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Abstract
Phylogenetic networks represent evolutionary histories of sets of taxawhere horizontal
evolution or hybridization has occurred. Placing a Markov model of evolution on a
phylogenetic network gives a model that is particularly amenable to algebraic study by
representing it as an algebraic variety. In this paper,we give a formula for the dimension
of the variety corresponding to a triangle-free level-1 phylogenetic network under a
group-based evolutionary model. On our way to this, we give a dimension formula
for codimension zero toric fiber products. We conclude by illustrating applications to
identifiability.

Keywords Phylogenetic networks · Markov models of evolution · Group-based
models · Dimension

1 Introduction

In evolutionary biology, phylogenetic networks are graphs used to represent the evolu-
tionary history of a set of taxa or species. In molecular phylogenetics, these graphs are
usually paired with a statistical model where the graph is a combinatorial parameter
of the model. In this work, we focus on network-based Markov models. In particular,
fixing a directed graph N with n leaves, i.e. a network, the associated network-based
Markovmodel is the imageof a polynomial parameterization in the space of probability
distributions over the sample space, which commonly in applications is {A,G,C, T }n
where A,G,C, T are the four-nucleic bases.

When understanding such models, the overarching goal is to be able to infer phy-
logenetic networks from molecular sequence data. To be able to do this, we must
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first determine whether the model is identifiable from the observed data. By repre-
senting phylogenetic models as geometric objects called varieties, such questions can
be reframed in terms of geometry, that is, we would like to know whether varieties
representing distinct phylogenetic network models are themselves distinct. One of the
first geometric descriptions we can give of a variety is its dimension. In Theorems 1
and 2, we give dimension results for all level-1, triangle-free phylogenetic networks
under a class of Markov models called group-based models, and in Section 6 we give
some identifiability results that follow easily from our dimension formula.

As described above, we are interested in the geometry of network-based Markov
models, in particular, their dimensions. Such work is along the lines of Sturmfels
and Sullivant (2005), Eriksson et al (2005), Allman and Rhodes (2007), Allman
and Rhodes (2008), Casanellas and Fernández-Sánchez (2008), Zwiernik and Smith
(2011), Casanellas and Fernández-Sánchez (2011), Michałek (2011), Casanellas et al
(2017), Michałek and Ventura (2019), and Casanellas et al (2021), which study the
geometry of tree-based Markov models. Indeed, by moving to C and taking Zariski
closures, images of the parameterizationmaps correspond to algebraic varieties whose
study can aid in model selection (see Pachter and Strumfels (2005), Drton et al (2009),
and Sullivant (2018) for discussions). Popular constraints on the parameter space, such
as Jukes-Cantor (JC), Kimura 2-parameter (K2P), andKimura 3-parameter (K3P) con-
straints, give rise to a class of models referred to as group-based models. Assuming
group-based constraints, the varieties associated to tree-basedMarkovmodels are toric
varieties after a transformation of coordinates first described inEvans andSpeed (1993)
and Székely et al (1993) (see Sturmfels and Sullivant (2005) for an overview). The
dimensions of tree varieties can be understood using tools from toric geometry. While
under this same transformation, group-based network varieties have a lower dimen-
sional toric action on them, and thus are T -varieties (see (Cummings et al (2021),
Remark 4.1)), these varieties are generally less well understood. In this paper, we
expand our understanding of these varieties by giving a formula for the dimension for
all level-1 triangle-free group-based network varieties.

As described in Sect. 2, a group-based model of evolution is defined with a finite
abelian group G and a subgroup B of the automorphism group of G, denoted Aut(G).
In a network-based Markov model, each edge of the network has a transition matrix
associated to it, representing the probabilities of each type of nucleotide (usually A,
G, C , or T ) mutating to another over an evolutionary time interval. The parameters of
themodel are the entries of these transitionmatrices along with amixing parameter for
each cycle. In a group-basedmodel, the dimension of the parameter space is cut signif-
icantly by placing constraints on the transition matrices. In particular, each nucleotide
is identified with an element of G, and the transition probability of a mutation from a
to b depends only on b− a, reducing the number of free parameters in each matrix to
|G| − 1. The parameter space is reduced further by identifying the parameters for all
elements of G that are in the same B-orbit. If l + 1 is the number of B-orbits in G,

the number of free parameters for each edge is then l.
For a phylogenetic network N with m edges and c cycles, the expected dimension

of the group-based network variety dim V M
N is l(m−c)+1, and Proposition 12 shows

that it is indeed an upper bound. The main theorem of this paper shows that most
level-1 group-based network varieties have the expected dimension.
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Theorem 1 Let N be a level-1 triangle-free phylogenetic network with n leaves, m
edges, and c cycles. Let G be a finite abelian group of order at least 3 and B a subgroup
of Aut(G). Let l + 1 be the number of B-orbits in G. Then the group-based network
variety V (G,B)

N has dimension l(m − c) + 1.

When G = Z/2Z, certain small phylogenetic networks do not have the expected
dimension. In this case, since Aut(G) is the trivial group, there is only a single group-
based model. This is the Cavender-Farris-Neyman (CFN) model, and has biological
relevance, so we give the result for this group separately. Note that here we are able
to give a full result for level-1 phylogenetic networks.

Theorem 2 Let G = Z/2Z and letN be a level-1 phylogenetic network with n leaves,
m edges, c≥5 cycles of length at least 5, c4 4-cycles, and c3 3-cycles. Then the group-
based network variety V G

N has dimension m − (c≥5 + 2c4 + 3c3) + 1.

Our main tool for proving these theorems is the toric fiber product. This is an
operation on ideals that was first introduced in Sullivant (2006) and generalises the
Segre product. One of the first applications was to phylogenetic trees under group-
based models, where the ideals of the model are toric fiber products, and the operation
corresponds to the graph operation of cutting a tree at an internal edge. To some extent
this remains true for phylogenetic networks and allows us to focus our attention on
a family of phylogenetic networks called sunlet networks (defined in Sect. 2.1). In
Sect. 3 we give a general dimension formula for toric fiber products (Theorem 9) and
apply this to phylogenetic trees and networks.

2 Preliminaries

In this section, we lay out the background needed for the paper. In particular, we
review group-basedmodels of sequence evolutionwhere the combinatorial parameters
are phylogenetic networks, as well as two tools that underlie the proof of our main
theorems: tropical geometry for dimension analysis and toric fiber products. The main
objects of biological relevance in this paper are phylogenetic networks, and, thus, that
is where we begin.

2.1 Phylogenetic Networks

The following network notation and terminology is adapted from Francis et al (2018),
Francis and Steel (2015), and Semple (2016).

Definition 1 A (binary rooted) phylogenetic networkN on a set X is a rooted, acyclic,
directed graph with no parallel edges that satisfies:

• The root vertex has outdegree 2.
• All vertices of outdegree 0 have indegree 1. These vertices are called leaves and
are labelled by X .

• All other vertices have either indegree 1 and outdegree 2 (called tree vertices), or
indegree 2 and outdegree 1 (called reticulation vertices). The incoming edges of
a reticulation vertex are called reticulation edges.
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Fig. 1 a A leaf-labelled, directed 4-sunlet network, and b its corresponding contracted network (right)

A level-1 phylogenetic network is a phylogenetic network where each cycle in the
underlying undirected graph contains exactly one reticulation vertex. A semi-directed
phylogenetic network is a mixed graph obtained from a phylogenetic network by
suppressing the root node and undirecting all tree edges while the reticulation edges
remain directed. In a semi-directed phylogenetic network, the reticulation vertices are
the vertices of indegree two and level-1 is defined the same as for a rooted phyloge-
netic network. A triangle-free level-1 semi-directed phylogenetic network is a level-1
semi-directed phylogenetic network where every cycle in the unrooted skeleton has
length greater than three. For our work, it will be helpful to reduce the number of edges
in a semi-directed phylogenetic network that we consider. To this end we introduce
contracted semi-directed phylogenetic networks. A contracted semi-directed phyloge-
netic network is a mixed graph obtained from a semi-directed phylogenetic network
by contracting the non-reticulation edge of each reticulation vertex (see for exam-
ple, Fig. 1). Note that since level-1 networks are tree-child networks, in a contracted
level-1 semi-directed phylogenetic network, two distinct reticulation vertices are never
identified, and thus each non leaf-adjacent reticulation vertex has indegree 2 and out-
degree 2, and each leaf-adjacent reticulation vertex has indegree 2 and outdegree 0.
Furthermore, the level-1 condition in a contracted level-1 semi-directed phylogenetic
network means that at least one of the outgoing edges of a reticulation vertex is a
non-reticulation edge.

Finally, an n-sunlet network is the semi-directed phylogenetic network topology
with n leaves and a single cycle of length n, where each vertex in the cycle is adjacent to
a leaf vertex and one vertex in the cycle is a reticulation vertex. The 4-sunlet network
is depicted in Fig. 1. Since an arbitrary level-1 network can be decomposed into a
collection of trees and sunlet networks, sunlet networkswill play a key role in our study.

2.2 Group-BasedModels of Evolution

Fix an abelian group G and a subgroup B ⊂ Aut(G). Denote by B · G the set of
B-orbits in G and let |B · G| = l + 1. For a phylogenetic tree or network N , such a
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choice of G and B defines a model of evolution onN . From this model one can derive
an algebraic variety, which we will denote V (G,B)

N . These varieties are our primary
objects of study.

First, let us set up the notation and preliminaries for phylogenetic trees, i.e. phyloge-
netic networks with no reticulation vertices. For more details on group-based models
on trees, see (Sullivant 2018, Section 15.3) and Sturmfels and Sullivant (2005). Let
T be an n-leaf phylogenetic tree, with vertex set, edge set, and leaf set denoted by
V(T ), E(T ), and L(T ) respectively. Let m = |E(T )| be the number of edges in T . A
consistent leaf G-labelling of T is a function ξ : L(T ) −→ G that satisfies

∑

v∈L(T )

ξ(v) = 0.

Note that the set of consistent leaf G-labellings depends only on n, and not on the
edges of T , so all n-leaf phylogenetic trees share the same set of consistent leaf G-
labellings, which has size |G|n−1. When G is clear, we will call ξ a consistent leaf
labelling.

