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Abstract

Phylogenetic networks represent evolutionary histories of sets of taxa where horizontal
evolution or hybridization has occurred. Placing a Markov model of evolution on a
phylogenetic network gives a model that is particularly amenable to algebraic study by
representing it as an algebraic variety. In this paper, we give a formula for the dimension
of the variety corresponding to a triangle-free level-1 phylogenetic network under a
group-based evolutionary model. On our way to this, we give a dimension formula
for codimension zero toric fiber products. We conclude by illustrating applications to
identifiability.

Keywords Phylogenetic networks - Markov models of evolution - Group-based
models - Dimension

1 Introduction

In evolutionary biology, phylogenetic networks are graphs used to represent the evolu-
tionary history of a set of taxa or species. In molecular phylogenetics, these graphs are
usually paired with a statistical model where the graph is a combinatorial parameter
of the model. In this work, we focus on network-based Markov models. In particular,
fixing a directed graph A/ with n leaves, i.e. a network, the associated network-based
Markov model is the image of a polynomial parameterization in the space of probability
distributions over the sample space, which commonly in applications is {A, G, C, T'}"
where A, G, C, T are the four-nucleic bases.

When understanding such models, the overarching goal is to be able to infer phy-
logenetic networks from molecular sequence data. To be able to do this, we must
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first determine whether the model is identifiable from the observed data. By repre-
senting phylogenetic models as geometric objects called varieties, such questions can
be reframed in terms of geometry, that is, we would like to know whether varieties
representing distinct phylogenetic network models are themselves distinct. One of the
first geometric descriptions we can give of a variety is its dimension. In Theorems 1
and 2, we give dimension results for all level-1, triangle-free phylogenetic networks
under a class of Markov models called group-based models, and in Section 6 we give
some identifiability results that follow easily from our dimension formula.

As described above, we are interested in the geometry of network-based Markov
models, in particular, their dimensions. Such work is along the lines of Sturmfels
and Sullivant (2005), Eriksson et al (2005), Allman and Rhodes (2007), Allman
and Rhodes (2008), Casanellas and Fernandez-Sanchez (2008), Zwiernik and Smith
(2011), Casanellas and Fernandez-Sanchez (2011), Michatek (2011), Casanellas et al
(2017), Michatek and Ventura (2019), and Casanellas et al (2021), which study the
geometry of tree-based Markov models. Indeed, by moving to C and taking Zariski
closures, images of the parameterization maps correspond to algebraic varieties whose
study can aid in model selection (see Pachter and Strumfels (2005), Drton et al (2009),
and Sullivant (2018) for discussions). Popular constraints on the parameter space, such
as Jukes-Cantor (JC), Kimura 2-parameter (K2P), and Kimura 3-parameter (K3P) con-
straints, give rise to a class of models referred to as group-based models. Assuming
group-based constraints, the varieties associated to tree-based Markov models are toric
varieties after a transformation of coordinates first described in Evans and Speed (1993)
and Székely et al (1993) (see Sturmfels and Sullivant (2005) for an overview). The
dimensions of tree varieties can be understood using tools from toric geometry. While
under this same transformation, group-based network varieties have a lower dimen-
sional toric action on them, and thus are T'-varieties (see (Cummings et al (2021),
Remark 4.1)), these varieties are generally less well understood. In this paper, we
expand our understanding of these varieties by giving a formula for the dimension for
all level-1 triangle-free group-based network varieties.

As described in Sect. 2, a group-based model of evolution is defined with a finite
abelian group G and a subgroup B of the automorphism group of G, denoted Aut(G).
In a network-based Markov model, each edge of the network has a transition matrix
associated to it, representing the probabilities of each type of nucleotide (usually A,
G, C, or T) mutating to another over an evolutionary time interval. The parameters of
the model are the entries of these transition matrices along with a mixing parameter for
each cycle. In a group-based model, the dimension of the parameter space is cut signif-
icantly by placing constraints on the transition matrices. In particular, each nucleotide
is identified with an element of G, and the transition probability of a mutation from a
to b depends only on b — a, reducing the number of free parameters in each matrix to
|G| — 1. The parameter space is reduced further by identifying the parameters for all
elements of G that are in the same B-orbit. If / + 1 is the number of B-orbits in G,
the number of free parameters for each edge is then /.

For a phylogenetic network A with m edges and c cycles, the expected dimension
of the group-based network variety dim V/Qf isl(m —c) + 1, and Proposition 12 shows
that it is indeed an upper bound. The main theorem of this paper shows that most
level-1 group-based network varieties have the expected dimension.
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Theorem 1 Let N be a level-1 triangle-free phylogenetic network with n leaves, m
edges, and c cycles. Let G be a finite abelian group of order at least 3 and B a subgroup
of Aut(G). Let | 4 1 be the number of B-orbits in G. Then the group-based network

variety VX/G’B) has dimension l(m — c) + 1.

When G = Z /27, certain small phylogenetic networks do not have the expected
dimension. In this case, since Aut(G) is the trivial group, there is only a single group-
based model. This is the Cavender-Farris-Neyman (CFN) model, and has biological
relevance, so we give the result for this group separately. Note that here we are able
to give a full result for level-1 phylogenetic networks.

Theorem 2 Let G = 7Z/27 and let N be a level-1 phylogenetic network with n leaves,
m edges, c>5 cycles of length at least 5, c4 4-cycles, and c3 3-cycles. Then the group-
based network variety V/\G/ has dimension m — (¢>5 + 2c4 + 3c3) + 1.

Our main tool for proving these theorems is the toric fiber product. This is an
operation on ideals that was first introduced in Sullivant (2006) and generalises the
Segre product. One of the first applications was to phylogenetic trees under group-
based models, where the ideals of the model are toric fiber products, and the operation
corresponds to the graph operation of cutting a tree at an internal edge. To some extent
this remains true for phylogenetic networks and allows us to focus our attention on
a family of phylogenetic networks called sunlet networks (defined in Sect.2.1). In
Sect. 3 we give a general dimension formula for toric fiber products (Theorem 9) and
apply this to phylogenetic trees and networks.

2 Preliminaries

In this section, we lay out the background needed for the paper. In particular, we
review group-based models of sequence evolution where the combinatorial parameters
are phylogenetic networks, as well as two tools that underlie the proof of our main
theorems: tropical geometry for dimension analysis and toric fiber products. The main
objects of biological relevance in this paper are phylogenetic networks, and, thus, that
is where we begin.

2.1 Phylogenetic Networks

The following network notation and terminology is adapted from Francis et al (2018),
Francis and Steel (2015), and Semple (2016).

Definition 1 A (binary rooted) phylogenetic network N on a set X is arooted, acyclic,
directed graph with no parallel edges that satisfies:

e The root vertex has outdegree 2.

e All vertices of outdegree 0 have indegree 1. These vertices are called leaves and
are labelled by X.

e All other vertices have either indegree 1 and outdegree 2 (called tree vertices), or
indegree 2 and outdegree 1 (called reticulation vertices). The incoming edges of
a reticulation vertex are called reticulation edges.
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Fig.1 a A leaf-labelled, directed 4-sunlet network, and b its corresponding contracted network (right)

A level-1 phylogenetic network is a phylogenetic network where each cycle in the
underlying undirected graph contains exactly one reticulation vertex. A semi-directed
phylogenetic network is a mixed graph obtained from a phylogenetic network by
suppressing the root node and undirecting all tree edges while the reticulation edges
remain directed. In a semi-directed phylogenetic network, the reticulation vertices are
the vertices of indegree two and level-1 is defined the same as for a rooted phyloge-
netic network. A triangle-free level-1 semi-directed phylogenetic network is a level-1
semi-directed phylogenetic network where every cycle in the unrooted skeleton has
length greater than three. For our work, it will be helpful to reduce the number of edges
in a semi-directed phylogenetic network that we consider. To this end we introduce
contracted semi-directed phylogenetic networks. A contracted semi-directed phyloge-
netic network is a mixed graph obtained from a semi-directed phylogenetic network
by contracting the non-reticulation edge of each reticulation vertex (see for exam-
ple, Fig. 1). Note that since level-1 networks are tree-child networks, in a contracted
level-1 semi-directed phylogenetic network, two distinct reticulation vertices are never
identified, and thus each non leaf-adjacent reticulation vertex has indegree 2 and out-
degree 2, and each leaf-adjacent reticulation vertex has indegree 2 and outdegree O.
Furthermore, the level-1 condition in a contracted level-1 semi-directed phylogenetic
network means that at least one of the outgoing edges of a reticulation vertex is a
non-reticulation edge.

Finally, an n-sunlet network is the semi-directed phylogenetic network topology
with n leaves and a single cycle of length n, where each vertex in the cycle is adjacent to
a leaf vertex and one vertex in the cycle is a reticulation vertex. The 4-sunlet network
is depicted in Fig. 1. Since an arbitrary level-1 network can be decomposed into a
collection of trees and sunlet networks, sunlet networks will play akey role in our study.

2.2 Group-Based Models of Evolution

Fix an abelian group G and a subgroup B C Aut(G). Denote by B - G the set of
B-orbits in G and let |B - G| = [ + 1. For a phylogenetic tree or network N, such a
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choice of G and B defines a model of evolution on V. From this model one can derive
an algebraic variety, which we will denote V/(\f; ‘B) These varieties are our primary
objects of study.

