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Abstract. We construct an importance sampling method for computing statistics related to rare events for
weakly interacting diffusions. Standard Monte Carlo methods behave exponentially poorly with the number
of particles in the system for such problems. Our scheme is based on subsolutions of a Hamilton-Jacobi-
Bellman (HJB) equation on Wasserstein space which arises in the theory of mean-field (McKean-Vlasov)
control. We identify conditions under which such a scheme is asymptotically optimal. In the process, we
make connections between the large deviations principle for the empirical measure of weakly interacting
diffusions, mean-field control, and the HJB equation on Wasserstein space. We also provide evidence,
both analytical and numerical, that with sufficient regularity of the HJB equation, our scheme can have
vanishingly small relative error in the many particle limit.

1. Introduction

Consider the weakly interacting particle system:

dXi,N,s,y
t = b(Xi,N,s,y

t , µN,s,y
t )dt+ σ(Xi,N,s,y

t , µN,s,y
t )dW i

t , Xi,N,s,y
s = yi(1)

on some stochastic basis (Ω,F ,P), {Ft}t∈[s,T ] satisfying the usual conditions, where b : Rd × P2(Rd) → Rd,
σ : Rd×P2(Rd) → Rd×m, {W i}i∈N are independent m-dimensional standard Ft-Brownian motions initialized
at W i

s = 0, i ∈ {1, ..., N}. Here P2(Rd) is the space of probability measures with finite second moment (see
Definition A.1). In (1), N denotes the total number of particles, i ∈ {1, 2, ..., N} indexes a particular particle,
and µN,s,y ∈ C([0, T ];P(Rd)) is the empirical measure:

µN,s,y
t :=

1

N

N∑
i=1

δXi,N,s,y
t

, t ∈ [s, T ].(2)

The i’th entry of the vector y = (y1, y2, ...) ∈ ⊕∞
i=1Rd contains the deterministic initial condition for the i’th

particle at time s satisfying 0 ≤ s ≤ t ≤ T . The entries yi for i > N are ignored for any particular value
of N ; we include them in defining (1) for convenience, since our purpose will be to consider the sequence of
solutions to (1) as N → ∞. We will at times identify y with its projection onto RdN = [Rd]N = ⊕N

i=1Rd

without ambiguity.
In this paper, we design a control-based importance sampling scheme for estimating functionals of the form

E
[
exp

(
−NG(µN,s,y

T )
)]
, G : P(Rd) → R.(3)

The basic method goes as follows: letting vNi : [s, T ]×RdN → Rm be a chosen bounded function, or control,
for each i ∈ {1, ..., N} and N ∈ N, we consider the controlled version of the interacting particle system (1)
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given by

dX̂i,N,s,y
t = [b(X̂i,N,s,y

t , µ̂i,N,s,y
t ) + σ(X̂i,N,s,y

t , µ̂i,N,s,y
t )vNi (t, X̂1,N,s,y

t , ..., X̂N,N,s,y
t )]dt

+ σ(X̂i,N,s,y
t , µ̂i,N,s,y

t )dŴ i
t , X̂i,N,s,y

s = yi.
(4)

Girsanov’s theorem allows us to convert statistics for the controlled system (4) into statistics for (1); therefore,
in order to develop a more accurate Monte Carlo estimator for (1) our objective will be to identify controls
vNi that reduce the variance of our target statistic compared with the uncontrolled version, or in the best
case cause the relative variance to vanish as N → ∞. By these measures, we find that subsolutions of a
zero-viscosity Hamilton-Jacobi-Bellman (HJB) equation on Wasserstein space, which we derive starting with
the Dawson-Gärtner large deviations principle (LDP) [16,29], provide controls with good performance.
Our main results, stated rigorously in Section 2, show that under certain assumptions our scheme outperforms
standard Monte Carlo methods by requiring a subexponential number of samples to achieve a given relative
error in estimating (3) as N → ∞ (Theorem 2.4). Under stronger assumptions, we show that in fact only
a vanishing number of simulations suffices (Theorem 2.5), so that for large N our method requires only a
single sample. Our theoretical results are confirmed by numerical experiments in Section 4.
Our importance sampling scheme is related to and inspired by previous work concerning the development of
asymptotically optimal importance sampling methods for estimating expectations of the form

E
[
exp

(
−1

ϵ
G
(
Xϵ,s,y

T

))]
, G ∈ Cb(Rd),(5)

where Xϵ,s,y is a single particle satisfying, e.g., the small-noise SDE:

dXϵ,s,y
t = b(Xϵ,s,y

t )dt+
√
ϵσ(Xϵ,s,y

t )dWt,

Xϵ,s,y
s = y ∈ Rd.

(6)

We will draw parallels between the small-noise setting and ours throughout this article.
A general strategy for efficiently computing (5) involves exploiting the connection between the large devia-
tions rate function of Freidlin-Wentzell (FW) [48] and a class of first-order Hamilton-Jacobi-Bellman (HJB)
equations, whose subsolutions can then be leveraged to obtain optimal controls for the zero-noise process
X0,s,y. In turn, the controls can be used to design an optimal change of measure for estimating (5). The
control formulation of the FW rate function, provided via the weak convergence approach to large deviations
of Dupuis and Ellis [13, 34], makes the chain linking the rate function, zero-viscosity HJB equation, and
optimal control of the zero-noise process more evident. The strategy described above has been applied for a
diverse range of stochastic models [36–38,74,79].
Elevating the above framework for small-noise SDE importance sampling schemes to interacting particle
systems is a major contribution of this paper. Moreover, the connections between the approaches used
herein and in the small-noise setting allow us to conjecture (see Remark 2.6) about extending this research
to problems related to metastable dynamics that have been previously considered for the small-noise case
(see, e.g., [57] and the references therein) such as exit probabilities and mean first passage times. We
therefore view this paper as the first step towards a new method of designing importance sampling schemes
for studying properties of the empirical measure which are of interest to the greater scientific community,
such as the free-energy differences for chemical and biological molecular systems [3, 25, 61, 78] or exit times
of the empirical measure from domains of attraction in models related to social dynamics and consensus
convergence [6, 28,49,50,59].
Let us now make the comparison between the interacting particle system (1) and the small-noise system (6)
more explicit. It is well known that µN,s,y → L(Xs,ν) in distribution when considered as P(C([s, T ];Rd))-
valued random variables. Here ν ∈ P(Rd) is the weak limit as N → ∞ of the empirical measures 1

N

∑N
i=1 δyi ,

and Xs,ν satisfies the McKean-Vlasov equation:

dXs,ν
t = b(Xs,ν

t ,L(Xs,ν
t ))dt+ σ(Xs,ν ,L(Xs,ν

t ))dWt, Xs,ν
s ∼ ν.(7)

This phenomenon, known as the propagation of chaos, goes back to the works of Kac [63]. The empirical
measure µN,s,y can also formally be seen to satisfy an infinite-dimensional small-noise equation, analogous
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to (6), with parameter ϵ = 1√
N

, as per pp. 249-250 of [29]. Thus, the problem of estimating (3) has the
same basic structure as the more well-known problem of estimating (5), but with a different state space.
An LDP for the many-particle limit of {µN,s,y}N∈N was first established in the classical work of [29] in the
case where the diffusion coefficient σ does not depend on the empirical measure, with the result extended via
the weak convergence approach of Dupuis and Ellis [34] to the general setting in [16]. In the latter, the form
of the rate function is given in terms of a control problem (see Theorem 1.2), which further motivates our
search for an asymptotically optimal importance sampling scheme for (3) associated with an HJB equation
as in the small-noise SDE setting. In contrast to the setting of small-noise SDEs, where the state space of
the HJB equation is Euclidean space, we find that the appropriate HJB equation to consider in our setting
of measure-valued random variables is posed on Wasserstein space.
Perhaps due to the computational intractability of both the Dawson-Gärtner [29] and Budhiraja-Dupuis-
Fischer [16] rate functions, practical applications of the LDP for the many-particle limit of the empirical
measure (2) associated with (1) have been few and far between (for some exceptions see, e.g., [30,49,50,70]).
On the other hand, in recent years the HJB equation on Wasserstein space of [73] (along with the related
equations in [21, 67]) has received an immense amount of attention both in terms of numerical applications
[20, 22, 47, 54, 55, 60, 66] and theoretical results [5, 18, 19, 26, 27, 56, 65, 73, 80]. The Dawson-Gärtner rate
function has previously been related to the theory of mean field games and control through the observation
that it can be viewed in terms of derivatives of the free energy associated to the limiting McKean-Vlasov
equation viewed as a gradient flow on Wasserstein space in some settings [1,2,4,41–44,52]. However, to our
knowledge, this paper is the first time that the connection between the LDP rate function (10) and the HJB
equation on Wasserstein space (23) has been made explicit in the literature (see Remark 2.2).
As far as we are aware, this paper also represents the first time the problem of estimating (3) with an
asymptotically optimal importance sampling scheme has been considered, though many other versions of
the small-noise importance sampling problem have appeared in the literature. These include, for example,
discrete-time Markov chains [37,38], diffusions with multiscale structure [36,69], and stochastic partial differ-
ential equations [40,51]. See in addition [11,35,39,53,57,79] for a diverse, but by no means comprehensive,
collection of small-noise importance sampling research in a variety of settings. We in particular mention the
work of [33] on the design of importance sampling schemes for small-noise McKean-Vlasov SDEs using a
decoupling approach (see also [7,8]) and a complete change of measure approach. The problem posed in [33]
is significantly different from the one we consider here, principally because they seek to estimate statistics
of the limiting McKean-Vlasov equation (7) rather than the interacting particle system (1). The change of
measure they employ is therefore based on the Freidlin-Wentzell (small-noise) LDP for Brownian motion,
rather than the Sanov-type (many-particle) LDP for the empirical measure (2) used in our setting. Note
that Freidlin-Wentzell LDPs have been derived in different settings for McKean-Vlasov equations [32, 68],
though they were not directly employed in the results of [7, 8, 33].
Finally, we note that methods of importance sampling for high-dimensional diffusions have also been estab-
lished in previous research, e.g., [11, 71, 77]). While in theory these could be applied to estimate (3), they
are designed for more general problems than ours and therefore do not exploit the exchangeability of the
particles, and resulting propagation of chaos, to obtain an asymptotically optimal scheme. However, it may
be that a combination of these non-asymptotic techniques with ours could allow us to treat a broader range
of problems in the future, as we remark in Section 6.
The rest of the paper is organized as follows. We establish notation in Subsection 1.1 below, and go on
to provide background on large deviations theory for the empirical measure in Subsection 1.2. Then, in
Subsection 1.3 we develop measures of performance for the control-based importance sampling of diffusions
for computing statistics of the form (3), some of which can be quantified using large deviations theory. In
Section 2, we formally derive the HJB Equation on Wasserstein space and state our main results, Theorem
2.4 and Theorem 2.5. In Section 3, we introduce a class of linear-quadratic examples for which the HJB
equation can be solved analytically and discuss simple cases in which our scheme can be thoroughly analyzed
in comparison to standard Monte Carlo, along the way comparing with results for small-noise diffusion
processes on Rd. In Section 4, we demonstrate our method with numerical examples. Section 5 contains
detailed proofs of the results stated in Section 2, before Section 6 provides concluding remarks. Lastly, in
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Appendix A we provide additional background on the calculus of square-integrable probability measures,
P2(Rd).

1.1. Notation. In the following paragraph, let X and Y be Polish spaces, and (Ω,F , µ) a measure space.
In the course of this paper, we denote by P(X) the space of probability measures on X endowed with
the topology of weak convergence. We use P2(X) ⊂ P(X) to denote the subspace of P(X) consisting of
square-integrable probability measures on X endowed with the 2-Wasserstein metric (see Definition A.1).
We additionally let B(X) be the Borel σ-algebra associated with X, C(X;Y ) the space of continuous
functions from X to Y , Cb(X) the space of bounded, continuous functions from X to R with norm∥ϕ∥∞ :=
supx∈X |ϕ(x)|, and for p ≥ 1 we define Lp(Ω,F , µ;Rd) as the space of p-integrable functions on (Ω,F , µ)
with values in Rd and norm

∥ϕ∥Lp(Ω,F ,µ;Rd) =

(∫
Ω

|ϕ(z)|pµ(dz)
)1/p

.

Cb,L(Rd) ⊂ Cb(Rd) is the set of bounded, globally Lipschitz functions ϕ : Rd → R with norm ∥ϕ∥b,L :=

∥ϕ∥∞ + supx,y∈Rd,x̸=y
|ϕ(x)−ϕ(y)|

|x−y| . For ϕ ∈ L1(X, µ), µ ∈ P(X), we define the pairing ⟨ϕ, µ⟩ by

⟨ϕ, µ⟩ :=
∫
X

ϕ(x)µ(dx).

We note that, as in the above definitions, the codomain for a given function space is assumed to be R unless
otherwise specified. We will also occasionally refer to a measure on a topological space X without explicitly
stating the corresponding σ-algebra; in this case, the measurable sets are assumed to come from B(X).
Partial derivatives of a function ϕ with respect to a variable x are normally denoted by ∂xϕ; if the variable
x is measure valued then the derivative ∂x should be interpreted in the Lions sense (see Appendix A). For
time derivatives ∂tϕ with respect to t ∈ I ⊆ R+, we also use the notation ϕ̇.
For ϕ : [0, T ] × P2(Rd) → R, we use ϕ ∈ C1,2([0, T ] × P2(Rd)) to mean that µ 7→ ϕ(t, µ) is fully C2 in the
sense of Definition A.2 for all t, with all derivatives in that definition jointly continuous in (t, z, z′, µ) and the
map t 7→ ϕ(t, µ) continuously differentiable in t. The subspace C1,2

b ([0, T ]×P2(Rd)) ⊂ C1,2([0, T ]×P2(Rd))
denotes the class of functions ϕ such that further ϕ and all its derivatives from Definition A.2 are uniformly
bounded.
For x, y ∈ Rd, x = (x1, ..., xd), y = (y1, ..., yd), x · y denotes the standard inner product x · y :=

∑d
i=1 xiyi.

For A,B ∈ Rd×d matrices with entries {aij}di,j=1 and {bij}di,j=1 respectively, A : B :=
∑d

i,j=1 aijbij .

For x ∈ ⊕N
i=1Rd or ⊕∞

i=1Rd, we will denote by µN
x associated empirical measure, i.e., the element of P(Rd)

given by

µN
x :=

1

N

N∑
i=1

δxi
.

Finally, for given sequences {fn}, {gn} in R+, we use the following notation to compare their asymptotic
behavior: fn = O(gn) if there is a constant C > 0 independent of n such that fn ≤ Cgn, and fn = o(gn) if
fn
gn

→ 0 as n → ∞. If instead of positive real numbers fn and gn are sequences on normed spaces, we use
the same notation to refer to the behavior of the sequences |fn| and |gn|.

1.2. Large deviations results and an HJB equation for the particle system. We now introduce some
of the key tools for proving the our main results in Section 2, namely, a stochastic control representation
for the LDP associated with the empirical measure (2) as provided by [16] and a control representation for
statistics of the form (3). The final tool, the HJB equation on Wasserstein space, will be introduced in
Section 2.
The Laplace principle stated in Theorem 1.2 is based on the controlled version of (7):

dX̂v,s,ν
t = [b(X̂v,s,ν

t ,L(X̂v,s,ν
t )) + σ(X̂v,s,ν

t ,L(X̂v,s,ν
t ))v(t)]dt+ σ(X̂v,s,ν

t ,L(X̂v,s,ν
t ))dWt,

X̂v,s,ν
s ∼ ν.

(8)
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For the LDP to hold, we need the following assumptions on the particle system (1), the controlled version
of the limiting McKean-Vlasov equation (8), and the problem data:

Assumption 1.1. Suppose:

(A1) The initial conditions y for (1) are such that there exists ν ∈ P2(Rd) with µN
y → ν as N → ∞.

(A2) The coefficients b and σ are continuous on Rd × P(Rd).
(A3) For all N ∈ N, existence and uniqueness of solutions holds in the strong sense for the system of

SDEs (1).
(A4) Weak uniqueness holds for solutions of (8) in the sense that if Θ1,Θ2 are probability measures such

that for i = 1, 2:
• Θi is the law of some process triple (X̂vi,s,ν , vi,W

i) satisfying (8) on some filtered probability
space (Ωi,F i,Pi), {F i

t}t∈[s,T ] satisfying the usual conditions

• vi is an F i
t -progressively measurable control with EΘi

[∫ T

s
|vi(t)|2dt

]
<∞

• W i a standard F i
t -Brownian motion with W i

s = 0
and Θ1 ◦ ϑ−1 = Θ2 ◦ ϑ−1 where ϑ is the identity mapping in the second and third coordinates and
the evaluation map at time s in the first coordinate, then Θ1 = Θ2.

(A5) For any sequence of controlled processes {X̂i,N,s,y} from (4) with Ft-progressively measurable controls
vN = (vN1 , ..., v

N
N ) satisfying

sup
N∈N

E

 1

N

N∑
i=1

∫ T

s

|vNi (t)|2dt

 <∞,

µ̂N := 1
N

∑N
i=1 δX̂i,N,s,y is tight as a sequence of P(C([s, T ];Rd))-valued random variables.

Assumption 1.1 is taken directly from [16] with the exception of (A4), which is a mildly less restrictive form
of weak uniqueness under which the arguments from [16] still hold (see Lemma 3.4 in [15] or Definition 3.6
in [9]). For verifiable conditions on the data of the problem under which (A4) holds, from Appendix C in
[45] we have that:

(A1’) b, σ are jointly globally Lipschitz on Rd×P(Rd) where P(Rd) is equipped with the bounded Lipschitz
metric dBL(µ, ν) := sup{ϕ∈Cb,L(Rd):∥ϕ∥b,L≤1}

∫
Rd ϕ(x)[µ(dx)− ν(dx)].

(A2’) σ is bounded and σ(x, µ) = σ(µ).

are enough to imply (A2)-(A5). Note that the proof given in [45] that (A1’) and (A2’) together imply (A4)
(Proposition C.1 in [45]), is based on an erroneous localization argument. See [15] for a correct proof.
We are now ready to state the LDP for the empirical measure.