For a phylogenetic tree T , each edge e ∈ E(T ) is oriented away from the root
vertex. Let L(e) ⊂ L(T ) be the set of leaves on the arrow side of e. A consistent leaf
labelling ξ of T induces a consistent edge labelling of T (also denoted ξ ), which is a
map ξ : E(T ) −→ G given by

ξ(e) =
∑

v∈L(e)

ξ(v).

To each edge e in a phylogenetic tree or network we associate l + 1 parameters,
denoted age , where g is a representative of the B-orbit [g]. For a tree T with n leaves,
the parameterization in Fourier coordinates (see Sturmfels and Sullivant 2005) of the
group-based model on T is

qg1g2···gn =
∏

e∈E(T )

aξ(e)
e , (1)

where ξ is given by the consistent leaf labelling g1, . . . , gn . Index the standard basis
of C

m(l+1) with upper indices g for some representatives of the orbits in B · G, and
lower indices by the edges e ∈ E(T ), and index the standard basis of C

|G|n−1
by the

consistent leaf-labellings. The parameterization map is the map

φT : C
m(l+1) → C

|G|n−1

where

(φT (w))g1···gn =
∏

e∈E(T )

wξ(e)
e ,
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for w ∈ C
m(l+1) and consistent leaf labellings ξ with leaf labels g1, . . . , gn . The

Zariski closure of the image of this map is called the phylogenetic variety of T and
(G, B) and is denoted by V (G,B)

T .
Now, denote by R the C-algebra C[qg1···gn | g1 + · · · + gn = 0] and by ST

the C-algebra C[age | [g] ∈ B · G, e ∈ E(T )]. The parameterization map φT is a
morphismof affine varieties, with comorphismgiven by theC-algebra homomorphism
ψT : R → ST which acts on generators as

ψT (qg1···gn ) =
∏

e∈E(T )

aξ(e)
e .

It follows that the vanishing ideal of V (G,B)

T , denoted I (G,B)

T , is the kernel of ψT .
We now move from trees to networks. Let N be a level-1 phylogenetic network

with n leaves,m edges, and k reticulation vertices. SinceN is a phylogenetic network,
if we remove one of the two reticulation edges for each reticulation vertex, we obtain a
phylogenetic tree. We encode a choice of reticulation edge for each reticulation vertex
with a vector σ ∈ {0, 1}k , and denote the resulting n-leaf phylogenetic tree by Tσ .
Then the parameterization of our group basedmodel onN is themapφN : C

m(l+1) →
C

|G|n−1
given by

φN =
∑

σ∈{0,1}k
φTσ

(2)

As above, we call the Zariski closure of the image of this map the phylogenetic variety
of N and (G, B), and denote it V (G,B)

N . The vanishing ideal I (G,B)

N of V (G,B)

N is the
kernel of the C-algebra homomorphism ψN given by

ψN : R → SN

qg1···gn �→
∑

σ∈{0,1}k
ψTσ

(qg1···gn ). (3)

where SN = C[age | [g] ∈ B · G, e ∈ E(N )] and we identify STσ
as a subalgebra of

SN in the obvious way.
When B = {id}, we call the probabilistic model associated to (G, B) the general

group-based model for the group G and denote the corresponding variety as VG
N =

V (G,B)

N . The K3P model is the general group-based model for the Klein-4 group,
and the CFN model is the general group-based model for the group Z/2Z. The pairs
(G, B) corresponding to JC andK2P are (Z/2Z×Z/2Z,S3) and (Z/2Z×Z/2Z,S2),
respectively, where Aut(Z/2Z × Z/2Z) is identified with the permutation groupS3.

In this paper, we are concerned with dim V (G,B)

N for a general N and (G, B). In
previous work, it is shown that under the CFN, JC, K2P, and K3P models, two phylo-
genetic network varieties are the same if the two networks have the same underlying
semi-directed phylogenetic network (Gross and Long 2018, Gross et al 2021). Here,
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we extend these results to all group-basedmodels. This allows us to focus our attention
on semi-directed phylogenetic networks.

Lemma 3 Let G be a finite abelian group and let B be a subgroup of Aut(G). If
N1 and N2 are two phylogenetic networks with the same underlying semi-directed
phylogenetic network, then V (G,B)

N1
= V (G,B)

N2
, where equality here means equality as

sets.

Proof Since phylogenetic networks have no parallel edges, it is clear that two phylo-
genetic networksN1 andN2 have the same semi-directed phylogenetic network if and
only if their corresponding unrooted networks differ only by the directions of their
non-reticulation edges. Therefore it is sufficient to show that suppressing vertices of
degree 2 and changing the orientation of a single non-reticulation edge do not affect
the model.

First notice that if we take a phylogenetic networkN1 and reorient any collection of
the non-reticulation edges to form a new network N2 (not necessarily a phylogenetic
network), the maps described above are still well-defined and so too are the corre-
sponding varieties. Thus, for this proof, we will relax the definition of phylogenetic
networks to include such networks, as it will allow us to consider redirecting one
edge at a time. Let N1 and N2 be two phylogenetic networks that are equal except
for the direction of a single non-reticulation edge e, and let ξ1 and ξ2 be consistent
leaf labellings on N1 and N2 respectively, with the property that ξ1(v) = ξ2(v) for
each leaf v in the skeleton of N1 and N2. Then it is clear that ξ1(e) = −ξ2(e). This
means that φN2 = φN1 ◦ θ , where θ is the automorphism of C

m(l+1) given by swap-
ping the coefficients corresponding to age and a−g

e whenever g �= −g. Since θ is
bijective, composing θ with φN1 does not affect the image of φN1 , so it follows that

V (G,B)

N1
= V (G,B)

N2
.

Next let N be a phylogenetic network with a vertex v of order 2 that has incident
edges e1 and e2. Let ξ be a consistent leaf labelling of N with ξ(e1) = g so that
either ξ(e2) = g or ξ(e2) = −g. Let us suppose that ξ(e2) = g and note that the
proof in the other case is similar. LetN ′ be the phylogenetic network got fromN by
suppressing v. Denote the new edge of N ′ by e′ and, without loss of generality, give
e′ the same orientation as e1 so that ξ(e′) = g. Let θ : C

(m−1)(l+1) → C
m(l+1) be the

map from the parameter space of N ′ to the parameter space of N that is constant on
all parameters for edges shared by N and N ′, takes all parameters for edge e′ to the
corresponding parameter for edge e1, and sets all parameters corresponding to edge
e2 to 1. Then it is clear that we have

φN ′ = φN ◦ θ,

and thus Im φN ′ ⊆ Im φN . On the other hand, consider φN (w) for w ∈ C
m(l+1).

Taking u ∈ C
(m−1)(l+1) such that uge′ = w

g
e1w

g
e2 for all [g] ∈ B · G and ugd = w

g
d for

all edges d �= e′ and all [g] ∈ B · G, we see that φN ′(u) = φN (w). It follows that
Im φN ′ = Im φN and thus V (G,B)

N ′ = V (G,B)

N .
��
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Note that since the orientation of the non-reticulation edges does not affect the
variety, we may choose any orientation for non-reticulation edges, even if this is
not consistent with any placement of a root vertex. Thus when considering a phy-
logenetic network N , we may take the corresponding semi-directed phylogenetic
network and arbitrarily assign orientations to each non-reticulation edge to obtain a
parameterization of the model.

Example 1 Let G be a finite abelian group and B = {id}. LetN be a 4-sunlet network
with leaf labellings, edge orientations, and edge labellings as in Fig. 1. The map ψN
is given by

qg1g2g3g4 �−→ ag11 ag22 ag33 ag44 ag15 ag1+g2
6 ag47 + ag11 ag22 ag33 ag44 ag26 ag1+g4

7 ag18 ,

where to simplify notation we write agi for agei . Here, the first monomial corresponds
to the tree obtained by removing the edge e8, and the second monomial corresponds
to the tree obtained by removing the edge e5.

To end this section, we show that sunlet networks and contracted sunlet networks
have the same corresponding varieties.

Lemma 4 Let G be a finite abelian group and B a subgroup of Aut(G). Let N be a
sunlet network and let N ′ be its contraction. Then V (G,B)

N = V (G,B)

N ′ .

Proof Let N be an n -sunlet, so that N has 2n edges, denoted e1,…,e2n , with e1 the
leaf edge adjacent to the reticulation vertex, and en+1, e2n the two reticulation edges,
as in Fig. 1. Let φN denote the parameterization map for N , and let φN ′ denote the
parameterization map for its contraction N ′. As before, index the parameter spaces
C
2n(l+1) andC

(2n−1)(l+1) by the B-orbits inG and the edges ofN andN ′ respectively.
It is clear that φN ′ = φN ◦ ι, where ι : C

(2n−1)(l+1) → C
2n(l+1) is given by

ι(w)
g
e = w

g
e for all g ∈ B · G and e ∈ E(N ′) (i.e. e �= e1), and ι(w)

g
e1 = 1 for all

g ∈ B · G. It follows that Im φN ′ ⊆ Im φN .
On the other hand, let y = φN (w). Let u ∈ C

(2n−1)(l+1) be given by uge = w
g
e

for e �= en+1, e2n , and ugen+1 = w
g
e1w

g
en+1 , and uge2n = w

g
e1w

g
e2n for all g ∈ B · G. It

follows that φN ′(u) = y = φN (w), so Im φN ⊆ Im φN ′ . ��
In fact, by absorbing the parameters associated to the contracted edge of each

reticulation vertex into the corresponding parameters of both reticulation edges, the
above lemma can be extended for any level-1 phylogenetic network.

Lemma 5 Let G be a finite abelian group and B a subgroup of Aut(G). Let N be
a level-1 semi-directed phylogenetic network and let N ′ be its contraction. Then
V (G,B)

N = V (G,B)

N ′ . ��

2.3 Tropical Geometry

In Sect. 4 we give a lower bound on the dimension of the sunlet varieties by using the
tropical geometry results of Draisma (2008). Here we will present the result tailored
to our needs.
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Let C be a Zariski-closed cone in a complex vector space V of dimension n, and
let W be a complex vector space of dimension m such that we have a polynomial
map f : W → V mapping W dominantly to C . A classic result is that the rank of
the Jacobian matrix of f at any point in x ∈ W gives a lower bound on dim(C) (and
equality holds when x is generic).We similarly obtain a bound from the tropicalization
of f .