First, let us set up the notation and preliminaries for phylogenetic trees, i.e. phyloge-
netic networks with no reticulation vertices. For more details on group-based models
on trees, see (Sullivant 2018, Section 15.3) and Sturmfels and Sullivant (2005). Let
7T be an n-leaf phylogenetic tree, with vertex set, edge set, and leaf set denoted by
V(T), E(T), and L(T) respectively. Let m = |£(7)| be the number of edges in 7. A
consistent leaf G-labelling of T is a function & : £(7) —> G that satisfies

> Ew=0.

vel(T)

Note that the set of consistent leaf G-labellings depends only on n, and not on the
edges of 7, so all n-leaf phylogenetic trees share the same set of consistent leaf G-
labellings, which has size |G|"‘1. When G is clear, we will call £ a consistent leaf
labelling.

For a phylogenetic tree 7, each edge e € £(7) is oriented away from the root
vertex. Let L£(e) C L(T) be the set of leaves on the arrow side of e. A consistent leaf
labelling & of 7 induces a consistent edge labelling of 7 (also denoted &), which is a
map & : £(7) —> G given by

Ee)= ) ().
vel(e)

To each edge e in a phylogenetic tree or network we associate / 4+ 1 parameters,
denoted a, where g is a representative of the B-orbit [g]. For a tree 7 with n leaves,
the parameterization in Fourier coordinates (see Sturmfels and Sullivant 2005) of the
group-based model on 7 is

dgig2gn = l—[ af(e), (1)
ecE(T)
where & is given by the consistent leaf labelling g1, ..., g,. Index the standard basis

of C"(+1D with upper indices g for some representatives of the orbits in B - G, and

lower indices by the edges e € £(7'), and index the standard basis of cler! by the
consistent leaf-labellings. The parameterization map is the map

o - CmUFD cler™!
where

(T W))gmg, = [ w5,
ecE(T)
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for w € CMU+D and consistent leaf labellings & with leaf labels g1, ..., g,. The
Zariski closure of the image of this map is called the phylogenetic variety of T and
(G, B) and is denoted by VY(VG’B).

Now, denote by R the C-algebra Clgg,..q, | g1 + -+ + g» = 0] and by S
the C-algebra C[a$ | [g] € B - G, e € £(T)). The parameterization map ¢7 is a
morphism of affine varieties, with comorphism given by the C-algebra homomorphism
Y7 : R — S7 which acts on generators as

VT (qgg,) = l_[ ag(e)'
ecE(T)

It follows that the vanishing ideal of V7(—G’B), denoted Iq(—G’B>, is the kernel of ¥ 7.

We now move from trees to networks. Let A be a level-1 phylogenetic network
with n leaves, m edges, and k reticulation vertices. Since V is a phylogenetic network,
if we remove one of the two reticulation edges for each reticulation vertex, we obtain a
phylogenetic tree. We encode a choice of reticulation edge for each reticulation vertex
with a vector o € {0, 1}¥, and denote the resulting n-leaf phylogenetic tree by 7.
Then the parameterization of our group based model on A\ is the map ¢/ : C"(+D —
CIG"™" given by

o= Y. o1, 2

o €{0,1}

As above, we call the Zariski closure of the image of this map the phylogenetic variety
of N and (G, B), and denote it V/i?’B). The vanishing ideal Ij(\?’B) of VJE/G’B) is the
kernel of the C-algebra homomorphism v As given by

YN iR — Sy
qgl"'gn = Z w% (qgl"'gn)' (3)
GE{O,l}k

where Snr = Clas | [g] € B - G, e € E(N)] and we identify S7. as a subalgebra of
S in the obvious way.

When B = {id}, we call the probabilistic model associated to (G, B) the general
group-based model for the group G and denote the corresponding variety as VAG/ =

VX/G ‘®) The K3P model is the general group-based model for the Klein-4 group,
and the CFN model is the general group-based model for the group Z/27Z. The pairs
(G, B) corresponding to JC and K2P are (Z /272 x 7. /27, &3) and (Z/2Z X L] 27, S»),
respectively, where Aut(Z/2Z x Z/27Z) is identified with the permutation group G3.

In this paper, we are concerned with dim V/i/G B for a general A/ and (G, B). In
previous work, it is shown that under the CFN, JC, K2P, and K3P models, two phylo-
genetic network varieties are the same if the two networks have the same underlying
semi-directed phylogenetic network (Gross and Long 2018, Gross et al 2021). Here,
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we extend these results to all group-based models. This allows us to focus our attention
on semi-directed phylogenetic networks.

Lemma3 Let G be a finite abelian group and let B be a subgroup of Aut(G). If
N7 and N3 are two phylogenetic networks with the same underlying semi-directed
phylogenetic network, then V (G B) V(G B , where equality here means equality as
sets.

Proof Since phylogenetic networks have no parallel edges, it is clear that two phylo-
genetic networks A/; and NV have the same semi-directed phylogenetic network if and
only if their corresponding unrooted networks differ only by the directions of their
non-reticulation edges. Therefore it is sufficient to show that suppressing vertices of
degree 2 and changing the orientation of a single non-reticulation edge do not affect
the model.

First notice that if we take a phylogenetic network A/} and reorient any collection of
the non-reticulation edges to form a new network A (not necessarily a phylogenetic
network), the maps described above are still well-defined and so too are the corre-
sponding varieties. Thus, for this proof, we will relax the definition of phylogenetic
networks to include such networks, as it will allow us to consider redirecting one
edge at a time. Let NV; and NV, be two phylogenetic networks that are equal except
for the direction of a single non-reticulation edge e, and let & and & be consistent
leaf labellings on N and N; respectively, with the property that & (v) = & (v) for
each leaf v in the skeleton of N7 and N;. Then it is clear that £ (e) = —&;(e). This
means that ¢a;, = ¢, o 6, where 6 is the automorphism of €U+ given by swap-
ping the coefficients corresponding to a5 and a, ° whenever g # —g. Since 6 is
bijective, composing 6 with ¢, does not affect the image of ¢, so it follows that
1% /{? B) V(G B).

Next let /\/2 be a phylogenetic network with a vertex v of order 2 that has incident
edges e; and ep. Let £ be a consistent leaf labelling of N with £(e;) = g so that
either £(ey) = g or £(ex) = —g. Let us suppose that £(e2) = g and note that the
proof in the other case is similar. Let N be the phylogenetic network got from N by
suppressing v. Denote the new edge of A/ by ¢’ and, without loss of generality, give
¢ the same orientation as e; so that £(¢’) = g. Let 6 : C=DU+D . cmU+D pe the
map from the parameter space of A/ to the parameter space of N that is constant on
all parameters for edges shared by A/ and NV, takes all parameters for edge ¢’ to the
corresponding parameter for edge e, and sets all parameters corresponding to edge
e to 1. Then it is clear that we have

DN = PN 00,

and thus Im ¢ C Im¢r. On the other hand, consider ¢ar(w) for w € C™U+D,
Taking u € C~DU+D guch that uf, = wfl wfz forall [g] € B - G and “5 = wf for
all edges d # ¢ and all [g] € B - G, we see that ¢ (1) = dar(w). It follows that
Im ¢ = Im ¢ and thus VA7 = viZ?.

O
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Note that since the orientation of the non-reticulation edges does not affect the
variety, we may choose any orientation for non-reticulation edges, even if this is
not consistent with any placement of a root vertex. Thus when considering a phy-
logenetic network A/, we may take the corresponding semi-directed phylogenetic
network and arbitrarily assign orientations to each non-reticulation edge to obtain a
parameterization of the model.

Example 1 Let G be a finite abelian group and B = {id}. Let N be a 4-sunlet network
with leaf labellings, edge orientations, and edge labellings as in Fig. 1. The map Y ar
is given by
81,82 83 8481 81F8& g4 81,82 ,83 84 8 81+84 81
1828380 > 4y Gy d3"dy A5 dg tayayazagagta; Tag,
where to simplify notation we write alg for a‘fj. Here, the first monomial corresponds

to the tree obtained by removing the edge eg, and the second monomial corresponds
to the tree obtained by removing the edge es.

To end this section, we show that sunlet networks and contracted sunlet networks
have the same corresponding varieties.

Lemma4 Let G be a finite abelian group and B a subgroup of Aut(G). Let N be a
sunlet network and let N be its contraction. Then V (G B _y&B,

Proof Let A be an n -sunlet, so that A/ has 2n edges, denoted ey,...,es,, with e; the
leaf edge adjacent to the reticulation vertex, and e, 1, ez, the two reticulation edges,
as in Fig. 1. Let ¢r denote the parameterization map for A/, and let ¢ denote the
parameterization map for its contraction A”. As before, index the parameter spaces
€2+ and C@=DU+D by the B-orbits in G and the edges of A" and AV respectively.

It is clear that ¢pn7 = Par o ¢, where ¢ : C—DUHD . C220+D) g given by
t(w) = wi forallg € B-G and e € EN') (ie. e # e1), and t(w)5, = 1 for all
g € B - G. It follows that Im ¢pp7 C Im .

On the other hand, let y = ¢pr(w). Let u € C?*~DUHD be given by ué = wf
for e # ent1,e2n, and uf | = wiwf , , and uf, = wfwf, forallg € B-G. It
follows that a7 (1) =y = par(w), so Im Ppar C Im ppy. O

In fact, by absorbing the parameters associated to the contracted edge of each

reticulation vertex into the corresponding parameters of both reticulation edges, the
above lemma can be extended for any level-1 phylogenetic network.

