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Abstract—This paper proposes a generative adversarial network (GAN)
based channel estimation scheme for intelligent reflecting surface (IRS)-
aided single-input multiple-output (SIMO) communication systems. The
proposed novel GAN-based deep learning technique is efficient to estimate
channels in IRS-aided wireless communication systems with high accuracy.
The generator of GAN can reproduce data whose distributions are similar
to the actual underlying channel. Consequently, the proposed approach
does not require the statistical distribution of the underlying channel to be
known in advance. Simulation results prove that the proposed GAN-based
channel estimation approach outperforms the conventional least square
estimation (LSE) approach significantly in terms of estimation accuracy
as well as provides better performance than a fully connected deep neural
network (DNN) and convolutional neural network (CNN)-based methods.

Index Terms—6G, artificial intelligence, channel estimation, generative
adversarial network, intelligent reflecting surface.

I. INTRODUCTION

In order to support the rising demand for ubiquitous wireless con-
nectivity anywhere in the upcoming Internet-of-Everything (IoE) era,
along with the soaring data-hungry applications development, fifth-
generation (5G) cellular networks may not be adequately efficient
to meet the demands in terms of capacity. This observation leads
the researchers to carry out cutting-edge research to explore newer
dimensions in upcoming sixth-generation (6G) cellular technology.
Intelligent reflecting surface (IRS) is a key enabler of data transmission
technology, with a vision to be deployed in 6G cellular communication
systems to significantly enhance spectral efficiency. IRS is the advanced
version of massive multiple-input multi-output (mMIMO) data trans-
mission system [1], which is the prime transmission technology in 5G
cellular networks. IRS is a controllable metasurface comprised of a
large number of passive reflecting elements (PREs) that use very little
power to control the phase and/or amplitude changes of incident signals
to the IRS [2], [3], [4], [5].

For efficient data detection at the receiver and precoding at the
transmitter, the system requires channel state information (CSI) to be
known. When the IRS consists of fully passive elements, the direct
channel estimation of the link between the passive IRS and an ac-
tive transceiver node becomes complicated and cumbersome owing to
having a large number of channel reflecting coefficients and no active
radio frequency (RF) chain. To encounter these challenges, setting
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the limitation of pilot sequence length equal to or greater than the
number of receiver antennas leverages the training overhead in the
channel estimation process. The primary challenges in fully passive IRS
channel estimation of the uplink communication systems are the joint
optimization of orthogonal pilot sequences, the reflection pattern of
the reflective elements, and the efficient method to accurately estimate
cascaded channels [2]. The statistical signal processing method least
square estimation (LSE) is not optimal, hence, the technique may not es-
timate channels with good accuracy due to rapid change in the wireless
propagation environment, data traffic pattern, multi-user interference,
and underlying non-Gaussian noise. In this circumstance, the fusion
of artificial intelligence (AI) techniques can smartly and efficiently
shed light on wireless channel estimation with high accuracy and low
run-time complexity compared to the conventional statistical signal
processing approach by approximating complicated computations.

Deep learning-based data-driven approaches have widely been ex-
plored in channel estimation and prediction of IRS-aided communica-
tion systems [6], [7], [8]. It is shown that deep learning approaches are
capable of estimating multi-dimensional channel data with relatively
better accuracy than statistical signal processing methods [9], [10], [11].
On the other hand, generative adversarial networks (GANs) are com-
prised of a pair of convolutional neural networks known as generator
and discriminator, are gaining significant popularity and being regarded
as a promising technique in a wide range of sectors including channel
estimation of communication systems in recent times [12], [13], [14].