Fix bases ofV andW so thatwemaywrite f = ( fb)nb=1,where fb ∈ C[x1, . . . , xm]
for b = 1, . . . n. Write

fb =
∑

α∈Mb

cαx
α

for the finite subset Mb ⊂ Z
m≥0 consisting of those α for which cα �= 0. The tropical-

ization of fb is defined as the piece-wise linear function Trop( fb) : R
m → R given

by

Trop( fb)(λ) := min
α∈Mb

〈λ, α〉,

for λ ∈ R
m . Then Trop( f ) : R

m → R
n is defined as (Trop( fb))nb=1.

Wewill not define here the tropical variety Trop(C) ⊆ R
n , but we note two relevant

facts (see e.g. Maclagan and Sturmfels (2021)):

• Trop(C) is a polyhedral complex with dimension bounded by dim(C),
• and Im(Trop( f )) ⊆ Trop(C).

Therefore the Jacobian of Trop( f ) at a point λ ∈ R
m where the map is differentiable

gives a lower bound on dim(C) (although it is no longer true that equality necessarily
holds when λ is generic).

Fix λ such that Trop( f ) is differentiable at λ, meaning that Trop( f ) is linear in an
open neighborhood U of λ. Specifically Trop( fb)(μ) = 〈μ, α′

b〉 for all μ ∈ U where
α′
b is the unique vector in Mb that minimizes 〈λ, α′

b〉. Then Trop( f )(μ) = AT
λ μwhere

Aλ is the m × n matrix with columns α′
1, . . . , α

′
n . (Note that A

T
λ is also the Jacobian

matrix of Trop( f ) at λ.) The lemma below follows.

Lemma 6 (Draisma (2008), Corollary 2.3) Let the notation be as above. Then

dimC ≥ max
λ∈Rm

rankR Aλ.

For our purposes, f will be given by the polynomial parameterization map φN .
Since the variety V (G,B)

N is equal to the Zariski closure of φN (C|G|n−1
), and since each

polynomial in the parameterization is homogeneous, V (G,B)

N is a closed cone.

2.4 Toric Fiber Products

The toricfiber product is an algebraic operation that takes twohomogeneous idealswith
compatible multigradings and produces a new homogeneous ideal. It was introduced
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in Sullivant (2006) in order to generalise the gluing operation for toric ideals that
appear in tree-based models of evolution and elsewhere in algebraic statistics, and
further studied in Engström et al (2014) and Kahle and Rauh (2014). More recently
toric fiber products were introduced into the geometric modelling setting in Duarte
et al (2023). Here, we will introduce the basic objects and recommend that the reader
consult (Sullivant 2006) for further details.

Let r ∈ N and s, t ∈ N
r , and letA = {a1, . . . , ar } ⊂ Z

D be a linearly independent
set for some D > 0. Denote the affine semigroup generated by A by NA. Let K be
an algebraically closed field and let

K[x] = K[xij | i ∈ [r ], j ∈ [si ]],
and

K[y] = K[yik | i ∈ [r ], k ∈ [ti ]],
be multigraded polynomial rings with multidegree given by deg(xij ) = deg(yik) = ai
for all i = 1, . . . , r , j = 1, . . . , si , and k = 1, . . . , ti . Note that since the ai are
linearly independent, ideals inK[x] andK[y] that are homogeneous with respect to the
multigrading are also homogeneous with respect to the total degree. For homogeneous
ideals I ⊂ K[x] and J ⊂ K[y], let R = K[x]/I and S = K[y]/J be the corresponding
quotient rings, which inherit the multigrading from K[x] and K[y] respectively. Let

K[z] = K[zijk | i ∈ [r ], j ∈ [si ], k ∈ [ti ]]

be the polynomial ring with the analogous multigrading (i.e. deg zijk = ai ). Let φI J

be the ring homomorphism given by

φI J : K[z] −→ R ⊗K S

zijk �−→ xij ⊗ yik .

Definition 2 With notation as above, the toric fiber product of I and J is

I ×A J := kerφI J .

Note that when I and J are prime ideals, since the toric fiber product I ×A J is the
kernel of a ring homomorphism into an integral domain, it is a prime ideal. It will be
helpful for us to also consider the monomial homomorphism

φB : K[z] −→ K[x, y]
zijk �−→ xij y

i
k,

where we think of B as being the integral matrix of exponent vectors of this map. The
ideal IB = ker φB is a toric ideal and is given by

IB = 〈
QuadB

〉
,
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where

QuadB = {zij1k2 zij2k1 − zij1k1 z
i
j2k2 | i ∈ [r ], 1 ≤ j1 < j2 ≤ si , 1 ≤ k1 < k2 ≤ ti },

and QuadB is a Gröbner basis for IB with respect to any term order that selects
the first term (as written above) as the initial term for each quadric (Sullivant 2006,
Proposition 10).

We may also define I ×A J as φ−1
B (I + J ), where we consider I and J as being

their natural extensions in K[x, y]. If ω1 and ω2 are weight vectors on K[x] and K[y]
respectively, thenwehave a naturalweight vector (ω1, ω2)onK[x, y], and the pullback
φ∗
B(ω1, ω2) is a weight vector on K[z]. These weight vectors have the property that

for all monomials za ∈ K[z] we have wtφ∗
B (ω1,ω2)(z

a) = wt(ω1,ω2)(φB(za)).
Let f ∈ K[x] be a homogeneous polynomial with respect to the multigrading NA

and total degree d, so that we may write

f =
v∑

u=1

cux
i1
ju1

· · · xidjud ,

with each jul ∈ [sil ] and cu ∈ K. The upper indices i1, . . . , id can be written indepen-
dent of u since f is homogeneous with respect to NA and A is linearly independent.
For any k = (k1, . . . , kd) with kl ∈ [til ] define the lift of f by k, denoted fk ∈ K[z]
by

fk =
v∑

u=1

cuz
i1
ju1 k1

· · · zidjud kd . (4)

For a set F ⊂ K[x] define Lift F to be the subset of K[z] consisting of all possible
fk with f ∈ F . We define LiftG for G ⊂ K[y] analogously. Observe that we have

φB( fk) =
v∑

u=1

cux
i1
ju1

· · · xidjud y
i1
k1

· · · yidkd = (yi1k1 · · · yidkd ) f .

Since the weight of each monomial in fk with respect to φ∗
B(ω1, ω2) is equal to the

weight with respect to (ω1, ω2) of the image of that monomial under φB , and this is in
turn given by the sum of the weight with respect to ω1 of the corresponding monomial
in f and the weight with respect to ω2 of y

i1
k1

· · · yidkd , we have that inφ∗
B (ω1.ω2)( fk) =

(inω1( f ))k . It follows that inφ∗
B (ω1.ω2)(〈Lift F〉) = Lift(inω1(〈F〉), and by symmetry

inφ∗
B (ω1.ω2)(〈Lift G〉) = Lift(inω2(〈G〉).
One of the key results on toric fiber products is the following.

Theorem 7 (Sullivant (2006), Theorem 13) Let F be a homogeneous Gröbner basis
for I with respect to a weight vector ω1, let G be a homogeneous Gröbner basis for J
with respect to a weight vector ω2, and let ωq be a weight vector such that QuadB is
a Gröbner basis for IB. Then
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Lift (F) ∪ Lift (G) ∪ QuadB

is a Gröbner basis for I ×A J with respect to the weight vector φ∗
B(ω1, ω2)+ εωq for

sufficiently small ε > 0.

Note that if ε is chosen small enough, then inφ∗
B (ω1,ω2)+εωq ( fk) = inφ∗

B (ω1,ω2)( fk)
for all fk ∈ 〈Lift F,Lift G〉.
Remark 1 SinceQuadB ⊂ ker φB wehave that inφ∗

B (ω1,ω2)( f ) = f for all f ∈ QuadB .
Now inφ∗

B (ω1,ω2)+εωq ( f ) = inωq (inφ∗
B (ω1,ω2)( f )) = inωq ( f ), so it follows that on

QuadB , the weight vector φ∗
B(ω1, ω2) + εωq chooses the same leading term as the

weight vector ωq .

3 Dimension of Toric Fiber Products

In this sectionwe give a dimension formula for the toric fiber product of two prime ide-
als when the setA is linearly independent, and then apply this to level-1 phylogenetic
networks.

Recall the following definitions, from e.g. Becker and Weispfenning (1993). Let I
be an ideal in the polynomial ring K[x1, . . . , xn]. We say that a set U ⊆ {x1, . . . , xn}
is independent modulo I if I ∩ K[U ] = {0}. We say that U is maximally independent
modulo I if it is independent modulo I and there exists no other setU ′ ⊆ {x1, . . . , xn}
such that U ⊆ U ′ and U ′ is independent modulo I . The dimension of I , denoted
dim I , is given by max{|U | | U ⊆ {x1, . . . , xn} is independent modulo I }. If I is a
prime ideal then for all setsU ⊆ {x1, . . . , xn} that are maximally independent modulo
I we have dim I = |U |. We begin with the following lemma.

