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Abstract—This article investigates the problem of esti-
mating complex-valued Gaussian signals in an industrial
Internet of Things (lloT) environment, where the channel
fading is temporally correlated and modeled by a finite
state Markov process. To address the non-trivial problem
of estimating channel fading states and signals simulta-
neously, we propose two deep learning (DL)-aided mini-
mum mean square error (MMSE) estimation schemes. More
specifically, our proposed framework consists of two steps,
(i) a DL-aided channel fading state estimation and predic-
tion step, followed by (ii) a linear MMSE estimation step
to estimate the source signals for the learned channel
fading states. Our proposed framework employs three DL
models, namely the fully connected deep neural network
(DNN), long short-term memory (LSTM) integrated DNN,
and temporal convolution network (TCN). Extensive simula-
tions show that these three DL models achieve similar ac-
curacy in predicting the states of wireless fading channels.
Our proposed data-driven approaches exhibit a reasonable
performance gap in normalized mean square error (NMSE)
compared to the genie-aided scheme, which considers per-
fect knowledge of instantaneous channel fading states.

Index Terms—Channel fading, deep learning, Internet of
Things (lloT), Industry 5.0, minimum mean square error
(MMSE), Markov process.

|. INTRODUCTION

A. Introductory Background

NDUSTRIAL Internet-of-things (IloT) networks pave the
way for wireless control, monitoring, and process automation
by implementing machine-to-machine (M2M) communications
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in the industrial environment [1]. In today’s industrial environ-
ments, [IoT solutions can lead to the development of creative
and efficient systems aimed at enhancing business operational
efficiency in a new generation of smart factories such as Industry
4.0 [2]. The evolving IIoT technology extends the vision of
large-scale M2M communications through the seamless con-
vergence of smart distributed control systems technology and
intelligent human-machine interfaces (HMIs). IIoT network is
expected to automate the entire supply chain and production
by providing ubiquitous access to real-time information while
ensuring scalability and security of information aggregation
utilizing augmented reality (AR) technology [3].

In the IIoT networks, accurate detection of the signals trans-
mitted from various sensors, controllers, and actuators is of
paramount importance for analyzing data and making rapid
process control decisions. However, unlike terrestrial wireless
communications, IIoT networks exhibit a hostile communi-
cation environment consisting of large metal objects, moving
machines, vehicles, and various radio emitters [4]. In particular,
the dynamic variation of the industrial environment, caused
by signal reflection from metallic surfaces, moving objects,
and frequent location changes of equipment, leads to spatially
and temporally correlated channel fading [5], [6]. Furthermore,
the transmitted signal is also corrupted by bursty impulsive
noise generated by the power equipment, machine tools, and
radio emitters in the industrial environment [6]. Because of
such channel impairments, accurate signal detection in the IIoT
environment is a non-trivial problem and the conventional lin-
ear minimum mean square error (LMMSE) technique fails to
provide optimal results. LMMSE is optimal in the minimum
mean square error (MMSE) sense when the signal is impaired by
only Gaussian noise, for example, when the signal is transmitted
over a time-invariant channel with deterministic channel gain.
However, in the presence of spatially and temporally correlated
channel fading and bursty impulsive noise, the relationship be-
tween the input and output signals of a communication channel
deviates from a simple linear relationship. Consequently, the
conventional LMMSE is no longer effective for source signal
estimation in IIoT networks. The non-linear characteristics of
the signals become mathematically intractable using the conven-
tional LMMSE approach. In this circumstance, deep learning
(DL) can shed light to exploit the non-linear characteristics
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of the signals efficiently by intelligently analyzing the spatial
correlation in the data of the fading channel states.

This work studies the problem of detecting complex-valued
Gaussian signals transmitted in IIoT networks by employing the
MMSE technique, where the transmitted signals are subjected
to Markov channel fading with a finite number of states. In time-
correlated fading channels, conventional MMSE estimators ex-
hibit sub-optimal mean square error (MSE) performance, and
the computational complexity of the optimal MMSE estimator
grows exponentially with frame sizes [6]. To tackle the challenge
of near-optimal MMSE estimation with low computational com-
plexity, we investigate the applicability of multiple data-driven
signal estimation approaches by employing different deep neural
network (DNN) techniques. We propose a two-step data-driven
approach. More precisely, at first, we employ DL methods to
estimate channel fading states, and subsequently, an LMMSE
estimator is leveraged to estimate signals for the learned channel
fading states. We develop two DL-aided methods for estimating
and predicting channel fading states. The superiority of the
proposed DL approaches over benchmark schemes is verified
via extensive simulations.

B. Related Work

The cellular industry has prioritized industrial automation as a
potential market for its products and is committed to taking these
requirements into account in parallel to the development of fifth-
generation (5G) and beyond networks [7]. Additionally, digital
renovation such as network virtualization and semantic commu-
nications with the advancement of artificial intelligence (Al) has
great potential to alter the structure of industrial networks and
can play a crucial role in facilitating the goals of IIoT [8], [9]. The
rapid progress of wireless technologies, their greater flexibility
in deployment, and easy move-out due to having no cables make
them a prominent choice to bring revolutionary changes in indus-
try automation replacing the wired technologies that have been
established in past decades [10], [11]. Although interference,
multipath fading, delay sensitivity, and intermittent connectivity
issues pose challenges for reliable wireless communications,
the concept of the Internet of Everything (IoE) transforms the
traditional wired technology into a wireless solution in order to
facilitate the goals of Industry 4.0 [12], [13].

The fading distribution of wireless channels has a greater
effect on transmission accuracy, delay sensitivity, and energy-
efficient communications [5], [14]-[16]. We emphasize that the
channel fading in the practical IIoT networks shows tempo-
ral correlations [5]. Moreover, the probability density function
(PDF) of channel fading in IToT networks is typically modeled
as a mixture distribution [5], [17], [18]. As such channel fading
possesses different states to have different fading distributions,
and the correlation among these states controls the memory of
the fading channel [5], [15], [17]. In this model, the mixing
probability represents the percentage of time during which the
channel fading adheres to a specific component distribution
over an arbitrarily long period of operation. Combining these
two properties, we conclude that the channel fading process
of an IIoT network can be effectively modeled by a finite

state Markov chain with memory. Such a modeling approach
is particularly suitable for IloT networks since (i) it captures the
inherent temporal correlation among different channel fading
states and (ii) the steady-state probability of the Markov chain
becomes the same as the mixing probability of the mixture fading
distribution. Accordingly, we exploit the Markov chain to model
the transition among different fading states. It is noteworthy that
the considered finite-state Markov fading model in our work can
capture both memories in the channel fading and the variability
of states over a certain time duration.