To the best of our knowledge, GAN-based channel estimation for
IRS-assisted communication systems has not yet been addressed in the
literature. In this paper, we propose GAN-based channel estimation
for an IRS-assisted single-input multiple-output (SIMO) narrowband
communication system. The primary benefit of the proposed novel
approach is that the GAN-based approach can determine the distri-
bution of channel samples without using pilot signal information in the
initial training phase. Once trained, the backpropagation optimization
technique can accurately estimate the channel exploiting the GANs ef-
ficiency to analyze multi-dimensional correlated channel data. We have
demonstrated that the GAN-based generative model-driven approach
can estimate IRS cascaded channels with significantly better accuracy
compared to the LSE method and even better than the deep neural
network approach.

The rest of the paper is organized as follows. Section II describes
the system model. In Section III, the proposed GAN model and the
baseline schemes have been illustrated. The discussion on simulation
results has been included in Section IV. Finally, Section V concludes
the paper.

II. SYSTEM MODEL

In Fig. 1, we consider a time division duplex (TDD) integrated
IRS-aided narrowband flat fading uplink wireless transmission system
with a base station (BS), an IRS panel, and a user. We assume the
BS consists of M antennas, the user is comprised of a single antenna,
and the IRS panel is equipped with L PREs. Each reflecting element
l ∈ {1, 2, . . ., L} can reflect the incident signal. The complex reflection
coefficient of lth PRE can be denoted asφl = βlejαl , where, the ampli-
tude gain and the phase shift of lth element are represented byβl ∈ [0, 1]
and αl ∈ [0, 2π) respectively. Thus, the reflection coefficient matrix
becomes Φ = diag (φ1,φ2, . . .,φL), where, diag(., ., .) represents the
diagonal matrix. Refer to Fig. 1, due to blockage, we assume there is
no direct line-of-sight (LoS) communication between user equipment
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Fig. 1. IRS-aided single user SIMO system.

(UE) to BS, and IRS aids BS and UE in data transmission. It is worth
noting that the end-to-end propagation channel between BS and UE
consists of the BS-to-IRS and IRS-to-UE communication links via IRS.
As all the reflecting elements at IRS are assumed to be passive, the
estimation of individual channel gains for BS-to-IRS and IRS-to-UE
links cannot be conducted in a straightforward manner [2]. Therefore,
estimation of the end-to-end cascaded channels (for a givenΦ) between
BS and UE via IRS is a feasible approach. However, because of the large
L, the computational complexity of estimating the cascaded channels
increases significantly. Our aim in this paper is to leverage GAN to
develop a channel estimation scheme that strikes a balance between
performance and (run-time) complexity [3]. In this paper, we develop
a GAN-aided channel estimation scheme for two modes of operation;
a) sequential on-off and b) all-on of the PREs [2].

A. Sequential On-Off

In the sequential on-off approach, the UE-IRS-BS cascaded channels
are estimated sequentially by activating one of the PREs (while turning
off L− 1 elements) of IRS at a time. We assume the UE transmits
the orthogonal pilot signals xp ∈ C1×τ of length τ ≥ 1 (in samples)
for channel estimation. The channels of UE-to-IRS and IRS-to-BS
communication links are assumed to follow independent and identically
distributed (i.i.d.) Rician fading because of the high likelihood of
the presence of LoS communication link. Considering the normalized
power constraint with a signal-to-noise ratio (SNR) denoted by γ, the
received signal at the BS when l ∈ {1, 2, . . . , L} is active can be written
as

Y l =
√
γGH

l φlhlxp +N l (1)

where, Y l ∈ CM×τ is the received signal matrix at BS when l ∈
{1, 2, . . . , L} PRE is active, Gl ∈ C1×M is the matrix of channel
gains between PRE l ∈ {1, 2, . . . , L} and BS, hl is the channel gain
between UE to PRE l ∈ {1, 2, . . . , L}, and N l ∈ CM×τ is the additive
white Gaussian noise (AWGN) matrix. It is worth mentioning that
each element of GH

l and hl are i.i.d Rician fading with Rice factors
KGl

and Khl
, respectively. Each element of nl follows Gaussian

distribution with zero-mean and unit variance. Our objective is to
estimate the cascaded channel Hl = GH

l hl from the received signal yl

and knownxp when PRE l ∈ {1, 2, . . . , L} is turned on by the proposed
GAN-based channel estimation scheme. It is worth pointing out that we
perform the estimation of cascaded channels sequentially to obtain the
estimates of H1,H2, . . . ,HL of all the cascaded channels between UE
and BS. Although this sequential on-off approach is a simple channel

characterization method to tackle IRS channels, it yields high latency
in signal processing and results in weak received signal strength due to
having only one reflecting element turned on at a time [2], [4].