Lemma 8 Let M ⊂ K[x] be a set of monomials, and let U ⊆ {xiji | i ∈ [r ], ji ∈ [si ]}
be maximally independent modulo 〈M〉, given by

U = {xi
jhi

| i ∈ I, h = 1, . . . , ni },

where I ⊂ [r ] and for each i ∈ I we have jhi ∈ [si ] for h = 1, . . . , ni . Then the set

LiftU = {zi
jhi k

| i ∈ I, h = 1, . . . , ni , k ∈ [ti ]} ⊆ K[z]

is maximally independent modulo 〈Lift M〉.
Proof First observe that 〈LiftM〉 is a monomial ideal generated by monomials of the
form mk as in equation (4) for m ∈ M . Thus, in order to show independence, it is
sufficient to only considermonomialsmk . Now ifmk ∈ 〈LiftM〉∩K[zi

jhi k
| i ∈ I, h =

1, . . . , ni , k ∈ [ti ]], then m ∈ M ∩ K[xiji | i ∈ I, ji ∈ [si ]] = {0}, and thus LiftU
is independent modulo 〈Lift M〉. Furthermore, if LiftU is not maximal then there
exists some i ′ ∈ [r ], j ′ ∈ [si ′ ], and k′ ∈ [ti ′ ] such that LiftU ∪ {zi ′j ′k′ } is independent
modulo 〈LiftM〉. But then LiftU ∪ {zi ′j ′k | k ∈ [ti ′ ]} = Lift (U ∪ {xi ′j ′ }) is also
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independent modulo 〈LiftM〉, soU ∪{xi ′j ′ } is independent modulo 〈M〉, contradicting
the maximality of U . ��

Note that we have the analogous result for a set of monomials M ⊂ K[y] and
U ⊆ {yiki | i ∈ [r ], ki ∈ [ti ]}.
Theorem 9 Let I and J be homogeneous ideals in K[x] and K[y] respectively, let
ω1 be a weight vector for K[x], and let ω2 be a weight vector for K[y]. Let the set
{xi

jhi
| i ∈ I1, j hi ∈ [si ], h = 1, . . . , ni } bemaximally independent modulo inω1(I ) for

some I1 ⊆ [r ], and let the set {yi
kgi

| i ∈ I2, kgi ∈ [ti ], g = 1, . . . ,mi } be maximally
independent modulo inω2(J ) with I2 ⊆ [r ]. If the setA is linearly independent, then

dim I ×A J ≥
∑

i∈I1∩I2
(ni + mi − 1). (5)

Furthermore, if I and J are prime and we have I1 = I2 = [r ] then dim I ×A J =
dim I + dim J − |A|.
Proof Let F and G be Gröbner bases of I and J with respect to the weight vectors
ω1 and ω2 respectively, and let ωq be a weight vector on K[z] that for all i chooses
zij1k2 z

i
j2k1

as the initial term for each polynomial in QuadB , where 1 ≤ j1 < j2 ≤ si
and 1 ≤ k1 < k2 ≤ ti . By Theorem 7, we have that for the weight vector ω =
φ∗
B(ω1, ω2) + εωq and sufficiently small ε > 0, the set Lift (F) ∪ Lift (G) ∪ QuadB

is a Gröbner basis of I ×A J . To prove inequality (5) it is sufficient to find a set of
generators ziljl kl that are maximally independent modulo inω(I ×A J ) and that has size∑

i∈I1∩I2(ni + mi − 1).
As in the statement of the theorem, let the set {xi

jhi
| i ∈ I1, j hi ∈ [si ], h =

1, . . . , ni } be maximally independent modulo inω1(I ) = inω1(〈F〉), and for each
i ∈ I1 arrange the j hi so that j1i < j2i < · · · < jnii . By Lemma 8, and since
inω(〈LiftF〉) = Lift(inω1〈F〉), we have that the set

{zi
jhi k

| i ∈ I1, h = 1, . . . , ni , k = 1, . . . , ti } ⊂ K[z]

is maximally independent modulo inω(〈Lift F〉). Similarly, since the set {yi
kgi

| i ∈
I2, kgi ∈ [ti ], g = 1, . . . ,mi } is maximally independent modulo inω2(J ), we have
that

{zi
jkgi

| i ∈ I2, g = 1, . . . ,mi , j = 1, . . . , si } ⊂ K[z]

is maximally independent modulo inω(〈LiftG〉). Again, for each i ∈ I2 arrange the
khi so that k1i < k2i < · · · < kmi

i . We now have

inω(〈Lift F ∪ LiftG〉) ∩ K[zi
jhi k

g
i

| i ∈ I1 ∩ I2, h = 1, . . . , ni , g = 1, . . . ,mi ] = {0},
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Fig. 2 Grid representing the
generators zijk for a fixed i ∈ [r ].
Columns shaded grey give
monomials coming from the lift
of the maximally independent
set modulo inω1 (I ), and rows
shaded grey give monomials
coming from the lift of the
maximally independent set
modulo inω2 (J ). Cells shaded
black represent the elements of
the set Z of degree ai

j1i j2i j3i

k1i

k2i

and that the set {zi
jhi k

g
i

| i ∈ I1 ∩ I2, h = 1, . . . , ni , g = 1, . . . ,mi } is maximal with

respect to this condition. We claim that the set

Z = {zi
jhi k

1
i

| i ∈ I1 ∩ I2, h = 1, . . . , ni } ∪ {zi
j
ni
i kgi

| i ∈ I1 ∩ I2, g = 1, . . . ,mi }

is maximally independent modulo inω(〈Lift F ∪ LiftG ∪ QuadB〉) = inω(I ×A J )

(see Fig. 2).
Firstwe show that inω(〈Lift F ∪LiftG ∪QuadB〉)∩K[Z ] = {0}. Observe that since

Lift F∪LiftG∪QuadB is a Gröbner basis, we have inω(〈Lift F∪LiftG∪QuadB〉) =
inω(Lift F) ∪ inω(LiftG) ∪ inω(QuadB). Since inω(〈Lift F ∪ LiftG〉) ∩ K[Z ] = {0},
it is sufficient to show that for each i ∈ I1 ∩ I2 the elements of degree ai in Z do
not appear together as a quadratic monomial in inω(〈QuadB〉). By Remark 1 and our
choice of ω we have that

inω(QuadB) = {zij1k2 zij2k1 | i ∈ [r ], 1 ≤ j1 < j2 ≤ si , 1 ≤ k1 < k2 ≤ ti }.

Fix i ∈ I1 ∩ I2 and observe that for any two elements of Z of degree ai , say zijk
and zij ′k′ with j ≤ j ′, we either have j = j ′, k = k′, or k < k′. In all cases

zijk z
i
j ′k′ /∈ inω(QuadB).

Next we show that Z is maximal. By the maximal independence of K[zi
jhi k

g
i

| i ∈
I1 ∩I2, h = 1, . . . , ni , g = 1, . . . ,mi ]modulo inω(〈Lift F ∪LiftG〉), we need only
consider those zijk /∈ Z with i ∈ I1 ∩ I2, j = j hi for some h = 1, . . . , ni , and k = kgi
for some g = 1, . . . ,mi . But it is clear that for any such zijk , we can find zij0k0 ∈ Z

such that zij0k0 z
i
jhkl

∈ inω(QuadB). It follows that Z is maximally independent modulo
inω(〈Lift F ∪ LiftG ∪ QuadB〉). Since
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|Z | =
∑

i∈I1∩I2
(ni + mi − 1),

inequality (5) is proved. For the final statement, observe that since I is prime, we have
dim I = ∑

i∈I1 ni , and since J is prime,wehave dim J = ∑
i∈I2 mi . IfI1 = I2 = [r ]

then we get

|Z | =
r∑

i=1

(ni + mi − 1) =
r∑

i=1

ni +
r∑

i=1

mi − r = dim I + dim J − |A|.

Now since I ×A J is prime, its dimension is equal to the size of any subset that is
maximally independent modulo inω(〈Lift F ∪ LiftG ∪ QuadB〉). ��
Remark 2 Observe that if both I and J are prime ideals and there exist maximally
independent sets with I1 = I2 = [r ], then it is clear from the proof that I ×A J is also
a prime ideal and there exists a maximally independent set modulo inω(I ×A J ) in
{zijk | i ∈ [r ], j ∈ [si ], k ∈ [ti ]}with at least one element for each upper index i ∈ [r ].

For the remainder of this section we will apply our results on toric fiber products to
level-1 phylogenetic networks. Fix a group-basedmodel (G, B), and letN be a level-1
phylogenetic network with a (directed) cut edge e. Then the operation of cutting N
at e results in two smaller level-1 networks, that we denote N+ and N−. We denote
by e the new edge in both N+ and N−, and this edge inherits the direction from
N . We assume that the network N+ contains the leaves labelled 1, . . . , n′ for some
n′ < n, which are also leaves of N , and the new leaf, which we denote by ne. Then
N− contains the leaves labelled n′ + 1, . . . , n, and the new leaf which we also denote
by ne.

The vanishing ideal IN+ is contained in the polynomial ring R+ =
C[q+

g1···gn′ gne | g1 + · · · + gn′ + gne = 0], and IN− is contained in R− =
C[q−

gne gn′+1···gn | gne + gn′+1 + · · · + gn = 0]. We give each polynomial ring the

grading induced by deg(qg1···gN ) = E[ξ(e)] ∈ Z
|B·G|
≥0 , where ξ is the consistent edge

labelling induced by the consistent leaf labelling g1, . . . , gN , and {E[g] | [g] ∈ B ·G} is
the standard basis ofZ|B·G|

≥0 . Note that the setA consisting of the image under deg of the
generators of R+ and R− is given by the linearly independent set {E[g] | [g] ∈ B ·G},
and each element of this set is the image under deg of a generator of both R+ and R−.
We assume that the edge e inN is directed towardsN+ so that ξ(e) = g1 + · · · + gn′
and therefore deg(qg1···gn ) = E[g1+···+gn′ ].

We have a natural C-algebra homomorphism

R → R+ ⊗C R−
qg1···gn �→ q+

g1···gn′ g+ ⊗ q−
g−gn′+1···gn ,

(6)

where g+ = −(g1 + · · · + gn′) and g− = −(gn′+1 + · · · + gn). Note that
deg(q+

g1···gn′ g+) = E[g1+···+gn′ ] and deg(q−
g−gn′+1···gn ) = E[−(gn′+1+···+gn)] =
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(a)

e

1

2

3

4

5

6

(b)

e

1

2

4

3

e

1

2

3

4

Fig. 3 aA level-1 phylogenetic networkN . b The phylogenetic networksN− andN+ obtained by cutting
N at e (right). The toric fiber product of IN− and IN+ corresponds to gluingN− andN+ along the edge
labelled e

E[g1+···+gn′ ]. As in the proof of (Cummings et al (2021), Proposition 3.2), the net-
work parameterisation map φN factors through (6), so IN is the toric fiber product
IN+ ×A IN− .

Example 2 We will consider the 2-state Cavender-Farris-Neyman model, for which
G = Z/2Z, on the phylogenetic network N depicted in Figure 3. The corresponding
ideal IN is contained in the polynomial ring R = C[qg1g2g3g4g5g6 | g1 + g2 + g3 +
g4 + g5 + g6 = 0]. Cutting at the non-trivial cut edge e results in a 4 sunlet and a
4-leaf tree. Let N+ be the 4-sunlet, and N− be the 4-leaf tree. Let

IN+ ⊂ R+ = C[q+
g1g2g3g4 | g1 + g2 + g3 + g4 = 0]

and let

IN− ⊂ R− = C[q−
g1g2g3g4 | g1 + g2 + g3 + g4 = 0]

be the corresponding ideals. We give R+ the grading induced by deg(q+
g1g2g3g4) =

Eg4 ∈ Z
2 = ZE0 + ZE1, so that the degree E0 generators are q+

0000, q
+
1100, q

+
1010,

and q+
0110, and the degree E1 generators are q

+
0011, q

+
0101, q

+
1001, and q

+
1111. We give R−

the grading induced by deg(q−
g1g2g3g4) = Eg1 . In this case the degree E0 generators

are q−
0000, q

−
0011, q

−
0101, and q

−
0110, and the degree E1 generators are q

−
1001, q

−
1010, q

−
1100,

and q−
1111.