Theorem 1.2. Under Assumption 1.1, for any F ∈ Cb(C([s, T ];P(Rd))):

lim
N→∞

− 1

N
logE

[
exp(−NF (µN,s,y))

]
= G(s, ν;F ) := inf

µ∈C([s,T ];P(Rd))

{
Sν
s,T (µ) + F (µ)

}
,(9)

where Sν
s,T : C([s, T ];P(Rd)) → [0,+∞] is given by

Sν
s,T (µ) := inf

v∈U :µ(t)=L(X̂v,s,ν
t ),t∈[s,T ]

1

2
E

[∫ T

s

|v(t)|2dt

]
.(10)

In the above we take inf ∅ = +∞, and in the expression for Sν
s,T (µ) the admissible set of controls U is the

set of all quadruples ((Ω,F ,P), {Ft}t∈[s,T ], v,W ) such that:

1. ((Ω,F ,P), {Ft}) forms a stochastic basis satisfying the usual conditions,
2. W is a standard m-dimensional Brownian motion initialized at Ws = 0,
3. v is an Rm-valued {Ft}-progressively measurable process such that E

[∫ T

s
|v(t)|2dt

]
<∞.

We write v ∈ U to denote ((Ω,F ,P), {Ft}t∈[s,T ], v,W ) ∈ U in the above. For each v ∈ U , X̂v,ν
t satisfies the

controlled McKean-Vlasov equation (8) on the space (Ω,F ,P), {Ft}t∈[s,T ] with driving Brownian motion W .
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Proof. The result follows from Theorem 3.1 in [16] (see also Theorem 5.1 in [45]) by applying the contraction
principle to pose the rate function on C([s, T ];P(Rd)) rather than P(C([s, T ];Rd)) as in Proposition 5.6 of
[9]. □

The following corollary of Theorem 3.6 in [13], which provides a prelimit expression for the left-hand side of
(9) which can be applied to prove Theorem 1.2, is also critical to our arguments in this paper. In Section 5,
we apply it to several auxiliary systems of the form (1) with different choices of the drift term in the course
of proving Theorem 2.4. The drift terms in the new system have a slightly different form from those in (1),
since they are allowed here to directly depend on the time variable.
To distinguish these auxiliary systems and their solutions from those of the original system (1), we establish
alternative notation here for the solutions of the controlled and uncontrolled auxiliary systems and their
empirical measures that we will also use in Section 5.

Proposition 1.3. Let µ̃N,s,y
t = 1

N

∑N
i=1 δX̃i,N,s,y

t
, t ∈ [s, T ] where X̃i,N,s,y

t solves the system (11) (i.e., (1)
with b replaced by b̃):

dX̃i,N,s,y
t = b̃(t, X̃i,N,s,y

t , µ̃N,s,y
t )dt+ σ(X̃i,N,s,y

t , µ̃N,s,y
t )dW̃ i

t , X̃i,N,s,y
s = yi(11)

and b̃, σ are such that existence and uniqueness holds in the strong sense for the system of SDEs (11) and W̃ i

are IID standard m-dimensional Brownian motions initialized at W̃ i
s = 0. Then for F ∈ Cb

(
C([s, T ];P(Rd))

)
:

− 1

N
logE

[
exp(−NF (µ̃N,s,y))

]
= inf

uN∈UN

E

 1

2N

N∑
i=1

∫ T

s

|uNi (t)|2dt

+ E[F (µ̄N,s,y)]

 ,(12)

where UN is the space of adapted controls uN = (uN1 , ..., u
N
N ), uNi : [s, T ] → Rm such that E

[∫ T

s
|uN (t)|2dt

]
<

∞, and µ̄N,s,y is the empirical measure associated with the controlled version of (11), i.e.,

dX̄i,N,s,y
t = b̃(t, X̄i,N,s,y

t , µ̄N,s,y
t )dt+ σ(X̄i,N,s,y

t , µ̄N,s,y
t )u(t)dt+ σ(X̄i,N,s,y

t , µ̄N,s,y
t )dW̃ i

t , X̄i,N,s,y
s = yi.

1.3. Log-efficiency and asymptotic optimality in control-based importance sampling. Recall our
definition of the controlled particle system (4), and let

Zi,N,s,y := exp

(
−
∫ T

s

vNi (t, X̂i,N,s,y
t , ..., X̂i,N,s,y

t ) · dŴ i
t −

1

2

∫ T

s

|vNi (t, X̂i,N,s,y
t , ..., X̂i,N,s,y

t )|2dt
)
.(13)

By Girsanov’s theorem, an unbiased estimator for (3) is given by

δ̂N :=
1

M

M∑
j=1

exp
(
−NG(µ̂N,s,y,j)

) N∏
i=1

Zi,N,s,y,j(14)

where (µ̂N,s,y,j , Z1,N,s,y,j , ..., ZN,N,s,y,j) are M independent samples of (µ̂N,s,y, Z1,N,s,y..., ZN,N,s,y), and

µ̂i,N,s,y
t :=

1

N

N∑
i=1

δX̂i,N,s,y
t

.(15)

We note that the standard Monte Carlo method estimator, which we denote by δN , corresponds to (14) with
vNi = 0, so that Zi,N,s,y,j ≡ 1.
We define the relative error of the estimator (14) by

ρ(δ̂N ) =
1√
M

√√√√√√Eδ̂2N −
[
Eδ̂N

]2
[
Eδ̂N

]2 =
1√
M

√√√√√√√√
E
[
exp(−2NG(µ̂N,s,y))

∏N
i=1(Z

i,N,s,y)2
]

E
[
exp(−NG(µN,s,y))

]2 − 1.(16)
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To control the size of (16) we either need to increase the number of samples M or reduce the variance by
choosing vNi so that

R(δ̂N ) :=

E
[
exp(−2NG(µ̂N,s,y))

∏N
i=1(Z

i,N,s,y)2
]

E
[
exp(−NG(µN,s,y))

]2 ,(17)

is close to 1. With this in mind, we define our first measure of the efficiency for an importance sampling
scheme (14) in terms of the asymptotic behavior of R(δ̂N ) as N → ∞:

Definition 1.4. An importance sampling scheme of the form (14) is called log-efficient if

lim
N→∞

− 1

N
logR(δ̂N ) = 0.

Note that, in our definition, we do not require that R(δ̂N ) → 1 or even R(δ̂N ) = O(1); instead we only ask
that as N → ∞, R(δ̂N ) does not grow exponentially in N .
The notion of log-efficiency can also be described in terms of large deviations theory. For the uncontrolled
system, from (9) in Theorem 1.2 we know that if G ∈ Cb(P(Rd)) and Assumption 1.1 holds, then

lim
N→∞

1

N
logE[exp(−NG(µN,s,y

T ))] = −G(s, ν;µ 7→ G(µT )) := −γ1,

lim
N→∞

1

N
logE[exp(−2NG(µN,s,y

T ))] = −G(s, ν;µ 7→ 2G(µT )) := −γ2.
(18)

Thus, for the standard Monte Carlo scheme the relative error can be written in terms of γ1 and γ2 as follows:

ρ(δN ) =
1√
M

√
exp(N [2γ1 − γ2 + o(1)])− 1(19)

Starting from the inequality E[exp(−2NG(µN,s,y
T )] ≥ E[exp(−NG(µN

T )]2, taking logarithms, multiplying
by − 1

N , and taking the limit N → ∞ shows that γ2 ≤ 2γ1. Evidently, the relative error ρ(δN ) grows
exponentially in N if the inequality is strict, i.e., γ := 2γ1 − γ2 > 0. Exponentially many samples are
therefore required to reduce the relative error below a given tolerance in that case.
Now, we assume that the the relative error for the importance sampling scheme (16) admits the same
representation as the standard Monte Carlo importance sampling scheme in (19), with analogous quantities
γ̂1, γ̂2, and γ̂ = 2γ̂1 − γ̂2. That is:

ρ(δ̂N ) =
1√
M

√
exp(N [γ̂ + o(1)])− 1.(20)

Note that in the same way as with standard Monte Carlo, we can conclude via Jensen’s inequality that
γ̂ ≥ 0. Then we can compare the relative error ρ(δ̂N ) to the Monte Carlo relative error ρ(δN ) by comparing
the corresponding quantities γ̂ and γ:

1. If γ̂ < γ, then the importance sampling scheme is more efficient than standard Monte Carlo in the
sense that asymptotically (as N → ∞), it yields a smaller relative error.

2. If γ̂ = 0, then the importance sampling scheme is log-efficient and, if γ > 0,

ρ(δ̂N ) =
1√
M

√
exp(o(N))− 1 = o(ρ (δN )).

The object of our first result Theorem 2.4 presented in the next section is to show conditions under which,
for our choice of controls, γ̂ < γ or γ̂ = 0.
Though the assumptions underlying Theorem 2.4 preclude the relative error of our importance sampling
scheme from growing exponentially, extremely fast subexponential growth rates may still be possible. To
obtain a more refined result, one needs to study the behavior of the o(1) terms in R(δ̂N ). To that end, our
second main result, Theorem 2.5, assumes an expansion of the prelimit quantities on the left-hand side of
(18) leading to an expression for R(δ̂N ) of the form

R(δ̂N ) = exp
(
a0N + a1 + a2N

−1 + ...
)
.(21)
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Note that here a0 plays the same role as γ̂ in (20). Analysis of the coefficients in the power series appearing
in the exponential shows that, under stronger regularity assumptions than required for our Theorem 2.4,
a0 = a1 = 0, which implies that the importance sampling scheme has vanishing relative error:

Definition 1.5. An estimator of the form (14) is said to have vanishing relative error if, for ρ(δ̂N ) as
in (16),

lim
N→∞

ρ(δ̂N ) = 0.

We conclude this chapter by comparing to the small-noise diffusion regime. Our discussion in this section
parallels that of the first section in [79], in which similar importance sampling scheme for small-noise diffusions
is presented along with numerical schemes for estimating the optimal controls. However, we note that in our
paper stating the LDP and its underlying assumptions is somewhat more involved due to the measure-valued
state space.
In [79], the authors also provide sufficient conditions for a log-efficient importance sampling scheme for small-
noise diffusions to have vanishing relative error. For our Theorem 2.5, we instead opt to perform an analysis
in the spirit of the later [75]. The paper [75] furthered the analysis of the small-noise case by expanding the
o(1) terms in the relative error into powers of the small-noise parameter ϵ to recover log-efficiency from the
first-order expansion, and the vanishing relative error result from of [79] from the second-order expansion
(see also the related Section 3 of [62]).

2. The HJB Equation and Statement of Main Results

We now turn to the full statement of our importance sampling scheme in terms of the solution to an HJB
equation on Wasserstein space, explain its relationship to the rate function (10), and give a formal derivation
of the importance sampling scheme and the HJB equation as the zero viscosity limit of a sequence of zero
variance controls.
Starting with the Hamiltonian function which acts on µ ∈ P2(Rd), p : Rd → Rd and Γ : Rd → Rd×d by:

H0(µ, p,Γ) = −
∫
Rd

b(x, µ) · p(x)− 1

2
p(x) · [σσ⊤(x, µ)p(x)] +

1

2
σσ⊤(x, µ) : Γ(x)µ(dx),(22)

the HJB equation on Wasserstein space is given by:

−∂tΨ(t, ν) +H0(ν, ∂µΨ(t, ν)[·], ∂z∂µΨ(t, ν)[·]) = 0, t ∈ [0, T ), ν ∈ P2(Rd),

Ψ(T, ν) = G(ν), ν ∈ P2(Rd).
(23)

Recall here that ∂µΨ(t, ν)[·] : Rd → Rd, the derivative of Ψ in the measure-valued variable µ, denotes the
Lions derivative of Ψ at ν (Definition A.1 in Appendix A).
We will make use of the following notion of subsolutions to (23):

Definition 2.1. We call Ψ : [0, T ]× P2(Rd) → R a classical subsolution to (23) if:

(i) Ψ ∈ C1,2([0, T ]× P2(Rd))
(ii) ∂tΨ(t, µ)−H0(µ, ∂µΨ(t, µ)[·], ∂z∂µΨ(t, µ)[·]) ≥ 0 for all t ∈ [0, T ), µ ∈ P2(Rd)
(iii) Ψ(T, µ) ≤ G(µ), µ ∈ P2(Rd)
(iv) There exists C > 0 such that

sup
t∈[0,T ],µ∈P2(Rd),z∈Rd

|∂µΨ(t, µ)[z]| ≤ C,

sup
t∈[0,T ],µ∈P2(Rd)

|∂z∂µΨ(t, µ)[z]| ≤ C(1 + |z|2),

sup
t∈[0,T ],µ∈P2(Rd)

∥∥∥∂2µΨ(t, µ)[·, ·]
∥∥∥
L2(Rd;µ)⊗L2(Rd;µ)

≤ C.

Note that under the above definition, a classical subsolution Ψ to (23) is also a viscosity subsolution in the
sense of Definition 3.5 in [26]. Moreover, a classical solution Ψ to (23) which also satisfies the bounds of
item (iv) in Definition 2.1 is also a classical subsolution.
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Remark 2.2. Under certain sufficient conditions stated in Proposition 3.1 of [73], the HJB equation (23)
coincides with the large deviations rate function Sν

s,T from (10) in the sense that Ψ solving (23) is given by:

Ψ(s, ν) = inf
µ∈C([s,T ];P(Rd))

{Sν
s,T (µ) +G(µT )}.(24)

Stated more concretely, [73] shows that if σ is constant, b is Lipschitz on Rd×P2(Rd), G(µ) ≤ C
∫
Rd |z|2µ(dz)

for some C > 0, then any Ψ ∈ C1,2
b ([0, T ];P2(Rd)) satisfying (23) in the classical sense must be given by (24).

Note that while [73] restricts to the case of Markovian feedback controls for the infimization problem (9),
we know thanks to the convexity of the running cost in the definition of the rate function that the restricted
infimization problem is equivalent to the full one (see Proposition 5.8 in [9]).
Moreover, Definition 3.5 of [26] states a natural notion of viscosity solutions to (23), and Theorem 3.8 therein
establishes sufficient conditions for the value function (s, ν) 7→ infµ∈C([s,T ];P(Rd)){Sν

s,T (µ)+G(µT )} to be the
unique viscosity solution to (23). Although that theorem does not allow for the linear growth in the control
present in our drift term nor the quadratic running cost in the definition of Sν

s,T , it appears the results should
hold under this same set of assumptions or similar; see Remarks 2.11 and 3.2 in [27].
Whether the value function is indeed the unique viscosity solution to (23) is of no consequence to the results of
this paper. However, the connection between viscosity solutions of (23) and the rate function from Theorem
1.2 parallels the small-noise regime, and helped us to identify the correct PDE for designing our importance
sampling scheme (compare (24) with, e.g., Equation (2.12) in [79] in the small-noise setting).

2.1. Formal derivation of the HJB equation (23). In this section, we will see formally how to arrive
at the expression for the control used in our importance sampling scheme in terms of the HJB equation on
Wasserstein space (23).

Following pp. 1778-1779 of [79], we let Φ̂N : [0, T ]×⊕N
j=1Rd → R be the solution to the backward Kolmogorov

equation with terminal condition exp(−NGN (x1, ..., xN )) = exp(−NG(µN
x )) associated to the system of

SDEs (1), so that Φ̂N satisfies:

Φ̂N (t, x) = E[exp(−NG(µN,t,x
T ))], x ∈ RNd, t ∈ [0, T ],(25)

and

∂tΦ̂
N (t, x) +

N∑
i=1

b(xi, µ
N
x ) · ∂xiΦ̂

N (t, x)

+
1

2
σσ⊤(xi, µ

N
x ) : ∂2xi

Φ̂N (t, x) = 0, t ∈ [0, T ), x = (x1, ..., xN ) ∈ RdN ,

Φ̂N (T, x) = exp(−NG(µN
x )), x ∈ RdN .

(26)

For fixed N , choosing controls

vNi (t, x1, ..., xN ) = σ⊤(xi, µ
N
x )
∂xiΦ̂

N (t, x1, ..., xN )

Φ̂N (t, x1, ..., xN )
(27)

in the construction of δ̂N from (14) leads to a deterministic estimator for (3) with zero variance:

e−NG(µ̂N,s,y
T )

N∏
i=1

Zi,N,s,y = Φ̂N (s, y1, ..., yN ).(28)

The change of measure described above is commonly known as the Doob h-transform, and the equality (28)
can be seen via an application of Itô’s formula.
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Next defining Φ̃N (t, x1, ..., xN ) = − 1
N log Φ̂N (t, x1, ..., xN ), we have that Φ̃N is a solution to the second-order

HJB equation:

−∂tΦ̃N (t, x1, ..., xN )−
N∑
i=1

{
b(xi, µ

N
x ) · ∂xi

Φ̃N (t, x1, ..., xN )

− N

2
|σ⊤(xi, µ

N
x )∂xi

Φ̃N (t, x1, ..., xN )|2

+
1

2
σσ⊤(xi, µ

N
x ) : ∂2xi

Φ̃N (t, x1, ..., xN )

}
= 0, x1, ..., xN ∈ Rd, t ∈ [0, T ),

Φ̃N (T, x1, ..., xN ) = G(µN
x ), x1, ..., xN ∈ Rd

(29)

and the choice of controls from (27) is given in terms of Φ̃N by:

vNi (t, x1, ..., xN ) = −Nσ⊤(xi, µ
N
x )∂xiΦ̃

N (t, x1, ..., xN ).(30)

As per (28), in (30) we have constructed a zero-variance estimator for (3) from solutions of (29):

exp(−N Φ̃N (s, y1, ..., yN )) = E[e−NG(µN,s,y
T )] = e−NG(µ̂N,s,y

T )
N∏
i=1

Zi,N,s,y,(31)

so if one had access to Φ̃N in order to construct vN , one would already be able to compute the desired
expectation explicitly.
Until this point, we have merely derived PDEs for the exact expectation that we wish to compute. To
derive an importance sampling scheme that is effective for all large values of N , we assume that, given
the symmetries in the coefficients and terminal condition in (29), there exists ΦN : [0, T ] × P2(Rd) → R
which is fully C2 in the sense of Definition A.2 such that ΦN (t, µN

x ) = Φ̃N (t, x1, ..., xN ) for all t ∈ [0, T ],
x1, ..., xN ∈ Rd. Then by Proposition A.3, we get:

−∂tΦN (t, µN
x )−

∫
Rd

b(z, µN
x ) · ∂µΦN (t, µN

x )[z]− 1

2
|σ⊤(z, µN

x )∂µΦ
N (t, µN

x )[z]|2

+
1

2
σσ⊤(z, µN

x ) : ∂z∂µΦ
N (t, µN

x )[z]

+
1

2N
σσ⊤(z, µN

x ) : ∂2µΦ
N (t, µN

x )[z, z]µN
x (dz) = 0, x1, ..., xN ∈ Rd, t ∈ [0, T ),

ΦN (T, µN
x ) = G(µN

x ), x1, ..., xN ∈ Rd.