C. Motivations and Contributions

Although this work is motivated by the initial results obtained
in [19], the system model and the design objectives of this
work are fundamentally different from [19]. There are two
unique differences between the system models considered in
this work and in [19] and [20]. First, in this work, we consider
that the transmit signal is impaired by temporally-correlated and
frequency-flat fading channels. In contrast, the system models
of [19] and [20] did not consider any fading channels. Second,
this work considers additive white Gaussian noise (AWGN) at
the receiver, whereas the underlying noise considered in [19]
and [20] was two-state Markov Gaussian noise. We emphasize
that the aforementioned system model differences are due to
different objectives of the current and previous works. Specifi-
cally, the objective of the current work is to develop a suitable
method to accurately estimate the Gaussian distributed signal
transmitted by the source, which is impaired by the fading chan-
nels in IIoT networks. To effectively model channel impairment
that exhibits temporal correlation in IIoT networks, this work
considers a Markov fading channel with finite numbers of fading
states and memory, where different states of the considered fad-
ing channel can have different fading distributions. In contrast,
the key objective of [19] and [20] was the accurate estimation
of the Gaussian distributed signal source, which is impaired by
an additive impulsive non-Gaussian noise. More specifically,
both [19] and [20] considered a fading-less environment with
two-state Markov Gaussian noise. Therefore, although both the
present work and existing [19] and [20] study the problem of
estimating Gaussian distributed source signals, their considered
system models are entirely different.

Although digital communication signals can deviate from
Gaussian distributions in the practical field, there are certain
industry applications where the signals possess Gaussian dis-
tributions [21], [22]. It is worth noting that when different
fading states take different deterministic values instead of a
fading distribution and the transmitted signal is Gaussian, the
LMMSE becomes the optimal MMSE estimator of the signal
for a given fading state. Nevertheless, such an optimal MMSE
estimator does not necessarily exploit the temporal correlation
structure of the channel fading and therefore, exhibits degraded
estimation accuracy when the fading channel has a large memory
or correlation among its states [20]. In fact, when the fad-
ing channel has a large memory, the input-output relationship
becomes non-linear, and hence, the accuracy of the LMMSE
estimator is degraded. Hence, the conventional MMSE estimator

Authorized licensed use limited to: Howard University. Downloaded on July 15,2024 at 04:09:14 UTC from IEEE Xplore. Restrictions apply.



HAIDER et al.: DEEP LEARNING AIDED MINIMUM MEAN SQUARE ERROR ESTIMATION OF GAUSSIAN SOURCE 187

is no longer optimal for estimating signals transmitted over the
time-correlated fading channels of the IIoT networks, even when
the source signal is Gaussian. An optimal signal estimator in
this context, similar to the Bahl-Cocke-Jelinek-Raviv (BCJR)
algorithm proposed in [20], can exploit temporal correlation
among the signals received over consecutive time slots. How-
ever, its computational complexity is exponentially increased
with the transmitted frame length, making it infeasible for
practical IIoT networks. To strike a suitable balance between
computational complexity and detection accuracy, we, therefore,
propose a DL-based estimation approach. The main motivation
behind such a DL-based estimator is that it can effectively
estimate/predict the channel fading state from a set of received
1/Q samples by exploiting correlation among them, and thereby,
can leverage the LMMSE estimator to infer the transmitted
signal for the estimated/predicted channel fading states. Such an
approach provides near-optimal and computationally efficient
sub-optimal signal estimation when different channel fading
states take only different discrete values and different fading
distributions, respectively.

The key novelty of this work is that it investigates how to
accurately estimate Gaussian source signals in the presence of
time-correlated fading channels in IIoT networks. Note that the
problems of estimating the channel fading state and transmitted
signals are coupled with each other. The joint estimation of
fading channel states and the transmitted signals is a non-
trivial problem. To the best of our knowledge, our proposed
DL approach is the first to tackle the problem of estimating
channel fading states and Gaussian source signals in a temporally
correlated fading environment of IIoT networks. The threefold
contributions of this work are summarized as follows.

® The key challenge of the problem is that we need to esti-
mate both channel fading states and the transmitted signal
simultaneously. The precise estimation of the signal is crit-
ically dependent on the accurate estimation of the channel
fading states. Hence, we propose a two-step approach,
where we first accurately estimate the channel fading states
and subsequently apply the LMMSE approach to estimate
the signal.

® We propose two DL-aided methods to tackle the problem
of channel fading states estimation, and, thereby, source
signal estimation for the learned channel fading states. The
two proposed methods are applicable to different industry
applications based on system requirements. Specifically,
the first method is capable of directly estimating fading
channel states and transmitted signals without any pilot
signal transmission at the cost of sub-optimal estimation
accuracy. In contrast, the second method is efficient in
estimating fading channel states along with transmitted
signals with high accuracy, at the expense of utilizing a
few time slots for pilot signal transmission.

¢ In IToT networks, typically less computationally complex
and low-power communication solutions are preferred
for sensor-to-sensor information exchange. Taking
into account this requirement, we aim to integrate
three different standard DNNs, namely long short-term
memory (LSTM) [23], temporal convolutional network
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Fig. 1. Industrial IoT Systems.

(TCN) [24], and fully connected DNN. The considered
neural network (NN) models are trained offline using the
training data sets obtained by the Monte Carlo simulation
framework designed for the [IoT system model. Moreover,
we tuned the hyperparameters of the respective DL models
to render optimal performance in the considered scenario.
These trained DNNS are then applied for the estimation of
channel fading states online, followed by the estimation
of LMMSE-aided source signals. Simulation results
demonstrate that the superior performance of the proposed
data-driven approaches exhibits a reasonable performance
gap from the genie-aided channel estimation scheme that
considers perfect knowledge of channel fading states.
The rest of the paper is organized as follows. Section II
describes the system model and MMSE estimation process in
detail. In Section III, the proposed DL methods are highlighted
including model architectures. Simulation results are shown in
Section IV. Finally, Section V concludes the paper.