The multigrading in R is given by deg(qg1g2g3g4g5g6) = Eg1+g2+g3 and the map φB

is given by

φB : R → C[q+
g1g2g3g4 , q

−
h1h2h3h4

| g1 + g2 + g3 + g4 = h1 + h2 + h3 + h4 = 0]
φB : qg1g2g3g4g5g6 �→ q+

g1g2g3g+q
−
g−g4g5g6 ,

where g+ = g− = g1 + g2 + g3 and deg(qg1g2g3g+) = deg(qg−g4g5g6) = Eg1+g2+g3 .
As described above, IN is given by the toric fiber product IN+ ×A IN− , where A is
given by {E0, E1}.
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First we describe QuadB .Using that 〈QuadB〉 = ker φB we see that QuadB consists
of all elements of the form

qg1g2g3g4g5g6qh1h2h3h4h5h6 − qg1g2g3h4h5h6qh1h2h3g4g5g6 ,

for generators qg1g2g3g4g5g6 and qh1h2h3h4h5h6 satisfying deg(qg1g2g3g4g5g6) =
deg(qh1h2h3h4h5h6). Note that this condition guarantees that (g1, g2, g3, h4, h5, h6)
and (h1, h2, h3, g4, g5, g6) are consistent leaf-labellings.

Next we consider lifts. For the generator q+
0000 we lift by elements of degree E0 in

R−. Thus we have

Lift q+
0000 = {q000000, q0000011, q000101, q000110}.

Similarly, for the generator q−
0000 we have

Lift q−
0000 = {q000000, q011000, q101000, q110000}.

Observe that, for example, φB(q0000011) = q+
0000q

−
0011 and φB(q101000) = q+

1010q
−
0000.

Note also that the generator q000000 can be obtained from lifting both q+
0000 and q

−
0000.

The ideal IN+ is generated by the set F (consisting of a single quadratic), and the
ideal IN− is generated by the set G. We give R+, and R− the monomial ordering
qg1g2g3g4 < qh1h2h3h4 if and only if (g1, g2, g3.g4) < (h1, h2, h3, , h4)with respect to
lexicographic ordering and with 0 < 1 in Z/2Z. Then, with respect to lexicographic
ordering on R+ and R−, F and G are Gröbner bases.

F = { f = q+
0000q

+
1111 − q+

1100q
+
0011 + q+

1010q
+
0101 − q+

0110q
+
1001},

G = {g1 = q−
1010q

−
1100 − q−

1001q
−
1111, g2 = q−

0110q
−
1100 − q−

0101q
−
1010,

g3 = q−
0011q

−
1100 − q−

0000q
−
1111, g4 = q−

0110q
−
1001 − q−

0101q
−
1010,

g5 = q−
0011q

−
1001 − q−

0000q
−
1010, g6 = q−

0011q
−
0101 − q−

0000q
−
0110}.

Observe that in all cases, each polynomial is homogeneous in the grading. We give
an example lift for f and for g1. The degree of f is E0 + E1. For k corresponding to
the pair (q−

0011, q
−
1010) we have

fk = q000011q111010 − q110011q001010 + q101011q010010 − q011011q100010.

The polynomial g1 has degree 2E1. For k corresponding to the pair (q+
0011, q

+
1001) we

have

(g1)k = q001010q100100 − q001001q100111.

Finally, Lift F is given by all possible lifts fk , and LiftG is given by all possible lifts
(gi )k for i = 1, . . . , 6. Then the ideal IN is generated by the elements of Lift F ,
LiftG, and QuadB .
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Corollary 10 Fix a group-based model (G, B). Let N be a level-1 phylogenetic net-
work with a cut edge e, and letN+ andN− be the networks obtained by cuttingN at
e. Then dim V (G,B)

N = dim V (G,B)

N+ + dim V (G,B)

N− − |B · G|.
Proof As described above, the ideal IN is the toric fiber product IN+ ×A IN− , so
we apply Theorem 9. Both IN+ and IN− are prime ideals, so to prove the result, it is
sufficient to show that for a phylogenetic network ideal I there exists a weight vector
ω and a set U ⊂ {qg1···gn | g1 + · · · + gn = 0} that is independent modulo inω(I )
and that contains at least one element of degree ai for each ai ∈ A. From Remark 2,
we need only consider phylogenetic networks that are either sunlet networks or trees.
Furthermore, ifN is a sunlet network and T is a tree obtained fromN be removing a
reticulation edge, then IN ⊂ IT . It follows that if U is independent modulo inω(IT )

thenU is also independent modulo inω(IN ), so in fact it is sufficient to show the result
for any phylogenetic tree T .

To show the result for a tree T , we make the further observation that if T has an
internal edge e, then T is a toric fiber product of the two trees given by cutting T at e.
Thus in view of Remark 2 again, we need only consider claw trees. Since we are only
considering binary phylogenetic trees, we need only consider the 3-claw tree T3.

Fix a set of representatives G ⊂ G of the B-orbits in G, let T = T3, let I = IT ,
and let the set of multidegrees be given byA = {Eg | g ∈ G}. Note that 0 ∈ G and that
[0] = {0}. We may assume, without loss of generality, that deg(qg′hk) = Eg , where
g′ ∈ [g] for some g ∈ G. Recall that I is given by the kernel of the map ψT where

ψT : C[qghk | g + h + k = 0] −→ C[a[g]
i | g ∈ G, i = 1, 2, 3]

qghk �−→ a[g]
1 a[h]

2 a[k]
3 .

Let U = {qg0(−g) | g ∈ G}. It is clear that U has exactly one element of each
multidegree. Next, choose a term order on C[qghk | g + h + k = 0] such that qghk <

qg′h′k′ whenever g ∈ G and g′ /∈ G, and let ω be a a weight vector whose induced term
order satisfies this. We claim that C[U ] ∩ inω(I ) = {0}.

To prove the claim, we will show that for any element f ∈ I , we have that inω( f )
does not consist of a product of elements ofU . Since I is homogeneous and generated
by binomials, we may assume that f is a homogeneous binomial. Let G′ ⊆ G with
|G′| = n and suppose that we can write

f =
∏

g∈G′
qg0(−g) − m

for some other monomial m of total degree n. Since f ∈ kerψT we must have that

ψT (m) = ψT
( ∏

g∈G′
qg0(−g)

) = ( ∏

g∈G′
a[g]
1

)( ∏

g∈G′
a[−g]
3

)
(a[0]

2 )n .

Now if qg′h′k′ is a factor of m then we must have ψT (qg′h′k′) = a[g]
1 a[0]

2 a[k]
3 for some

g, k ∈ G. Thus, h′ ∈ [0] so h′ = 0 and g′ ∈ [g], and since g′ + 0 + k′ = 0 we must

123



Dimensions of Level-1 Group-Based... Page 19 of 32    90 

have k′ = −g′. Now if g′ = g then qg′h′k′ = qg0(−g) appears as a factor in the first
monomial of f . If this holds for all factors of m then we have f = 0. If not, then for
some factor qg′0(−g′) we must have g′ /∈ G, so we have inω( f ) = m. ��
Remark 3 Notice that in the proof of Corollary 10, we made no assumptions on the
number of reticulation vertices ofN . Since a binary phylogenetic tree can be thought
of as a phylogenetic network with no reticulation vertices, the result also holds for
binary phylogenetic trees. Explicitly, we have that if T is a binary phylogenetic tree
with an interior edge e, with trees T+ and T− obtained by cutting e, then we have

dim V (G,B)

T = dim V (G,B)

T+ + dim V (G,B)

T− − |B · G|.

4 Sunlet Networks and Trees

IfN is a level-1 phylogenetic network, thenN can be decomposed along cut edges into
a series of phylogenetic trees and sunlet networks. As shown in the previous section,
the ideal structure of the corresponding varieties is given by the toric fiber product.
It therefore remains for us give dimension results for the varieties corresponding to
trees and sunlet networks. For an unrooted phylogenetic tree T , the dimension of
the variety V (G,B)

T is well known. We give a proof using the dimension result of the
previous section.

Lemma 11 If T is a binary phylogenetic tree with m edges and no degree-2 vertices
under a group-based evolutionary model (G, B), then the affine dimension of V (G,B)

T
is given by

dim V (G,B)

T = lm + 1.

Proof Denote by t the number of interior edges of T . If t = 0 then T is the 3-claw tree.
This has dimension 3l+1 by (Baños et al (2019), Proposition 5.2), so the proposition is
true in this case. Now suppose T is a binary phylogenetic tree withm edges and t > 0
interior edges. Let e be an interior edge and let T+ and T− be the trees obtained by
cutting at e. Ifm+ andm− are the number of edges of T+ and T− respectively, we have
m = m+ +m− −1. Furthermore, the number of interior edges of T+ and of T− is less
than t , so by induction we have dim V (G,B)

T+ = lm+ + 1 and dim V (G,B)

T− = lm− + 1.
It follows from Remark 3 that

dim V (G,B)

T = (lm+ + 1) + (lm− + 1) − (l + 1) = lm + 1.

��
Observe that one could extend the above proof to give the analogous dimension

result for any phylogenetic tree with no degree 2 vertices. To do so, the base-case
for the induction must be extended to cover all claw trees Tn with n ≥ 3. That is,
one must show that for each Tn with corresponding ideal In , there exists a maximal
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independent set modulo inω(In) that contains at least one element of multidegree ai
for each ai ∈ A, as in the proof of Corollary 10.

The remainder of this section is dedicated to giving the dimension of the varieties
corresponding to sunlet networks. As we have already seen, the variety associated
to a phylogenetic network N is equal to the variety associated to the corresponding
contracted semi-directed phylogenetic network, so from this point onwards we will
only consider contracted semi-directed phylogenetic networks. First we will give an
upper bound on the dimension.