The zero-variance optimal control from (30) can then be expressed as

vNi (t, x1, ..., xN ) = −σ⊤(xi, µ
N
x )∂µΦ

N (t, µN
x )[xi].

Finally, supposing that the equation for ΦN holds not only for measures of the form µN
x , but for all ν ∈

P2(Rd), the above becomes:

−∂tΦN (t, ν)−
∫
Rd

b(z, ν) · ∂µΦN (t, ν)[z]− 1

2
|σ⊤(z, ν)∂µΦ

N (t, ν)[z]|2

+
1

2
σσ⊤(z, ν) : ∂z∂µΦ

N (t, ν)[z]

+
1

2N
σσ⊤(z, ν) : ∂2µΦ

N (t, ν)[z, z]ν(dz) = 0, ν ∈ P2(Rd), t ∈ [0, T ),

ΦN (T, ν) = G(ν), ν ∈ P2(Rd).

(32)

As N → ∞, we expect that, up to leading order, solutions to (32) should be well approximated by solutions
to the zero-viscosity HJB equation (23), which we arrive at by simply setting the O(1/N) term in (32) to
0, leading us finally to the HJB equation on Wasserstein space (23). Rigorous justifications for this limit in
the case where there is a common driving noise between the particles can be found in [56].
Our discussion here parallels the construction in Section 3.1 of [79] of a log-efficient control in the small-noise
setting, in which the authors start from the deterministic scheme given by the Doob h-transform and take
a formal zero-viscosity limit in the small-noise parameter. Given the expression (31), we expect then that
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at least the O(N) terms in an expression for logR(δ̂N ) with the choice of controls from Theorem 2.4 should
vanish, since they are 0 when considering the controls from (30). The log-efficiency proved in Theorem 2.4
shows that this is not only the case for classical solutions to (23), but even certain classical subsolutions.

2.2. Statement of main results. We are now ready to state our main results, Theorems 2.4 and 2.5,
the proofs of which are contained in Section 5. The first is on designing a log-efficient importance sampling
scheme, and parallels Theorem 8.1 in [38] and Theorem 4.1 in [36]. It requires the additional two assumptions:

Assumption 2.3. Suppose:

(B1) G in equations (3) and (23) is bounded and continuous on P(Rd)
(B2) σ is bounded.

Theorem 2.4. Suppose Ψ is a classical subsolution to (23) in the sense of Definition 2.1 and that Assump-
tions 1.1 and 2.3 hold. Then the importance sampling scheme from (14) with the choice of controls

vNi (t, x1, ..., xN ) = −σ⊤

xi, 1
N

N∑
j=1

δxj

 ∂µΨ

t, 1
N

N∑
j=1

δxj

 [xi](33)

has the property that

lim
N→∞

− 1

N
logR(δ̂N ) ≥ Ψ(s, ν)− γ1,

where R(δ̂N ) is as in (17), γ1 is as in (18), s is the initial time in (1), and ν is as in (A1). In particular,
if Ψ(s, ν) ≥ γ2 − γ1, then this importance sampling scheme performs better than the standard Monte Carlo
estimator in the sense that it admits an expansion of the form (20) such that γ̂ ≤ 2γ1 − γ2 (recalling here
(19)).
Moreover, if Ψ(s, ν) = γ1, then this importance sampling scheme is log-efficient in the sense of Definition
1.4.

As we discussed in Section 1, [79] provides sufficient conditions in terms of a concept of “uniform log-efficiency”
for the log-efficient importance sampling estimator in their small-noise setting to have vanishing relative error
(Definition 1.5). It is not immediately clear how to verify such conditions in our setting; their proof relies
heavily on local regularity results from the theory of (standard) first-order HJB equations which we cannot
directly apply to our infinite-dimensional HJB equations. In [75], the author takes a different approach,
where an asymptotic expansion in the small-noise parameter of the HJB equation associated to the Doob
h-transform (see (32) herein) is used to establish that their log-efficient importance sampling estimator in
fact has vanishing relative error. This is done by establishing an expression of the form (21), where the ak’s
are expressed in terms of solutions to different PDEs. Vanishing relative error can then be established by
showing a0 = a1 = 0.
In order to carry out a similar analysis here, we will likewise derive PDEs whose solutions can be used to carry
out an asymptotic expansion analysis in Theorem 2.5. Firstly, let ϕ0 denote a classical C1,2

b ([0, T ]×P2(Rd))
solution to (23). Using the control from (33) with ϕ0 in the place of Ψ, we obtain an expression for the
numerator of R(δ̂N ) from (17), which results from applying Girsanov’s theorem, the Feynman-Kac’s formula,
and a log transformation. Concretely, letting ΞN satisfy:

∂tΞ
N (t, ν) +

∫
Rd

[b(z, ν)− σ(z, ν)v(t, ν, z)] · ∂µΞN (t, ν)[z] +
1

2
σσ⊤(z, ν) : ∂z∂µΞ

N (t, ν)[z]ν(dz)

−
∫
Rd

1

2
|σ⊤(z, ν)∂µΞ

N (t, ν)[z]|2 + |v(t, ν, z)|2ν(dz)

+
1

2N

∫
Rd

σσ⊤(z, ν) : ∂2µΞ
N (t, ν)[z, z]ν(dz) = 0, t ∈ [0, T ), ν ∈ P2(Rd),

ΞN (T, ν) = 2G(ν), ν ∈ P2(Rd),

v(t, ν, x) = −σ⊤(x, ν)∂µϕ0(t, ν)[x], t ∈ [0, T ), x ∈ Rd, ν ∈ P2(Rd),

(34)
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we have

ΞN (t, µN
x ) = − 1

N
logE

[
exp(−2NG(µ̂N,t,x

T ))
N∏
i=1

(Zi,N,t,x)2
]
, t ∈ [0, T ], x ∈ RdN .

Note that this corresponds to Equation (3.3) in the small-noise setting of [75].
Expanding ΞN (t, µ) = ξ0(t, µ) + o(1), we expect that ξ0 solves the “zero viscosity HJB equation” obtained
by setting the final O(1/N) term in (34) equal to 0, that is:

∂tξ0(t, µ) +

∫
Rd

[b(z, µ)− σ(z, µ)v(t, µ, z)] · ∂µξ0(t, µ)[z]

+
1

2
σσ⊤(z, µ) : ∂z∂µξ0(t, µ)[z]µ(dz)−

∫
Rd

1

2
|σ⊤(z, µ)∂µξ0(t, µ)[z]|2

+ |σ⊤(z, µ)∂µϕ0(t, µ)[z]|2µ(dz) = 0, t ∈ [0, T ), µ ∈ P2(Rd),

ξ0(T, µ) = 2G(µ), µ ∈ P2(Rd),

(35)

where v is as in (34). Note that, by the same logic, expanding ΦN from (32) as ΦN (t, µ) = ϕ0(t, µ) + o(1),
we expect that ϕ0(t, µ) solves (23).
We will also consider higher order terms in the following series expansions of ΦN from (32) and ΞN from
(34):

ΦN (t, µ) = ϕ0(t, µ) +
1

N
ϕ1(t, µ) +

1

N2
ϕ2(t, µ) + ...+

1

Nk
ϕk(t, µ) + o(1/Nk),(36)

and

ΞN (t, µ) = ξ0(t, µ) +
1

N
ξ1(t, µ) +

1

N2
ξ2(t, µ) + ...+

1

Nk
ξk(t, µ) + o(1/Nk)(37)

for some k ∈ N and all t ∈ [0, T ], µ ∈ P2(Rd).
Matching terms of the same order upon inserting this ansatz into the equations for ΦN and ΞN , we expect
that

∂tϕk(t, µ) +

∫
Rd

b(z, µ) · ∂µϕk(t, µ)[z] +
1

2
σσ⊤(z, µ) : ∂z∂µϕk(t, µ)[z]µ(dz)

+

∫
Rd

1

2
σσ⊤(z, µ) : ∂2µϕk−1(t, µ)[z, z]µ(dz)

−
∫
Rd

∑
i+j=k,0≤i<j

⟨σ⊤(z, µ)∂µϕi(t, µ)[z], σ
⊤(z, µ)∂µϕj(t, µ)[z]⟩

+
1

2
|σ⊤(z, µ)∂µϕk/2(t, µ)[z]|21k/2∈Nµ(dz) = 0, µ ∈ P2(Rd), t ∈ [0, T ),

ϕk(T, µ) = 0, µ ∈ P2(Rd)

(38)

and

∂tξk(t, µ) +

∫
Rd

[
b(z, µ) + σ(z, µ)σ⊤(z, µ)∂µϕ0(t, µ)[z]

]
· ∂µξk(t, µ)[z]

+
1

2
σσ⊤(z, µ) : ∂z∂µξk(t, µ)[z]µ(dz)

+

∫
Rd

1

2
σσ⊤(z, µ) : ∂2µξk−1(t, µ)[z, z]µ(dz)

−
∫
Rd

∑
i+j=k,0≤i<j

⟨σ⊤(z, µ)∂µξi(t, µ)[z], σ
⊤(z, µ)∂µξj(t, µ)[z]⟩

+
1

2
|σ⊤(z, µ)∂µξk/2(t, µ)[z]|21k/2∈Nµ(dz) = 0, µ ∈ P2(Rd), t ∈ [0, T ),

ξk(T, µ) = 0, µ ∈ P2(Rd)

(39)

for all k ≥ 1. Note that these correspond to the PDEs found in Theorem 3.3 of [75].
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Both of these equations fit the form of Equation (1.2) in [23], so under sufficient regularity assumptions we
would have by Theorem 3.8 therein that for k ≥ 1:

ϕk(t, µ) = E
[∫ T

t

1

2
σσ⊤(Zt,µ

τ ,L(Zt,µ
τ )) : ∂2µϕk−1(τ,L(Zt,µ

τ ))[Zt,µ
τ , Zt,µ

τ ]

−
∑

i+j=k,0≤i<j<k

⟨σ⊤(Zt,µ
τ ,L(Zt,µ

τ ))∂µϕi(τ,L(Zt,µ
τ ))[Zt,µ

τ ], σ⊤(Zt,µ
τ ,L(Zt,µ

τ ))∂µϕj(τ,L(Zt,µ
τ ))[Zt,µ

τ ]⟩

− 1

2
|σ⊤(Zt,µ

τ ,L(Zt,µ
τ ))∂µϕk/2(τ,L(Zt,µ

τ ))[Zt,µ
τ ]|21k/2∈Ndτ

]
,

dZt,µ
τ =

[
b(Zt,µ

τ ,L(Zt,µ
τ ))− σσ⊤(Zt,µ

τ ,L(Zt,µ
τ ))∂µϕ0(τ,L(Zt,µ

τ ))[Zt,µ
τ ]

]
dτ + σ(Zt,µ

τ ,L(Zt,µ
τ ))dWτ , Z

t,µ
t ∼ µ

(40)

and

ξk(t, µ) = E
[∫ T

t

1

2
σσ⊤(Y t,µ

τ ,L(Y t,µ
τ )) : ∂2µξk−1(τ,L(Y t,µ

τ ))[Y t,µ
τ , Y t,µ

τ ]

−
∑

i+j=k,0≤i<j<k

⟨σ⊤(Y t,µ
τ ,L(Y t,µ

τ ))∂µξi(τ,L(Y t,µ
τ ))[Y t,µ

τ ],

σ⊤(Y t,µ
τ ,L(Y t,µ

τ ))∂µξj(τ,L(Y t,µ
τ ))[Y t,µ

τ ]⟩

− 1

2
|σ⊤(Y t,µ

τ ,L(Y t,µ
τ ))∂µξk/2(τ,L(Y t,µ

τ ))[Y t,µ
τ ]|21k/2∈Ndτ

]
dY t,µ

τ =

[
b(Y t,µ

τ ,L(Y t,µ
τ )) + σσ⊤(Y t,µ

τ ,L(Y t,µ
τ ))∂µϕ0(τ,L(Y t,µ

τ ))[Y t,µ
τ ],

− σσ⊤(Y t,µ
τ ,L(Y t,µ

τ ))∂µξ0(τ,L(Y t,µ
τ ))[Y t,µ

τ ]

]
dτ + σ(Y t,µ

τ ,L(Y t,µ
τ ))dWτ , Y

t,µ
t ∼ µ.

(41)

As we will see, the ak’s from (21) will be realized in terms of the solutions to the PDEs (38) and (39) via
the representation:

ak = 2ϕk(s, µ
N
y )− ξk(s, µ

N
y ), k ∈ N,

where s ∈ [0, T ] is the initial time for the particles (1), y ∈ ⊕∞
i=1Rd encodes their initial conditions, and we

use the empirical measure notation from the end of Section 1.1. See the proof of Theorem 2.4 in Subsection
5.2 for more details.
In order to generate a single realization of µN,s,y, we need to simulate a system of N SDEs. Thus, with
R(δ̂N ) as in (17), the quantity

T (N) := N [R(δ̂N )− 1],(42)

is proportional to the maximum number of particles which need to be simulated (and therefore the computa-
tional work required) in order for the relative error from (16) to be below a certain threshold. Put explicitly,
to achieve a certain relative error c, we require at least R(δ̂N )−1

c2 samples of (µ̂N,s,y, Z1,N,s,y..., ZN,N,s,y).
Therefore, the total number of particles simulated will need to be at least T (N)/c2. Note, of course, that
even if R(δ̂N ) = 1, that we will need to simulate at least N particles to get a realization of µ̂N,s,y.
This motivates us to go beyond studying ϕ0, ξ0, ϕ1, and ξ1 in order to prove a0 = a1 = 0 in (21), and to
further study a2. We find that if we assume third-order expansions of the form (36) and (37) that have
sufficient regularity properties, then not only does the relative error vanish, but it vanishes fast enough that
T (N) is bounded as N → ∞. This further suggests that the relative error of our importance sampling
scheme is expected to vanish like O(1/

√
N) as N → ∞ if the coefficients of the interacting particle system

(1) and the target function G from (3) are sufficiently regular.

Theorem 2.5. Let Assumption 2.3 and Assumption 1.1 (A1)-(A4) hold. Assume also that |b(x, µ)|2 ≤
C(1 + |x|2 +

∫
|z|2µ(dz)) for all x ∈ Rd and µ ∈ P2(Rd). Consider ΦN ,ΞN : [0, T ] × P2(Rd) → R from

(32) and (34) respectively. Suppose these are unique C1,2
b ([0, T ]×P2(Rd)) solutions admitting expansions of
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the form (36) and (37) respectively up to k = 1, and that ϕ0, ξ0, ϕ1, ξ1, are the unique C1,2
b ([0, T ]× P2(Rd))

solutions to (23),(35),(38),(39) with k = 1 respectively, with ϕ1, ξ1 admitting the stochastic representations
(40),(41) with k = 1 respectively. Then the importance sampling scheme from Theorem 2.4 with ϕ0 in the
place of Ψ has vanishing relative error in the sense of Definition 1.5.
If further we assume expansions of the form (36) and (37) up to k = 2 and that ϕ2, ξ2 are the unique
C1,2

b ([0, T ] × P2(Rd)) solutions to (38),(39) with k = 2 respectively admitting the representations (40),(41)
with k = 2 respectively, then

lim
N→∞

T (N) = E
[∫ T

s

|σ⊤(X̂u,s,ν
t ,L(X̂u,s,ν

t ))∂µϕ1(t,L(X̂u,s,ν
t ))[X̂u,s,ν

t ]|2dt
]

(43)

where X̂u,s,ν is as in (8) with u(t) = −σ⊤(X̂u,s,ν
t ,L(X̂u,s,ν

t ))∂µϕ0(t,L(X̂u,s,ν
t ))[X̂u,s,ν

t ], t ∈ [s, T ].

Remark 2.6. The results of Theorems 2.4 and 2.5 can easily be extended to the situation where we modify
the desired expectation (3) to

E

exp
−N

[
G(µN,s,y

T ) +

∫ T

s

f(µN,s,y
t )dt

]


for sufficiently regular f : P2(Rd) → R. In this case one takes F (µ) = G(µT ) +
∫ T

s
f(µN,s,y

t )dt in (9) and
modifies H0 from (22) to

H0(µ, p,Γ) = −
∫
Rd

b(x, µ) · p(x)− 1

2
p(x) · [σσ⊤(x, µ)p(x)] +

1

2
σσ⊤(x, µ) : Γ(x)µ(dx)− f(µ).

One should also be able to extend these methods in order to design importance sampling schemes for the
probabilities of rare events. That is, rather than estimating (3), one may want to estimate

P(µN,s,y
T ∈ A)

for some A ⊂ P(Rd). This formally corresponds to taking

G(µ) =

{
+∞, µ ∈ Ac

0, µ ∈ A

in (3) and (23). It is well known that this extension can be made in the small-noise setting — see, e.g.,
[36] Proposition 4.2. We refrain from performing this analysis here, but we plan to extend the methods
presented to not only probabilities at finite time, but also exit probabilities and mean first passage times in
future work. Thanks to the many parallels to the small-noise setting, we expect that designing importance
sampling schemes related to exit events will require the study of HJB equations of the form (23) restricted
to some subset of the space P2(Rd) with boundary conditions (compare with, e.g. Equations (2.4)-(2.5) in
[35]). Such equations are already beginning to be studied in the context of optimal stopping problems for
McKean-Vlasov equations — see, e.g., [76].