Il. SYSTEM MODEL
A. Signal Model

In Fig. 1, we consider a point-to-point communication system
in an IIoT network, where sensor devices transmit the collected
parameters to a control unit (CU) for further processing and
decision-making assuming the transmitted signal is impaired by
temporally-correlated and frequency-flat fading channels. Let
Sm be the signal transmitted by the sensor node that needs to
be estimated by CU during the m-th time slot, m € {1,2,---}.
We consider that s,,, is drawn from a Gaussian distribution with
zero-mean and variance o2. The signal received at CU during
the m-th time slot is represented as

—j0R,m j0T m
Ym = € I7R, hmsme] T + Ny (1)

where h,,, denotes the channel fading gain at the m-th time slot
and n,,, presents the additive white Gaussian noise (AWGN)
with variance o2. Moreover, 07, € [0,27] and 0 ,,, € [0,27]
represent the phase noises at the transmitter and receiver during
the m-th time slot, respectively. The probability density function
(PDF) of h,, is described by a mixture of a finite number
of statistical distributions [4], [5]. In particular, the PDF of
the random variable h,,,, Vm, is expressed by Py (h,; @) =
Zle PePe(hm; 0.), where P.(+; 0..) is the c-th component PDF
parameterized by 6., Ve € {1,2,...,C}; C > 1 is the total
number of the component PDFs; { p. } is the mixing probabilities
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with Zle pe =1;and ¢ = {0),...,0¢c} is the collection of
the fading distribution parameters of all the component PDFs.
In an industrial environment, the component PDFs are usu-
ally modeled by Gaussian [5, eq. (3)], Gamma [5, eq. (5)],
or Gamma-Lognormal [5, eq. (6)] distributions. However, our
proposed framework is applicable to other statistical distribu-
tions as well. The temporal variation of the fading channel
over different time slots is described by a Markov chain, whose
states and stationary state distribution are represented by the
component fading distributions and the mixing probabilities,
respectively [25]-[27]. The switching dynamics among differ-
ent states or fading distributions are controlled by a transition
matrix, Ty, given by (2) shown at the bottom of this page.
In Ty, ¢ € (0,1) controls the correlation among fading states
observed at the consecutive time slots. Particularly, large values
of ( represent persistent fading memory or burst-fading, where
several consecutive time slots exhibit identical fading states. In
contrast, the fading channel has no memory when ¢ = 0, and
thus, the channel fading states are independently varied over
different time slots. The correlation factor can be calculated
statistically from a reasonably long time frame for a given
network configuration. In particular, the correlation factor ¢ can
be mathematically written as ¢ = limy_,« Zi\; , /N, where

S 1 for identical states at t-th and (t-1)-th time instants
£~ 00 otherwise.

We formulate T'f, given in (2), such that the steady-state
probabilities of the Markov chain become {p1, p2,...,pc}. In
other words, for any value of ¢ € (0, 1), if we solve 7T = r,
we will obtain 7 = [p1, p2, ..., pc|t.

B. Linear MMSE Estimation of s,,,

In this section, for a given observation vy,,, we develop an
expression for the MMSE optimal Bayesian estimator (OBE) of
Sm. Inspired from [20], [19] the MMSE OBE is obtained as the
posterior mean, 8, (y,,) and defined as

Sm = E[smlym] = E[E [sm|hm = c] lym]

< 3)
= ZPr (h'm - C|y7n) §£m) (y7n)7
c=1

where Pr(h,,, = c|y,,) represents the prior probability of fading
channels being in the c-th fading state, ¢ € {1,2,...,C}, E{-}
represents statistical expectation, and gm (Ym) denotes the
MMSE detection of s,,, conditioned on ¥, for the channel fading
state c. Since s, is Gaussian distributed, we can leverage the
LMMSE approach to estimate s,,, from y,,, in a computationally

efficient manner for the given channel fading state [20], [19]. The

C
Palhwi6) = Y- p:Pe (haifl) ~ ) 5
e=l

T, i 8 (Ym)
——>  Fading state detection ———) Lnniiﬂb:‘::):lgnal . 3

Plugin (4) or (5)
Fig. 2. Proposed two-step estimation approach.
LMMSE of 5™ (y,,) by minimizing the MSE is obtained as

R CoV (Sms Ym) _
(m) —_ T \"myJm/
Se (ym) Var(ym) Ym

_ ()
O2E [P + 07"

“

where 3, = yme’?®me=197m K] h,,|] and E[h2,] represent
the first and second order moment of the fading gain at the c-
th fading state, respectively. Meanwhile, when different fading
states take different deterministic or fixed channel gains, the

LMMSE of 5™ (y,,,) is further simplified as

2
8 (ym) = ——" = m/ln - )

g
2
s+ e

Here, éT,m € [0,27] and 0 Rr.m € [0, 27] represent the estimated
phase noises at the transmitter and receiver during the m-th
time-slot, respectively. It is assumed that the phase noise at the
receiver is effectively compensated before the signal estimation
stage by leveraging the standard phase noise compensation
scheme [28]. The considered LMMSE scheme yields optimal
performance when the underlying noise is Gaussian. For IIoT
systems impaired by non-Gaussian noise, e.g., impulsive noise,
Laplacian noise, unfaded co-channel interference, etc., further
investigations are required to obtain the optimal MMSE scheme
to estimate Gaussian-distributed signal. It is noteworthy that the
accuracy of source estimation by directly plugging (4) or (5)
to (3) is degraded when the underlying fading channel has a
large memory. However, given that a precise knowledge of the
channel fading states is available, a computationally efficient
sub-optimal estimation of the source signal is obtained by lever-
aging (4) when different fading states take different statistical
distributions. Furthermore, when different fading states take
different deterministic or fixed channel gains, both s,, and y,,
become jointly Gaussian. In this context, the optimal estimation
of s,,, in the MSE sense is directly obtained using (5). Motivated
by such a fact, we propose a two-step estimation approach, as
depicted in Fig. 2. In our proposed framework, an MMSE OBE
can be constructed by first accurately estimating the fading states

C+(1=0Opm (1 =0p2
1-=Cpr ¢+A=0Op
Ty = : :
1=Op (1=

(1=¢)p3 (1=¢)pc
(1=¢)p3 (1=¢)pc

N . (2)
(1=Q)ps ¢+ (1 =0pc
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R{gmﬂ}
I{gmﬂ}

£ m+N

R{gm+N}
I{gm'/\/ }

Fig. 3. Neural network for proposed method I.

from the received I/Q samples and then plugging either (4) or (5)
for the estimated channel fading states to estimate the transmitted
signals. Although a methodology to estimate the state of the
Markov channel was proposed in [20], the complexity of such
a methodology is significantly increased with the frame sizes
and thus lacks scalability. To overcome this challenge, in the
next section, we propose data-driven approaches to estimate the
fading channel states while exploiting their inherent memory.

Il. PROPOSED DL APPROACHES FOR LMMSE ESTIMATION
A. Method I: Combined Channel and Signal Estimation

In this method, we develop a DNN model, consisting of an
input layer, multiple hidden layers, and a regression output layer,
to estimate fading channel states from the received I/Q data
samples. Fig. 3 represents the neural network (NN) architecture,
denoted by NN-I for the proposed method I.