Proposition 12 If N is a contracted semi-directed phylogenetic network with only
disjoint cycles and with m edges then

dim VG
N ≤ lm + 1.

Proof Let c denote the number of cycles inN . The affine variety VG
N is parameterized

by (l + 1)m parameters, but the map is multihomogeneous. It is linear in the set of
parameters for each non-reticulation edge, and in the union of the parameters for the
two reticulation edges of each cycle. Thus we may think of the parameterization map
as a projective map

P
l × · · · × P

l × P
2l+1 × · · · × P

2l+1 ��� P
(l+1)n−1

,

whereP
l appearsm−2c times (once for each non-reticulation edge), andP

2l+1 appears
c times (once for each cycle). We use a dashed arrow to indicate that in order for the
map to be well-defined we may need to take a subset of the domain. It follows that
VG
N has projective dimension at most lm + c, and thus its affine dimension is at most

lm + c + 1.
Now consider v = φN (w) ∈ C

|G|n−1
, where w ∈ C

m(l+1). For each pair of reticu-
lation edges e1, e2, a consistent leaf labelling ofN assigns both edges the same label.
For each consistent leaf labelling of N in which they are labelled 0, the edges along
the cycle all receive the same labels in both trees, so the coordinate of v corresponding
to the consistent leaf labelling has a factor of w0

e1 + w0
e2 . For every consistent leaf

labelling in which they are not labelled 0, the coordinate does not depend on w0
e1 or

w0
e2 . Therefore the map depends only on the sum w0

e1 +w0
e2 . This reduces the number

of independent parameters by c, so the affine dimension of VG
N is at most lm + 1. ��

4.1 General Group-BasedModels

First, we restrict our attention to sunlet networks under general group-based models
of evolution, i.e., those where the group B consists only of the identity automorphism.
We will deal with the case G = Z/2Z separately.

Proposition 13 Let N be the n-sunlet network with n ≥ 4 and let G be an abelian
group with |G| = l + 1 > 2. Then

dim VG
N = l(2n − 1) + 1.
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Fig. 4 A contracted n-sunlet network with n ≥ 4. Arrows indicate the orientation used for assigning a
consistent edge labelling from a consistent leaf labelling

Proof Using Lemma 4, we may replace N by its contraction. This network has m =
2n − 1 edges, so by Proposition 12 we have dim VG

N ≤ l(2n − 1) + 1.
Label the edges and vertices as in Fig. 4, and let T1 and T2 be the two trees got

by removing the edges en+1 and e1 respectively. The parameterization map for N is
given by

qg1g2···gn = ag22 · · · agnn
(
ag11 ag1+g2

n+2 · · · agn2n−1 + ag1n+1a
g2
n+2 · · · ag1+gn

2n−1

)
, (7)

where g1, . . . , gn is a consistent leaf labelling, the first monomial corresponds to T1,
and the second monomial corresponds to T2. With notation as in Sect. 2.3, our aim
will be to find λ that maximises rankR Aλ, which by Lemma 6 gives a lower bound
on dim VG

N .
Let {Eg

i | g ∈ G, i = 1, . . . , 2n − 1} be the standard basis of R
m(l+1), indexed by

the edges ofN and elements ofG, and consider the dual vector space V = (Rm(l+1))∗
with the dual basis. Choose λ ∈ V such that λ0n+2 = −2, λ

g
n+1 = 1 for all g ∈ G,

and all other entries are 0. Let g1, . . . , gn be a consistent leaf labelling ofN . Then the
corresponding column of Aλ has the following properties:

• If g1 = 0, then the monomial from T1 is chosen.
• If g1 �= 0 and g2 = 0, then the monomial from T2 is chosen.
• In all other cases the monomial from T1 is chosen.

We will show that rank Aλ ≥ l(2n − 1) + 1 to give the lower bound.
Consider the submatrix given by consistent leaf labellings where g1 = 0, so that

each column is an exponent vector coming from a monomial in T1. Perform column
operations on Aλ so that the first (l + 1)n−2 columns are given by this submatrix. Let
S be the tree with n − 1 leaves obtained from N by deleting the reticulation vertex.
The consistent leaf labellings of N in which g1 = 0 give all of the consistent leaf
labellings of S. Since S is a phylogenetic tree, its corresponding variety VG

S is toric,
and therefore the rank of its corresponding matrix A is equal to the dimension of the
variety. By Lemma 11, the variety VG

S has dimension l(2n − 5) + 1, so the submatrix
of Aλ consisting only of the columns where g1 = 0 has rank l(2n − 5) + 1 (note
that since S has a monomial parameterization, for all choices of λ we have that this
submatrix is the same).
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Wemake the following observations about this submatrix. First, since themonomial
from T1 is always chosen, the entries corresponding to the parameters agn+1 are 0 for all
g ∈ G. Similarly, for the edge e1, only the parameter a01 appears in the parameterization
of qg1g2···gn , so the entries corresponding to the parameters ag1 are 0 for all g ∈ G except
g = 0. Next, observe that in this submatrix, the row corresponding to the parameter
ag2 is equal to the row corresponding to the parameter agn+2 for all g ∈ G and similarly
the row corresponding to the parameter agn is equal to the row corresponding to the
parameter ag2n−1 for all g ∈ G. This is because the label of e.g. the edge en+2 is
g1 + g2 = 0 + g2 = g2, which is also the label of the edge e2. We perform row
operations on Aλ so that for each g ∈ G, the first (l + 1)n−2 entries of the rows
corresponding to the parameters ag2 and agn are zero, by subtracting the rows agn+2 and
ag2n−1 respectively. Now we perform further row operations to swap rows and obtain
a matrix of the following form, where the upper left block is a (4 l + 3) × (l + 1)n−2

matrix consisting of zeros,

Aλ =
[

0 B
A′

λ ∗
]

,

and rank A′
λ = l(2n − 5) + 1. It follows that rank Aλ ≥ l(2n − 5) + 1+ rank B, so it

is sufficient to show that rank B ≥ 4l.
The columns of B correspond to consistent leaf labellings g1, . . . , gn with g1 �= 0.

Recall that λ was such that if g2 = 0 then the monomial from T2 is chosen, and
otherwise themonomial fromT1 is chosen. The rows of B correspond to the parameters
ag1 for g �= 0, and agn+1, a

g
2 , and agn for all g ∈ G. However, we performed row

operations on the rows corresponding to ag2 and agn , so for each column of B the
coefficient of the standard basis vector Eg

2 is given by the exponent of ag2 minus the
exponent of agn+2, and the coefficient of Eg

n is given by the exponent of agn minus
the exponent of ag2n−1 in the corresponding monomial from the parameterization (7).
Thus the columns of B are given by

(Egn
n − Eg1+gn

n ) + Eg1
n+1, (8)

if g2 = 0 (so the monomial comes from T2), and

(Eg2
2 − Eg1+g2

2 ) + Eg1
1 , (9)

otherwise (so the monomial comes from T1), where g1, . . . , gn is a consistent leaf
labelling with g1 �= 0. Note that since n ≥ 4, we can find a consistent leaf labelling
g1, . . . , gn for any choice of g1, g2, gn . Denote by X1 the vector space spanned by all
the vectors of the form in equation (8). We have

∑

g∈G

(
(Eg

n − Eg1+g
n ) + Eg1

n+1

) = (l + 1)Eg1
n+1 ∈ X1,
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so Eg1
n+1 ∈ X1 for all g1 �= 0. It follows immediately that for a fixed gn ∈ G, we have

Egn
n − Eg1+gn

n ∈ X1 for all g1 �= 0, and thus dim X1 ≥ 2 l.
Next denote by X2 the vector space spanned by all the vectors of the form in

equation (9). Using that
∑

g∈G Eg
2 − Eg1+g

2 = 0, we see that

∑

g∈G\{0}

(
(Eg

2 − Eg1+g
2 ) + Eg1

1

) = l Eg1
1 + Eg1

2 − E0
2 ∈ X2,

for each g1 �= 0. Now fix g ∈ G \ {0} and let g2 = g, and g1 = −g, so that
E−g
1 + Eg

2 − E0
2 ∈ X2. Then we have

(l Eg
1 + Eg

2 − E0
2) − (E−g

1 + Eg
2 − E0

2) = l Eg
1 − E−g

1 ∈ X2.

Now if g = −g then we have Eg
1 ∈ X2. If not, by swapping g1 and g2 we have

l E−g
1 − Eg

1 ∈ X2, so (l − 1)Eg
1 − (l − 1)E−g

1 ∈ X2. Then l Eg
1 − l E−g

1 ∈ X2, and
subtracting l E−g

1 − Eg
1 gives Eg

1 ∈ X2, for all g ∈ G\{0}. As before, it follows that
for a fixed g2 we have Eg2

2 − Eg1+g2
2 ∈ X2 for all g1 ∈ G\{0}, so dim X2 ≥ 2 l. It

follows that rank B ≥ 4 l. ��
We expect the result to hold for the case n = 3 once the size of G is large enough,

and this is explored in a forthcoming paper. Here, the proof of Proposition 13 breaks
down in this case because, when finding the rank of B, we we have only l+1 columns
when g2 = 0, since in this case g1 = −gn . Thus the dimension of X1 is strictly less
than 2l.

Next we deal with the case G = Z/2Z. The expected dimension for n-sunlets here
is 2n. However, if n = 3 then we only have 4 < 2n consistent leaf labellings ofN , so
in this case the expected dimension cannot be reached. When n = 4 we have 8 = 2n
consistent leaf labellings, however, in this case dim VG

N = 7. This can be shown by
direct computation.

Proposition 14 Let N be the n-sunlet network with n ≥ 5 and let G = Z/2Z. Then

dim VG
N = 2n.