Remark 2.7. The additional assumption that b has at most linear growth in the statement of Theorem 2.5
ensures that the unique solutions of the Feynman-Kac equations (26) and (62) are given by their appropriate
stochastic representations, i.e. the denominator and numerator of R(δ̂N ) from (17), respectively. This can
of course hold under weaker conditions.
Moreover, although we do not necessarily assume (A5) for Theorem 2.5, it is unlikely that there are situations
in which the existence and uniqueness of classical solutions to the HJB equations (32) and (34) hold for which
(A5) doesn’t hold. In particular, the required assumptions for Theorem 2.5 should be much stricter than
those imposed for Theorems 1.2 and 2.4.
The unique stochastic representations assumed for ϕk, ξk, k = 1, 2 solving the PDEs (38) and (39) are known
to hold under fairly weak assumptions — see Theorem 3.8 in [23]. Moreover, these representations for the
prefactor terms in the expansion yield parallels to those found in the small-noise setting — see the discussion
towards the end of Subsection 5.2. The reason for the assumptions in Theorem 2.5 being stated as such is
that little is available in the current literature in terms of sufficient conditions for existence and uniqueness
of classical solutions to (23), let alone on obtaining the desired formal expansions in N . Indeed, even the
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convergence of ΦN to ϕ0 (corresponding to the first-order expansion) has only been studied in the case where
the particles have common noise — see [56].
The assumptions made in terms of this expansion essentially mimic the conclusion of Theorem 3.3 in [75],
which is a consequence of Theorem 5.1 in [46]. We expect that analogous conditions to those of these
theorems should be able to be found to be sufficient for the expansion analysis of Theorem 2.5 to go through.
This is an interesting avenue for future research.
More generally, on p. 1781-1782 of [79], it is discussed how if a discontinuity of their optimal control is
anything more exotic than a single curve, they are unable to prove log-efficiency. In general the interplay
between regularity of solutions to the zero-viscosity HJB equation and the properties of the relative error of
the importance sampling scheme is an interesting open problem even in the small-noise setting, though there
there is a wealth of numerical evidence suggesting that in many situations importance sampling schemes
derived from non-differentiable subsolutions of the zero-viscosity HJB equation may have bounded or even
vanishing relative error.
We contribute to these numerical findings in the context of weakly interacting diffusions in the numerical
examples of Subsection 4.2, where we construct subsolutions for modifications of the linear-quadratic regime
discussed in Section 3 such that the corresponding optimal controls (33) are discontinuous. We find that,
depending on the nature of the discontinuity, the relative error of our importance sampling scheme can be
expected to grow sublinearly, or even vanish — see Tables 3 and 2, respectively.

3. A Class of Examples: The Linear-Quadratic Regime

We now consider a class of HJB equations of the form (23) for which explicit solutions are known. Consider
the setting where

b(x, µ) = b0 +Bx+ B̄

∫
Rd

zµ(dz),

σ(x, µ) = σ,

G(µ) =

∫
Rd

z⊤P2z + p1 · zµ(dz) +
[∫

Rd

zµ(dz)

]⊤
P̄2

∫
Rd

zµ(dz) + p2

(44)

for b0, p1 ∈ Rd, σ ∈ Rd×1 (so m = 1), p2 ∈ R, and P2, B, B̄, P̄2 ∈ Rd×d such that P2, P̄2 are symmetric and
positive semidefinite. By Section 4 of [73], the unique classical solution to (23) is given by

Ψ(t, µ) =

∫
Rd

z⊤Λ(t)zµ(dz) +

[∫
Rd

zµ(dz)

]⊤
[Γ(t)− Λ(t)]

∫
Rd

zµ(dz) + γ(t) ·
∫
Rd

zµ(dz) + χ(t),

where:
Λ̇(t) + Λ(t)B +B⊤Λ(t)− 2Λ(t)σσ⊤Λ⊤(t) = 0,Λ(T ) = P2,

Γ̇(t) + Γ(t)[B + B̄] + [B + B̄]⊤Γ(t)− 2Γ(t)σσ⊤Γ⊤(t) = 0,Γ(T ) = P2 + P̄2,

γ̇(t) + [B + B̄]⊤γ(t)− 2Γ(t)σσ⊤γ(t) + 2Γ(t)b0 = 0, γ(T ) = p1,

χ̇(t)− 1

2
γ⊤(t)σσ⊤γ(t) + γ(t) · b0 + σ⊤Λ(t)σ = 0, χ(T ) = p2.

(45)

The above Riccati equations admit unique solutions γ ∈ Rd, χ ∈ R,Λ,Γ ∈ Rd×d such that Λ,Γ are symmetric
and positive semidefinite for all t.
Then, using:

∂µΨ(t, µ)[z] = 2Λ(t)z + 2[Γ(t)− Λ(t)]

∫
Rd

zµ(dz) + γ(t)

the controls from (33) in Theorem 2.4 are given by

vNi (t, x1, ..., xN ) = −σ⊤∂µΨ(t, µN
x )[xi]

= −σ⊤
[
2Λ(t)xi + 2[Γ(t)− Λ(t)]

∫
Rd

zµN
x (dz) + γ(t)

]
.

(46)
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Note that using Remark 5.2 in [5], we can extend to the case where m > 1, though we refrain from doing so
for simplicity. We could also allow for time dependence in the coefficients, but for the sake of simplicity we
do not make this extension here.
Despite the fact that G from (44) does not satisfy the Assumption 2.3 (B1), as we will see in Remark 3.6,
the controls (46) yield not only the log-efficiency proved in Theorem 1.4, but in fact zero relative error for
all N .
Our first example from the linear-quadratic regime is chosen to have symmetries such that the relative error
of the standard Monte Carlo estimator δN and of the importance sampling estimator δ̂N (14) with the choice
of control (46) are both easily computable.

Example 3.1. Let G(µ) =
∫
R xµ(dx), d = m = 1, and

Xi,N,s,y
t = yi +

∫ t

s

Xi,N,s,y
τ − 1

N

N∑
j=1

Xj,N,s,y
τ dτ + σW i

t .

Symmetries in this problem allow us to calculate the target expectation (3), as well as the Monte Carlo
relative error ρ(δN ) and importance sampling relative error ρ(δ̂N ) (16), explicitly.
We have

E
[
exp(−NG(µN

T ))

]
= E

[
exp

(
−

N∑
i=1

{
yi +

∫ T

s

Xi,N,s,y
t − 1

N

N∑
j=1

Xj,N,s,y
t dt+ σW i

T

})]

= exp

(
−

N∑
i=1

yi

)
E
[
exp

(
−σW 1

T

)]N

= exp

(
−

N∑
i=1

yi

)
exp(Nσ2(T − s)/2),

and similarly:

E
[
exp(−2NG(µN

T ))

]
= E

[
exp

(
−2

N∑
i=1

{
yi +

∫ T

s

Xi,N,s,y
t − 1

N

N∑
j=1

Xj,N,s,y
t dt+ σW i

T

})]

= exp

(
−2

N∑
i=1

yi

)
exp(2Nσ2(T − s)),

where in the last step we have used the formula for the moment generating function of a normal random
variable. Thus:

ρ(δN ) =
1√
M

√
exp(2Nσ2(T − s))

exp(Nσ2(T − s))
− 1 =

1√
M

√
exp(Nσ2(T − s))− 1.

Now, to construct the control (46) for our importance sampling scheme, we have that in the setup of (44),
b0 = P2 = P̄2 = p̄1 = p2 = 0, B = p1 = 1, and B̄ = −1. Thus the solution to the system of ODEs (45) is
Λ(t) = Γ(t) = 0, γ(t) = 1, and χ(t) = 1

2σ
2(t− T ), and so the solution to the HJB equation (23) is

Ψ(t, µ) =

∫
R
xµ(dx) +

1

2
σ2(t− T ).

Our control from Theorem 2.4 is given by

v̄(s, x, µ) ≡ −σ.
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Then, to compute the relative error of the importance sampling scheme, we have

ρ(δ̂N ) =
1√
M

√√√√√√√√
E
[
exp(−2

∑N
i=1 X̂

i,N,s,y
T )

∏N
i=1 exp

(
2σŴ i

T −
∫ T

s
σ2dt

)]
E
[
exp(−NG(µN ))

]2 − 1

=
1√
M

√√√√√√√√
E
[
exp(−2

∑N
i=1(X̂

i,N,s,y
T − σŴ i

T ))

]
exp

(
−Nσ2(T − s)

)
E
[
exp(−NG(µN

T ))

]2 − 1

where

X̂i,N,s,y
t = yi +

∫ t

s

X̂i,N,s,y
τ − 1

N

N∑
j=1

X̂j,N,s,y
τ − σ2dτ + σŴ i

t .

Continuing, we have

ρ(δ̂N ) =
1√
M

√√√√√√√√
E
[
exp

(
−2
∑N

i=1

{
yi +

∫ T

s
X̂i,N,s,y

t − 1
N

∑N
j=1 X̂

j,N,s,y
t − σ2dt

})]
exp

(
−Nσ2(T − s)

)
E
[
exp(−NG(µN

T ))

]2 − 1

=
1√
M

√√√√√√√√
E
[
exp

(
−2
∑N

i=1(yi − (T − s)σ2)

)]
exp

(
−Nσ2(T − s)

)
E
[
exp(−NG(µN

T ))

]2 − 1

=
1√
M

√√√√√√√
exp

(
−2
∑N

i=1 yi

)
exp

(
2Nσ2(T − s)

)
exp

(
−Nσ2(T − s)

)
exp

(
−2
∑N

i=1 yi

)
exp(Nσ2(T − s))

− 1

= 0.

This shows that where the Monte Carlo estimator has relative error which increases exponentially as N → ∞
or T → ∞, our importance sampling estimator actually has zero variance for all N and T .

The reader familiar with small-noise importance sampling schemes for SDEs may realize at this point that
the controls computed in Example 3.1 can also be derived using the classical small-noise theory. In that vein,
we make the following remark relating a special case of our importance sampling method to the classical
small-noise importance sampling scheme:

Remark 3.2. In the linear-quadratic regime, Y N,s,y
t = 1

N

∑N
i=1X

i,N,s,y satisfies the small-noise SDE:

dY N,s,y
t = [b0 + (B + B̄)Y N,s,y

t ]dt+
σ√
N
dWN

t ,

Y N,s,y
s =

1

N

N∑
i=1

yi,

where for each N , WN is the standard one-dimensional Brownian motion WN
t = 1√

N

∑N
i=1W

i
t . Thus, when

G(µ) = g(
∫
Rd xµ(dx)) for some g : Rd → Rd, estimating functionals of the form

E[exp(−NG(µN,s,y
T ))] = E[exp(−Ng(Y N,s,y

T ))]
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can also be done using standard small-noise importance sampling for SDEs, i.e., the appropriate control is
v̂(t, y) = −σ⊤∂yψ(t, y) where ψ satisfies the standard first-order HJB equation:

−∂tψ(t, y)− [b0 + (B + B̄)y] · ∂yψ(t, y) +
1

2
|σ⊤∂yψ(t, y)|2 = 0, y ∈ Rd, t ∈ [0, T ),

ψ(T, y) = g(y), y ∈ Rd
(47)

— see, e.g., equations (1.12) and (2.11) in [79]. The resulting importance sampling estimator is given by

δ̂N =
1

M

M∑
j=1

exp(−Ng(Ŷ N,s,y,j
T )) exp

(
−
√
N

∫ T

s

v̂(t, Ŷ N,s,y,j
t ) · dŴN

t − N

2

∫ T

s

|v̂(t, Ŷ N,s,y,j
t )|2dt

)
(48)

where Ŷ N,s,y,j
t denotes the j’th realization of Ŷ N,s,y

t solving

dŶ N,s,y
t = [b0 + (B + B̄)Ŷ N,s,y

t + σv̂(t, Ŷ N,s,y
t )]dt+

σ√
N
dŴN

t , Ŷ N,s,y
s =

1

N

N∑
i=1

yi.

In our linear-quadratic regime (44), the choice of parameters P2 = 0, p1 = [p, ..., p]⊤ (so that g(y) = py +
y⊤P̄2y + p2) is therefore covered by the small-noise theory.
To show that the two importance sampling estimators (48) and (14) are always identical in this case, we
make the ansatz Ψ(t, ν) = ψ

(
t,
∫
Rd zν(dz)

)
. Then ∂µΨ(t, ν)[z] = ∂yψ

(
t,
∫
Rd xν(dx)

)
, ∂z∂µΨ(t, ν)[z] ≡ 0,

and (23) is given by:

−∂tψ
(
t,

∫
Rd

zν(dz)

)
−
(
b0 + [B + B̄]

∫
Rd

zν(dz)

)
· ∂yψ

(
t,

∫
Rd

zν(dz)

)
+

1

2

∣∣∣∣∣σ⊤∂yψ

(
t,

∫
Rd

zν(dz)

)∣∣∣∣∣
2

= 0,

t ∈ [0, T ), ν ∈ P2(Rd),

ψ

(
T,

∫
Rd

zν(dz)

)
= g

(∫
Rd

zν(dz)

)
, ν ∈ P2(Rd),

which we see holds for any ν by substituting y =
∫
Rd zν(dz) into (47). Then the controls from (33) in

Theorem 2.4 are given by

vNi (t, x1, ..., xN ) = −σ⊤∂yψ

t, 1
N

N∑
i=1

xi

 , ∀i ∈ {1, ..., N}

and the importance sampling estimator (14) is given by

δ̂N =
1

M

M∑
j=1

exp

−Ng

 1

N

N∑
j=1

X̂j,N,s,y
t


 exp

( N∑
i=1

{∫ T

s

σ⊤∂yψ

t, 1
N

N∑
j=1

X̂j,N,s,y
t

 · dŴ i
t

− 1

2

∫ T

s

∣∣∣∣∣∣σ⊤∂yψ

t, 1
N

N∑
j=1

X̂j,N,s,y
t

∣∣∣∣∣∣
2

dt

})

=
1

M

N∑
j=1

exp(−Ng(Ŷ N,s,y,j
T )) exp

(
−
√
N

∫ T

s

v̂(t, Ŷ N,s,y,j
t ) · dŴN

t − N

2

∫ T

s

|v̂(t, Ŷ N,s,y,j
t )|2dt

)
,

where in the first line above

dX̂i,N,s,y
t =

b0 +BX̂i,N,s,y
t +

1

N
B̄

N∑
j=1

X̂j,N,s,y
t − σσ⊤∂yψ

t, 1
N

N∑
j=1

X̂j,N,s,y
t


 dt+ σdŴ i

t ,

X̂i,N,s,y
s = yi.
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Note, however, that not all examples in the linear-quadratic case (44) can be framed as a small-noise
SDE problem. For instance, even when d = 1, P2 ̸= 0, one needs to consider both Y N,s,y and Ỹ N,s,y

t =
1
N

∑N
i=1(X

i,N,s,y
t )2. For the latter, the martingale term will be 2σ

N

∑N
i=1

∫ T

s
Xi,N,s,y

t dW i
t , which cannot be

written in terms of WN .

Our next example 3.3 shows that our importance sampling scheme can yield zero relative error even in the
situation where the particles from (1) are non-interacting, and hence IID. Again, the fact that the relative
error of the importance sampling scheme is zero can be viewed as the consequence of a more general principle
discussed in Remark 3.4.

Example 3.3. Consider now the system:

Xi,N,y
t = y −

∫ t

0

Xi,N,y
s +W i

t

where d = m = 1, and we fix s = 0 and suppress it in the notation for simplicity. We are now dealing with
IID diffusions, that is, there is no interaction between the particles.
Suppose we take G(µ) =

∫
R x

2µ(dx). Then in the notation of (44), P̄2 = p̄1 = p1 = B̄ = b0 = p2 = 0,
σ = P2 = 1, B = −1 and yi = y for all i ∈ N. Using the known density of the Ornstein–Uhlenbeck process
X1,N,y

T , we get:

E
[
exp(−NG(µN,y

T ))
]
= E

exp
−

N∑
i=1

(Xi,N,y
T )2




= E
[
exp

(
−(X1,N,y

T )2
)]N

= exp
(
Ny2/(1− 2e2T )

)
(2− e−2T )−N/2

and similarly

E
[
exp

(
−2NG(µN,y

T )
)]

= exp
(
2Ny2/(2− 3e2T )

)
(3− 2e−2T )−N/2.

Then:

ρ(δN ) =
1√
M

√
exp

(
2Ny2

[
(2− 3e2T )−1 − (1− 2e2T )−1

])( (2− e−2T )2

3− 2e−2T

)N/2

− 1.

Meanwhile, the optimal control can be found from solving the ODEs (45) to get Λ(t) = Γ(t) = e2t

2e2T−e2t
, γ =

0, χ(t) = log(
√
2− e2t−2T ), so the control (46) is given by:

vNi (t, x1, ..., xN ) =
2e2t

e2t − 2e2T
xi.

Then the relative error ρ(δ̂N ) is given by

1√
M

√√√√√√√√
E
[
exp

(
−2
∑N

i=1(X̂
i,N,y
T )2

)∏N
i=1 exp

(
−4
∫ T

0
e2t

e2t−2e2T
X̂i,N,y

t dŴ i
t − 4

∫ T

0
e4t

(e2t−2e2T )2
(X̂i,N,y

t )2dt

)]
E
[
exp(−NG(µN,y

T ))

]2 − 1

=
1√
M

√√√√√√√√
E
[
exp

(
−2
∑N

i=1(X̂
i,N,y
T )2 + 2

∫ T

0
e2t

e2t−2e2T
X̂i,N,y

t dŴ i
t + 2

∫ T

0
e4t

(e2t−2e2T )2
(X̂i,N,y

t )2dt

)]
E
[
exp(−NG(µN ))

]2 − 1
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where

X̂i,N,y
t = y +

∫ t

0

[
2e2s

e2s − 2e2T
− 1

]
X̂i,N,y

s ds+ Ŵ i
t .