Offline Training and Online Estimation: Refer to Fig. 3, the in-
put features of NN-I are the R{%,, } and Z{g,, }, where R and T
denote the real and imaginary parts of a complex variable respec-
tively. The output labels for NN-I are the memory states of the
fading channel represented as &, € {1,2,...,C} as depicted
in Fig. 3. We consider that the fading channel possesses finite
states with deterministic values (channel impulse response) for a
given state. Therefore, detecting the memory state of the channel
in a given time slot is sufficient to obtain the channel state infor-
mation. As we developed a data-driven approach for detecting
the channel state (Methods I and II), the outputs of the designed
NN s represent the state of the channels. Since we separate the
real and imaginary parts of y,, and consider them as separate
input features for all the realizations of the dataset, therefore, the
ultimate dimension of the input features is 2A/. While training
for a given (input) feature dimension 2/, the input variables are
denoted as [R{Fm+1}: Z{Um+1}s - s R{Um+n 1> T{Tmn },
whereas the corresponding output variable is represented as
&Em+nr- This arrangement of input-output training sequences
helps to learn the signal correlation across multiple time slots,
thereby assisting in predicting the channel fading state of sub-
sequent time slots. NN-I is trained over a large dataset con-
taining a wide range of signal-to-noise ratios (SNR) to address
different use cases of the considered IIoT environments. Once
trained, the inference model is deployed at the receiver during
real-time data reception. For a given time slot m € {1,2,---},

Data
r - Al
m+1m+2 m+ N

Channel and signal estimation
(2)
Data
A
[ pL

Pilot Pilot
A A

)

j+1j+2 i+ N2

r
o o e
i+1li+2 i+ M

Channel estimation Channel prediction Channel estimation
and signal estimation

(b)

Fig. 4. Time slots specifications in the (a) proposed method | and
(b) proposed method 1.

the trained NN-I model first predicts ém from a set of received
signalS [Ym—Ar+1;-- -, Um], and thereafter estimates §,,, using
(4) and (5).

B. Method II: Pilot-Assisted Channel Estimation and
Prediction and Signal Estimation

The method of estimating channel fading states and signals
in Method I offers improved bandwidth utilization by utilizing
all-time slots for data transmission. However, our simulations
show that Method I exhibits reduced accuracy in estimating
channel fading states from the received I/Q symbols. Note that
certain applications in IIoT networks, such as monitoring the
temperature and humidity of the system, do not require strin-
gent latency and data transmission accuracy [29]. The proposed
Method I is useful for such applications while conservatively
using the available bandwidth. To overcome the limitations of
the proposed method I for certain IloT applications, where high
accuracy in noisy channel state prediction and signal estimation
is essential, we propose method II by leveraging the benefits
of using the pilot signals for fading channel estimation. More
specifically, as shown in Fig. 4, we divide the entire time horizon
into pilot and data transmission phases. The consecutive time slot
allocation for the pilot signal facilitates to capture of the temporal
correlation of the underlying fading channels efficiently.

Method 1I estimates the channel fading states during the
pilot signal transmission phase and predicts the channel fading
states in the data transmission phase by utilizing the estimated
channel states. Thereafter, Method II estimates the source signal
by plugging the predicted channel states to (4) and (5). The
proposed method II contains two stages of the NN models,
NN-ITa and NN-IIb, as shown in Fig. 5, and they are utilized
for channel fading state estimation and prediction in the pilot
and data transmission phases, respectively.

Offline Training of NN-1la and NN-IIb and Online Estimation
and Prediction: The input features of NN-Ila for channel
state estimation are R{y,} and Z{y,,}, and the output
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Fig. 5. Neural networks for proposed method II.

labels are the estimated fading channel memory states &,,.
The input parameter sequences are expressed as [R{¥i+1},
L{Git1}s s R{Gisnn b it 1 R{@jJrl}’I{ﬂjJrl}: KRN
RA{Y;j+n }, Z{U;+n, }], and the corresponding output parameter
sequences as [§iq1,- -5 E0, 115 - - - €Ny ). Here, Ny and N,
represent the dimensions of the first and second sequences of
pilot signals, respectively, and 2(N; + A;) denotes the input
feature dimension of the estimation model NN-Ila during the
offline training phase. Moreover, j > ¢ + N; — Np — 1 needs
to be satisfied for a successful implementation of NN-Ila and
NN-IIb, where Np represents the number of data containing
time slots. The input parameter sequences for NN-IIb are
represented as [&i41, - &irans Eirts - &G+as ). The output
parameter sequence is [§;4 ;115 - - -, &;]. It is worth mentioning
that NN-IIa and NN-IIb can be trained simultaneously and
independently to accelerate the offline training phase while
leveraging off-the-shelf DNN configuration. While designing
custom DNNs by exploiting special structures of signals in the
IIoT network is expected to improve training and inference
accuracy [30], such a task is beyond the scope of this paper and
will be considered in our future work. The trained NN-IIa and
NN-IIb are deployed at the receiver for online inference.

The proposed two methods reveal insights into address-
ing the inherent trade-off between bandwidth efficiency and
channel fading state prediction accuracy in the presence of
time-correlated channel fading. In particular, the proposed DL
Method I performs the estimation of channel fading states and
subsequently the estimation of source signals without the need
for pilots, resulting in high bandwidth efficiency as it utilizes all
time slots for data transmission. However, it exhibits a certain
degradation in channel fading state prediction accuracy. On the
other hand, DL Method II significantly enhances channel fading
state prediction accuracy by utilizing a small number of pilot I/Q
symbols. Therefore, it is essential to emphasize that the selection
of a specific method depends on the requirements of the appli-
cations. For example, Method I may be suitable for applications
like condition monitoring (e.g., temperature, humidity, vibration
measurement using sensors) in an industrial environment [29].
These applications typically do not have stringent latency and
data transmission accuracy requirements, allowing Method I
to be used while conservatively utilizing available bandwidth.
On the other hand, several practical IIoT applications, such
as controlling robots through numerous sensors, require both

improved bandwidth utilization and high transmission accuracy.
For these applications, Method II is an excellent choice as it
strikes a balance between bandwidth/resource utilization and
high transmission accuracy by selecting an appropriate number
of time slots for pilot transmission. On the other hand, to ensure
energy-efficient computation, we assume advanced computing
techniques such as neuromorphic engineering [31] will be incor-
porated while implementing the proposed DNN-aided methods
as well as to make it feasible for massive multi-modal sensors
equipped IIoT networks in Industry 5.0.