Lemma5 Let G be a finite abelian group and B a subgroup of Aut(G). Let N be

a level-1 semi-directed phylogenetic network and let N' be its contraction. Then

y(G.B) _ y(G.B) O
N TN

2.3 Tropical Geometry
In Sect. 4 we give a lower bound on the dimension of the sunlet varieties by using the

tropical geometry results of Draisma (2008). Here we will present the result tailored
to our needs.
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Let C be a Zariski-closed cone in a complex vector space V of dimension 7, and
let W be a complex vector space of dimension m such that we have a polynomial
map f : W — V mapping W dominantly to C. A classic result is that the rank of
the Jacobian matrix of f at any pointin x € W gives a lower bound on dim(C) (and
equality holds when x is generic). We similarly obtain a bound from the tropicalization
of f.

Fix bases of V and W so that we may write f = (fp)};_;, where f;, € C[xy, ..., xu]
forb =1, ...n. Write

o= Z CaXx”

aeM)

for the finite subset M), C ZZ consisting of those o for which ¢, # 0. The tropical-

ization of f}, is defined as the piece-wise linear function Trop(fp) : R” — R given
by

Trop(fp)(A) := min (A, ),
aeM)

for A € R™. Then Trop(f) : R" — R" is defined as (Trop(f5))}_-
We will not define here the tropical variety Trop(C) C R”, but we note two relevant
facts (see e.g. Maclagan and Sturmfels (2021)):

e Trop(C) is a polyhedral complex with dimension bounded by dim(C),
e and Im(Trop(f)) € Trop(C).

Therefore the Jacobian of Trop( f) at a point A € R™ where the map is differentiable
gives a lower bound on dim(C) (although it is no longer true that equality necessarily
holds when A is generic).

Fix A such that Trop( f) is differentiable at X, meaning that Trop( f) is linear in an
open neighborhood U of A. Specifically Trop(f3) (1) = (u, a}) for all u € U where
o, is the unique vector in M), that minimizes (X, ;). Then Trop(f) () = AZ:/,L where
A) is the m x n matrix with columns o/, ..., o;,. (Note that A{ is also the Jacobian
matrix of Trop(f) at A.) The lemma below follows.

Lemma 6 (Draisma (2008), Corollary 2.3) Let the notation be as above. Then

dim C > max rankg A;.
LER™

For our purposes, f will be given by the polynomial parameterization map ¢/ .
Since the variety V/{? B is equal to the Zariski closure of ¢ J\/((C|G"H ), and since each
L T (G,B) .
polynomial in the parameterization is homogeneous, V""" is a closed cone.

2.4 Toric Fiber Products

The toric fiber product is an algebraic operation that takes two homogeneous ideals with
compatible multigradings and produces a new homogeneous ideal. It was introduced
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in Sullivant (2006) in order to generalise the gluing operation for toric ideals that
appear in tree-based models of evolution and elsewhere in algebraic statistics, and
further studied in Engstrom et al (2014) and Kahle and Rauh (2014). More recently
toric fiber products were introduced into the geometric modelling setting in Duarte
et al (2023). Here, we will introduce the basic objects and recommend that the reader
consult (Sullivant 2006) for further details.

Letr e Nands,r € N',andlet A = {ay,...,a,} C ZP be a linearly independent
set for some D > 0. Denote the affine semigroup generated by A by NA. Let K be
an algebraically closed field and let

Kix] = KIx} [i € [r], j € [si]],
and

K[yl = Ky | i € [r]. & € [5]],
be multigraded polynomial rings with multidegree given by deg(xi/) = deg(y,i) =a;
foralli = 1,...,r,j =1,...,s;,and k = 1,...,¢. Note that since the g; are
linearly independent, ideals in K[x] and K[y] that are homogeneous with respect to the
multigrading are also homogeneous with respect to the total degree. For homogeneous

ideals I C K[x]and J C K[y],let R = K[x]/I and § = K[y]/J be the corresponding
quotient rings, which inherit the multigrading from K[x] and K[y] respectively. Let

Klz] = K2l |i €17, j € [si]. k € []]

be the polynomial ring with the analogous multigrading (i.e. deg z;. ¢ = ai). Let gy
be the ring homomorphism given by

¢r7 K[zl — R®k S
Z;k —> x’/ ® y,i.
Definition 2 With notation as above, the foric fiber product of I and J is
I x4qJ :=kereyy.
Note that when I and J are prime ideals, since the toric fiber product I x 4 J is the
kernel of a ring homomorphism into an integral domain, it is a prime ideal. It will be

helpful for us to also consider the monomial homomorphism

¢ : K[z] — K[x, y]

i i
Tjp > X Vi

where we think of B as being the integral matrix of exponent vectors of this map. The
ideal Ip = ker ¢ p is a toric ideal and is given by

I3 = (Quadp),
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where
Quadyp = {Zukz /2k1 lekl /2k2 lielrl, 1 <ji<jo<si, | <ki <ka <1},

and Quadp is a Grobner basis for Ip with respect to any term order that selects
the first term (as written above) as the initial term for each quadric (Sullivant 2006,
Proposition 10).

We may also define I x 4 J as qbgl (I 4+ J), where we consider / and J as being
their natural extensions in K[x, y]. If @ and w, are weight vectors on K[x] and K[y]
respectively, then we have a natural weight vector (w1, wy) on K[x, y], and the pullback
@5 (w1, 2) is a weight vector on K[z]. These weight vectors have the property that
for all monomials z¢ € K[z] we have Wt (o ) @7 = Wl wy) (@B (7).

Let f € K[x] be a homogeneous polynomial with respect to the multigrading N.A
and total degree d, so that we may write

f= Zcux xu,

with each j[‘ € [s;,] and ¢, € K. The upper indices iy, ..., ig can be written indepen-
dent of u since f is homogeneous with respect to N.A and A is linearly independent.
For any k = (k1, ..., kg) with k; € [t;,] define the [ift of f by k, denoted f; € K][z]
by

v
= il DY id
fo=2 e, T @)
u=1

For aset F C K[x] define Lift F' to be the subset of K[z] consisting of all possible
fi with f € F. We define Lift G for G C K[y] analogously. Observe that we have

v
— i Xl it d _ (i1 iq
é5(fi) _ZC”xj{"' uykl "'ykd —(yk] "'ykd)f~
u=1

Since the weight of each monomial in f; with respect to ¢} (w1, @2) is equal to the
weight with respect to (w1, @) of the image of that monomial under ¢ g, and this is in
turn given by the sum of the weight with respect to w; of the corresponding monomial
in f and the weight with respect to @, of y;! - - -y, we have that ings (o, vy (fk) =
(ing, (f))k. It follows that in¢§ (01.0) (Lift F)) = Lift(iny, ({(F)), and by symmetry
ing () .wy) ((Lift G)) = Lift(ine, ((G)).

One of the key results on toric fiber products is the following.

Theorem 7 (Sullivant (2006), Theorem 13) Let F be a homogeneous Grobner basis
for I with respect to a weight vector w1, let G be a homogeneous Grobner basis for J
with respect to a weight vector w, and let w, be a weight vector such that Quadpg is
a Grobner basis for Ig. Then
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Lift (F) U Lift (G) U Quady

is a Grobner basis for I x 4 J with respect to the weight vector ¢ (w1, w2) + ewy for
sufficiently small € > 0.

Note that if & is chosen small enough, then ings w; wy)+ew, (k) = i 1.0 (fi)
for all f e (Lift F, Lift G).

Remark 1 Since Quadg C ker ¢ we have that Nyt (),0y) (f) = florall f € Quadg.
Now in@(wl’wz)ﬁwq ) = ian (in¢§(w1,w2)(f)) = ian (f), so it follows that on
Quadpg, the weight vector ¢} (w1, w2) + sw, chooses the same leading term as the
weight vector wy.

3 Dimension of Toric Fiber Products

In this section we give a dimension formula for the toric fiber product of two prime ide-
als when the set A is linearly independent, and then apply this to level-1 phylogenetic
networks.

Recall the following definitions, from e.g. Becker and Weispfenning (1993). Let 1
be an ideal in the polynomial ring K[x1, ..., x,]. We say thataset U C {x{, ..., x,}
is independent modulo I if I N K[U] = {0}. We say that U is maximally independent
modulo I if it is independent modulo I and there exists no other set U’ C {x1, ..., x,}
such that U € U’ and U’ is independent modulo I. The dimension of I, denoted
dim 7, is given by max{|U| | U < {xi, ..., x,} is independent modulo 7}. If [ is a
prime ideal then for all sets U < {x, ..., x,} that are maximally independent modulo
I we have dim I = |U|. We begin with the following lemma.

Lemma 8 Let M C K[x] be a set of monomials, and let U C {x’)i i elr],ji €lsil}
be maximally independent modulo (M), given by '

U:{x;h lieZ, h=1,...,n},

where I C [r] and for each i € T we have jl.h € [silforh =1, ..., n;. Then the set
LiftU = {z\y, li €T, h=1.....n;. k €[]} C KIz]

is maximally independent modulo (Lift M).