By Itô’s formula, we have

(X̂i,N,y
t )2

e2t

e2t − 2e2T

= y2
1

1− 2e2T
+ 2

∫ t

0

e4s

(e2s − 2e2T )2
(X̂i,N,y

s )2ds+ 2

∫ t

0

X̂i,N,y
s

e2s

e2s − 2e2T
dŴ i

s +
1

2
log

(
2e2T − e2t

2e2T − 1

)
.

Setting t = T , we get

(X̂i,N,y
T )2 + 2

∫ T

0

e4s

(e2s − 2e2T )2
(X̂i,N,y

s )2ds+ 2

∫ T

0

X̂i,N,y
s

e2s

e2s − 2e2T
dŴ i

s = −y2 1

1− 2e2T
− 1

2
log

(
e2T

2e2T − 1

)
,

so, continuing:

ρ(δ̂N ) =
1√
M

√√√√√exp

(
2N

1−2e2T
y2
)

e2NT

(2e2T−1)N

exp
(
2Ny2/(1− 2e2T )

) (2− e−2T )N − 1 = 0.

This shows that in this situation as well, while the standard Monte Carlo method yields a relative error
which grows exponentially in N for fixed y ∈ R, T > 0, and grows exponentially in |y| for fixed N ∈ N,
T > 0, our importance sampling scheme has zero error.
In this trivial case, the controlled particles are IID, so for both the importance sampling scheme and standard
Monte Carlo we only need to simulate one particle (making the analysis in N a bit useless in practice, but
the analysis in |y| still holds true when N = 1).

Remark 3.4. This last example can be viewed through the following lens. Suppose that b(x, µ) = b(x), σ(x, µ) =
σ(x) (so that the particles are IID when given the same initial condition) and that G(µ) = ⟨g, µ⟩ for some
g : Rd → R. Making the ansatz Ψ(t, µ) = ⟨ψ(t, ·), µ⟩ in (23), we get:

⟨−ψ̇(t, ·)− b(·) · ∂xψ(t, ·) +
1

2
|σ⊤(·)∂xψ(t, ·)|2 −

1

2
σσ⊤(·) : ∂2xψ(t, ·), µ⟩ = 0, t ∈ [0, T ), µ ∈ P2(Rd),

⟨ψ(T, ·), µ⟩ = ⟨g(·), µ⟩, µ ∈ P2(Rd),

which of course is satisfied if we have a unique solution ψ to

−ψ̇(t, x)− b(x) · ∂xψ(t, x) +
1

2
|σ⊤(x)∂xψ(t, x)|2 −

1

2
σσ⊤(x) : ∂2xψ(t, x) = 0, t ∈ [0, T ), x ∈ Rd,(49)

ψ(T, x) = g(x), x ∈ Rd.

For a related discussion, see Remark 3.3 in [73]. Equation (49) is the HJB equation corresponding to the
zero-variance estimator resulting from the Doob h-transform in the single particle setting — see Equation
(2.7) in [79]. It can thus be seen, as in, e.g., [79] pp. 1778-1779, that letting v(t, x) = −σ⊤(x)∂xψ(t, x),

E

exp(−2g(X̂s,y
T )
)
exp

(
−2

∫ T

s

v(t, X̂s,y
t ) · dŴt −

∫ T

0

|v(t, X̂s,y
t )|2dt

) = E[exp(−g(Xs,y
T ))]2

where

dXs,y
t = b(Xs,y

t )dt+ σ(Xs,y
t )dWt, X

s,y
s = y

and

dX̂s,y
t = [b(X̂s,y

t ) + σv(t, X̂s,y
t )]dt+ σ(X̂s,y

t )dŴt, X̂
s,y
s = y.

Here y ∈ Rd and W, Ŵ are standard m-dimensional Brownian motions initialized at Ws = Ŵs = 0. Then
we have, for µN,s,y

T , µ̂N,s,y
T the empirical measure on IID copies of solutions Xs,y

T ,X̂s,y
T respectively (which we

denote byXi,s,y
T ,X̂i,s,y

T , i ∈ N and byW i, Ŵ i their driving Brownian motions) and using the controls from (33)
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in Theorem 2.4 are given by vNi (t, x1, x2, ..., xN ) = −σ⊤(xi)∂µΨ(t, µN
x )[xi] = −σ⊤(xi)∂xψ(t, xi) = v(t, xi),

the importance sampling relative error from (17) satisfies:

E
[
exp

(
−2NG(µ̂N,s,y

T )
)∏N

i=1(Z
i,N,s,y)2

]
E
[
exp

(
−NG(µN,s,y

T )
)]2 − 1

=

E
[
exp

(∑N
i=1 −2g(X̂i,s,y

T )− 2
∫ T

s
v(t, X̂i,s,y

t )dŴ i
t −

∫ T

s
|v(t, X̂i,s,y

t )|2dt
)]

E
[
exp(−

∑N
i=1 g(X

i,s,y
T ))

]2 − 1

=

E

exp(−2g(X̂s,y
T )) exp(−2

∫ T

s

v(t, X̂s,y
t ) · dŴt −

∫ T

s

|v(t, X̂s,y
t )|2dt

) · E[exp
(
−g(Xs,y

T )
)
]−2


N

− 1

= 1− 1

= 0.

Thus our importance sampling scheme yields an estimator with zero relative error in the setting of non-
interacting diffusions and linear G.
This also shows that in the non-interacting regime, even when G is linear, solving (23) is as difficult as
solving for the exact (non-zero viscosity) solution to the HJB equation associated with the importance
sampling scheme for one particle (49). We take this remark as motivation to construct importance sampling
schemes for the empirical measure of weakly interacting diffusions based on the joint small-noise and large
N limit large deviation principles derived in [72] and [14]. We expect that using such a scheme, in the non-
interacting and linear G regime, the small noise importance sampling scheme of, e.g., [79] will be recovered,
and solving the resulting first-order HJB equation on Wasserstein space will be equivalent to solving the
standard zero-viscosity HJB equation found as Equation (2.10) therein.

Remark 3.5. Note, despite the framework of our linear-quadratic example and the discussion in Remarks
3.2 and 3.4, that in Theorem 2.4, we have the freedom to choose G(µ) to be arbitrarily non-linear so long as
it is sufficiently smooth to have a classical subsolution in the sense of Definition (2.1). That is, it need not
take the form G(µ) = ⟨g, µ⟩ or even G(µ) = g1(⟨g2, µ⟩). Also, as evidenced in the examples of Subsection
4.2, we expect that even if G is not smooth, so that only a (weak) subsolution to (23) can be recovered,
our importance sampling scheme can be expected to still yield sub-exponentially growing (log-efficient –see
Definition 1.4), or even vanishing relative error (Definition 1.5) — see Tables 3 and 2, respectively.
Moreover, our importance sampling scheme treats the empirical measure of IID diffusions and of weakly
interacting particles uniformly. The former case can in some sense be seen as a “Sanov’s Theorem” type
generalization of the “Cramér’s Theorem” type results found in [37], since using the ideas outlined in that
paper would essentially correspond to taking independent particles and G(µ) = g(

∫
Rd zµ(dz)).

We end this section by observing that the above examples are not anomalous within the linear-quadratic
setting. Namely, the exact desired expectation (3), and hence the relative error of the standard Monte Carlo
estimator, can always easily be found by solving a system of ODEs. Moreover, from this we can make the
observation that the relative error of the importance sampling estimator with control (46) will in fact always
have zero relative error.
Note that in the linear-quadratic regime, the right hand side of prelimit representation from (12) in Propo-
sition 1.3 with b̃ = b and F (µ) = G(µT ) takes the form of a standard linear-quadratic stochastic control
problem. We see then that

− 1

N
logE[exp

(
−NG(µN,s,y

T )
)
] = ȳ⊤ΛN (s)ȳ + γN (s) · ȳ + χN (s),
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so the desired expectation from (3) is given by

E
[
exp

(
−NG(µN,s,y

T )
)]

= exp
(
−N [ȳ⊤ΛN (s)ȳ + γN (s) · ȳ + χN (s)]

)
.

In the above we denote by (y1, ..., yN ) = ȳ ∈ RdN , and ΛN ∈ RdN×dN , γN ∈ RdN , χN ∈ R satisfy the Riccati
equations:

Λ̇N (t) + ΛN (t)BN +B⊤
NΛN (t)− 2NΛN (t)σNσ

⊤
NΛ⊤

N (t) = 0,ΛN (T ) = PN2,

γ̇N (t) +B⊤
Nγ(t)− 2NΛN (t)σNσ

⊤
NγN (t) + 2ΛN (t)b0N = 0, γN (T ) = pN1,

χ̇N (t)− N

2
γ⊤N (t)σNσ

⊤
NγN (t) + γN (t) · b0N +

N∑
i=1

σ̄⊤
i,NΛN (t)σ̄i,N = 0, χN (T ) = p2.

Here

b0N = [b⊤0 , ..., b
⊤
0 ]

⊤ ∈ RdN ,

σN = diag(σ) ∈ RdN×N ,

p1N =
1

N
[p⊤1 , ..., p

⊤
1 ]

⊤ ∈ RdN ,

BN = diag(B) +
1

N
B̄N ∈ RdN×dN ,

P2N =
1

N
diag(P2) +

1

N2
P̄2N ∈ RdN×dN

and B̄N is the block matrix with every d × d entry given by B̄, P̄2N is the block matrix with every d × d
entry given by P̄2, σ̄i,N ∈ RdN has i’th entry σ and the rest 0.
It may seem initially that we need to solve dN × dN Riccati equations in order to get this value, but in fact
we can find that, letting Λi,j

N ∈ Rd×d denote the d × d block matrix in the i, j position, that Λi,j
N = Λ̄N for

all i ̸= j and Λi,i
N = Λ̂N for all i ∈ {1, ..., N}, and hence γiN = γ̄N ∈ Rd for all i. Thus we need only solve:

˙̄ΛN + Λ̄N [B̄ +B] +
1

N
[Λ̂N − Λ̄N ]B̄ + [B + B̄]⊤Λ̄N +

1

N
B̄⊤[Λ̂N − Λ̄N ]− 2N [(N − 2)Λ̄Nσσ

⊤Λ̄⊤
N ,

+ Λ̂Nσσ
⊤Λ̄⊤

N + Λ̄Nσσ
⊤Λ̂⊤

N ] = 0,

Λ̄N (T ) =
1

N2
P̄2,

˙̂
ΛN + (1− 1

N
)Λ̄N B̄ + (1− 1

N
)B̄⊤Λ̄N + Λ̂N [B̄/N +B] + [B̄/N +B]⊤Λ̂N − 2N [(N − 1)Λ̄Nσσ

⊤Λ̄⊤
N ,

+ Λ̂Nσσ
⊤Λ̂⊤

N ] = 0,

Λ̂N (T ) =
1

N2
P̄2 +

1

N
P2,

˙̄γN + [B̄ +B]⊤γ̄N − 2N [(N − 1)Λ̄N + Λ̂N ]σσ⊤γ̄N + 2[(N − 1)Λ̄N + Λ̂N ]b0 = 0,

γ̄N (T ) = p1/N,

χ̇N (t)− N2

2
γ̄⊤Nσσ

⊤γ̄N +Nγ̄N · b0 +Nσ⊤Λ̂Nσ = 0,

χN (T ) = p2.
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Then we have

E
[
exp

(
−NG(µN,s,y

T )
)]

= exp

(
−N

[
ȳ⊤ΛN (s)ȳ + γN (s) · ȳ + χN (s)

])

= exp

−N

 N∑
i̸=j

y⊤i Λ̄N (s)yj +
N∑
i=1

y⊤i Λ̂N (s)yi + γ̄⊤(s)
N∑
i=1

yi + χN (s)




= exp

(
−N

[ N∑
i=1

yi

⊤

Λ̄N (s)

 N∑
i=1

yi

+
N∑
i=1

y⊤i

[
Λ̂N (s)− Λ̄N (s)

]
yi

+ γ̄⊤(s)
N∑
i=1

yi + χN (s)

])

Note that this is useful not only for establishing the true desired expectation (3), but also allows for us
to calculate the relative error for the standard Monte Carlo estimator ρ(δN ) by substituting 2G for G in
(44) with P2, p1, and P̄2 modified to 2P2, 2p1, and 2P̄2, respectively. We will use this fact in the numerical
example in Subsection 4.1.
Also note that we can see directly how to write the right-hand side of the previous display as a function of
µN
y . Letting

ΦN (t, ν) = N2

[∫
Rd

zµ(dz)

]⊤
Λ̄N (t)

[∫
Rd

zµ(dz)

]
+N

∫
Rd

z⊤[Λ̂N (t)− Λ̄N (t)]zµ(dz)

+Nγ̄⊤N

∫
Rd

zµ(dz) + χ̃N (t)

=

∫
Rd

z⊤Λ̃N (t)zµ(dz) +

(∫
Rd

zµ(dz)

)⊤ [
Γ̃N (t)− Λ̃N (t)

](∫
Rd

zµ(dz)

)
+ γ̃⊤N

∫
Rd

zµ(dz) + χ̃N (t),

(50)

where Λ̃N (t) = N
[
Λ̂N (t)− Λ̄N (t)

]
, Γ̃N = N(N − 1)Λ̄N (t) +N Λ̂(t), γ̃N (t) = Nγ(t), we have

exp
(
−NΦN (s, µN

x )
)
= E

[
exp

(
−NG(µN,s,x

T )
)]
,

and get the Riccati equations:

˙̃ΛN + Λ̃NB +B⊤Λ̃N − 2Λ̃Nσσ
⊤Λ̃⊤

N = 0, Λ̃N (T ) = P2,(51)
˙̃ΓN + Γ̃N [B + B̄] + [B + B̄]⊤Γ̃N − 2Γ̃Nσσ

⊤Γ̃⊤
N = 0, Γ̃N (T ) = P̄2 + P2,

˙̃γN (t) + [B + B̄]⊤γ̃N (t)− 2Γ̃N (t)σσ⊤γ̃N (t) + 2Γ̃N (t)b0 = 0, γ̃N (T ) = p1,

˙̃χN (t)− 1

2
γ̃⊤Nσσ

⊤γ̃N + γ̃N · b0 + σ⊤Λ̃Nσ +
1

N
σ⊤[Γ̃N − Λ̃N ]σ = 0, χ̃N (T ) = p2.

Note firstly that it is easily verified that ΦN (t, ν) from (50) satisfies the prelimit HJB equation (32) for
all ν. Also observe that, other than the perturbation of the ODE for χ̃N by the addition of the term
1
N σ

⊤[Γ̃N − Λ̃N ]σ, these are the same Riccati equations as (45) for the “zero viscosity” HJB equation (23).
The zero variance control from (30) is thus:

vNi (t, x1, ..., xN ) = −σ⊤
[
2Λ̃(t)xi + 2[Γ̃(t)− Λ̃(t)]

∫
Rd

zµN
x (dz) + γ̃(t)

]
= −σ⊤

[
2Λ(t)xi + 2[Γ(t)− Λ(t)]

∫
Rd

zµN
x (dz) + γ(t)

]
,

that is, it is the same as the control from Theorem 2.4 in the linear-quadratic regime (see (46)).
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Remark 3.6. The above discussion implies that in the linear-quadratic regime, the relative error of our
importance sampling scheme is always zero.
This can also be derived via the following observation: In (32), when we use the ansatz that the solution takes
the form of (50), since ∂2µΦN (µ)[z1, z2] = 2[Γ̃N (t)− Λ̃N (t)], the only term appearing from the second-order
term

∫
Rd

1
2N σσ

⊤ : ∂2µΦ
N (t, µ)[z, z]µ(dz) is 1

N σσ
⊤ : [Γ̃N (t) − Λ̃N (t)] = 1

N σ
⊤[Γ̃N (t) − Λ̃N (t)]σ. Thus, when

deriving the form of the Riccati equations (51), it will only show up for χ̃N , which collects the constant in
µ terms.
More generally, if we have a solution to (23) such that ∂µΨ = ∂µΦ

N for all N , where ΦN solves (32), then the
importance sampling scheme has zero relative error for all N , as per the discussion in Section 2.1. Supposing,
as in the linear-quadratic case, that we have a solution Ψ to (23) such that ∂2µΨ(t, µ)[z1, z2] = C(t) ∈ Rd×d

and that σ does not depend on x, µ, then Ψ(T, ν) = G(ν) and:

−∂tΨ(t, ν)−
∫
Rd

b(z, ν) · ∂µΨ(t, ν)[z]− 1

2
|σ⊤∂µΨ(t, ν)[z]|2

+
1

2
σσ⊤(z, ν) : ∂z∂µΨ(t, ν)[z] +

1

2N
σσ⊤ : ∂2µΨ(t, ν)[z, z]ν(dz) = − 1

2N
σσ⊤ : C(t),

so letting λ ∈ C([0, T ];R) solve λ̇(t) = − 1
2N σσ

⊤ : C(t), λ(T ) = 0, ΦN (t, µ) = Ψ(t, µ) + λ(t) is a solution to
(32), and ∂µΦN = ∂µΨ for all N .
It thus clear that letting m > 1 or having the coefficients b0, B, B̄, σ in (44) depend on time does not change
the fact that our importance sampling scheme yields a zero-variance estimator in the linear-quadratic regime.
Also note that this discussion also applies in the linear-quadratic setting for small noise importance sampling
schemes — compare Equations (2.7) and (2.10) in [79] and recall that if b is linear in x, σ is constant, and
G is quadratic in x therein that solutions to equation (2.10) will have second derivatives which are constant
in x.
This reflects a difficulty present in both our setting and the small noise setting for importance sampling
schemes based on large deviation principles and zero-viscosity HJB equations — the hurdle of actually
computing the derivative of a solution to the HJB equation and hence the control to be used, numerically
or otherwise, persists, and in the main class of problems for which a solution can be computed analytically
(the linear-quadratic regime), the solution to the zero-viscosity HJB equation is no easier to solve for than
the desired expectation. This means that efficient methods for numerically computing ∂µΨ appearing in
the definition of the control (33) in Theorem 2.4, or otherwise numerically obtaining the control, are highly
desirable. Designing and implementing such schemes is an interesting avenue for future research.