C. Computational Complexity

The offline training complexity of the proposed methods
depends on the complexity of matrix multiplication for both
forward and backward propagation in the considered NNs.
Without loss of generality, we denote the number of epochs,
number of batches per epoch, total number of hidden layers, and
number of neurons at the g-th hidden layer in the considered
NNs by U, V, G, and M, g € {1,2,...,G}, respectively.
We also denote the dimension of input features and output
labels of such NN by [ and O, respectively. The computa-
tional complexity for the offline training phase is therefore
obtained as O(2(M;I + MO + Y5~ MyM,,1)VU). Note
that I = 2N and O =1 for NN-I; I =2(N; + N,) and O =
Ni + N5 for NN-Ila; and I = N, + N> and O = Np for NN-
IIb. Meanwhile, the computational complexity during testing
or the real-time communications phase depends on only the for-
ward propagation. Accordingly, the online testing computational
complexity of the proposed methods is obtained as O(M;I +
MgO + ZQGZ_II MyMg41). The proposed DNN-aided methods
show polynomial run-time computational complexity, which
is directly proportional to energy efficiency. Therefore, using
the proposed fully connected feed-forward DNN-aided algo-
rithms will result in relatively less computation compared to
conventional signal processing-based approaches, which usually
incur high computational complexity for estimating the channel
correlation matrix and subsequent processing.

IV. SIMULATION RESULTS
A. DL Models Architecture

In the simulations, we employ two different DNN configura-
tions (LSTM and fully Connected DNN model) for the proposed
method I and three different DNN configurations (LSTM, TCN,
and fully Connected DNN model) for the proposed method II. A
more detailed description of these DNN configurations is given
as follows.

1) Long Short-Term Memory (LSTM): The LTSM NN-I
model consists of multiple hidden layers for the proposed
method I. The first hidden layer is the LSTM layer, which is
followed by two fully connected hidden layers. All the hidden
layers are comprised of the same number of neurons. In the case
of proposed method II, the first hidden layer is the bidirectional
LSTM layer, as we take two batches of input and predict channel
states for the time slots between these input batches for the
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prediction stage. Three more fully connected hidden layers are
followed by the final output regression layer.

2) Temporal Convolutional Network (TCN): For the proposed
method II, after the sequential input layer, five hidden layers
of the single-dimensional convolutional (ConvlD) layer are
specified with different filter numbers and kernel sizes. Each
layer is followed by batch normalization and a rectified linear
unit (ReLU) layer. The final layer is the output regression layer.

3) Fully Connected DNN: The fully connected DNN model
consists of a sequential input layer, three hidden layers, and a
final output regression layer.

B. Baseline Schemes

We consider the following two baseline schemes.

1) Genie-Aided Scheme: Genie-aided scheme optimally es-
timates the source signal while considering the availability of
perfect channel fading state information for all future time slots.
Essentially, this scheme provides the theoretically achievable
upper (lower) bound of the estimation accuracy (error).

2) Random Prediction Scheme: This scheme randomly se-
lects the channel fading states using a uniform distribution
and applies LMMSE estimation for the selected fading state
to estimate the input signal. This naive scheme has the lowest
computational complexity compared to any model.

C. Numerical Performance Evaluations

In this subsection, we present the numerical results for the pro-
posed DL-based MMSE schemes to evaluate their performances
and compare them with the considered baseline schemes. We
show the accuracy of predicting the fading channel states over
the considered range of signal-to-noise ratio (SNR), defined
as v = o2E{|h?,|} /o2 for the proposed DL-based approaches
and the considered baseline schemes. In addition, we com-
pare the performance of the proposed DL-based schemes with
baseline approaches in terms of normalized mean square error

(NMSE), defined as, NMSE = E{ 959"} Here, Q € {s,,}

and Q € {4,,} represent the actual and the estimated input
signals respectively. Since we are estimating a signal with an
infinite number of possible values, thus the NMSE is the most
appropriate choice to be adopted as a performance metric to
compare the performance of the proposed scheme with the
baseline schemes.

The dataset generation, training, and testing are executed
using MATLAB DL toolbox via Monte Carlo simulations. We
generate 80,000 realizations of random data samples for train-
ing and 20,000 realizations for testing purposes for both the
proposed and baseline schemes. For the considered simulation
results, we assume A = 20 and initialize m unless otherwise
stated. Moreover, the fading channels possess two states (state
1 and state 2), and the corresponding gain of channels is set as
|hi| = 3 and |hy| = 5, respectively. In case of proposed method
I, we assume N; = 3and N; = 3,andseti = O and j = 17 for
the initial batch. We then increase i and j by A} + Np + N> in
subsequent batches for training. In this work, we consider the

TABLE |
NMSE PERFORMANCES OF PROPOSED METHOD |

SNR NMSE NMSE NMSE NMSE (Lever-
(Genie) (LSTM) (DNN) aging [19])
—20dB 0.4641 0.4663 0.4663 0.4510
—10dB 0.0839 0.1373 0.1664 0.4603
0dB 0.0092 0.0881 0.1273 0.4555
10dB 0.0029 0.0856 0.1226 0.4788
20dB 0.0009 0.0813 0.1202 0.4639
10°
—¥—SNR = -10dB
—©-SNR = 0dB
- = SNR =10dB
w
g 107
=z
102 L
o 1 2 3 4 5 6 7 8
Number of Training Samples x10*
Fig. 6. Neural network training impact on NMSE in method II.

same environment for training and testing while conducting sim-
ulations for experiments. In the practical environment, if there
are notable changes in the operating environment that impact
data transmission, underlying channel, and noise impairment,
we need to retrain the model to obtain a better performance.
Performance Analysis of Proposed Method I: Table I shows
the comparison of NMSE as a function of SNR + for the Genie-
aided scheme, LSTM, and fully connected DNN configurations
for the proposed method I. Moreover, we leverage the trained
model proposed in [19] to detect the channel states and show
the corresponding NMSE. It is evident that the inference model
from [19] completely fails to predict the channel states and
hence, it does not provide improved NMSE even at high SNRs.
Meanwhile, the LSTM and fully connected DNN models give
channel states an average prediction accuracy of approximately
80% and 72%, respectively. Since the difference of determin-
istic channel gain between two fading states of the channel is
high, a small percent of incorrect detection of (channel) states
significantly raises the NMSE for estimating the input signal.
Moreover, without any prior knowledge of the input signal,
detecting channel states with high accuracy by learning only
from the received signal is not easy, even if the sophisticated
DL model is chosen. Therefore, the proposed method I yields
a sub-optimal NMSE performance. Nevertheless, compared to
method I, method I can transmit more data symbols in the given
time slots as it does not require the transmission of known pilot
signals for channel estimation, and thus, can be useful in appli-
cations without stringent estimation accuracy requirements.
Training Impacts on NMSE in the Proposed Method II: In
Fig. 6, we illustrate the impacts of the neural network training
samples on NMSE over a range of SNR in the proposed method
II. We consider several configurations of training parameters by
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Fig. 7. Estimation and prediction accuracy in method II.