Proof As before, Proposition 12 gives the upper bound. Label the edges and vertices
as in Fig. 5, and let T1 and T2 be the two trees got by removing the edges en+1 and
e1 respectively. Observe that we have at least one edge on the cycle, e.g. en+3, that
is not adjacent to either reticulation edge. We proceed as in Proposition 13, this time
choosing λ ∈ R

2m such that λ0n+1 = λ1n+1 = 1, λ0n+3 = 2. and all other entries are 0.
Let g1, . . . , gn be a consistent leaf labelling ofN . Then the corresponding column of
Aλ has the following properties:

• If g1 = 0, then the monomial from T1 is chosen.
• If g1 = 1 and g2 + g3 = 1, then the monomial from T2 is chosen.
• If g1 = 1 and g2 + g3 = 0, then monomial from T1 is chosen.
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Fig. 5 A contracted n-sunlet network with n ≥ 5. Arrows indicate the orientation used for assigning a
consistent edge labelling from a consistent leaf labelling

As in the proof of Proposition 13, we perform column operations so that the first
2n−2 columns are indexed by consistent leaf labellingswhere g1 = 0, and each column
is an exponent vector coming from the corresponding T1 monomial. The submatrix
consisting of these columns has rank 2n−4, and we perform the same row operations
as before to give the block triangular matrix

Aλ =
[

0 B
A′

λ ∗
]

,

where the submatrix B is given by rows corresponding to the parameters a11, a
0
2 , a

1
2 ,

a0n , a
1
n, a

0
n+1, and a1n+1. However, we performed row operations on the rows corre-

sponding to ag2 and agn , so for each column of B the coefficient of Eg
2 is given be the

exponent of ag2 minus the exponent of agn+2, and the coefficient of Eg
n is given by the

exponent of agn minus the exponent of ag2n−1 for g = 0, 1. Consider the following
columns of B. For a consistent leaf labelling with g1 = gn = 1 and g2 = g3 = 0, the
monomial from T1 is chosen, so the labels assigned to an and a2n−1 are equal, and the
labels assigned to a2 and an+2 are not equal. Thus the column is given by

E1
1 + E0

2 − E1
2 .

Next for a consistent leaf labelling with g1 = g2 = g3 = gn = 1, the monomial from
T1 is chosen so the column is given by

E1
1 − E0

2 + E1
2 .

For g1 = g3 = 1 and g2 = gn = 0, the monomial from T2 is chosen so the column is
given by

E1
n+1 + E0

n − E1
n .
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Finally, for a consistent leaf labelling with g1 = g3 = gn = 1 and g2 = 0, the
monomial from T2 is chosen so the column is given by

E1
n+1 − E0

n + E1
n .

These vectors are linearly independent, so rank B ≥ 4 and the result follows. ��
Observe that in the case n = 4, the vector E1

n+1 − E0
n + E1

n , is not obtained, since
there is no consistent leaf-labelling with g1 = g2 = g4 = 1 and g2 = 0. In this case
B has four columns, corresponding to the consistent leaf labellings when g1 = 1. The
two columns assigned to T2 correspond to (1, 0, 1, 0) and (1, 1, 0, 0). The reader can
check that in both cases the column vector is E1

5 . The two columns assigned to T1
remain linearly independent, so in this case rank B = 3.

4.2 Group-BasedModels

In this section, we use our results on general group-based models to obtain the result
for all group-based models, following the method of (Baños et al (2019), Lemma 4.2).
Throughout, let N be the contracted n-sunlet network, so the number of edges m
is equal to 2n − 1. Let G be a finite abelian group, and let B be a subgroup of the
automorphism group Aut(G) with |B · G| = l + 1. Let (R|G|m)∗ have standard basis
elements ε

g
e where g ∈ G and e ∈ E(N ). Next, pick representatives g0 = 0, g1, . . . , gl

in G for each B-orbit, and let (R(l+1)m)∗ have standard basis elements ε
[gi ]
e for i =

0, . . . , l and e ∈ E(N ).
Let p : (R|G|m)∗ −→ (R(l+1)m)∗ be the map that sums coefficients of the unit

vectors for each orbit, i.e.

∑

e∈E(N )

∑

g∈G
cge ε

g
e �−→

∑

e∈E(N )

l∑

i=0

(
∑

g∈[gi ]
cge )ε

[gi ]
e ,

where cge ∈ R. It is clear that p is a surjective, linearmap, so dim ker p = (|G|−l−1)m.
Now consider the parameterizations of VG

N and V (G,B)

N . For a fixed consistent leaf
labelling ξ , let α1 and α2 be the exponent vectors of the monomials corresponding to
T1 and T2 respectively, in the parameterization of VG

N . Similarly let α′
1 and α′

2 be the

corresponding monomials in the parameterization of V (G,B)

N . Then p(αi ) = α′
i for

i = 1, 2. Furthermore, observe that if λ ∈ R
|G|m is such that λ

g
e = λhe whenever g

and h are in the same B orbit for all edges e ∈ E(N ), then there exists λ′ ∈ R
(l+1)m

satisfying λ = λ′ ◦ p (where we are considering λ′ as an element of the dual space of
(R(l+1)m)∗).

Proposition 15 With the notation as above, let λ ∈ R
|G|m be such that λ

g
e = λhe

whenever g and h are in the same B-orbit, for all e ∈ EN . Then there exists λ′ ∈
R

(l+1)m such that

p ◦ Aλ = Aλ′ .
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Proof First observe that for any α ∈ (R|G|m)∗ we have

〈λ, α〉 = λ(α) = λ′ ◦ p(α) = 〈λ′, p(α)〉.

Now consider the polynomials of the parameterizations of VG
N and V (G,B)

N , for a con-
sistent leaf labelling ξ . Let α1 and α2 be as above, and suppose that 〈λ, α1〉 < 〈λ, α2〉.
Then 〈λ′, p(α1)〉 < 〈λ′, p(α2)〉, so both λ and λ′ pick the monomial corresponding to
T1. Since α′

1 = p(α1), the result follows. ��
Note that Proposition 15 is easily generalizable to level-1 phylogenetic networks.

Corollary 16 Let N be the n-sunlet network with n ≥ 4, let G be a finite abelian
group, and let B be a non-trivial subgroup of the automorphism group Aut(G), with
|B · G| = l + 1. Then

dim V (G,B)

N = l(2n − 1) + 1.

Proof As in the case for general group-based models, the upper bound is given by
Proposition 12. For the lower bound, first observe that since B is a non-trivial sub-
group, we must have |G| > 2. Next observe that the vector λ chosen in the proof of
Proposition 13 satisfies the condition in Proposition 15, so using Proposition 15 (and
Lemma 6) there exists some λ′ such that

dim V (G,B)

N ≥ rankR Aλ′ = rankR(p ◦ Aλ′).

Finally, since p is a surjective linear map with kernel of dimension (|G| − l − 1)m,
we have

rankR Aλ′ ≥ (|G| − 1)m + 1 − (|G| − l − 1)m = lm + 1.

��
We summarise our results on sunlet networks in a single theorem. Note that the

final two cases are given by direct computation.

Theorem 17 LetN be a sunlet network with n leaves. Let G be a finite abelian group
and let B be a subgroup of Aut(G). Denote by l + 1 the number of B-orbits in G.
Then dim V (G,B)

N is given in the following cases.

• If n ≥ 4 and |G| > 2 then dim V (G,B)

N = l(2n − 1) + 1.

• If n ≥ 5 and G = Z/2Z so that B = {id} then dim VZ/2Z
N = 2n.

• If n = 4 then dim V Z/2Z
N = 7.

• If n = 3 then dim V Z/2Z
N = 4.

��
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Table 1 Values for the deficiency of dim V (G,B)
N , where N is an n-sunlet

n Z/2Z Z/3Z JC K2P (Z/2Z)2 Z/4Z Z/5Z Z/6Z Z/7Z

3 2 2 1 1 1 0 0 0 0

4 1 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0

5 Proof of Theorems 1 and 2

We are now able to give simple inductive proofs of Theorems 1 and 2. Below we give
only the proof of Theorem 1. The proof of Theorem 2 is almost identical, and is left
to the reader with the aid of Table 1.

Proof of Theorem 1 We will prove the result using induction on the number of non-
trivial cut edges of a level-1, triangle-free phylogenetic networkN . For the case when
there are no non-trivial cut edges, we must have that N is either the 3-claw tree,
in which case the dimension of V (G,B)

N is equal to lm + 1 by Lemma 11, or N is
an n-sunlet network with n ≥ 4, in which case the dimension is l(2n − 1) + 1 by
Theorem 17. In both cases the result holds.

Now suppose that N is a level-1, triangle-free phylogenetic network with a non-
trivial cut edge e, and m edges and c cycles. LetN1 andN2 be the networks obtained
by cutting at e, and let mi and ci denote the number of edges and cycles in Ni

respectively for i = 1, 2. Since the number of non-trivial cut edges in N1 and N2
must be fewer than the number of non-trivial cut edges in N , by induction we have
dim V (G,B)

Ni
= l(mi − ci ) + 1 for i = 1, 2. By Corollary 10 we have

dim V (G,B)

N = dim V (G,B)

N1
+ dim V (G,B)

N2
− (l + 1)

= l(m1 + m2 − c1 − c2) + 2 − (l + 1)

= l(m − c) + 1,

where m1 + m2 = m + 1 and c1 + c2 = c. ��

6 Application to Identifiability

In this section we apply Theorems 1 and 2 to give some immediate identifiability
results. Throughout, fix an abelian group G and subgroup B of Aut(G), and let l + 1
be the number of orbits in B · G. First, we extend the definition of distinguishibility
from Gross and Long (2018) to all group-based models of evolution

Definition 3 Let (G, B) be a group-based model of evolution. Two distinct n-leaf
networks N1 and N2 are distinguishable over (G, B) if V (G,B)

N1
� V (G,B)

N2
and

V (G,B)

N2
� V (G,B)

N1
.
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When G and B are clear, we will simply say that N1 and N2 are distinguishable.
Observe that if V (G,B)

N1
and V (G,B)

N2
are irreducible varieties of equal dimension, then

in order to determine whether N1 and N2 are distinguishable it is sufficient to show
that either V (G,B)

N1
� V (G,B)

N2
or V (G,B)

N2
� V (G,B)

N1
. One of the key results we will use

to show identifiability is the following.

Lemma 18 (Gross et al (2021) Lemma 3) Let N1 and N2 be n-leaf networks. If for
some A ⊆ [n], we have that V (G,B)

N1|A � V (G,B)

N2|A , then V (G,B)

N1
� V (G,B)

N2
.

Corollary 19 LetN1 andN2 be n-leaf networks with dim V (G,B)

N1
= dim V (G,B)

N2
. If for

some A ⊆ [n] we have V (G,B)

N1|A � V (G,B)

N2|A , then N1 and N2 are distinguishable over
(G, B).

Proof By Lemma 18, V (G,B)

N1
� V (G,B)

N2
. Since they are irreducible varieties of the

same dimension, they are distinguishable. ��
We will use Corollary 19 in conjunction with the following dimension results.