4. Numerical Results

Here we present numerical results based on examples in the linear-quadratic regime of (3) and perturbations
thereof. In all three examples, the importance sampling scheme greatly outperforms standard Monte Carlo
methods. In the standard linear-quadratic regime, we observe that the importance sampling relative error
is near 0 for all N , as expected, in Table 1. When a “global” lack of differentiability is introduced to G,
we observe in Table 2 that the importance sampling relative error appears to be vanishing. When a “local”
lack of differentiability is introduced to G, we observe in Table 3 that the importance sampling relative error
does not seem to vanish, but grows sublinearly, still a massive improvement over the standard Monte Carlo
relative error which increases exponentially with N in all three examples.
We simulate all the SDE systems using the Euler-Maruyama method with time step ∆t = .01/N , which we
chose empirically by iteratively refining until the estimates δN and δ̂N stabilized (i.e., consecutive estimates
were nearly equal). We use M ≈ 107 samples for all our simulations. In each case we also use the same final
time T = 1 and diffusion constant σ = .5.
We note that our tabled results stop at relatively modest values of N ; although the importance sampling
relative error remained small for much larger values of N than those presented in the tables, the exponential
growth in the standard Monte Carlo relative errors required too many simulations to resolve for large N for
us to make accurate comparisons.
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A Python code implementing the examples in this section is provided on the public Gitlab repository
https://gitlab.com/mheldman/IS-interacting-particles.

4.1. The Linear-Quadratic Regime. For our first example, we consider

G(µ) =

∫
R
z2µ(dz).(52)

This corresponds to the linear-quadratic regime in Section 3 with d = m = 1, s = 0, B = −1, B̄ = 2, P2 =
1, b0 = P̄2 = p1 = p2 = 0 and yi = y for all i ∈ N.
We seek to estimate

E
[
exp

(
−NG(µN,y

T )
)]

= E
[
exp

(
−

N∑
i=1

|Xi,N,y
T |2

)]
where

dXi,N,y
t =

−Xi,N,y
t +

2

N

N∑
j=1

Xj,N,y
t

 dt+ σdW i
t , X

i,N,y
0 = y.(53)

Note that, as discussed in Remark 3.2, the importance sampling scheme for this case cannot be derived from
previous work on small-noise SDEs since P2 ̸= 0.

The typical dynamics from (7) will have E[Xδy
t ] = yet for all t ∈ [0, T ] (we suppress the initial condition s in

the notation here) and thus will be given by the time-inhomogeneous Ornstein–Uhlenbeck-like process with
drift coefficient b(t, x) = −x+2yet and diffusion coefficient σ. The result of evaluating G from (52) at µN,y:

G(µN,y
T ) =

1

N

N∑
i=1

|Xi,N,y
T |2(54)

is thus expected to be close to the second moment of such a process at time T as N becomes large, which is

E
[
|Xδy

T |2
]
= y2e2T +

σ2

2
(1− exp(−2T )).(55)

The atypical event we are seeking to sample, represented by G being close to zero, is that the particles
interact in such a way that they are closer to the origin than expected via (55).
The role of the importance sampling scheme from Theorem 2.4 will thus be to modify the interaction and
dynamics of each particle to predictably remain closer to the origin. Indeed, as discussed in Remark 3.6, the
theoretical relative error of the importance sampling scheme is zero, so any contributing relative error will
be due to numerical discretization. Indeed, we observed in numerical experiments that taking ∆t ↓ 0 also
decreases the relative error of the importance scheme to 0.
Solving the Riccati equations (45), we get

Λ(t) =
e2t

e2T (1 + σ2)− e2tσ2
,

Γ(t) =
e2T

e2Tσ2 − e2t(σ2 − 1)
,

γ(t) = 0,

χ(t) =
1

2
log

(
e2T

e2T (1 + σ2)− e2tσ2

)
Thus the optimal control v from (46) and Theorem 2.4 is given by:

vNi (t, x1, ..., xN ) = −2σ

[
e2t

e2T (1 + σ2)− e2tσ2
xi +

1

N

(
e2T

e2Tσ2 − e2t(σ2 − 1)
− e2t

e2T (1 + σ2)− e2tσ2

) N∑
i=1

xi

]
.

In Table 1 below, we provide for various N the estimated expectation from standard Monte Carlo δN
and importance sampling δ̂N (14), the empirical relative error from standard Monte Carlo ρ̃(δN ) and for

https://gitlab.com/mheldman/IS-interacting-particles
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importance sampling ρ̃(δ̂N ), and the exact value of the expectation (3) from (50) and (51). Here ρ̃(δ̂N ) is as
in (16) but where M = 1 and the expectation and second moment are computed empirically. That is:

ρ̃(δ̂N ) :=

√√√√√√ 1
M

∑M
j=1 exp(−2NG(µ̂N,s,y,j

T ))

(∏N
i=1 Z

i,N,s,y,j

)2

δ̂2N
− 1.(56)

and similarly:

ρ̃(δN ) :=

√
1
M

∑M
j=1 exp(−2NG(µN,s,y,j

T ))

δ2N
− 1,(57)

IS Scheme Standard Monte Carlo

N δ̂N ρ̃(δ̂N ) δN ρ̃(δN ) Exact Value

5 2.3816 · 10−1 3.4601 · 10−2 2.3807 · 10−1 1.0380 2.3747 · 10−1

10 8.2550 · 10−2 2.7101 · 10−2 8.2551 · 10−2 1.5721 8.2412 · 10−2

15 2.8641 · 10−2 2.4001 · 10−2 2.8661 · 10−2 2.1957 2.8600 · 10−2

20 9.9373 · 10−3 2.2369 · 10−2 9.9165 · 10−3 2.9589 9.9254 · 10−3

25 3.4486 · 10−3 2.1310 · 10−2 3.4824 · 10−3 3.9086 3.4445 · 10−3

30 1.1968 · 10−3 2.0550 · 10−2 1.1951 · 10−1 5.1415 1.1954 · 10−3

50 1.7361 · 10−5 1.8934 · 10−2 1.7569 · 10−5 14.5202 1.7339 · 10−5

80 3.0339 · 10−8 1.8003 · 10−2 3.2426 · 10−8 74.1871 3.0289 · 10−8

Table 1. Comparison of the standard Monte Carlo estimator δN with the importance
sampling estimator δ̂N (14) and their corresponding relative errors ρ̃(δN ) (57) and ρ̃(δ̂N )
(56) with G as in (52) and particles obeying (53) with initial condition y = .2.

In Figure 1(a) we plot an average of trajectories of the sum (54) for the uncontrolled and controlled particles,
respectively, computed using the same noise. In Figure 1(b), we plot the analytical relative error for the
Monte Carlo scheme (ρ(δN ) from (16) with vNi ≡ 0) on a log scale for various values of N , again as computed
via (50) and (51). One can see that the first few values of N considered in Table 1 are in a region where
the growth for the standard Monte Carlo relative error has not yet shifted from linear to exponential, where
importance sampling becomes even more valuable.

4.2. Examples with Nonsmooth G. Here we provide two examples where G is not differentiable in the
Lions sense (see Definition A.1). The first example is constructed via a perturbation of the linear-quadratic
regime which reduces the smoothness of G in a “global” way, whereas the second reduces the smoothness of
G in a “local” way. In both examples, despite the lack of regularity we observe that the relative error of the
importance sampling scheme is much smaller than that of the standard Monte Carlo method for all N . In
Example 4.2, the relative error grows sublinearly, and in Example 4.1, the importance sampling relative error
even appears to be vanishing, exhibiting that the assumptions in Theorems 2.4 and 2.5 are sufficient but not
necessary. Thanks to the simple nature of the target function G, we are able to provide an interpretation of
the role of the controls in each example — see Remark 4.3.

Example 4.1. In our second example, we consider

G(µ) =

∣∣∣∣∫
R
zµ(dz)

∣∣∣∣,(58)

with drift and diffusion conforming to the linear-quadratic regime (44) with d = m = 1.
Note that while G is continuous, it is not Lions differentiable at measures µ such that

∫
R zµ(dz) = 0, so we

are not able to obtain an explicit solution to the HJB equation (23) as in Section 3. However, for µ ∈ P2(R)

with nonzero mean, it is plain to see that ∂µG(µ)[z] = sign
(∫

R xµ(dx)

)
for all z ∈ R, so ∂z∂µG(µ) ≡ 0 and
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(a) An average of five trajectories of the sum (54) (b) Log-scale analytical single sample Monte
Carlo relative error

Figure 1. Left: An average of 5 realizations of the sum (54) for the uncontrolled (red) and
controlled (green) particles respectively against the variance of the limiting McKean-Vlasov
equation from (55) (black) for T ∈ [0, 1.5], y = .2, and N = 50. Right: the log-scaled exact
relative error ρ(δN ) as N varies in the setting of Table 1, with M = 1 fixed in (16) (black)
against the exact asymptotic rate ≈ e.051N (red).

∂2µG(µ) ≡ 0. Using this ansatz, taking b0 = 0, and performing a similar computation to [73] Section 4, we
obtain the formal (weak) viscosity solution to (23) in this setting:

Ψ(t, µ) = e(B+B̄)[T−t]

∣∣∣∣∫
R
zµ(dz)

∣∣∣∣+ σ2

4(B + B̄)
[1− e2(B+B̄)(T−t)]

so that we expect the control from (33) in Theorem 2.4 to be of the form

v(t, x1, ..., xN ) = −σ∂µΨ(t, µN
x )[xi]

= −σe(B+B̄)(T−t)sign
(

1

N

N∑
j=1

xj

)
.

Indeed, via the equivalence with the small-noise regime as discussed in Remark 3.2, such a choice of control
can be seen to solve the minimization problem (9) with F (µ) = G(µT ).
In Table 2, we provide for various N the estimated expectation and empirical relative error for our importance
sampling scheme compared with standard Monte Carlo, selecting B = −1, B̄ = 2, s = 0, and yi = .4 for
all i ∈ N. As we see, the relative error for the importance sampling scheme seems to be vanishing as N
increases, whereas the standard Monte Carlo relative error increases exponentially.

IS Scheme Standard Monte Carlo

N δ̂N ρ̃(δ̂N ) δN ρ̃(δN )

5 2.6644 · 10−2 3.7070 · 10−1 2.6653 · 10−2 2.9930
10 9.0804 · 10−4 3.1427 · 10−1 9.2009 · 10−4 12.8032
15 3.0269 · 10−5 2.6350 · 10−1 3.0645 · 10−5 53.9410
20 9.9533 · 10−7 2.2227 · 10−1 1.0625 · 10−6 337.0401
25 3.2471 · 10−8 1.8900 · 10−1 3.5791 · 10−8 561.9164
30 1.0537 · 10−9 1.6154 · 10−1 1.2253 · 10−9 1016.1656

Table 2. Comparison of the standard Monte Carlo estimator δN with the importance
sampling estimator δ̂N (14) and their corresponding relative errors ρ̃(δN ) (57) and ρ̃(δ̂N )
(56) with G as in (58) and particles obeying (53) with initial condition y = .4 (Example
4.1).
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Example 4.2. .

IS Scheme Standard Monte Carlo

N δ̂N ρ̃(δ̂N ) δN ρ̃(δN )

5 2.1355 · 10−2 4.7870 · 10−1 2.1382 · 10−2 2.3263
10 5.6703 · 10−4 6.0605 · 10−1 5.6806 · 10−4 6.6374
15 1.5087 · 10−5 7.2452 · 10−1 1.5040 · 10−5 17.3337
20 4.0157 · 10−7 8.3416 · 10−1 4.1260 · 10−7 51.1058
25 1.0687 · 10−8 9.4327 · 10−1 1.0296 · 10−8 97.8820
30 2.8470 · 10−10 1.0524 2.8800 · 10−10 280.5945

Table 3. Comparison of the standard Monte Carlo estimator δN with the importance
sampling estimator δ̂N (14) and their corresponding relative errors ρ̃(δN ) (57) and ρ̃(δ̂N )
(56) with G as in (59) and particles obeying (53) with initial condition y = .4 (Example
4.2).

Finally, we consider the same regime as Example 4.1, but now taking G in the target expectation (3) to be:

G(µ) =

∫
R
|z|µ(dz).(59)

Once again G is not everywhere Lions differentiable, in this case at measures such that the singleton {0} ∈ R
has positive measure. Indeed, for µ ∈ P2(R) such that µ({0}) = 0, it is clear to see that ∂µG(µ)[z] = sign(z),
so ∂2µG(µ) = 0 and for z ̸= 0, ∂z∂µG(µ)[z] = 0 (this follows via a similar computation to [19] Example 1 in
Section 5.2.2).
Again we follow the methods of [73], taking b0 = 0, and obtain the formal (weak) viscosity solution to (23):

Ψ(t, µ) = eB(T−t)

∫
R
|z|µ(dz) + [e(B+B̄)(T−t) − eB(T−t)]

∫
R
zµ(dz)

∫
R

sign(z)µ(dz)

+
σ2

4B(B + B̄)
[e2B(T−t)(B + B̄)−Be2(B+B̄)(T−t) − B̄]

[∫
R

sign(z)µ(dz)
]2

+
σ2

4B
[1− e2B(T−t)].

Using that for µ ∈ P2(R) with µ({0}) = 0, µ 7→
∫
R sign(z)µ(dz) is Lions differentiable with derivative 0, we

expect the control from (33) in Theorem 2.4 to be of the form

v(t, x1, ..., xN ) = −σ∂µΨ(t, µN
x )[xi]

= −σ
[
eB(T−t)sign(xi) +

(
e(B+B̄)(T−t) − eB(T−t)

)
1

N

N∑
j=1

sign(xj)
]
.

In Table 3, we provide for various N the estimated expectation and empirical relative error for our importance
sampling scheme compared with standard Monte Carlo, selecting B = −1, B̄ = 2, s = 0, and yi = .4 for
all i ∈ N. As we see, the importance sampling scheme has relative error which increases sublinearly as N
becomes large, in contrast to the standard Monte Carlo relative error which increases exponentially.

Remark 4.3. We can think about the controls from Examples 4.1 and 4.2 in terms of the role they play in
sampling the “rare event” of G being close to 0 for the particle system in each case. When the absolute value
appears outside the empirical mean, as in Example 4.1, we only need to be concerned with controlling the
magnitude of the empirical mean, a characteristic of the particle ensemble. This is reflected in the controls,
which are identical for every particle and force them in the opposite direction of the sign of the empirical
mean. Meanwhile, in the situation of Example (4.2), to make G close to zero we need the position of each
individual particle to be near 0. Thus, the control uses information about the position of each particle
relative to the origin. However, information about the ensemble of particles also still must appear because of
the global interaction in the particles’ dynamics, which we see in the form of the difference in the proportions
of the particles which are positive and negative at a given time.
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We note that a similar combination of global information on the ensemble of particles and local information
about the i’th particle is also used for controls in the standard linear-quadratic regime of Section 3. See
in particular the control used in our simple numerical example in Subsection 4.1. Numerical experiments
confirm that the role of both the global and local information captured in the control is necessary for variance
reduction in such cases. For example, using the simplified control ṽ(t, x1, ..., xN ) = −σeB(T−t)sign(xi) in
Example 4.2, we observed performance that was comparable or even worse than standard Monte Carlo.
It is also worth commenting on the choice of initial conditions in the examples of Subsection 4.2. We choose
yi = .4 for all i ∈ N, so that ν = δ.4 is away from the region of discontinuity of ∂µΨ(t, ·)[z]. We observed that
if we took initial conditions such that ν is closer to the region of discontinuity many more rogue trajectories
appeared in the controlled dynamics and an extremely high sample size was needed before the importance
sampling scheme could be seen to perform better than standard Monte Carlo. This is once again similar
to the case of small-noise diffusions—see Table 3.1 compared to Table 3.2 in [79] and the discussion on pp.
1786-1787 therein.

We end this section by remarking on the interesting problem of verifying that the formal viscosity solutions
to the HJB equation (23) constructed in Examples 4.1 and 4.2 are indeed viscosity solutions in the sense of
[26]. To our knowledge, there are no existing examples in the current literature of explicit viscosity solutions
which are not also classical solutions to an HJB equation on Wasserstein space.

5. Proof of the Main Results

We begin with a lemma which allows us to express the numerator of R(δ̂N ) (see (17)) in an alternative way:

Lemma 5.1. Let Assumption 1.1 (A3) and Assumption 2.3 (B1) hold. Then, for any s ∈ [0, T ], y1, ..., yN ∈
Rd, and for µ̂ as in (15), Zi,N,s,y as in (13), and vNi : [s, T ]× RdN → Rm, i = 1, ..., N bounded:

E
[
exp

(
−2NG(µ̂N,s,y

T )
) N∏

i=1

(Zi,N,s,y)2
]
= E

[
exp

(
−2NG(µ̃N,s,y

T )
)
exp

(∫ T

s

N∑
i=1

|vNi (t, X̃1,N,s,y
t , ..., X̃N,N

t )|2dt
)]
,

where µ̃N,s,y
t = 1

N

∑N
i=1 δX̃i,N,s,y

t
and X̃i,N,s,y satisfy:

dX̃i,N,s,y
t = [b(X̃i,N,s,y

t , µ̃N,s,y
t )− σ(X̃i,N,s,y

t , µ̃N,s,y
t )vNi (t, X̃1,N,s,y

t , ..., X̃N,N,s,y
t )]dt+ σ(X̃i,N,s,y

t , µ̃N,s,y
t )dW̃ i

t ,

X̃i,N,s,y
s = yi,

and W̃ i are IID standard m-dimensional Brownian motions initialized at W̃ i
s = 0.