tuning the size of training datasets. It is obvious that increasing
SNR for different training datasets decreases the NMSE. As the
data size increases from 5,000 to 20,000, the NMSE is decreased
by approximately 64% for the considered SNRs. Moreover, in
the case of —10 dB SNR, increasing the size of datasets by
more than 20,000 does not reduce NMSE significantly, whereas,
for 20 dB SNR, the performance still improves for dataset size
beyond 60,000. It is worth pointing out that increasing the
number of datasets increases the training computations. Hence,
depending on the system parameters, e.g., SNR, it is imperative
to carefully tune the cardinality of the training dataset.
Comparison Among Proposed Schemes and Baseline
Schemes: Fig. 7 plots the channel fading states estimation and
prediction accuracy of the proposed Method II. Recall that esti-
mation and prediction of the channel fading states are performed
during the pilot and data transmission phases, respectively.
We observe that the channel fading state estimation accuracy
sharply increases from 85% in the low SNR region (-10 dB) to
100% in high SNR (5 dB onward) corresponding to the pilot
transmission slots. Meanwhile, the accuracy of channel fading
state prediction initially increases with SNR and remains around
~ 94% for SNR equal to or greater than 0 dB corresponding
to the data transmission slots. Moreover, channel fading state
prediction accuracy of different neural network architectures,
such as LSTM and fully connected DNN are almost the same
whereas the TCN model’s accuracy is slightly degraded at high
SNRs. The random state prediction scheme shows an average
50% prediction accuracy, which is expected for two states fading
channels. We also observe that at the high SNR region, prediction
accuracy is decreased from 94% to 87% when the number
of channel fading states is increased from two to four. It is
worth noting that for both two and four fading states of the
channel, we considered the same number of slots for pilot-based
channel fading estimation. Essentially, in order to obtain higher
accuracy for channel fading state prediction for a large number
of fading states, one needs to enhance the slots of pilot signal
transmission to exploit the temporal correlation more accurately.
IIoT networks exhibit a hostile communication environment
due to interference from nearby radio devices, reflection from
metallic objects, frequent movement of objects, etc., that result
in temporally correlated fading channels. The classical channel

—— Genie
—¥—LSTM
-©-DNN

- = TCN
—>— Random

NMSE

SNR [dB]

Fig. 8. Estimation error in method II.

estimation algorithms fail to provide optimal signal detection
and channel estimation in such IIoT environments because of
inaccurate estimation of temporally correlated fading channel
states. Moreover, as the number of fading channel states in-
creases, the complexity of accurately estimating channel states
increases exponentially while using classical channel estima-
tion techniques because of computing the inverse of correla-
tion matrices of underlying channels [20]. Unlike the classical
channel estimation approaches, the DL approaches can exploit
the time-correlation structure of channel fading with memory.
Moreover, the DL method is computationally efficient for the
fading channel with a large number of fading states since the
computational complexity of a DL approach increases linearly
with the number of hidden layers. Hence, we conclude that
the DL-aided approaches can provide near-optimal solutions
in estimating fading channel memory states and estimation of
transmitted signals with less complexity compared to classical
estimation techniques in the considered scenario.

InFig. 8, we compare the NMSE performance of the proposed
and baseline schemes. We observe that the proposed schemes
achieve negligible NMSE performance loss from the genie-aided
estimation scheme for SNR <= 0 dB. However, the relative
performance gaps between the genie-aided scheme and our pro-
posed scheme increase as the SNR increases beyond 0 dB. It is
also evident that a fully connected DNN scheme provides similar
performance to the LSTM and TCN schemes. As expected, all
the proposed schemes significantly improved NMSE compared
to the naive random-selection scheme in the high SNR regimes.

Fig. 9 illustrates the effectiveness of estimating signal using
our proposed methods applying (5) compared to (3). Itis obvious
that the NMSE is notably high when the standard MMSE OBE
in (3) is used for signal estimation. This clearly supports the fact
that the conventional LMMSE approach is no longer effective
in estimating source signals in the presence of time-correlated
channel fading. In contrast, by adding a fading state detection
step prior to the signal estimation step, our proposed two-step
approach can estimate the signal with a significantly lower error
rate over the entire region of SNR.

Fig. 10 demonstrates the impact of channel correlation factor
¢ on the NMSE performance for the proposed fully-connected
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Fig. 9. Effectiveness of the proposed approach.
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DNN estimation scheme. We observe that the NMSE perfor-
mance gap between the genie-aided and DNN-based estimation
schemes decreases significantly for increasing (. As ¢ gets closer
to 1, the estimation error of DL models becomes closer to the
genie-aided estimation at the high SNR region. This finding
reflects the effectiveness of our proposed scheme in estimating
the correct channel state for highly correlated channels.

In Fig. 11, we show the accuracy of the prediction of the
channel fading state in the data transmission slots for two

scenarios. Scenario 1 considers the time-slot specification strat-
egy deployed in our simulation model (used for Method II),
whereas Scenario 2 adopts the numerology from the long-term
evolution advanced (LTE-A) scheme. It is to be noted that the
LTE-A standard allocates slots for pilot transmission in a specific
arrangement (e.g. orthogonal frequency division multiplexing
(OFDM) symbols 1, 5, 9, 13, 17 for each subframe). Fig. 11
shows that our proposed time slot specification for Method II
can predict channel fading states with higher accuracy than
the LTE-A compatible time slot specification. Thus, to capture
time correlation efficiently, it is rational to allocate consecu-
tive time slots for pilot signals for channel estimation rather
than in a non-consecutive manner. Since the considered system
model and the proposed methods are applicable to the IIoT
environment, which is usually a production or manufacturing
industry’s indoor environment equipped with a plethora of smart
sensors, therefore the operating spectrum of communications
will take place typically in an unlicensed industrial, scientific,
and medical (ISM) band. In this context, we can use suitable
time slot specifications for the pilot signal and actual data trans-
mission of ISM-band standards that facilitate the accuracy and
reliability of the data transmission scheme. A notable advantage
of the proposed Method II is that it can select the number of
time slots in the pilot transmission phase for channel fading
state estimation. Therefore, the proposed Method II can strike
a suitable balance among different factors, namely, bandwidth
utilization, accuracy, and protocol compatibility, by selecting a
suitable number of time slots for pilot transmission.

V. CONCLUSION

We proposed two data-driven approaches for estimating the
Gaussian source subjected to temporally correlated fading chan-
nels in the IloT environment. Our proposed schemes exploit
the statistical correlation among the consecutive fading channel
states while conducting estimation and prediction operations.
Although the proposed method I shows sub-optimal perfor-
mance, it does not require pilot signals and leverages prior data
information to predict channels’ fading states. In contrast, the
proposed method II provides better performance in predicting
and estimating channel states by exploiting pilot signals prior to
data transmission. We also showed that the fully connected DNN
model performs equally well as the LSTM and TCN models in
predicting channel fading states and estimating the source signal
with high accuracy. The potential future work could be designing
custom DNNs while analyzing the specific inherent structure of
the signals to obtain higher accuracy in the estimation process.