Lemma 20 LetN1 andN2 be n-leaf, level-1 phylogenetic networks, both with exactly
c cycles, where each cycle has length at least 4 when |G| > 2 and at least 5 when
G = Z/2Z. Then dim V (G,B)

N1
= dim V (G,B)

N2
.

Proof Observe that N1 and N2 have the same number of edges. To see this, suppose
thatN1 andN2 havem1 andm2 edges respectively. Then the corresponding contracted
networksN ′

1 andN ′
2 have m1 − c and m2 − c edges, since for each reticulation vertex

the outgoing edge is removed. Next for each of the c reticulation vertices v1, . . . , vc in
N ′

1 arbitrarily pick a reticulation edge (ui , vi ) and remove it. After removal, the vertex
ui has degree 2 and can be suppressed. The result is an unrooted binary phylogenetic
tree on n leaves with m1 − 3c edges. Performing the same operations on N ′

2 we also
obtain a (possibly different) unrooted binary phylogenetic tree on n leaveswithm2−3c
edges. Since all unrooted binary phylogenetic trees on n leaves have 2n − 3 edges,
we have that m1 = m2. Now since both N1 and N2 have exactly c cycles, the result
follows from Theorems 1 and 2. ��
Remark 4 From the proof of Lemma 20 it is clear that the number of edges of an
unrooted level-1 phylogenetic network on n leaves with c cycles is 2n − 3 + 3c

For the remaining results in this section we will need to use the fact that binary
phylogenetic trees with group-based models of evolution are distinguishable. This
result is well-known in the algebraic phylogenetics community, but we give a direct
proof here for completeness.

Lemma 21 Let (G, B) be a group-based model of evolution, and let T1 and T2 be two
distinct n-leaf, unrooted, binary phylogenetic trees. ThenT1 andT2 are distinguishable
over (G, B).

Proof First observe that since T1 and T2 are determined by their quartets, there exists
a subset A ⊂ [n] with |A| = 4 such that T1 restricted to A and T2 restricted to A are
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distinct four-leaf, binary phylogenetic trees. By Corollary 19, it is sufficient to show
that V (G,B)

T1|A � V (G,B)

T2|A . Since the dimensions of these varieties are equal (Lemma 11),
this is equivalent to the restricted trees being distinguishable.

We will show that the four leaf binary phylogenetic trees are distinguishable. Let
T be the four-leaf tree with split 12|34, and the corresponding interior edge denoted
e5. Pick g, h ∈ G such that h /∈ [g] and consider the polynomial f = qgqh − qg′qh′
where g = (g,−g, g,−g),h = (h,−h, h,−h), g′ = (g,−g, h,−h), and h′ =
(h,−h, g,−g). We have

ψT ( f ) = ag1a
h
1a

−g
2 a−h

2 ag3a
h
3a

−g
4 a−h

4 a05a
0
5 − ag1a

h
1a

−g
2 a−h

2 ah3a
g
3a

−h
4 a−g

4 a05a
0
5 = 0,

so that f ∈ ker(ψT ) = I (G,B)

T . On the other hand, by looking at the parameters
corresponding to the interior edge, the reader can check that f does not belong to the
ideals corresponding to the trees with splits 13|24 and 14|23 respectively.

In a similar manner one can find polynomials belonging only to the ideal of the tree
with split 13|24 and only to the ideal of the tree with the split 14|23. It follows that
the four leaf binary phylogenetic trees are distinguishable. ��
Proposition 22 Let N1 and N2 be two distinct n-sunlet networks with n ≥ 5 and
distinct leaves adjacent to the reticulation vertex. ThenN1 andN2 are distinguishable
over (G, B).

Proof By Theorem 17 we have that dim V (G,B)

N1
= dim V (G,B)

N2
. Assume, without loss

of generality, that for N1 the leaf adjacent to the reticulation vertex is leaf 1. Let
A = {2, . . . , n}, so that N1|A is a caterpillar tree on n − 1 leaves and N2|A is an
(n − 1)-sunlet network. Then

dim V (G,B)

N1|A = l(2n − 5) + 1 < l(2n − 3) + 1 = dim V (G,B)

N2|A ,

and so V (G,B)

N2|A � V (G,B)

N1|A . By Corollary 19, N1 and N2 are distinguishable. ��
Proposition 23 LetN1 andN2 be two distinct n-sunlet networks with n ≥ 4 such that
the leaf adjacent to the reticulation vertex is the same for both networks, and the trees
obtained from each network by removing the reticulation vertex and adjacent leaf are
distinct. Then N1 and N2 are distinguishable over (G, B).

Proof Assume thatN1 andN2 both have leaf 1 adjacent to the reticulation vertex. Let
A = {2, . . . , n} so that by assumption N1|A and N2|A are distinct caterpillar trees
with n−1 leaves. Since these are distinguishable (Lemma 21), the result follows from
Corollary 19. ��

Observe that Propositions 22 and 23 are not sufficient to give identifiability for all
sunlet networks. For example, take an n sunlet with leaves labelled in ascending order
clockwise around the sunlet with 1 at the reticulation. Then obtain a distinct sunlet
by swapping leaves 2 and 3. The caterpillar trees obtained from both of these sunlets
by restricting to {2, . . . , n} are the same, so neither Proposition 22 nor Proposition 23
applies.
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More generally we can give the following identifiability result for triangle-free,
level-1 phylogenetic networks. The result relies on the existence of a subset A of the
leaf set with particular properties.

Proposition 24 LetN1 andN2 be two triangle-free, level-1 phylogenetic networks on
n leaves and both with exactly c cycles, and let G be an abelian group with |G| > 2.
If there exists a subset A ⊂ [n] such that either

1. N1|A and N2|A are triangle-free level-1 phylogenetic networks with distinct
number of cycles, or

2. N1|A is a tree and N2|A is a triangle-free level-1 phylogenetic network, or
3. N1|A and N2|A are distinct trees,

then N1 and N2 are distinguishable over (G, B).

Proof First observe that dim V (G,B)

N1
= dim V (G,B)

N2
by Lemma 20. LetN1|A andN2|A

have m1 and m2 edges respectively, and c1 and c2 cycles respectively.
For case 1, assume without loss of generality that c1 < c2. Then by Remark 4 we

have thatm1 = 2|A|−1+3c1 andm2 = 2|A|−1+3c2. In particular,m1−c1 < m2−c2.
Then by Theorem 1 we have that

dim V (G,B)

N1|A = l(m1 − c1) + 1 < l(m2 − c2) + 1 = dim V (G,B)

N2|A .

It follows that V (G,B)

N2|A � V (G,B)

N1|A . For case 2 let us assume thatN1|A is a tree andN2|A
is a triangle-free level-1 phylogenetic network. Then dim V (G,B)

N1|A < dim V (G,B)

N2|A so as

above V (G,B)

N2|A � V (G,B)

N1|A . For case 3 we have that V (G,B)

N1|A � V (G,B)

N2|A and V (G,B)

N2|A �

V (G,B)

N1|A by Lemma 21. In all three cases the result now follows by Corollary 19. ��

7 Discussion

In this paper we have given a dimension formula for all triangle-free, level-1 phyloge-
netic networks under a group-based model of evolution. Our main tool was the toric
fiber product, for which we gave a dimension formula that we hope will be useful
beyond this work.

Our results confirmed a conjecture of Gross and Long which states that under
the JC model of evolution, the dimensions of large cycle networks (that is, level-1
phylogenetic networks with a single cycle of length at least 4) are equal (Gross and
Long 2018, Conjecture 5.1). In fact, as we have shown, this is true for all group-
based models and level-1 phylogenetic networks where the number of cycles is equal.
We were also able to give partial identifiability results for sunlet networks and larger
level-1 networks that followed immediately from our results on dimension.

We were unable to give a general dimension result for 3-sunlets. For this case, our
upper bound (Proposition 12) still holds, but our proof for the lower bound does not
work. This is because with the λwe have chosen, when n = 3 we have only l columns
in the matrix Aλ coming from T2, whilst the rest come from T1. Thus the maximum
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rank of Aλ is dim V (G,B)

T1 + l = (2n − 2)l + 1, and this is too small. Nonetheless, we
believe the result still holds, and we make the following conjecture.

Conjecture 25 If N is the 3-sunlet network and |G| > 4 then

dim VG
N = lm + 1.

Our conjecture is backed up by calculations of the dimension V (G,B)

N for small
sunlet networks and small groups. The deficiencies (i.e., the number of dimensions
less than the expected dimension l(2n − 1) + 1) are shown in Table 1.

Bold values in Table 1 indicate that the variety fills the whole space C
(l+1)n−1

, and
this has dimension less than the expected dimension. Note that for the JC and K2P
models we have binomial linear invariants, and it is customary to identify these and
reduce the dimension of the ambient space. From Table 1, it appears that we only
have two cases where the dimension of V (G,B)

N is less than expected for unknown
reasons. These are when G = Z/2Z and n = 4, and when G = Z/2Z × Z/2Z and
n = 3. The latter case has implications for models of DNA sequence evolution, since
the group G = Z/2Z × Z/2Z is usually identified with the four nucleic acids, and
the corresponding general group-based model of evolution is the Kimura 3-parameter
model (K3P). The 3-sunlet network models events such as hybridisation, so a good
understanding of this case will be useful for models in molecular phylogenetics.

A full identifiability result, generalising (Gross et al 2021, Theorem 2), remains
open. For the DNA group-based models (JC, K2P, and K3P), one of the key results
is that the variety corresponding to the 3-sunlet has smaller dimension than expected.
This result can be exploited to give identifiability results on level-1 phylogenetic
networks with four leaves (e.g. (Gross and Long 2018, Corollary 4.8)), since for a
fixed number of leaves a 3-cycle network will have a strictly lower dimension than a
4-cycle network. For general G however, this is not the case, as shown in Table 1, so
an alternative approach will be necessary to show identifiability for general G.

As the authors note in Gross and Long (2018), this dimension deficiency is in
contrast to group-based mixture models, where the number of leaves determines the
dimension. Here, we have shown that the dimension of a triangle-free level-1 phylo-
genetic network variety is fully determined by the number of leaves and the number
of cycles (see Theorem 1), and for large enough G we expect this to be true for all
level-1 phylogenetic networks.
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