Proof First observe that (Lift M) is a monomial ideal generated by monomials of the
form my as in equation (4) for m € M. Thus, in order to show independence, it is
sufficient to only consider monomials m;. Now if my € (Lift M)ﬂK[z;hk lieZ, h=
I,...,n;, k € [t;]],thenm € MﬂK[xj.l_ |i € Z,j; € [si]] = {0}, and thus LiftU
is independent modulo (Lift M). Furthermore, if Lift U is not maximal then there
exists some i’ € [r], j € [si/], and kK’ € [t;/] such that Lift U U {z;-/,k,} is independent

modulo (Lift M). But then LiftU U {z;.//k | k € [t]} = Lift (U U {x;'./,}) is also
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independent modulo (Lift M), so U U {x;'./,} is independent modulo (M), contradicting
the maximality of U. O

Note that we have the analogous result for a set of monomials M C K[y] and
Uc iy, lielrl ki €ln]).

Theorem 9 Let I and J be homogeneous ideals in K[x] and K[y] respectively, let
w1 be a weight vector for K[x], and let wy be a weight vector for K[y]. Let the set
{x;h |i e I, jih € [si], h=1,..., n;} be maximally independent modulo in,,, (I) for
some Ly C [r], and let the set {y]’;g |i eIy, kf elt], g =1,...,m;} be maximally
independent modulo in, (J) withl Iy C [r]. If the set A is linearly independent, then

diml xqJ = > (i +m;—1). 5)
ie/NIy

Furthermore, if I and J are prime and we have T) = Iy = [r] thendim [ x 4 J =
dim 7 +dim J — | A|.

Proof Let F and G be Grébner bases of I and J with respect to the weight vectors
w1 and w, respectively, and let w, be a weight vector on K[z] that for all i chooses
Z;I kZZ;Zkl as the initial term for each polynomial in Quadg, where 1 < j; < jo < s;
and 1 < k; < ko < t;. By Theorem 7, we have that for the weight vector v =
o5 (w1, w2) + ewy and sufficiently small e > 0, the set Lift (F) U Lift (G) U Quadg
is a Grobner basis of 1 x 4 J. To prove inequality (5) it is sufficient to find a set of
generators lelz , that are maximally independent modulo in,, (/ X 4 J) and that has size
ZieZmIz(ni +m; — 1) .

As in the statement of the theorem, let the set {x}h | i e Iy, jl.h e [si], h =
1,...,n;} be maximally independent modulo in,,, (/ 3 = in,, ((F)), and for each
i € I arrange the j" so that j! < j? < .- < j'". By Lemma 8, and since
in,, ((LiftF)) = Lift(in,, (F)), we have that the set

(o liel h=1..n k=1_...4}CK[]

is maximally independent modulo in,, ((Lift ')). Similarly, since the set { ylis |i e

I, kig € [t], g = 1,...,m;} is maximally independent modulo in,, (/), we have
that

{Z;ké’ liel, g=1,....,m;, j=1,...,5} CcK[z]

is maximally independent modulo in,, ({(Lift G)). Again, for each i € Z, arrange the
kI sothatk! < k? < --- < k!"". We now have

inw((LiftFULiftG))ﬂK[z;hkg lieliNIy, h=1,...,n;, g=1,...,m;] = {0},
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Fig.2 Grid representing the
generators z', k forafixedi € [r].
Columns shaded grey give
monomials coming from the lift
of the maximally independent i
set modulo ing,, (1), and rows

shaded grey give monomials

coming from the lift of the

maximally independent set

modulo ingy, (J). Cells shaded

black represent the elements of

the set Z of degree a;

ki
it j} 7}
and that the set {z;hkg lieliNTy, h=1,...,n;, g =1,...,m;}is maximal with

respect to this condition. We claim that the set

Z={gy i€ TiNTy, h=1.. n} Ul o li € iNTy, g =1,....mi)

is maximally independent modulo in,, ((Lift F U Lift G U Quadg)) = in,(I x4 J)
(see Fig.2).

First we show that in,, ((Lift ' U Lift G U Quadg))NK[Z] = {0}. Observe that since
Lift F ULift G UQuadp is a Grobner basis, we have ing, ((Lift F ULift GUQuadg)) =
in,, (Lift F) Uin, (Lift G) Uin,(Quadg). Since in,, ((Lift F U Lift G)) N K[Z] = {0},
it is sufficient to show that for each i € Z; N Z, the elements of degree a; in Z do
not appear together as a quadratic monomial in in, ({Quadg)). By Remark 1 and our
choice of w we have that

in,(Quadg) = {2} 1,20, 1 €1F], 1 < ji < o <siv 1 ki <k < 1)

Fix i € Z1 N1, and observe that for any two elements of Z of degree a;, say z;k
apd ?3‘%’ with j < j/, we either have j = j/, k = k/, or k < k’. In all cases
llkZl ik ¢ inw(QuadB)
Next we show that Z is maximal. By the maximal independence of K[z’ i |7 e
TiNI, h=1,. S np, 8§ = 1, ,m; ]modulo in,, ((Lift F ULift G)), we need only
consider those z’jk ¢ Z withi € Il ﬂIz, J=1 " for some h =1,...,n;, andk = kf'

VA
T ik joko €
such that z’.o koz’.h K € in, (Quadp). It follows that Z is maximally independent modulo
ing, ((Lift F U Lift G U Quadg)). Since

for some g = 1, ..., m;. But it is clear that for any such Z%.., we can find 7/
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Zl= ) (i+m—1),

iei1NIy

inequality (5) is proved. For the final statement, observe that since [ is prime, we have
dim/ = ZieL n;,and since J is prime, we have dim J = Ziefz m; Ty =1p = [r]
then we get

r r r
1ZI =) (i+mi—1)=) ni+» mi—r=diml+dimJ —|A]

i=1 i=1 i=1

Now since I x 4 J is prime, its dimension is equal to the size of any subset that is
maximally independent modulo in,, ((Lift ' U Lift G U Quady)). m]

Remark2 Observe that if both I and J are prime ideals and there exist maximally
independent sets with 71 = 7, = [r], then it is clear from the proof that I x 4 J is also
a prime ideal and there exists a maximally independent set modulo iny,(/ X 4 J) in
{z;k i €lr], j € lsil, k € [t;]} with at least one element for each upperindex i € [r].

For the remainder of this section we will apply our results on toric fiber products to
level-1 phylogenetic networks. Fix a group-based model (G, B), and let A/ be a level-1
phylogenetic network with a (directed) cut edge e. Then the operation of cutting N
at e results in two smaller level-1 networks, that we denote Ay and . We denote
by e the new edge in both Ay and N_, and this edge inherits the direction from
N'. We assume that the network Ay contains the leaves labelled 1, ..., n’ for some
n’ < n, which are also leaves of A/, and the new leaf, which we denote by 7n,. Then
N_ contains the leaves labelled n’ + 1, .. ., n, and the new leaf which we also denote
by ne.

The vanishing ideal In7, is contained in the polynomial ring Ry =
(C[q;r],,,gn/gng | g1+ -+ gv + g, = O], and Iy is contained in R_ =

(C[q;wgnm,,,gn | gn, + w41 + -+ + g = 0]. We give each polynomial ring the

grading induced by deg(qg,..qy) = Elz(e)] € Zzgo'cl, where £ is the consistent edge
labelling induced by the consistent leaf labelling g1, . .., gn,and {E[g) | [g] € B-G}is
the standard basis of Zfo'cl . Note that the set A consisting of the image under deg of the
generators of R4 and R_ is given by the linearly independent set {E[,; | [¢] € B - G},
and each element of this set is the image under deg of a generator of both R and R_.
We assume that the edge e in AV is directed towards A, sothat&(e) = g1 +--- + g
and therefore deg(qg,...g,) = E[g,+--+g,1-
We have a natural C-algebra homomorphism

R — R+ ®c R_
N . ©)
180 V> dgrggr © Dg_grygn’
where g = —(g1 + --- + gy) and g = —(gy+1 + --- + gu). Note that
deg(q;_..gn,g+) = Egi+tg,1 and deglqy o, g) = El—(gyy+-+g0] =
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e . .
N 1 T,

1

Fig.3 a A level-1 phylogenetic network V. b The phylogenetic networks A/_ and N} obtained by cutting
N at e (right). The toric fiber product of /5/_ and Ips, corresponds to gluing N_ and NV along the edge
labelled e

E(g,+..+g,]- As in the proof of (Cummings et al (2021), Proposition 3.2), the net-
work parameterisation map ¢/ factors through (6), so I/ is the toric fiber product

Ij\/+ XA In .