B. All-On

In this mode of operation, the UE-IRS-BS cascaded channels are
estimated when all the PREs of IRS are turned on [15]. Let us denote
G ∈ CL×M as the channel matrix from IRS to BS and h ∈ CL×1 as
the channel gain vector from UE to IRS. Considering xp ∈ C1×τ ,
where τ ≥ L, let us introduce U = [u1u2. . .uL] that satisfy U =
GHdiag(h), where u ∈ CM×1. The phase shift matrix Γ ∈ Cτ×L con-
taining phase-shifts of L PREs for τ samples in a given coherence time
interval can be defined as follows:

Γ =

⎡

⎢⎢⎢⎢⎢⎢⎣

φ1,1 · · · φ1,L

φ2,1 · · · φ2,L

. · · · .

. · · · .

φτ,1 · · · φτ,L

⎤

⎥⎥⎥⎥⎥⎥⎦
,

where φt,l represents the phase reflection coefficient for sample t ∈
{1, 2, . . . , τ} and l ∈ {1, 2, . . . , L}. Moreover, we denote Q = Γ⊗
IM , where Q ∈ CτM×ML and IM ∈ CM×M is the identity matrix.
The operator ⊗ represents the Kronecker product. Defining the pilot
sequence matrix X ∈ CMτ×Mτ for a given coherence time interval as
X = diag (x11M , x21M , . . ., xτ1M ), where 1M ∈ CM×1 is a vector of
ones and xi, i ∈ {1, 2, . . . , τ} are the elements of xp. Let us introduce
R = XQ, where R ∈ CτM×ML and Θ = [uT

1 ,u
T
2 , . . . ,u

T
L ]

T . Here,
Θ ∈ CML×1 denotes the vector of channel gains when all PREs are on.
The received signal z at BS while setting all PREs active (turned on)
over τ samples can be represented as

z =
√
γRΘ+w (2)

wherez ∈ CτM×1. Here,w ∈ CτM×1 is the AWGN noise vector, where
each element follows Gaussian distribution with zero-mean and unit
variance. In this mode of operation, our goal is to precisely estimate Θ,
which essentially contains all the elements of the cascaded channels.

III. PROPOSED GAN-BASED IRS CHANNEL ESTIMATION

In this section, we explain how to configure different parts of GAN
model for the proposed data-driven channel estimation scheme of the
considered IRS-aided communication system. Further, we describe the
baseline schemes to compare the performance of our proposed scheme.

A. GAN-Based IRS Cascaded Channel Estimation

The zero-sum, min-max game theory over two adversarial networks
is the foundation of GANs [16]. By competing two convolutional neural
networks (the generator and the discriminator) against one another,
GANs create fresh synthetic data that resembles real data distribution.
The generator makes an effort to accurately represent the real data
distribution while generating new data samples. On the other hand,
the discriminator is typically a binary classifier that makes an effort
to intelligently distinguish between real and generated fake data as
precisely as feasible. Since GAN has the ability to reproduce data
samples having the same distribution as the actual data samples by
optimizing the generator, thus, it can generate increased length data
sequence which favors channel estimation with high accuracy supported
by Cramer-Rao lower bound law [14].

Proposed GAN Architecture: Refer to Fig. 2(a), generator G attempts
to create a fake sample data by using the Gaussian random noise vector
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Fig. 2. (a) Training GAN (b) Real-time IRS channel estimation with GAN.