Proof. This follows by a simple application of the Girsanov theorem, which is valid due to the boundedness
of the vNi ’s and G. We have:

E
[
exp

(
−2NG(µ̂N,s,y

T )
) N∏

i=1

(Zi,N,s,y)2
]

= E
[
exp

(
−2NG(µ̂N,s,y

T )
)
exp

(
−2

N∑
i=1

∫ T

s

vNi (t, X̂1,N,s,y
t , ..., X̂N,N,s,y

t ) · dŴ i
t

−
∫ T

s

N∑
i=1

|vNi (t, X̂1,N,s,y
t , ..., X̂N,N,s,y

t )|2dt
)]

= E
[
exp

(
−2NG(µ̂N,s,y

T )
)
exp

(
−2

N∑
i=1

∫ T

s

vNi (t, X̂1,N,s,y
t , ..., X̂N,N,s,y

t ) · dŴ i
t

− 1

2

∫ T

s

N∑
i=1

|2vNi (t, X̂1,N,s,y
t , ..., X̂N,N,s,y

t )|2dt
)
exp

(∫ T

s

N∑
i=1

|vNi (t, X̂1,N,s,y
t , ..., X̂N,N,s,y

t )|2dt
)]

= E
[
exp

(
−2NG(µ̃N,s,y

T )
)
exp

(∫ T

s

N∑
i=1

|vNi (t, X̃1,N,s,y
t , ..., X̃N,N

t )|2dt
)]
.
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□

5.1. Proof of Theorem 2.4. Let Ψ be a classical subsolution to (23). We make the choice of control from
(33) for (4) and (13) throughout this proof. Due to the assumed boundedness of these controls, we have via
Lemma 5.1:

E
[
exp

(
−2NG(µ̂N,s,y

T )
) N∏

i=1

(Zi,N,s,y)2
]

= E
[
exp

(
−2NG(µ̃N,s,y

T )
)
exp

(
N

∫ T

s

∫
Rd

|σ⊤(x, µ̃N,s,y
t )∂µΨ(t, µ̃N

t )[x]|2µ̃N,s,y
t (dx)dt

)]
,

where µ̃N,s,y
t = 1

N

∑N
i=1 δX̃i,N,s,y

t
and X̃i,N,s,y satisfy:

dX̃i,N,s,y
t = [b(X̃i,N,s,y

t , µ̃N,s,y
t ) + σσ⊤(X̃i,N,s,y

t , µ̃N,s,y
t )∂µΨ(t, µ̃N,s,y

t )[X̃i,N,s,y
t ]]dt

+ σ(X̃i,N,s,y
t , µ̃N,s,y

t )dW̃ i
t , X̃i,N,s,y

s = yi.

Strong existence and uniqueness of the above system of SDEs of all N follows from the assumed boundedness
of σ and ∂µΨ along with Assumption (A3) and an application of Girsanov theorem—see the discussion on
p.81 of [16].

Applying Proposition (1.3) with F (µ) = 2G(µT )−
∫ T

s

∫
Rd |σ⊤(z, µt)∂µΨ(t, µt)[z]|2µt(dz)dt (F is bounded by

assumption and its continuity follows from, e.g., [34] Theorem A.3.18) and b̃(t, x, ν) = b(x, ν)+σσ⊤(x, ν)∂µΨ(t, ν)[x],
we get

− 1

N
logE

[
exp

(
−2NG(µ̂N,s,y

T )
) N∏

i=1

(Zi,N,s,y)2
]
= inf

uN∈UN

E

 1

2N

N∑
i=1

∫ T

s

|uNi (t)|2dt

+ 2E
[
G(µ̄N,s,y

T )
]

−E

 1

N

N∑
i=1

∫ T

s

|σ⊤(X̄i,N,s,y
t , µ̄N,s,y)∂µΨ(t, µ̄N,s,y

t )[X̄i,N,s,y
t ]|2dt

,

(60)

where µ̄N,s,y
t = 1

N

∑N
i=1 δX̄i,N,s,y

t
and

dX̄i,N,s,y
t = [b(X̄i,N,s,y

t , µ̄N,s,y
t ) + σσ⊤(X̄i,N,s,y

t , µ̄N,s,y
t )∂µΨ(t, µ̄N,s,y

t )[X̄i,N,s,y
t ] + σ(X̄i,N,s,y

t , µ̄N,s,y
t )uNi (t)]dt

+ σ(X̄i,N,s,y
t , µ̄N,s,y

t )dW̃ i
t ,

X̄i,N,s,y
s = yi.

Fix any uN ∈ UN and let {X̄i,N,s,y}Ni=1 satisfy the above controlled equations with this choice of control.

Letting Ψ̃(t, x1, ..., xN ) = Ψ(t, 1
N

∑N
i=1 δxi), where Ψ is our classical subsolution, we apply Itô’s formula to

get

dΨ(t, µ̄N,s,y
t )

=

[
∂tΨ(t, µ̄N,s,y

t ) +
N∑
i=1

{
[b(X̄i,N,s,y

t , µ̄N,s,y
t ) + σσ⊤(X̄i,N,s,y

t , µ̄N,s,y
t )∂µΨ(t, µ̄N,s,y

t )[X̄i,N,s,y
t ]

+ σ(X̄i,N,s,y
t , µ̄N,s,y

t )uNi (t)] · ∂xi
Ψ̃(t, X̄i,N,s,y

t , ..., X̄N,N,s,y
t )

+
1

2
σσ⊤(X̄i,N,s,y

t , µ̄N,s,y
t ) : ∂2xi

Ψ̃(t, X̄i,N,s,y
t , ..., X̄N,N,s,y

t )

}]
dt

+
N∑
i=1

[∂xi
Ψ̃]⊤(t, X̄i,N,s,y

t , ..., X̄N,N,s,y
t )σ(X̄i,N,s,y

t , µ̄N,s,y
t )dW̃ i

t
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=

[
∂tΨ(t, µ̄N,s,y

t ) +
1

N

N∑
i=1

{
[b(X̄i,N,s,y

t , µ̄N,s,y
t ) + σσ⊤(X̄i,N,s,y

t , µ̄N,s,y
t )∂µΨ(t, µ̄N,s,y

t )[X̄i,N,s,y
t ]

+ σ(X̄i,N,s,y
t , µ̄N,s,y

t )uNi (t)] · ∂µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t ] +
1

2
σσ⊤(X̄i,N,s,y

t , µ̄N,s,y
t ) : ∂z∂µΨ(t, µ̄N,s,y

t )[X̄i,N,s,y
t ]

}]
dt

+
1

N

N∑
i=1

[∂µΨ]⊤(t, µ̄N,s,y
t )[X̄i,N,s,y

t ]σ(X̄i,N,s,y
t , µ̄N,s,y

t )dW̃ i
t

+
1

N2

N∑
i=1

σσ⊤(X̄i,N,s,y
t , µ̄N,s,y

t ) : ∂2µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t , X̄i,N,s,y
t ]dt,

where in the second step we applied Proposition A.3. Note here we have used the assumed regularity of Ψ
from (i) in Definition 2.1.
Now using that Ψ satisfies (ii) in Definition 2.1, we have:

∂tΨ(t, µ̄N,s,y
t ) +

1

N

N∑
i=1

{
[b(X̄i,N,s,y

t , µ̄N,s,y
t )

+ σσ⊤(X̄i,N,s,y
t , µ̄N,s,y

t )∂µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t ]] · ∂µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t ]

+
1

2
σσ⊤(X̄i,N,s,y

t , µ̄N,s,y
t ) : ∂z∂µΨ(t, µ̄N,s,y

t )[X̄i,N,s,y
t ]

}
≥ 3

2

1

N

N∑
i=1

∂µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t ] · [σσ⊤(X̄i,N,s,y
t , µ̄N,s,y

t )∂µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t ]]

=
3

2

1

N

N∑
i=1

|σ⊤(X̄i,N,s,y
t , µ̄N,s,y

t )∂µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t ]|2.

Combining the above two displays:

Ψ(T, µ̄N,s,y
T ) ≥ Ψ

s, 1
N

N∑
i=1

δyi

+
1

N

N∑
i=1

∫ T

s

uNi (t) · [σ⊤(X̄i,N,s,y
t , µ̄N,s,y

t )∂µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t ]]dt

+
1

N

N∑
i=1

∫ T

s

[∂µΨ]⊤(t, µ̄N,s,y
t )[X̄i,N,s,y

t ]σ(X̄i,N,s,y
t , µ̄N,s,y

t )dW̃ i
t

+
1

N2

N∑
i=1

∫ T

s

σσ⊤(X̄i,N,s,y
t , µ̄N,s,y

t ) : ∂2µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t , X̄i,N,s,y
t ]dt

+

∫ T

s

3

2

1

N

N∑
i=1

|σ⊤(X̄i,N,s,y
t , µ̄N,s,y

t )∂µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t ]|2dt

= Ψ

s, 1
N

N∑
i=1

δyi

+
1

2N

N∑
i=1

∫ T

s

|uNi (t) + σ⊤(X̄i,N,s,y
t , µ̄N,s,y

t )∂µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t ]|2dt

+

∫ T

s

1

N

N∑
i=1

|σ⊤(X̄i,N,s,y
t , µ̄N,s,y

t )∂µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t ]|2dt

−
∫ T

s

1

2N

N∑
i=1

|uNi (t)|2dt+ 1

N

N∑
i=1

∫ T

s

[∂µΨ]⊤(t, µ̄N,s,y
t )[X̄i,N,s,y

t ]σ(X̄i,N,s,y
t , µ̄N,s,y

t )dW̃ i
t ]

+
1

N2

N∑
i=1

∫ T

s

σσ⊤(X̄i,N,s,y
t , µ̄N,s,y

t ) : ∂µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t , X̄i,N,s,y
t ]dt.
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Then, for any choice of uN ∈ UN :

E[
1

2N

N∑
i=1

∫ T

s

|uNi (t)|2dt] + 2E
[
G(µ̄N,s,y

T )
]
− E

 1

N

N∑
i=1

∫ T

s

|σ⊤(X̄i,N,s,y
t , µ̄N,s,y

t )∂µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t ]|2dt


≥ E[G(µ̄N,s,y

T )] + E[Ψ(T, µ̄N,s,y
T )] + E

 1

2N

N∑
i=1

∫ T

s

|uNi (t)|2dt


− E

 1

N

N∑
i=1

∫ T

s

|σ⊤(X̄i,N,s,y
t , µ̄N,s,y

t )∂µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t ]|2dt


≥ E[G(µ̄N,s,y

T )] + Ψ

s, 1
N

N∑
i=1

δyi

+ E

 1

2N

N∑
i=1

∫ T

s

|uNi (t) + σ⊤(X̄i,N,s,y
t , µ̄N,s,y

t )∂µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t ]|2dt


+ E

 1

N

N∑
i=1

∫ T

s

[∂µΨ]⊤(t, µ̄N,s,y
t )[X̄i,N,s,y

t ]σ(X̄i,N,s,y
t , µ̄N,s,y

t )dW̃ i
t


+ E

 1

N2

N∑
i=1

∫ T

s

σσ⊤(X̄i,N,s,y
t , µ̄N,s,y

t ) : ∂2µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t , X̄i,N,s,y
t ]dt

 ,
where in the first inequality we used (iii) from Definition 2.1.

uNi (t) + σ⊤(X̄i,N,s,y
t , µ̄N,s,y

t )∂µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t ], i = 1, ..., N is a valid choice of control in the prelimit
representation (12) from Proposition 1.3 since σ, ∂µΨ are bounded, and taking F (µ) = G(µT ), b̃ = b therein
(using G ∈ Cb(P(Rd)) and (A3)) we can continue:

E

 1

2N

N∑
i=1

∫ T

s

|uNi (t)|2dt

+ 2E
[
G(µ̄N,s,y

T )
]
− E

 1

N

N∑
i=1

∫ T

s

|σ⊤(X̄i,N,s,y
t , µ̄N,s,y

t )∂µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t ]|2dt


≥ Ψ

s, 1
N

N∑
i=1

δyi

+ E

 1

N

N∑
i=1

∫ T

s

[∂µΨ]⊤(t, µ̄N,s,y
t )[X̄i,N,s,y

t ]σ(X̄i,N,s,y
t , µ̄N,s,y

t )dW̃ i
t


+ E

 1

N2

N∑
i=1

∫ T

s

σσ⊤(X̄i,N,s,y
t , µ̄N,s,y

t ) : ∂2µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t , X̄i,N,s,y
t ]dt


− 1

N
logE

[
exp

(
−NG(µN,s,y

T )
)]

= Ψ

s, 1
N

N∑
i=1

δyi

+ E

 1

N2

N∑
i=1

∫ T

s

σσ⊤(X̄i,N,s,y
t , µ̄N,s,y

t ) : ∂2µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t , X̄i,N,s,y
t ]dt


− 1

N
logE

[
exp

(
−NG(µN,s,y

T )
)]

since the martingale term is bounded in square expectation for all N .
Infimizing over uN ∈ UN and using (60) we get:

lim inf
N→∞

− 1

N
log

(
E
[
exp

(
−2NG(µ̂N,s,y

T )
) N∏

i=1

(Zi,N,s,y)2
])

≥ lim inf
N→∞

{
Ψ

s, 1
N

N∑
i=1

δyi


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+ inf
uN∈UN

E

 1

N2

N∑
i=1

∫ T

s

σσ⊤(X̄i,N,s,y
t , µ̄N,s,y

t ) : ∂2µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t , X̄i,N,s,y
t ]dt


− 1

N
logE

[
exp(−NG(µN,s,y

T ))
]}

= Ψ(s, ν) + γ1,

where we used the assumed continuity of Ψ and the convergence of 1
N

∑N
i=1 δyi

to ν, (18), and the fact that
by boundedness of σ and (iv) in Definition 2.1, there is a constant C independent on the choice of uN ∈ UN

(which may change from line to line) such that:

E

 1

N2

N∑
i=1

∫ T

s

σσ⊤(X̄i,N,s,y
t , µ̄N,s,y

t ) : ∂2µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t , X̄i,N,s,y
t ]dt


≤ CE

 1

N2

N∑
i=1

∫ T

s

|∂2µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t , X̄i,N,s,y
t ]|dt


= CE

 1

N2

N∑
i=1

N∑
j=1

∫ T

s

|∂2µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t , X̄j,N,s,y
t ]|1i=jdt


≤ CE

∫ T

s

(
1

N2

N∑
i,j=1

|∂2µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t , X̄j,N,s,y
t ]|2

)1/2(
1

N2

N∑
i,j=1

1i=j

)1/2

dt


= CE

 1

N1/2

∫ T

s

(
1

N2

N∑
i,j=1

|∂µΨ(t, µ̄N,s,y
t )[X̄i,N,s,y

t , X̄j,N,s,y
t ]|2

)1/2

dt


= CE

[
1

N1/2

∫ T

s

∥∥∥∂2µΨ(t, µ̄N,s,y
t )

∥∥∥
L2(Rd;µ̄N,s,y

t )⊗L2(Rd;µ̄N,s,y
t )

dt

]

≤ C

N1/2
(T − s).

Note that if we, instead of just the bound supt∈[0,T ],µ∈P2(Rd)

∥∥∥∂2µΨ(t, µ)[·, ·]
∥∥∥
L2(Rd;µ)⊗L2(Rd;µ)

≤ C, have

further that e.g. supt∈[0,T ],µ∈P2(Rd)

∫
Rd |∂2µΨ(t, µ)[z, z]|2µ(dz) ≤ C, then this remainder is O(1/N). Also

note that the Laplace Principle of Theorem 1.2 is used here to establish the equality (18), which yields the
appearance of γ1 in the limit.
This gives that

lim
N→∞

− 1

N
logR(δ̂N )

= lim
N→∞

{
− 1

N
logE

[
exp(−2NG(µ̂N,s,y))

N∏
i=1

(Zi,N,s,y)2
]
+

2

N
logE

[
exp(−NG(µN,s,y))

]}

= lim
N→∞

− 1

N
logE

[
exp(−2NG(µ̂N,s,y))

N∏
i=1

(Zi,N,s,y)2
]
− 2γ1 (by (18))

≥ Ψ(s, ν)− γ1.

We thus have that δ̂N admits an expansion of the form (20) with γ̂ ≤ γ1−Ψ(s, ν). Note that the case Ψ ≡ 0
corresponds to the standard Monte Carlo estimator δN in the above, from which we obtain γ = 2γ1−γ2 ≤ γ1
as expected – see (19) and the discussion thereafter. The rest of the claims stated in the theorem are now
immediate. In particular, by Jensen’s inequality we know − 1

N logR(δ̂N ) ≤ 0, so if Ψ(s, ν) = γ1 we have
log-efficiency in the sense of Definition 1.4.
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5.2. Proof of Theorem 2.5. First, we will establish a prelimit PDE expression for the numerator in the
expression for R(δ̂N ) in (17) in a manner along the lines of the discussion in Section 2.1. Define

Ξ̂N (t, x1, ..., xN ) = E
[
exp

(
−2NG(µ̂N,t,x

T )
) N∏

i=1

(Zi,N,t,x)2
]
, x1, ..., xN ∈ Rd, t ∈ [0, T ]

where Zi,N,t,x, i = 1, ..., N and µ̂N,t,x are as in (15) and (13) with the choice of controls from (33) in Theorem
2.4. Define v(t, µ, x) := −σ⊤(x, µ)∂µϕ0(t, µ)[x]. Then v(t, µN

x , xi) = vNi (t, x1, ..., xN ) for all N , where vNi are
from (33) with ϕ0 in the place of Ψ. Recall that in (33) we had only assumed Ψ be a classical subsolution
of (23), whereas now we assume ϕ0 is a classical solution.
From Lemma 5.1 (using the assumed boundedness of σ and ∂µϕ0), we have:

Ξ̂N (t, x1, ..., xN ) = E
[
exp(−2NG(µ̃N,t,x

T )) exp

(
N

∫ T

t

∫
Rd

|v(τ, µ̃N,t,x
τ , z)|2µ̃N,t,x

τ (dz)dτ

)]
(61)

where µ̃N,t,x
τ = 1

N

∑N
i=1 δX̃i,N,t,x

τ
,

dX̃i,N,t,x
τ = [b(X̃i,N,t,x

τ , µ̃N,t,x
τ )− σ(X̃i,N,t,x

τ , µ̃N,t,x
τ )v(τ, µ̃N,t,x

τ , X̃i,N,t,x
τ )]dτ + σ(X̃i,N,t,x

τ , µ̃N,t,x
τ )dW̃ i

τ ,

X̃i,N,t,x
t = xi.