Example 2 We will consider the 2-state Cavender-Farris-Neyman model, for which
G = 7/27Z, on the phylogenetic network A depicted in Figure 3. The corresponding
ideal I,/ is contained in the polynomial ring R = Clqg,¢>0340586 | &1 + &2 + 83 +
g4 + g5 + g¢ = 0]. Cutting at the non-trivial cut edge e results in a 4 sunlet and a
4-leaf tree. Let N be the 4-sunlet, and N_ be the 4-leaf tree. Let

IN, C R+ =Clg] 4016, 1 81+ 82+ 83+ 84 =0
and let
IN. CR-=Clqg 4,010, | 81 + 82+ 83+ 84 = 0]

be the corresponding ideals. We give Ry the grading induced by deg(q;‘1 i) =
Eg, € 7* = ZEy + ZEy, so that the degree E generators are qgoo’ q1+100, qlJBlO,
and qg’llo, and the degree E| generators are qag)“, qg’lm, qf[)m, and g}, We give R_
the grading induced by deg(qy, ¢,g,0,) = Eg,- In this case the degree E generators
are qo_goo, doo11> 90101> and ¢ 10> and the degree E generators are q,401» 91010+ 41100
and g ;-

The multigrading in R is given by deg(qyg, ¢,¢3948526) = Eg1+g2-+¢3 and the map ¢
is given by

¢ R = Clag,gyese0 Dhymoigny | 81 82+ 83+ 84 =hi+ha+h3+hy =0

: i -
DB * dgiga3g48586 7 Agig2g381 D2 gagsgs’

where g4 = g = g1 + g2 + g3 and deg(qg, grg35, ) = deg(qg_gigsg6) = Egi+go+g3-
As described above, I is given by the toric fiber product I, x 4 Iz~ , where A is

given by {Eo, E1}.
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First we describe Quad 3.Using that (Quad g) = ker ¢p we see that Quad g consists
of all elements of the form

9318283848586 9h1hahzhahshe — 4g1g283hahshe9hi1hah3gagsge

for generators g g 05048585 @04 Ghihohshahshe Satisfying deg(qg grgsgagsg6)
deg(qn,nyhshahshe)- Note that this condition guarantees that (g1, g2, g3, ha, hs, he)
and (hy, ho, h3, g4, g5, g6) are consistent leaf-labellings.

Next we consider lifts. For the generator ‘1(%00 we lift by elements of degree Ey in
R_. Thus we have

o
Lift g9 = {9000000, 90000011, §000101 > §000110} -

Similarly, for the generator g, we have
Lift gy900 = {9000000> 9011000, 1010005 9110000} -

Observe that, for example, ¢5(g0000011) = 900090011 214 $5(q101000) = 4151090000-
Note also that the generator gogppoo can be obtained from lifting both ‘16500 and g

The ideal I, is generated by the set F' (consisting of a single quadratic), and the
ideal Ins is generated by the set G. We give R, and R_ the monomial ordering

Agi1g2938s < dhihahshy if and only if (g1, g2, g3.84) < (h1, h2, h3, , hg) with respect to
lexicographic ordering and with 0 < 1 in Z/27Z. Then, with respect to lexicographic
ordering on Ry and R_, F and G are Grobner bases.

fr_ o+ + _+ + o+ + o+
F={f = 4000091111 — 9110090011 T 9101090101 — 9011091001}
G = {81 = 49101091100 — 9100191111> 82 = 9011091100 — 9010191010
83 = 4001191100 — 9000091111> 84 = 9011091001 ~ 9010191010
85 = 4001191001 — 9000091010° 86 = 4001190101 ~ 9000090110}
Observe that in all cases, each polynomial is homogeneous in the grading. We give

an example lift for f and for g1. The degree of f is Eog + E;. For k corresponding to
the pair (g1, 91019) W€ have

Ji = q0000119111010 — ¢1100119001010 + §1010114010010 — §0110114100010-

The polynomial g; has degree 2E. For k corresponding to the pair (‘1(;?)11» qf[)m) we
have

(81)k = 9001010100100 — g0010014100111-
Finally, Lift F is given by all possible lifts f;, and Lift G is given by all possible lifts

(gi)k fori = 1,...,6. Then the ideal 5 is generated by the elements of Lift F,
Lift G, and Quadpg.
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Corollary 10 Fix a group-based model (G, B). Let N be a level-1 phylogenetic net-
work with a cut edge e, and let N'y and N_ be the networks obtained by cutting N at
e. Then dim V5™ = dim /ﬁf P 1dim v P — 1B Gl

Proof As described above, the ideal I is the toric fiber product Inr, x 4 Iz, SO
we apply Theorem 9. Both I, and I/ are prime ideals, so to prove the result, it is
sufficient to show that for a phylogenetic network ideal I there exists a weight vector
wandaset U C {gg..q, | g1 + --- + g» = 0} that is independent modulo in,, (/)
and that contains at least one element of degree a; for each a; € A. From Remark 2,
we need only consider phylogenetic networks that are either sunlet networks or trees.
Furthermore, if AV is a sunlet network and 7 is a tree obtained from A/ be removing a
reticulation edge, then Iy C I7. It follows that if U is independent modulo in,, (I7)
then U is also independent modulo in,, (Zxr), so in fact it is sufficient to show the result
for any phylogenetic tree 7.

To show the result for a tree 7, we make the further observation that if 7 has an
internal edge e, then 7 is a toric fiber product of the two trees given by cutting 7 at e.
Thus in view of Remark 2 again, we need only consider claw trees. Since we are only
considering binary phylogenetic trees, we need only consider the 3-claw tree 73.

Fix a set of representatives G C G of the B-orbits in G, let 7 = T3, let [ = I,
and let the set of multidegrees be givenby A = {E, | g € G}. Note that 0 € G and that

= {0}. We may assume, without loss of generality, that deg(gqni) = Eg, where
g’ € [g] for some g € G. Recall that I is given by the kernel of the map /7 where

Y1 Clagm | g +h+k=01— Cla' [ge g, i =123
qghk > agg]aéh]agk].

Let U = {gg0(—g) | § € G}. It is clear that U has exactly one element of each
multidegree. Next, choose a term order on Clggpx | & + h + k = 0] such that ggpx <
ggnk Whenever g € Gand g’ ¢ G, and let w be a a weight vector whose induced term
order satisfies this. We claim that C[U] N in,, (1) = {0}.

To prove the claim, we will show that for any element f € I, we have that ing, (f)
does not consist of a product of elements of U. Since I is homogeneous and generated
by binomials, we may assume that f is a homogeneous binomial. Let G’ € G with
|G’| = n and suppose that we can write

=11 4900 —m
geg’

for some other monomial m of total degree n. Since f € ker 7 we must have that

Yrm) = yr( l_[ d40(—g)) 1_[ a[g])( l_[ ag—g])(agm)n

geg’ geg’ geg’

Now if g,y is a factor of m then we must have Y7 (ggpi) = a; ]ag)]agk for some

g,k € G. Thus,h’ € [0] soh’ = 0and g’ € [g], and since g’ + 0 + k' = 0 we must
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have k' = —g’. Now if g’ = g then g1 = q40(—g) appears as a factor in the first
monomial of f. If this holds for all factors of m then we have f = 0. If not, then for
some factor g4/0(—¢ We must have g’ ¢ G, so we have in,,(f) = m. O

Remark 3 Notice that in the proof of Corollary 10, we made no assumptions on the
number of reticulation vertices of \V. Since a binary phylogenetic tree can be thought
of as a phylogenetic network with no reticulation vertices, the result also holds for
binary phylogenetic trees. Explicitly, we have that if 7 is a binary phylogenetic tree
with an interior edge e, with trees 7 and 7— obtained by cutting e, then we have

dim V{? = dim v{&? 4 dim v{©® — |B - G|.

4 Sunlet Networks and Trees

If A is alevel-1 phylogenetic network, then N can be decomposed along cut edges into
a series of phylogenetic trees and sunlet networks. As shown in the previous section,
the ideal structure of the corresponding varieties is given by the toric fiber product.
It therefore remains for us give dimension results for the varieties corresponding to
trees and sunlet networks. For an unrooted phylogenetic tree 7, the dimension of
the variety V;G’B) is well known. We give a proof using the dimension result of the
previous section.

Lemma 11 If 7 is a binary phylogenetic tree with m edges and no degree-2 vertices
under a group-based evolutionary model (G, B), then the affine dimension of Vq(—G’B)

is given by
dim Vi« = im + 1.

Proof Denote by ¢ the number of interior edges of 7. If t = O then 7 is the 3-claw tree.
This has dimension 3/+ 1 by (Bafios et al (2019), Proposition 5.2), so the proposition is
true in this case. Now suppose 7 is a binary phylogenetic tree with m edges and r > 0
interior edges. Let e be an interior edge and let 7 and 7_ be the trees obtained by
cutting at e. If m and m _ are the number of edges of 7. and 7_ respectively, we have
m = m4 +m_ — 1. Furthermore, the number of interior edges of 7 and of 7_ is less
than ¢, so by induction we have dim V}S’B) =Im4+ + 1 and dim V}?’B) =Ilm_+1.
It follows from Remark 3 that

dim Ve« = my + D+ Um_+ 1) =+ D =Im+ 1.

O

Observe that one could extend the above proof to give the analogous dimension
result for any phylogenetic tree with no degree 2 vertices. To do so, the base-case
for the induction must be extended to cover all claw trees T,, with n > 3. That is,
one must show that for each 7, with corresponding ideal I, there exists a maximal
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independent set modulo in,,(/,,) that contains at least one element of multidegree a;
for each a; € A, as in the proof of Corollary 10.

The remainder of this section is dedicated to giving the dimension of the varieties
corresponding to sunlet networks. As we have already seen, the variety associated
to a phylogenetic network A is equal to the variety associated to the corresponding
contracted semi-directed phylogenetic network, so from this point onwards we will
only consider contracted semi-directed phylogenetic networks. First we will give an
upper bound on the dimension.

Proposition 12 If N is a contracted semi-directed phylogenetic network with only
disjoint cycles and with m edges then

dim VG < Im + 1.