N as input. The generated fake data is then sent to the discriminator. The
discriminator D is a binary classifier that simultaneously examines real
and fake samples produced by the generator in an effort to distinguish
between the real data of the channel gain and the generated fake data
of the channel gain. Based on the results of the discriminator, the
parameters of the generator are optimized while training to regenerate
fake samples similar to the real data distribution. In this work, we adopt
the backpropagation concept of the pretrained generator model [13] in
order to identify the optimized noise vector Nopt. Instead of using
Wasserstein GAN (WGAN) [13], we implemented an optimized Deep
Convolutional GAN (DCGAN) model in our considered system model.
DCGAN performs better for a relatively large dimensional problem
(e.g., channel estimation problem in IRS-assisted communication sys-
tems). DCGAN has more stable training functionality, hence, it results
in quick convergence [17], [18], [19]. Although the WGAN model has a
more insightful cost function than the DCGAN model, WGAN does not
perform well while configured with a momentum-based optimizer like
Adam [20]. The training of GANs is executed offline using Gaussian
random noise N . Note that the training datasets are generated over
the entire range of γ. Once trained, the generator model is saved and
then the pretrained generator model is optimized to determine Nopt

computing the corresponding minimum value of the target function.
The optimization operation is accomplished as

N on-off
opt = argmin ||Y l −

√
γφlGTr(N on-off)xp||2 (3)

and
N all-on

opt = argmin ||z −√
γRGTr(N all on)||2 (4)

for sequential on-off and all-on operations, respectively. Therefore, the
corresponding generator model of the optimized noise vector deter-
mines the estimation of the cascaded channels as Ĥl = GTr(N on-off

opt ) and
Θ̂ = GTr(N all-on

opt ) for sequential on-off and all-on schemes, respectively.
Here, Ĥl and Θ̂ represent the estimated channel gains for sequential
on-off and all-on schemes, respectively.

Training Arrangements: In this work, we use deep convolutional
GAN architecture [17] for channel estimation of IRS-aided communi-
cation systems. It is worth noting that we generated the input for our
considered generator model following a standard Gaussian distribution
with zero mean and unit variance, rather than the uniform distribution
used in [17]. Furthermore, adopting a Gaussian distribution for the input
signal of the generator model is crucial in our considered IRS-assisted
system, as the underlying noise is Gaussian, and our aim is to minimize
the search space for our proposed non-linear L2-norm-based channel

Algorithm 1: Real-Time GAN-based IRS Channel Estima-
tion.

Input: Gaussian random noise N , actual channel samples Hl (Θ)
for sequential on-off (all-on) scheme

Output: Estimated channel gain Ĥl (Θ̂) for sequential on-off
(all-on) scheme

1: Train the GAN model G offline, generate Ĥl (Θ̂) for
sequential on-off (all-on);

2: Save the trained generator model GTr;
3: Load GTr, yl (z), and xp;
4: for each iteration j do
5: GTr(N );
6: Calculate ||yl − GTr(N on-off)xp||2

(||z −RGTr(N all-on)||2) for sequential on-off (all-on);
7: end for
8: Obtain N on-off

opt (N all-on
opt )

9: Calculate Ĥl (Θ̂)
10: return Output

Fig. 3. GAN schematic diagram.