ACKNOWLEDGMENT

The authors show their sincere thanks to the funding agencies.

REFERENCES

[1] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Industrial
Internet of Things: Challenges, opportunities, and directions,” IEEE Trans.
Ind. Informat., vol. 14, no. 11, pp. 4724-4734, Nov. 2018.

[2] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The Industrial
Internet of Things (IToT): An analysis framework,” Comput. Ind., vol. 101,
pp. 1-12, 2018.

Authorized licensed use limited to: Howard University. Downloaded on July 15,2024 at 04:09:14 UTC from IEEE Xplore. Restrictions apply.



194

3

=

[4

=

[5

—

[6

—

[7

—

(81

[9

—

(10]

(1]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

IEEE TRANSACTIONS ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, VOL. 2, 2024

F. Brizzi, L. Peppoloni, A. Graziano, E. D. Stefano, C. A. Avizzano, and E.
Ruffaldi, “Effects of augmented reality on the performance of teleoperated
industrial assembly tasks in a robotic embodiment,” IEEE Tran. Hum.-
Mach. Syst., vol. 48, no. 2, pp. 197-206, Apr. 2018.

A. Ahlen et al., “Toward wireless control in industrial process automation:
A case study at a paper mill,” IEEE Control Syst. Mag., vol. 39, no. 5,
pp. 36-57, Oct. 2019.

T. Olofsson, A. Ahlén, and M. Gidlund, “Modeling of the fading statistics
of wireless sensor network channels industrial environments,” IEEE Trans.
Sig. Process., vo. 64, no. 12, pp. 3021-3034, Jun. 2016.

Y. Liu, M. Kashef, K. B. Lee, L. Benmohamed, and R. Candell, “Wireless
network design for emerging IToT applications: Reference framework and
use cases,” Proc. IEEE, vol. 107, no. 6, pp. 1166-1192, Jun. 2019.

M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the Internet of Things
and Industry 4.0, IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 17-27,
Mar. 2017.

H. X. Nguyen, R. Trestian, D. To, and M. Tatipamula, “Digital twin for 5G
and beyond,” IEEE Commun. Mag., vol. 59, no. 2, pp. 10-15, Feb. 2021.
0. Chukhno, N. Chukhno, G. Araniti, C. Campolo, A. Iera, and A.
Molinaro, “Placement of social digital twins at the edge for beyond 5G
10T networks,” IEEE Internet Things J., vol. 9, no. 23, pp. 23927-23940,
Dec. 2022.

K. F. Tsang, M. Gidlund, and J. Akerberg, “Guest editorial industrial
wireless networks: Applications, challenges, and future directions,” [EEE
Trans. Ind. Informat., vol. 12, no. 2, pp. 755-757, Apr. 2016.

A. W. Colombo, S. Karnouskos, Y. Shi, S. Yin, and O. Kaynak, “Industrial
cyber—physical systems [scanning the issue],” Proc. IEEE, vol. 104, no. 5,
pp- 899-903, May 2016.

J. Wan et al., “Software-defined industrial Internet of Things in the con-
text of Industry 4.0,” IEEE Sensors J., vol. 16, no. 20, pp. 7373-7380,
Oct. 2016.

R. Drath and A. Horch, “Industrie 4.0: Hit or Hype? [Industry Forum],”
IEEE Ind. Electron. Mag., vol. 8, no. 2, pp. 56-58, Jun. 2014.

T. S. Rappaport and C. D. McGillem, “UHF fading in factories,” IEEE J.
Sel. Areas Commun., vol. 7, no. 1, pp. 40-48, Jan. 1989.

F. Bouchereau and D. Brady, “Method-of-moments parameter estimation
for compound fading processes,” IEEE Trans. Commun., vol. 56, no. 2,
pp. 166-172, Feb. 2008.

R. A.Berry and R. G. Gallager, “Communication over fading channels with
delay constraints,” IEEE Trans. Inf. Theory, vol. 48, no. 5, pp. 1135-1149,
May 2002.

P. Agrawal, A. Ahlén, T. Olofsson, and M. Gidlund, “Long term channel
characterization for energy efficient transmission in industrial environ-
ments,” IEEE Trans. Commun., vol. 62, no. 8, pp. 3004-3014, Aug. 2014.
S. Thoen, L. Van der Perre, and M. Engels, “Modeling the channel
time-variance for fixed wireless communications,” in [EEE Commun. Lett.,
vol. 6, no. 8, pp. 331-333, Aug. 2002.

I. Ahmed, M. S. Alam, M. J. Hossain, and G. Kaddoum, “Deep learning for
MMSE estimation of a Gaussian source in the presence of bursty impulsive
noise,” IEEE Commun. Lett., vol. 25, no. 4, pp. 1211-1215, Apr. 2021.
M. S. Alam, G. Kaddoum, and B. L. Agba, “Bayesian MMSE estimation
of a gaussian source in the presence of bursty impulsive noise,” IEEE
Commun. Lett., vol. 22, no. 9, pp. 1846-1849, Sep. 2018.

Y. Li, Y. Pu, C. Cheng, and Q. Xiao, “Scalable Gaussian process for
large-scale periodic data,” Technometrics, vol. 65, pp. 363-374, Jan. 2023,
doi: 10.1080/00401706.2023.2166124.

A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition: A
review,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 1, pp. 4-37,
Jan. 2000.

W. Zhang, M. Feng, M. Krunz, and A. H. Y. Abyaneh, “Signal detection
and classification in shared spectrum: A deep learning approach,” in Proc.
IEEE Conf. Comput. Commun., 2021, pp. 1-10.

S. Bai et al., “An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling,” 2018, arXiv:1803.01271.

D. E. Quevedo, A. Ahlen, and K. H. Johansson, “State estimation over
sensor networks with correlated wireless fading channels,” IEEE Trans.
Autom. Control, vol. 58, no. 3, pp. 581-593, Mar. 2013.

P. S. Castro, “Scalable methods for computing state similarity in determin-
istic Markov decision processes,” in Proc. AAAI Conf. Artif. Intell., 2020,
pp. 10069-10076.

D. E. Quevedo, A. Ahlén, and K. H. Johansson, “Stability of state esti-
mation over sensor networks with Markovian fading channels,” in Proc.
IFAC World Congr., 2011, pp. 12451-12456.

[28]

[29]

[30]

[31]

i

A. Mohammadian, C. Tellambura, and G. Y. Li, “Deep learning-based
phase noise compensation in multicarrier systems,” IEEE Wireless Com-
mun. Lett., vol. 10, no. 10, pp. 2110-2114, Oct. 2021.