Proof Let ¢ denote the number of cycles in N The affine variety VA(} is parameterized
by (I + 1)m parameters, but the map is multihomogeneous. It is linear in the set of
parameters for each non-reticulation edge, and in the union of the parameters for the
two reticulation edges of each cycle. Thus we may think of the parameterization map
as a projective map

1
]Pl N ]P)l x P2l+1 N, ]P;21+1 N IP(I—FI)" ,

where P! appears m —2c¢ times (once for each non-reticulation edge), and P?*! appears
¢ times (once for each cycle). We use a dashed arrow to indicate that in order for the
map to be well-defined we may need to take a subset of the domain. It follows that
Vﬁ[ has projective dimension at most /m + ¢, and thus its affine dimension is at most
Im4c+1.

Now consider v = ¢gpr(w) € C , where w € C"(+1_ For each pair of reticu-
lation edges ey, e, a consistent leaf labelling of NV assigns both edges the same label.
For each consistent leaf labelling of A/ in which they are labelled 0, the edges along
the cycle all receive the same labels in both trees, so the coordinate of v corresponding

to the consistent leaf labelling has a factor of wgl + wgz. For every consistent leaf
0
€l
wgz. Therefore the map depends only on the sum wgl + wgz. This reduces the number

|G|n71

labelling in which they are not labelled 0, the coordinate does not depend on w,, or

of independent parameters by c, so the affine dimension of Vﬁ[ isatmostim + 1. O

4.1 General Group-Based Models

First, we restrict our attention to sunlet networks under general group-based models
of evolution, i.e., those where the group B consists only of the identity automorphism.
We will deal with the case G = Z/2Z separately.

Proposition 13 Let N be the n-sunlet network with n > 4 and let G be an abelian
group with |G| =14+ 1 > 2. Then

dim VG =12n—1) + L
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Fig. 4 A contracted n-sunlet network with n > 4. Arrows indicate the orientation used for assigning a
consistent edge labelling from a consistent leaf labelling

Proof Using Lemma 4, we may replace A by its contraction. This network has m =
2n — 1 edges, so by Proposition 12 we have dim Vf/- <I2n—-1)+ 1.

Label the edges and vertices as in Fig.4, and let 77 and 7> be the two trees got
by removing the edges e, | and e respectively. The parameterization map for A is
given by

— 8 gn (81 81182 8&n g 8 81+8n
Agigg0 = @5+~ an" (a] Y T SRR TR S | ). )
where g1, ..., g» is a consistent leaf labelling, the first monomial corresponds to 77,

and the second monomial corresponds to 7,. With notation as in Sect.2.3, our aim
will be to find A that maximises rankg A;, which by Lemma 6 gives a lower bound
on dim VJ\G/.

Let {Ef | g € G,i = 1,...,2n — 1} be the standard basis of R"*1_indexed by
the edges of A/ and elements of G, and consider the dual vector space V = (R"(+Dyx
with the dual basis. Choose A € V such that A2+2 = -2, )L;gH_l = 1forall g € G,
and all other entries are 0. Let g1, . . ., g, be a consistent leaf labelling of A/. Then the
corresponding column of A; has the following properties:

e If gy = 0, then the monomial from 7 is chosen.
e If g1 # 0 and gy = 0, then the monomial from 75 is chosen.
e In all other cases the monomial from 7; is chosen.

We will show that rank A, > [(2n — 1) + 1 to give the lower bound.

Consider the submatrix given by consistent leaf labellings where g; = 0, so that
each column is an exponent vector coming from a monomial in 7. Perform column
operations on Ay so that the first (/ + 1)"~2 columns are given by this submatrix. Let
S be the tree with n — 1 leaves obtained from N by deleting the reticulation vertex.
The consistent leaf labellings of N in which g; = 0 give all of the consistent leaf
labellings of S. Since S is a phylogenetic tree, its corresponding variety VSG is toric,
and therefore the rank of its corresponding matrix A is equal to the dimension of the
variety. By Lemma 11, the variety Vg has dimension /(2n — 5) + 1, so the submatrix
of A, consisting only of the columns where g; = 0 has rank /(2n — 5) 4+ 1 (note
that since S has a monomial parameterization, for all choices of A we have that this
submatrix is the same).

@ Springer



90 Page22of32 E. Gross et al.

We make the following observations about this submatrix. First, since the monomial
from 77 is always chosen, the entries corresponding to the parameters a;f 4 are0forall
g € G.Similarly, for the edge e, only the parameter a(l) appears in the parameterization
of gg, g;---g,» SO the entries corresponding to the parameters a‘lg are Oforall g € G except
g = 0. Next, observe that in this submatrix, the row corresponding to the parameter
a§ is equal to the row corresponding to the parameter a;gl 4o forall g € G and similarly
the row corresponding to the parameter a; is equal to the row corresponding to the
parameter agn_ | for all g € G. This is because the label of e.g. the edge e, is
g1+ g = 04 g» = g, which is also the label of the edge e;. We perform row
operations on A; so that for each g € G, the first (/ + 1)""2 entries of the rows
corresponding to the parameters a§ and a} are zero, by subtracting the rows af 4o and
a§n71 respectively. Now we perform further row operations to swap rows and obtain

a matrix of the following form, where the upper left block is a (47 4+ 3) x (I + 1)"~2

matrix consisting of zeros,
0 |B
= Hx; * } ’

and rank A} = 1(2n —5) 4 1. It follows that rank A, > [(2n —5) 4+ 1 +rank B, so it
is sufficient to show that rank B > 4/.

The columns of B correspond to consistent leaf labellings g1, ..., g, with g1 # 0.
Recall that A was such that if go = 0 then the monomial from 7, is chosen, and
otherwise the monomial from 77 is chosen. The rows of B correspond to the parameters
af for g # 0, and af_,, a3, and ajf for all g € G. However, we performed row
operations on the rows corresponding to a§ and af, so for each column of B the
coefficient of the standard basis vector E§ is given by the exponent of a§ minus the
exponent of af_,, and the coefficient of Ej is given by the exponent of a; minus
the exponent of agnfl in the corresponding monomial from the parameterization (7).
Thus the columns of B are given by

(E5" — E3') + ESY ®)

if go = 0 (so the monomial comes from 73), and
(ES* — E5"") + Ef, ©)

otherwise (so the monomial comes from 77), where g1, ..., g, is a consistent leaf
labelling with g; # 0. Note that since n > 4, we can find a consistent leaf labelling
g1, ..., &gn for any choice of g1, g2, g,. Denote by X the vector space spanned by all
the vectors of the form in equation (8). We have

3 (GBS — B+ EL) = 04 DESL € X1
geG
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so E fﬂr | € Xy forall g1 # 0. It follows immediately that for a fixed g, € G, we have

ES" — ES'T8" ¢ X forall g1 # 0, and thus dim X; > 2.
Next denote by X, the vector space spanned by all the vectors of the form in
equation (9). Using that 3", E5 — E$'™8 = 0, we see that

> (B — ES'™) + Ef') = IE{' + E§' — E9 € X,
$€G\(0)

for each g1 # 0. Now fix g € G \ {0} and let go = g, and g = —g, so that
E[® + E5 — EY € X». Then we have

(ES+ES —EQ) — (E[* + ES —E) = IES — E¢ € Xo.

Now if g = —g then we have E‘lg € X». If not, by swapping g; and g» we have
IE;® —Ef € Xa,50 (I — DE{ — (I — 1)E{® € X5. Then [Ef — IE|® € X5, and
subtracting [ E fg - Ef gives E f € X», for all g € G\{0}. As before, it follows that

for a fixed g» we have E5* — E§1+g2 € X, forall g; € G\{0}, sodim X, > 2/. Tt
follows that rank B > 41. O

We expect the result to hold for the case n = 3 once the size of G is large enough,
and this is explored in a forthcoming paper. Here, the proof of Proposition 13 breaks
down in this case because, when finding the rank of B, we we have only / + 1 columns
when g» = 0, since in this case g1 = —g,. Thus the dimension of X is strictly less
than 21.

Next we deal with the case G = Z/27Z. The expected dimension for n-sunlets here
is 2n. However, if n = 3 then we only have 4 < 2n consistent leaf labellings of NV, so
in this case the expected dimension cannot be reached. When n = 4 we have 8 = 2n
consistent leaf labellings, however, in this case dim V/\(% = 7. This can be shown by
direct computation.

Proposition 14 Let N be the n-sunlet network with n > 5 and let G = 7./27. Then
dim V¢ = 2n.

Proof As before, Proposition 12 gives the upper bound. Label the edges and vertices
as in Fig.5, and let 77 and 7, be the two trees got by removing the edges ¢, and
e respectively. Observe that we have at least one edge on the cycle, e.g. e,43, that
is not adjacent to either reticulation edge. We proceed as in Proposition 13, this time
choosing A € R2™ guch that )\2 L= )»,11 = 1, )»2 3= 2. and all other entries are 0.
Let g1, ..., g, be a consistent leaf labelling of \V. Then the corresponding column of

A, has the following properties:

e If gy = 0, then the monomial from 7 is chosen.
e If gy =1 and g» + g3 = 1, then the monomial from 73 is chosen.
e If gy =1 and gy + g3 = 0, then monomial from 7; is chosen.
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Fig. 5 A contracted n-sunlet network with n > 5. Arrows indicate the orientation used for assigning a
consistent edge labelling from a consistent leaf labelling

As in the proof of Proposition 13, we perform column operations so that the first
2"=2 columns are indexed by consistent leaf labellings where g; = 0, and each column
is an exponent vector coming from the corresponding 7; monomial. The submatrix
consisting of these columns has rank 2n — 4, and we perform the same row operations
as before to give the block triangular matrix

0B
w=[afe]
1,0 .1

where the submatrix B is given by rows corresponding to the parameters a;, a,, a,,
2 11 and arll i1 However, we performed row operations on the rows corre-
sponding to ag and a}, so for each column of B the coefficient of E§ is given be the

exponent of a§ minus the exponent of “;f 42 and the coefficient of £ % is given by the

0 1
a,,a,,a

exponent of a5 minus the exponent of agn_l for g = 0, 1. Consider the following
columns of B. For a consistent leaf labelling with g1 = g, = 1 and g» = g3 = 0, the
monomial from 77 is chosen, so the labels assigned to a,, and as,—; are equal, and the
labels assigned to a> and a, 4> are not equal. Thus the column is given by

El +EY - EL.