estimation scheme. GAN architecture employs deep convolution neural
networks (CNN) for both generator and discriminator networks to
provide stable training. We have employed various activation functions
(AF) for the generator and discriminator models to accurately capture
the data suitable for different layers within the network models. In
the considered GAN model in Fig. 3, the first layer of the generator
consists of a fully connected layer followed by a rectified linear unit
(ReLU) AF and batch normalization layer. Then the input data is
reshaped into a three-dimensional (3D) vector. The following two layers
are the Conv2DTranspose (two-dimensional transposed convolution)
layer formed with kernel size (a× a), strides (c× c), activation ReLU
and batch normalization layer. The Conv2DTranspose layer performs
upsampling and convolution simultaneously. The upsampling increases
the dimension of the data of the previous layer. The final layer is the
output layer, consisting of a Conv2D (two-dimensional convolution)
layer with a ‘linear’ AF and a kernel size of (a× a). The generator
model upsamples the input data to generate the desired output di-
mension. On the other hand, the first two layers of the discriminator
network are composed of a Conv2D layer with a kernel size of (b× b)
and strides (c× c), followed by a batch normalization layer, a leaky
rectified linear unit (LeakyReLU) AF, and a dropout layer. The negative
slope coefficient of LeakyReLU is set to α = 0.2, and the dropout
layer rate is set to 0.4, which represents the fraction of input units to
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be dropped during the training process. Since the last layer is a fully
connected layer with a single neuron, we added a ‘Flatten’ layer to
make the dimension of the last layer compatible with the previous
layer’s multi-dimensional data. The AF ‘sigmoid’, the loss function
‘cross entropy’, and the optimizer ‘Adam’ are included in the last layer.
The discriminator network downsamples the input data by halves.

The parameters in the offline training phase can be denoted as Es a
sequence of random Gaussian noise andFs be the corresponding output
sequence of channel gain from G model, where s represents the total
number of sequences. Thus, the input-output pair of training datasets
can be mathematically written as {(E1,F1), (E2,F2), . . ., (Es,Fs)}.
Es is chosen as latent dimension × number of samples, where, the
latent dimension L is a random number, and the number of sam-
ples equal to the size of the dataset. The parameters in the opti-
mization stage (as defined in (3) and (4)) during the online chan-
nel estimation phase can be expressed by Ys and Xs, denoting
a sequence of the received signal and input pilot sequence, re-
spectively. Thus, the relation can be mathematically represented as
{(Y1,F1,X1, E1), (Y2,F2,X2, E2), . . ., (Ys,Fs,Xs, Es)},
where the minimum value of the target function is computed using
the sequences Ys,Fs,Xs and the corresponding Es is the optimized
noise sequence. Ys,Fs, and Xs represented as M × L× 2 real-valued
matrices in the computation process. Hence, increasing L increases the
training overhead significantly for both modes of the IRS. Since the
DCGAN training process is faster than the WGAN, thus, the DCGAN
model is more efficient for channel estimation than the WGAN model
in the considered system model. The stochastic gradient descent (SGD)
algorithm is used in the training phase to optimize the weights of the
GAN model. Both the generator and discriminator model optimize
their performance simultaneously while executing the training phase.
The training dataset has been divided into batches per epoch. The
discriminator model gets updated on weight parameters in two separate
batches; one batch is used for updates on real data and another batch is
used for updates on generated fake data.

B. Computational Complexity

The computational complexity in forward and backward propa-
gation in the offline training phase of the GAN scheme (consid-
ering both generator and discriminator networks) is represented as
O(2(HFc,IIG + C2K2 ∑TG

t=1 D
2
t)V U)

+ O(2(C2K2 ∑TD
t=1 D

2
t +HFc,OE)V U), where C, K, Dt, t,

HFc,I , IG , HFc,O , E, U , and V represent the channel size, kernel size,
feature map of the respective hidden layer, number of hidden layers,
number of neurons in fully connected layer at generator model, input of
generator, number of neurons in fully connected layer at discriminator
model, number of features in fully connected layer at discriminator
model, number of epochs, and number of batches per epoch respec-
tively. Note that the computational complexity in optimizing the GAN
model varies with the IRS mode of operation. In sequential on-off mode,
the computational complexity in optimizing the GAN model is linearly
incremental with the increase of L, since only one PRE is turned on at a
time. On the contrary, for the all-on mode of operation, the optimization
steps of the GAN model are executed once forL number of PREs, since
all PREs are on. While comparing our proposed scheme with [9], it can
be inferred that both models show polynomial complexity.