Applying Feynman-Kac, we have Ξ̂N is the unique solution to:

∂tΞ̂
N (t, x1, ..., xN ) +

N∑
i=1

{
[b(xi, µ

N
x )− σ(xi, µ

N
x )v(t, µN

x , xi)] · ∂xi Ξ̂
N (t, x1, ..., xN )

+
1

2
σσ⊤(xi, µ

N
x ) : ∂2xi

Ξ̂N (t, x1, ..., xN ) + |v(t, µN
x , xi)|2Ξ̂N (t, x1, ..., xN )

}
= 0,

t ∈ [0, T ), x1, ..., xN ∈ Rd,

Ξ̂N (T, x1, ..., xN ) = exp(−2NG(µN
x )), x1, ..., xN ∈ Rd.

(62)

This is where the linear growth condition on b is used—see, e.g., Theorem 7.6 in [64].

Then Ξ̃N (t, x1, ..., xN ) := − 1
N log Ξ̂N (t, x1, ..., xN ) satisfies

∂tΞ̃
N (t, x1, ..., xN ) +

N∑
i=1

{
[b(xi, µ

N
x )− σ(xi, µ

N
x )v(t, µN

x , xi)] · ∂xi Ξ̃
N (t, x1, ..., xN )

+
1

2
σσ⊤(xi, µ

N
x ) : ∂2xi

Ξ̃N (t, x1, ..., xN )− 1

N
|v(t, µN

x , xi)|2

− N

2
|σ⊤(xi, µ

N
x )∂xi Ξ̃

N (t, x1, ..., xN )|2
}

= 0, t ∈ [0, T ), x1, ..., xN ∈ Rd,

Ξ̃N (T, x1, ..., xN ) = 2G(µN
x ), x1, ..., xN ∈ Rd.

We consider now the PDE (34) from Subsection 2.2. Note that this agrees with (32) if we set v ≡ 0, other
than the fact that the terminal condition is 2G rather than G. Under the current regularity assumptions,
we see via Proposition A.3 that for all N , Ξ̃N is the empirical projection of ΞN from (34). That is:

ΞN (t, µN
x ) = Ξ̃N (t, x1, ..., xN ) = − 1

N
logE

[
exp(−2NG(µ̂N,t,x

T ))
N∏
i=1

(Zi,N,t,x)2
]
.(63)

We now observe how to uncover the log-efficiency established in Theorem 2.4 (though under stronger regu-
larity assumptions) using the method of [75], and set up how higher order terms in such an expansion can
be used to prove the results in Theorem 2.5.
Suppose, as in [75], that we have sufficient regularity to have the asymptotic expansions for (32) and (34) of
the forms (36) and (37) for some k.
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Then by (61) and (25) (noting that indeed the representation (25) holds for the unique solution Φ̂N to (26),
again by Theorem 7.6 in [64]), we have

R(δ̂N ) =
Ξ̂N (s, y1, ..., yN )

[Φ̂N (s, y1, ..., yN )]2

= exp

(
N [2ϕ0(s, µ

N
y )− ξ0(s, µ

N
y )] + [2ϕ1(s, µ

N
y )− ξ1(s, µ

N
y )] + [2ϕ2(s, µ

N
y )− ξ2(s, µ

N
y )]/N + ...

+ [2ϕk(s, µ
N
y )− ξk(s, µ

N
y )]/Nk−1 + o(1/Nk−1)

)
,

where R(δ̂N ) is as in (17). Here we have used, by the same logic as to obtain (63),

ΦN (t, µN
x ) = Φ̃N (t, x1, ..., xN ) = − 1

N
logE[exp(−NG(µN,t,x

T ))],

where ΦN is as in (32) and Φ̃N is as in (29).
We now see that 2ϕ0 (recalling here that ϕ0 is the unique classical solution to (23)) and ξ0 from (35) satisfy
the same equation. Indeed, inserting this ansatz into (35) and using v(t, µ, x) = −σ⊤(x, µ)∂µϕ0(t, µ)[x], we
get

2∂tϕ0(t, µ) + 2

∫
Rd

[b(z, µ) + σσ⊤(z, µ)∂µϕ0(t, µ)[z]] · ∂µϕ0(t, µ)[z] +
1

2
σσ⊤(z, µ) : ∂z∂µϕ0(t, µ)[z]µ(dz)

−
∫
Rd

2|σ⊤(z, µ)∂µϕ0(t, µ)[z]|2 + |σ⊤(z, µ)∂µϕ0(t, µ)[z]|2µ(dz)

= 2∂tϕ0(t, µ) + 2

∫
Rd

b(z, µ) · ∂µϕ0(t, µ)[z] +
1

2
σσ⊤(z, µ) : ∂z∂µϕ0(t, µ)[z]µ(dz)

−
∫
Rd

|σ⊤(z, µ)∂µϕ0(t, µ)[z]|2µ(dz) = 0, t ∈ [0, T ), µ ∈ P2(Rd),

2ϕ0(T, µ) = 2G(µ), µ ∈ P2(Rd).

which dividing by 2 gives the same equation as (23).
This shows that indeed 2ϕ0(t, µ) = ξ0(t, µ) for all t ∈ [0, T ], µ ∈ P2(Rd) via our uniqueness assumption.

Thus, since 2ϕ0(s, µ
N
y ) = ξ0(s, µ

N
y ) for all N , we have − 1

N logR(δ̂N ) → 0 as N → ∞.

Moreover, when k = 1, knowing 2ϕ0(s, µ
N
y ) = ξ0(s, µ

N
y ), we have for any M

lim
N→∞

ρ(δ̂N ) =
1√
M

√
lim

N→∞
exp(2ϕ1(s, µN

y )− ξ1(s, µN
y ) + o(1))− 1.

As we will show, under our current assumptions 2ϕ1(s, µN
y ) = ξ1(s, µ

N
y ) for all N , so we get limN→∞ ρ(δ̂N ) =

0, yielding vanishing relative error (Definition 1.5).
Lastly, knowing 2ϕ0(s, µ

N
y ) = ξ0(s, µ

N
y ) and 2ϕ1(s, µ

N
y ) = ξ1(s, µ

N
y ), letting k = 2 we have:

lim
N→∞

T (N) = lim
N→∞

N [exp([2ϕ2(s, µ
N
y )− ξ2(s, µ

N
y )]/N + o(1/N))− 1]

= lim
N→∞

[2ϕ2(s, µ
N
y )− ξ2(s, µ

N
y )] + o(1)

= lim
N→∞

[2ϕ2(s, µ
N
y )− ξ2(s, µ

N
y )]

= 2ϕ2(s, ν)− ξ2(s, ν)

where T (N) is as in (42) and here we have used the assumed continuity of ϕ2, ξ2. This will yield the limit
(43).
We now insert the ansatz of the expansions (36) for ΦN (t, µ) and (37) for ΞN (t, µ) into their respective
equations (32) and (34) and match O(1/Nk) to obtain formal recursive formulas for ξk and ϕk as in
Theorem 3.3 in [75]. We arrive at the expressions (38) and (39) from Subsection 2.2.

Now recalling 2ϕ0(t, µ) = ξ0(t, µ), we see that in (40) and (41) from Subsection 2.2, Y t,µ d
= Zt,µ (using

(A4)), and moreover we note that Zt,µ is the solution to the (optimally) controlled limiting McKean-Vlasov
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equation initialized at time t with distribution µ from Theorem 1.2, that is Zt,µ d
= X̂u,t,µ from (8) with

u(τ) = −σ(X̂u,t,ν
τ ,L(X̂u,t,ν

τ ))∂µϕ0(τ,L(X̂u,t,ν
τ ))[X̂u,t,ν

τ ], τ ∈ [t, T ].
Under the assumption that the expressions (40),(41) are valid with k = 1, we have:

ϕ1(t, µ) =
1

2
E
[∫ T

t

σσ⊤(Zt,µ
τ ,L(Zt,µ

τ )) : ∂2µϕ0(τ,L(Zt,µ
τ ))[Zt,µ

τ , Zt,µ
τ ]dτ

]
and

ξ1(t, µ) = E
[∫ T

t

1

2
σσ⊤(Zt,µ

τ ,L(Zt,µ
τ )) : ∂2µξ0(τ,L(Zt,µ

τ ))[Zt,µ
τ , Zt,µ

τ ]dτ

]
= E

[∫ T

t

σσ⊤(Zt,µ
τ ,L(Zt,µ

τ )) : ∂2µϕ0(τ,L(Zt,µ
τ ))[Zt,µ

τ , Zt,µ
τ ]dτ

]
,

so indeed ξ1(t, µ) = 2ϕ1(t, µ) for all t ∈ [0, T ] and µ ∈ P2(Rd). As discussed previously, this establishes that
we indeed have vanishing relative error (Definition 1.5). Also, this is the expected expression to arrive at
for these first-order correction terms—compare with equations (A.7) and (A.8) in [79], where the analogous
expression is given in terms of the second derivative of their zero-viscosity (standard) HJB equation evaluated
at the optimally controlled path for the limiting ODE in the small-noise regime.
Under the additional assumption that our representations (40),(41) for ϕk, ξk hold for the next order correc-
tion k = 2, we have:

ϕ2(t, µ) =
1

2
E
[∫ T

t

σσ⊤(Zt,µ
τ ,L(Zt,µ

τ )) : ∂2µϕ1(τ,L(Zt,µ
τ ))[Zt,µ

τ , Zt,µ
τ ]

− |σ⊤(Zt,µ
τ ,L(Zt,µ

τ ))∂µϕ1(τ,L(Zt,µ
τ ))[Zt,µ

τ ]|2dτ
]

and

ξ2(t, µ) = E
[∫ T

t

1

2
σσ⊤(Zt,µ

τ ,L(Zt,µ
τ )) : ∂2µξ1(τ,L(Zt,µ

τ ))[Zt,µ
τ , Zt,µ

τ ]

− 1

2
|σ⊤(Zt,µ

τ ,L(Zt,µ
τ ))∂µξ1(τ,L(Zt,µ

τ ))[Zt,µ
τ ]|2dτ

]
= E

[∫ T

t

σσ⊤(Zt,µ
τ ,L(Zt,µ

τ )) : ∂2µϕ1(τ,L(Zt,µ
τ ))[Zt,µ

τ , Zt,µ
τ ]dτ

− 2|σ⊤(Zt,µ
τ ,L(Zt,µ

τ ))∂µϕ1(τ,L(Zt,µ
τ ))[Zt,µ

τ ]|2dτ
]
,

so

2ϕ2(t, µ)− ξ2(t, µ) = E
[∫ T

t

|σ⊤(Zt,µ
τ ,L(Zt,µ

τ ))∂µϕ1(τ,L(Zt,µ
τ ))[Zt,µ

τ ]|2dτ
]
.

By our previous discussion and our identification of Zt,µ as related to X̂u,t,µ, we get

lim
N→∞

T (N) = E
[∫ T

s

|σ⊤(X̂u,s,ν
t ,L(X̂u,s,ν

t ))∂µϕ1(t,L(X̂u,s,ν
t ))[X̂u,s,ν

t ]|2dt
]

where ϕ1 is as in (38) with k = 1 and u(t) = −σ⊤(X̂u,s,ν
t ,L(X̂u,s,ν

t ))∂µϕ0(t,L(X̂u,s,ν
t ))[X̂u,s,ν

t ], t ∈ [s, T ].

6. Conclusions and Future Work

We have derived an importance sampling scheme for exponential functionals of the empirical measure of
weakly interacting diffusions. Using the connection between the large deviations rate function of [16] and
mean-field optimal control, the asymptotic performance of the proposed scheme is characterized in terms
of subsolutions of the Hamilton-Jacobi-Bellman equation on Wasserstein space. We provide both numerical
and analytical evidence that sufficient smoothness of such a solution can yield relative error which vanishes
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as the number of particles becomes large. We also numerically explore the impact of lack of smoothness of
the solution of the HJB equation on the performance of the proposed importance sampling scheme.
In future work, a major hurdle to overcome will be adapting the scheme to situations where subsolutions of
the HJB equation cannot be constructed analytically. In the standard small noise setting, this is also a major
issue, and when the dimension of the system becomes large advanced techniques such as the use of machine
learning, optimization software, and neural networks to identify the solution of the HJB equation and/or
the optimal control are used [11, 71, 77, 79]. In the mean-field setting, methods of stochastic control are
already being used to address the issue of numerically constructing solutions to the HJB equation (23), see
e.g. [20,22,47,54,55,60,66]. Moreover, using the calculus of variations form of the rate function of Dawson-
Gärtner [29], there are some examples in the literature where perturbation expansions have been made to
approximate the optimal path of the controlled McKean-Vlasov equation corresponding to certain types of
rare events [12,49]. The marriage of such techniques with our proposed scheme would allow for applications
beyond the linear quadratic regime and perturbations thereof, and perhaps even allow for extensions to
finite-time probabilities and problems of metastability as discussed in Remark 2.6.
It may also prove useful for some target statistics to design an importance sampling scheme using the
moderate deviations principle for the empirical measure [10, 17]. This is known to aid with the problems
discussed above in the small noise setting due to the linearization of the HJB equation under the moderate
deviations scaling [51, 69]. As discussed in Remark 3.4, this can likely also be supplemented via use of an
importance sampling scheme arising from large deviations of the empirical measure in the joint small noise
and large N limit as derived in [14,72].
Another interesting avenue for future research is to see how our methodology can be extended to the setting
where the interacting particles also share a common driving noise [15,31].
Lastly, it is of great interest to establish rigorously the asymptotic expansions for the prelimit HJB equation
presumed in Theorem 2.5—see Remark 2.7.

Appendix A. Differentiation on Spaces of Measures

Definition A.1. Given a function u : P2(Rd) → R, we may define a lifting of u to ũ : L2(Ω̃, F̃ , P̃;Rd) → R
via ũ(X) = u(L(X)) for X ∈ L2(Ω̃, F̃ , P̃;Rd). Here we assume Ω̃ is a Polish space, F̃ its Borel σ-field,
and P̃ is an atomless probability measure (since Ω̃ is Polish, this is equivalent to every singleton having zero
measure).
Here:

P2(Rd) := {µ ∈ P(Rd) :

∫
Rd

|x|2µ(dx) <∞}.

P2(Rd) is a Polish space under the L2-Wasserstein distance

W2(µ1, µ2) := inf
π∈Cµ1,µ2

[∫
Rd×Rd

|x− y|2π(dx, dy)
]1/2

,

where Cµ1,µ2
denotes the set of all probability measures on Rd×Rd with first marginal µ1 and second marginal

µ2.
We say u is L-differentiable or Lions-differentiable at µ0 ∈ P2(Rd) if there exists a random variable
X0 on some (Ω̃, F̃ , P̃) satisfying the above assumptions such that L(X0) = µ0 and ũ is Fréchet differentiable
at X0.
The Fréchet derivative of ũ can be viewed as an element of L2(Ω̃, F̃ , P̃;Rd) by identifying L2(Ω̃, F̃ , P̃;Rd)
and its dual. From this, one can find that if u is L-differentiable at µ0 ∈ P2(Rd), there is a deterministic
measurable function ξ : Rd → Rd such that Dũ(X0) = ξ(X0), and that ξ is uniquely defined µ0-almost
everywhere on Rd. We denote this equivalence class of ξ ∈ L2(Rd, µ0;Rd) by ∂µu(µ0) and call ∂µu(µ0)[·] :
Rd → Rd the Lions derivative of u at µ0. Note that this definition is independent of the choice of X0 and
(Ω̃, F̃ , P̃). See [19] Section 5.2.
To avoid confusion when u depends on more variables than just µ, if ∂µu(µ0) is differentiable at z0 ∈ Rd,
we denote its derivative at z0 by ∂z∂µu(µ0)[z0].
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Definition A.2. ([19] Definition 5.83) We say u : P2(Rd) → R is Fully C2 if the following conditions are
satisfied:

(1) u is C1 in the sense of L-differentiation, and its first derivative has a jointly continuous version
P2(Rd)× Rd ∋ (µ, z) 7→ ∂µu(µ)[z] ∈ Rd.

(2) For each fixed µ ∈ P2(Rd), the version of Rd ∋ z 7→ ∂µu(µ)[z] ∈ Rd from the first condition is
differentiable on Rd in the classical sense and its derivative is given by a jointly continuous function
P2(Rd)× Rd ∋ (µ, z) 7→ ∂z∂µu(µ)[z] ∈ Rd×d.

(3) For each fixed z ∈ Rd, the version of P2(Rd) ∋ µ 7→ ∂µu(µ)[z] ∈ Rd in the first condition is continu-
ously L-differentiable component-by-component, with a derivative given by a function P2(Rd)×Rd ×
Rd ∋ (µ, z, z′) 7→ ∂2µu(µ)[z][z

′] ∈ Rd×d such that for any µ ∈ P2(Rd) and X ∈ L2(Ω̃, F̃ , P̃;Rd) with
L(X) = µ, ∂2µu(µ)[z][X] gives the Fréchet derivative at X of L2(Ω̃, F̃ , P̃;Rd) ∋ X ′ 7→ ∂µu(L(X ′))[z]

for every z ∈ Rd. Denoting ∂2µu(µ)[z][z′] by ∂2µu(µ)[z, z′], the map P2(Rd) × Rd × Rd ∋ (µ, z, z′) 7→
∂2µu(µ)[z, z

′] is also assumed to be continuous in the product topology.

We recall now a useful connection between the Lions derivative as defined in A.1 and the empirical measure.

Proposition A.3. For g : P2(Rd) → R which is fully C2 in the sense of definition A.2, we can define the
empirical projection of g, as gN : (Rd)N → R given by

gN (x1, ..., xN ) := g

 1

N

N∑
i=1

δxi

 .

Then gN is twice differentiable on (Rd)N , and for each x1, .., xN ∈ Rd, (i, j) ∈ {1, ..., N}2:

∂xi
gN (x1, ..., xN ) =

1

N
∂µg

 1

N

N∑
i=1

δxi

 [xi](64)

and

∂xi∂xjg
N (x1, ..., xN ) =

1

N
∂z∂µg

 1

N

N∑
i=1

δxi

 [xi]1i=j +
1

N2
∂2µg

 1

N

N∑
i=1

δxi

 [xi, xj ].(65)

Proof. This follows from Propositions 5.35 and 5.91 of [19]. □
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