Next for a consistent leaf labelling with g = g» = g3 = g, = 1, the monomial from
71 is chosen so the column is given by

El —EY+ EL.

For g1 = g3 = 1 and g, = g, = 0, the monomial from 73 is chosen so the column is
given by

1 0 1
En+1 + En - En'
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Finally, for a consistent leaf labelling with g1 = g3 = g, = 1 and g, = O, the
monomial from 75 is chosen so the column is given by

El - E)+EL
These vectors are linearly independent, so rank B > 4 and the result follows. O

Observe that in the case n = 4, the vector Erll - E,? + E,%, is not obtained, since
there is no consistent leaf-labelling with g1 = g2 = g4 = 1 and g = 0. In this case
B has four columns, corresponding to the consistent leaf labellings when g; = 1. The
two columns assigned to 7; correspond to (1,0, 1, 0) and (1, 1, 0, 0). The reader can
check that in both cases the column vector is ES1 The two columns assigned to 7;

remain linearly independent, so in this case rank B = 3.

4.2 Group-Based Models

In this section, we use our results on general group-based models to obtain the result
for all group-based models, following the method of (Bafios et al (2019), Lemma 4.2).
Throughout, let A be the contracted n-sunlet network, so the number of edges m
is equal to 2n — 1. Let G be a finite abelian group, and let B be a subgroup of the
automorphism group Aut(G) with |B - G| =1+ 1. Let (RICImy* have standard basis
elements 5 where g € G and e € £(N). Next, pick representatives go = 0, g1, ..., g
in G for each B-orbit, and let (R¢*1D™)* have standard basis elements 8£g;] fori =
0,...,land e € EWN).

Let p : (RIGmy*x s (RUFDm)* pe the map that sums coefficients of the unit
vectors for each orbit, i.e.

I
Yo Y e Y (Y e,

ecEN) geG ecEWN) i=0 gelgi]

where ¢ € R.Itis clear that p is a surjective, linear map, sodim ker p = (|G|—I—1)m.
Now consider the parameterizations of V/\Gf and VJ(\/G ‘B) For a fixed consistent leaf
labelling &, let oy and a» be the exponent vectors of the monomials corresponding to
71 and 7, respectively, in the parameterization of Vﬁ—. Similarly let o} and o} be the
corresponding monomials in the parameterization of V/Ef ‘B Then p(a;) = o for
i = 1, 2. Furthermore, observe that if » € RICI" is such that Af = AZ whenever g
and h are in the same B orbit for all edges ¢ € £(N), then there exists A’ € RUFDm
satisfying A = A’ o p (where we are considering A’ as an element of the dual space of
(]R(H—l)m)*)-

Proposition 15 With the notation as above, let ) € RIGI™ be such that A§ = )»é’
whenever g and h are in the same B-orbit, for all e € Enr. Then there exists )| €
READ™ such that

pOA)L :A)L/.
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Proof First observe that for any « € (RI¢/")* we have
(h,a) = @) =1 o pa) = (1, p(@)).

Now consider the polynomials of the parameterizations of VAG/ and VjifG ’B), for a con-
sistent leaf labelling &. Let oy and a5 be as above, and suppose that (A, o) < (A, @2).
Then (A, p(a1)) < (), p(az)), so both A and A" pick the monomial corresponding to
T7i. Since o) = p(a1), the result follows. O

Note that Proposition 15 is easily generalizable to level-1 phylogenetic networks.

Corollary 16 Let N be the n-sunlet network with n > 4, let G be a finite abelian
group, and let B be a non-trivial subgroup of the automorphism group Aut(G), with
|IB-G|=1+41.Then

dim V& ® =1@2n 1) + 1.

Proof As in the case for general group-based models, the upper bound is given by
Proposition 12. For the lower bound, first observe that since B is a non-trivial sub-
group, we must have |G| > 2. Next observe that the vector A chosen in the proof of
Proposition 13 satisfies the condition in Proposition 15, so using Proposition 15 (and
Lemma 6) there exists some A" such that
dim V/i/G’B) > rankR A,/ = rankr(p o A,/).

Finally, since p is a surjective linear map with kernel of dimension (|G| — [ — 1)m,
we have

rankp Ay > (|G| —Dm+1—- (|G| =1 —Dm =Im + 1.

]

We summarise our results on sunlet networks in a single theorem. Note that the
final two cases are given by direct computation.

Theorem 17 Let N be a sunlet network with n leaves. Let G be a finite abelian group
and let B be a subgroup of Aut(G). Denote by | + 1 the number of B-orbits in G.

Then dim V/(\/G B s given in the following cases.

Ifn>4and |G| > 2 thendim V7" = 1(2n — 1) + 1.

Ifn =5 and G = Z/2Z so that B = {id} then dim V/** = 2n.
7.)27

o Ifn=4thendimV, /™" =1.
o Ifn =3 then dim Vy/*" = 4.
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Table 1 Values for the deficiency of dim Vj(\(/;‘B), where N is an n-sunlet

n 7/27  7/3Z  IC  K2P (Z.)27,)2 747 7)5Z  Z7J6T — T)IT

A N AW
S O O N
S o o O
S O o O
S O © O
S O © O

S O = N
S O O
O O O =
S o O =

5 Proof of Theorems 1 and 2

We are now able to give simple inductive proofs of Theorems 1 and 2. Below we give
only the proof of Theorem 1. The proof of Theorem 2 is almost identical, and is left
to the reader with the aid of Table 1.

Proof of Theorem 1 We will prove the result using induction on the number of non-
trivial cut edges of a level-1, triangle-free phylogenetic network . For the case when
there are no non-trivial cut edges, we must have that A\ is either the 3-claw tree,
in which case the dimension of Vﬁ B s equal to [m + 1 by Lemma 11, or AV is
an n-sunlet network with n > 4, in which case the dimension is /(2n — 1) 4+ 1 by
Theorem 17. In both cases the result holds.

Now suppose that A/ is a level-1, triangle-free phylogenetic network with a non-
trivial cut edge e, and m edges and c cycles. Let \Vj and NV be the networks obtained
by cutting at e, and let m; and ¢; denote the number of edges and cycles in N
respectively for i = 1, 2. Since the number of non-trivial cut edges in N7 and N3

must be fewer than the number of non-trivial cut edges in A/, by induction we have
(G.B)

dim Vv, = I(m; —c¢;j)+ 1fori =1, 2. By Corollary 10 we have
dim V\f"? = dim V\$*® + dim VP — (1 + 1)
=Ilmi+my—ci—c)+2—U+1)
=Ilm—c)+1,
where m; +my =m+ landc; + ¢ =c. |

6 Application to Identifiability

In this section we apply Theorems 1 and 2 to give some immediate identifiability
results. Throughout, fix an abelian group G and subgroup B of Aut(G), and let/ + 1
be the number of orbits in B - G. First, we extend the definition of distinguishibility
from Gross and Long (2018) to all group-based models of evolution

Definition3 Let (G, B) be a group-based model of evolution. Two distinct n- leaf
networks N, and N, are distinguishable over (G, B) if V/i/(—f’B) ¢z Vv (G B a

.B) <G B)
VN2 ¢ Vy
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When G and B are clear, we will simply say that N and A are distinguishable.
Observe that if V/(\/Gl ‘B) and Vf\g *B) are irreducible varieties of equal dimension, then
in order to determine whether A7 and N are distinguishable it is sufficient to show
that either V/ig’B)g V_/(\g’B) or Vj(\g’B) ¢ VX?’B). One of the key results we will use
to show identifiability is the following.

Lemma 18 (Gross et al (2021) Lemma 3) Let N1 and N3 be n-leaf networks. If for
some A C [n], we have that VX/G]"f) ¢ Vﬁgif)’ then VX/GI’B) ¢ ng’B).

Corollary 19 Let Ny and N> be n-leaf networks with dim V/(\g’B) = dim V/ig’B). Iffor

some A C [n] we have Vj{g"f) ;(_ nggl’f), then N1 and N, are distinguishable over

(G, B).

Proof By Lemma 18, V/i/(}; -B) ¢ VX/GZ B Since they are irreducible varieties of the
same dimension, they are distinguishable. O

We will use Corollary 19 in conjunction with the following dimension results.

Lemma 20 Let N7 and N3 be n-leaf. level-1 phylogenetic networks, both with exactly
¢ cycles, where each cycle has length at least 4 when |G| > 2 and at least 5 when
G = Z/2Z. Then dim V\{"® = dim V).