ETSI TR 103 588, “Reconfigurable radio systems (RRS); Feasibility
study on temporary spectrum access for local high-quality wireless net-
works,” 2018. [Online]. Available: https://www.etsi.org/deliver/etsi_tr/
103500_103599/103588/01.01.01_60/tr_103588v010101p.pdf

A. Lancho et al., “Data-driven blind synchronization and interference re-
jection for digital communication signals,” in Proc. IEEE Glob. Commun.
Conf., 2022, pp. 2296-2302.

T. Luo et al., “Achieving green AI with energy-efficient deep learning
using neuromorphic computing,” Commun. ACM, vol. 66,n0.7, pp. 52-57,
Jul. 2023, doi: 10.1145/3588591.

Majumder Haider (Graduate Student Member,
IEEE) received the B.Sc. degree in electron-
ics and communication engineering from BRAC
University, Dhaka, Bangladesh, and the M.Sc.
degree in electronics and communication sys-
tems engineering from the City University of
Applied Sciences, Bremen, Germany. He is
currently working toward the Ph.D. degree in
electrical engineering with Howard University,
Washington, DC, USA. His research interests
include wireless communication systems design

h 4

and optimization applying AI/ML techniques, intelligent reconfigurable
surfaces, massive MIMO communications, and industrial 10T networks.
He was the recipient of two prestigious graduate fellowships in his Ph.D.
studies.

Md. Zoheb Hassan (Member, IEEE) received
the doctorate degree from Electrical and Com-
puter Engineering Department, University of
British Columbia, Vancouver, BC, Canada. He
is currently an Assistant Professor with the De-
partment of Electrical and Computer Engineer-
ing, Université Laval, Quebec City, QC, Canada.
Prior to joining Université Laval, he was the Se-
nior Postdoctoral Research Fellow with Ecole
de technologie Superiéure, Montreal, QC, and
Research Assistant Professor with the ECE De-

partment, Virginia Tech, Blacksburg, VA, USA. He authored and coau-
thored more than 30 journal articles and 15 conference papers in ra-
dio resource optimization, interference management, spectrum sharing,
and optical wireless communications. He was/is the TPC member of
various prestigious IEEE Conferences, like IEEE GLOBECOM, ICC,
MILCOM, VTC, and PIMRC and reviewer of several major journals of
IEEE Communication Society.

Imtiaz Ahmed (Senior Member, IEEE) re-
ceived the Ph.D. degree in electrical and com-
puter engineering from The University of British
Columbia, Vancouver, BC, Canada. After finish-
ing his Ph.D. degree, he was with Intel Cor-
poration, San Diego, CA, USA, as a Wireless
Systems Engineer, and Marshall University,
Huntington, WV, USA, as an Assistant Profes-
sor. He is currently an Assistant Professor with
the Department of Electrical Engineering and
Computer Science, Howard University, Wash-

ington, DC, USA. He works in the areas of wireless communications, sig-
nal processing, and computer networks. His research interests include
artificial intelligence-aided physical layer designs, cell-free communica-
tions, integration of aerial and terrestrial communication networks, and
communications with THz bands, and intelligent reflecting surfaces.

Authorized licensed use limited to: Howard University. Downloaded on July 15,2024 at 04:09:14 UTC from IEEE Xplore. Restrictions apply.



HAIDER et al.: DEEP LEARNING AIDED MINIMUM MEAN SQUARE ERROR ESTIMATION OF GAUSSIAN SOURCE 195

Jeffrey H. Reed (Life Fellow) is currently the
Willis G. Worcester Professor of ECE. He has
authored or coauthored more than 500 articles
and books. His research interests include wire-
less communications, wireless security, cogni-
tive radio, software radio, telecommunications
policy, and spectrum access. In addition, he co-
founded several commercial companies, includ-
ing Federated Wireless, which commercializes
spectrum sharing, PFP Cybersecurity, which
provides security solutions for loT devices, and
Cirrus360, which produces tools for rapid prototyping of O-RAN. He is
the Founding Director of Wireless@Virginia Tech, a university research
center, and Co-Founder of Virginia Tech’s Hume Center for National
Security and Technology, where he was the Interim Director. He was
also the Interim Director of the Commonwealth Cyber Initiative and is
currently its CTO. Dr. Reed is a Life Fellow of the IEEE for contributions
to software radio and communications signal processing and for leader-
ship in engineering education.

Ahmed Rubaai (Life Fellow) received the
M.S.E.E. degree from Case Western Reserve
University, Cleveland, OH, USA, and the Dr.Eng.
9 degree from Cleveland State University, Cleve-

land, OH, in 1983 and 1988, respectively. In

1 1988, he joined Howard University, Washing-

ton, DC, USA, as a Faculty Member, where

he is currently a Professor and the Chairper-

son of the Electrical Engineering and Computer

{ Science Department. His research interests in-

’ clude high performance motor drives and their
related knowledge-based control structure, and development of intelli-
gent applications for manufacturing systems, and industrial applications.
Dr. Rubaai was the recipient of the IEEE Industry Applications Society
(IAS) 2nd Prize Paper Award in September 2007, ASEE Division of
Experimentation and Laboratory Oriented Studies Best Paper Award in
June 2006, Howard University Exemplary Teaching Award in April 2005,
IEEE IAS Honorable Mention Prize Paper Award in October 2002, NASA
Glenn Software Release Award in June 2004, and Howard’s School
of Engineering “Professor of the Year” in 1997 and 1998. He was the
Chair of the IEEE-IAS Publications Department (2012—2018), Chair of
the |IEEE-IAS Manufacturing Systems Development and Applications
Department (2006—2008), Chair of the IAS Industrial Automation and
Control Committee (2000-2002), and Chair of ASEE Division of Experi-
mentation and Laboratory Oriented Studies (2010-2011). He has been
named an IEEE Fellow in 2015.

Danda B. Rawat (Senior Member, IEEE) is
currently an Associate Dean for Research
and Graduate Studies, a Full Professor with
the Department of Electrical Engineering and
Computer Science, Founding Director of the
Howard University Data Science and Cyberse-
curity Center and Founding Director of DoD
Center of Excellence in Artificial Intelligence &
Machine Learning (CoE-AIML), Howard Univer-
sity, Washington, DC, USA. He successfully led
and established the Research Institute for Tac-
tical Autonomy (RITA), the 15th University Affiliated Research Center
(UARC) of the US Department of Defense as the Pl/Founding Exec-
utive Director at Howard University, Washington, DC, USA. He has
secured over $110 million as a Pl and over $18 million as a Co-PI
in research funding from the US federal agencies (NSF, DHS, DoD
NSA, DoE/NNSA, and NIH), Industry (Microsoft, Intel, VMware, PayPal,
Mastercard, Meta, BAE, and Raytheon etc.) and private Foundations.

Authorized licensed use limited to: Howard University. Downloaded on July 15,2024 at 04:09:14 UTC from IEEE Xplore. Restrictions apply.



