn−υ(ℓ)

i

)
Pn−υ(ℓ)

(
qn−υ(ℓ)

, t
)
dy dqn−υ(ℓ)

,

=: I.

Noting that ∣∣∣Ω(ℓ)(n− υ(ℓ))
∣∣∣ = (n− υ(ℓ)

αℓ

)
,

we find

I =
∑
n

∑
i∈Ω(ℓ)(n−υ(ℓ))

1(
n− υ(ℓ)

)
!

∫
Rd|n−υ(ℓ)|

∫
Y(ℓ)

Gn
(
qn−υ(ℓ)

\qn−υ(ℓ)

i ∪y
)
Kγ

ℓ

(
y
∣∣∣ qn−υ(ℓ)

i

)
× Pn−υ(ℓ)

(
qn−υ(ℓ)

, t
)
dy dqn−υ(ℓ)

,

=
∑
n

∑
i∈Ω(ℓ)(n)

1

n!

∫
Rd|n|

∫
Y(ℓ)

Gn(qn \ qn
i ∪ y)Kγ

ℓ (y | qn
i )P

n (qn, t) dy dqn.

Using this identity and the definition of Kγ
ℓ (y |x), we find

⟨G, RP (t)⟩ =
∑
n

1

n!

∫
Rd|n|

 ∑
i∈Ω(ℓ)(n)

∫
Y(ℓ)

[Gn(qn \ qn
i ∪ y)−Gn(qn)]Kγ

ℓ (y | qn
i ) dy

Pn (qn, t) dqn.

For our specific choice of G,

Gn(qn \ qn
i ∪ y)−Gn(qn) =

βℓj∑
r=1

f(y(j)r )−
αℓj∑
r=1

f
(
q
nj

i
(j)
r

)
so that

(A.4)

⟨G, RP (t)⟩ = E

 ∑
i∈Ω(ℓ)(n)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )−
αℓj∑
r=1

f
(
Q

Nj(t)

i
(j)
r

(t)
)Kγ

ℓ

(
y
∣∣∣QN(t)

i (t)
)
dy


= E

 1

α(ℓ)!

∫
X̃(ℓ)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )−
αℓj∑
r=1

f
(
x(j)
r

)Kγ
ℓ (y |x)λ(ℓ) [γµt− ] dy dx


= E

 γ

α(ℓ)!

∫
X̃(ℓ)

∫
Y(ℓ)

 βℓj∑
r=1

f(y(j)r )−
αℓj∑
r=1

f
(
x(j)
r

)Kℓ(y |x)λ(ℓ) [µt− ] dy dx

 .

Combining (A.4) with (A.3), and integrating the Fock space forward equation, we obtain (8.8).

B. Auxiliary lemmas

Lemma B.1. Let a ≥ 1 and J ≥ 0. Then, for any Ψ ∈ W J+2,a
0 , there is constant C < ∞, that may depend

on Dj and a but not on Ψ, such that

⟨LjΨ,Ψ⟩J,a ≤ C||Ψ||2J,a
Proof of Lemma B.1. For notational convenience we set, without any loss of generality, Dj = 1.

Let us first consider the case that J = 0. By definition of the norm in question and integration by parts
we have

⟨LjΨ,Ψ⟩0,a =

∫
Rd

1

1 + |x|2a
∆Ψ(x)Ψ(x)dx

= −
∫
Rd

1

1 + |x|2a
|∇Ψ(x)|2dx−

∫
Rd

∇
(

1

1 + |x|2a

)
· ∇Ψ(x)Ψ(x)dx

Integration by parts of the last expression gives

−
∫
Rd

∇
(

1

1 + |x|2a

)
· ∇Ψ(x)Ψ(x)dx =

∫
Rd

∇
(

1

1 + |x|2a

)
· ∇Ψ(x)Ψ(x)dx+

∫
Rd

∆

(
1

1 + |x|2a

)
|Ψ(x)|2dx
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so that

⟨LjΨ,Ψ⟩0,a =

∫
Rd

1

1 + |x|2a
∆Ψ(x)Ψ(x)dx

= −
∫
Rd

1

1 + |x|2a
|∇Ψ(x)|2dx+

1

2

∫
Rd

∆

(
1

1 + |x|2a

)
|Ψ(x)|2dx

Direct algebra then shows that

∆
1

1 + |x|2a
=

2a(2− d− 2a)|x|2(a−1)(1 + |x|2a) + 8a2|x|4a−2

(1 + |x|2a)3
(B.1)

so that

1

2

∫
Rd

∆

(
1

1 + |x|2a

)
|Ψ(x)|2dx =

∫
Rd

a(2− d− 2a)|x|2(a−1)(1 + |x|2a) + 4a2|x|4a−2

(1 + |x|2a)3
|Ψ(x)|2dx

≤
∫
Rd

4a2|x|4a−2

(1 + |x|2a)2
1

1 + |x|2a
|Ψ(x)|2dx.

Analyzing now the latter integral separately for the regions |x| < 1 and |x| ≥ 1, and using the assumption
a ≥ 1, we obtain that there is a constant C < ∞ that depends on a such that∫

Rd

4a2|x|4a−2

(1 + |x|2a)2
1

1 + |x|2a
|Ψ(x)|2dx ≤ C||Ψ||20,a.

The latter then readily gives that

⟨LjΨ,Ψ⟩0,a =

∫
Rd

1

1 + |x|2a
∆Ψ(x)Ψ(x)dx

≤ −
∫
Rd

1

1 + |x|2a
|∇Ψ(x)|2dx+ C||Ψ||20,a

≤ C||Ψ||20,a,
completing the proof for J = 0. The computation for J > 0 follows along exactly the same lines.

□
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