Proof Observe that /] and N3 have the same number of edges. To see this, suppose
that A/; and AV, have m and m, edges respectively. Then the corresponding contracted
networks /\/1/ and ./\/'2/ have m1 — ¢ and m, — c edges, since for each reticulation vertex
the outgoing edge is removed. Next for each of the ¢ reticulation vertices vy, . .., v, in
N7 arbitrarily pick a reticulation edge (u;, v;) and remove it. After removal, the vertex
u; has degree 2 and can be suppressed. The result is an unrooted binary phylogenetic
tree on n leaves with m| — 3¢ edges. Performing the same operations on \/; we also
obtain a (possibly different) unrooted binary phylogenetic tree on n leaves with my —3c
edges. Since all unrooted binary phylogenetic trees on n leaves have 2n — 3 edges,
we have that m; = m,. Now since both N} and AV have exactly c cycles, the result
follows from Theorems 1 and 2. O

Remark 4 From the proof of Lemma 20 it is clear that the number of edges of an
unrooted level-1 phylogenetic network on n leaves with ¢ cycles is 2n — 3 + 3¢

For the remaining results in this section we will need to use the fact that binary
phylogenetic trees with group-based models of evolution are distinguishable. This
result is well-known in the algebraic phylogenetics community, but we give a direct
proof here for completeness.

Lemma 21 Let (G, B) be a group-based model of evolution, and let T1 and T be two
distinct n-leaf, unrooted, binary phylogenetic trees. Then Ty and T, are distinguishable
over (G, B).

Proof First observe that since 77 and 7; are determined by their quartets, there exists
a subset A C [n] with |A| = 4 such that 7] restricted to A and 7 restricted to A are
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distinct four-leaf binary phylogenetic trees. By Corollary 19, it is sufficient to show
that V(G B) Q VT ) ‘B) Since the dimensions of these varieties are equal (Lemma 11),
this is equ1valent to the restricted trees being distinguishable.

We will show that the four leaf binary phylogenetic trees are distinguishable. Let
7T be the four-leaf tree with split 12|34, and the corresponding interior edge denoted
es. Pick g, h € G such that i ¢ [g] and consider the polynomial f = gggn — gg'qn
where g = (g, —g,g,—g),h = (h,—h,h,—h),g = (g,—g,h,—h),and h' =
(h, —h, g, —g). We have

8 h, —8 —h 8 h —h 0 0 & h, —8 —h _h & -8 0 0
Y7 (f) =ajaja,°a, a3a3a4 a4 asas —ajaya,“a, azazd, a4 asas =0

so that f € ker(y7) = I(TG’B). On the other hand, by looking at the parameters
corresponding to the interior edge, the reader can check that f does not belong to the
ideals corresponding to the trees with splits 13|24 and 14|23 respectively.

In a similar manner one can find polynomials belonging only to the ideal of the tree
with split 13|24 and only to the ideal of the tree with the split 14]23. It follows that
the four leaf binary phylogenetic trees are distinguishable. O

Proposition 22 Let N1 and N> be two distinct n-sunlet networks with n > 5 and
distinct leaves adjacent to the reticulation vertex. Then N1 and N, are distinguishable
over (G, B).

Proof By Theorem 17 we have that dim Vﬁg B — dim Vﬁg B Assume, without loss
of generality, that for AV the leaf adjacent to the reticulation vertex is leaf 1. Let

= {2,...,n}, so that N|4 is a caterpillar tree on n — 1 leaves and A>|4 is an
(n — 1)-sunlet network. Then

dlmV/i/GIB) =I12n-5 +1 <l(2n—3)+1=dimevG‘B)

and so VN ‘B) ¢ VX/G ‘B) By Corollary 19, N7 and N are distinguishable. O

Proposition 23 Let N7 and N> be two distinct n-sunlet networks with n > 4 such that
the leaf adjacent to the reticulation vertex is the same for both networks, and the trees
obtained from each network by removing the reticulation vertex and adjacent leaf are
distinct. Then N1 and N are distinguishable over (G, B).

Proof Assume that A/} and N3 both have leaf 1 adjacent to the reticulation vertex. Let
A = {2,...,n} so that by assumption N1|4 and N>|4 are distinct caterpillar trees
with n — 1 leaves. Since these are distinguishable (Lemma 21), the result follows from
Corollary 19. O

Observe that Propositions 22 and 23 are not sufficient to give identifiability for all
sunlet networks. For example, take an n sunlet with leaves labelled in ascending order
clockwise around the sunlet with 1 at the reticulation. Then obtain a distinct sunlet
by swapping leaves 2 and 3. The caterpillar trees obtained from both of these sunlets
by restricting to {2, . .., n} are the same, so neither Proposition 22 nor Proposition 23
applies.
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More generally we can give the following identifiability result for triangle-free,
level-1 phylogenetic networks. The result relies on the existence of a subset A of the
leaf set with particular properties.

Proposition 24 Let N1 and N be two triangle-free, level-1 phylogenetic networks on
n leaves and both with exactly c cycles, and let G be an abelian group with |G| > 2.
If there exists a subset A C [n] such that either

1. Ni|la and N>|a are triangle-free level-1 phylogenetic networks with distinct
number of cycles, or

2. Nila is a tree and N> | 4 is a triangle-free level-1 phylogenetic network, or

3. Nila and N>| 4 are distinct trees,

then N1 and N> are distinguishable over (G, B).

Proof First observe that dim V/Eg B _ dim V/E/Gz B) by Lemma 20. Let 1|4 and V2|4
have m; and m, edges respectively, and ¢ and c¢; cycles respectively.

For case 1, assume without loss of generality that ¢; < ¢. Then by Remark 4 we
havethatm| = 2|A|—143c; andmy = 2|A|—143c,. Inparticular,m;—c; < ma—cs.
Then by Theorem 1 we have that

dim V;/G]"f) =I(m;—c)+1<Il(my—cz)+1=dim Vﬁgif)~

It follows that V/(\gl’f) ¢ VJ(\/Glff)' For case 2 let us assume that N |4 is a tree and N |4

is a triangle-free level-1 phylogenetic network. Then dim V;/Gl "f) < dim Vﬁg "f) SO as

(G.B) (G.B) (G.B) (G.B) (G.B)
above V7" ¢ Vy7 7. For case 3 we have that V7" ¢ V77 and V2" ¢

V/ig [f) by Lemma 21. In all three cases the result now follows by Corollary 19. O

7 Discussion

In this paper we have given a dimension formula for all triangle-free, level-1 phyloge-
netic networks under a group-based model of evolution. Our main tool was the toric
fiber product, for which we gave a dimension formula that we hope will be useful
beyond this work.

Our results confirmed a conjecture of Gross and Long which states that under
the JC model of evolution, the dimensions of large cycle networks (that is, level-1
phylogenetic networks with a single cycle of length at least 4) are equal (Gross and
Long 2018, Conjecture 5.1). In fact, as we have shown, this is true for all group-
based models and level-1 phylogenetic networks where the number of cycles is equal.
We were also able to give partial identifiability results for sunlet networks and larger
level-1 networks that followed immediately from our results on dimension.

We were unable to give a general dimension result for 3-sunlets. For this case, our
upper bound (Proposition 12) still holds, but our proof for the lower bound does not
work. This is because with the A we have chosen, when n = 3 we have only / columns
in the matrix A; coming from 75, whilst the rest come from 77. Thus the maximum

@ Springer



Dimensions of Level-1 Group-Based... Page310f32 90

rank of A; is dim V%G’B) + 1 = (2n — 2)l + 1, and this is too small. Nonetheless, we

believe the result still holds, and we make the following conjecture.

Conjecture 25 If N\ is the 3-sunlet network and |G| > 4 then
dim VG = Im + 1.

Our conjecture is backed up by calculations of the dimension VX/G ‘B) for small
sunlet networks and small groups. The deficiencies (i.e., the number of dimensions
less than the expected dimension /(2n — 1) + 1) are shown in Table 1.

Bold values in Table 1 indicate that the variety fills the whole space (C(’“)'H, and
this has dimension less than the expected dimension. Note that for the JC and K2P
models we have binomial linear invariants, and it is customary to identify these and
reduce the dimension of the ambient space. From Table 1, it appears that we only
have two cases where the dimension of Vﬁ B) s less than expected for unknown
reasons. These are when G = Z/2Z and n = 4, and when G = Z/27 x 7 /27 and
n = 3. The latter case has implications for models of DNA sequence evolution, since
the group G = Z/2Z x Z/27 is usually identified with the four nucleic acids, and
the corresponding general group-based model of evolution is the Kimura 3-parameter
model (K3P). The 3-sunlet network models events such as hybridisation, so a good
understanding of this case will be useful for models in molecular phylogenetics.

A full identifiability result, generalising (Gross et al 2021, Theorem 2), remains
open. For the DNA group-based models (JC, K2P, and K3P), one of the key results
is that the variety corresponding to the 3-sunlet has smaller dimension than expected.
This result can be exploited to give identifiability results on level-1 phylogenetic
networks with four leaves (e.g. (Gross and Long 2018, Corollary 4.8)), since for a
fixed number of leaves a 3-cycle network will have a strictly lower dimension than a
4-cycle network. For general G however, this is not the case, as shown in Table 1, so
an alternative approach will be necessary to show identifiability for general G.

As the authors note in Gross and Long (2018), this dimension deficiency is in
contrast to group-based mixture models, where the number of leaves determines the
dimension. Here, we have shown that the dimension of a triangle-free level-1 phylo-
genetic network variety is fully determined by the number of leaves and the number
of cycles (see Theorem 1), and for large enough G we expect this to be true for all
level-1 phylogenetic networks.
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