C. Advantages of GAN in Cascaded Channel Estimation

The proposed data-driven channel estimation scheme exhibits low
run-time (online) computational complexity to estimate channel gains

for IRS-aided wireless communication systems compared to state-of-
the-art estimation schemes, e.g., minimum mean square error (MMSE)
or conventional maximum likelihood estimation (MLE) schemes. Be-
cause of the cascaded nature (non-Gaussian distribution) of the under-
lying channel (high dimensional matrix) between BS and UE, it is math-
ematically intractable to develop a linear MMSE (LMMSE) scheme to
estimate the channel [10]. The MLE requires either matrix inversion
or infinitely large search space and hence requires more computations
to estimate the channel in real-time. However, leveraging the GAN
architecture assists in capturing the correlation of the high dimensional
cascaded channel matrix by exploiting its inherent mechanism and
thereby reduces the search space for L2-norm estimation scheme.

D. Baseline Approaches

Deep Neural Network (DNN): We consider a DNN model to compare
its performance with the proposed GAN model. The DNN model
takes the output signal of the system model as input and solves the
computational model to provide the output estimated channel gain as
the actual channel. The DNN model is formed with five fully connected
layers, including input and output layers, out of which three layers are
hidden layers.

Convolutional Neural Network (CNN): A convolutional neural net-
work (CNN) model has been considered for performance comparison
with the proposed GAN model. The first layer of the CNN model is
the input layer, which captures the received signal of the considered
system. The three middle layers are the core layers, where the majority
of computations and learning occur. Each stack of middle layers consists
of a Conv2D (two-dimensional convolution) layer, batch normalization
layer, activation ReLU, and AveragePooling2D (two-dimensional av-
erage pooling) layer. The final layer is the fully connected output layer.

Least Square Estimation (LSE): We consider the LSE method as an-
other baseline approach. The estimated channel using the LSE method
can be expressed as

Ĥl = ((ζζH)−1ζyH
l )H (5)

and
Θ̂ = ((RHR)−1RH)z (6)

for sequential on-off and all-on modes of operations, respectively,
where ζ =

√
γφlxp.

IV. SIMULATION RESULTS

In this section, we present the numerical results for the proposed
data-driven channel estimation scheme to evaluate their performances
and compare them with the considered baseline schemes. We first show
the impact of training the GAN model on the estimation error over
a range of SNR while considering different training parameters. We
then illustrate the comparative performance evaluations of the proposed
scheme with baseline approaches in terms of normalized mean square
error (NMSE) that can be calculated as follows:

NMSE = E

{
||ϱ− ϱ̂||2

||ϱ||2

}
, (7)

where ϱ ∈ {Hl,Θ} and ϱ̂ ∈ {Ĥl, Θ̂}. The dataset generation for
training and testing is accomplished using MATLAB via Monte Carlo
simulations, and the training and optimization operations are performed
using the Python TensorFlow framework. In particular, we generate
50,000 realizations of random data samples for training and 50,000
realizations for testing purposes for both the proposed and baseline
schemes. For all the considered experiments, we set M = 8, L = 2p,

Authorized licensed use limited to: Howard University. Downloaded on July 15,2024 at 04:15:13 UTC from IEEE Xplore.  Restrictions apply. 



6016 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 4, APRIL 2024

Fig. 4. Training impact of GAN on estimation error.

p = 3, and KGl
= Khl

= 10 dB. While configuring the GAN model,
we set L = 500, a = 4, c = 2, and b = 3. Further, we consider 2000
epochs during the training phase while setting 1000 batches in each
epoch. We consider real and imaginary parts separately while rep-
resenting each signal in a 3D vector. The training parameters are
tuned and remained the same throughout the entire simulations after
a rigorous trial and error process while assuring the tradeoff between
performances and computational complexity. The training is executed
with the ADAM optimizer and a learning rate of 0.0002 for the proposed
and baseline models to ensure a fair comparison. It is worth mentioning
that the convolution blocks in the considered GAN model can efficiently
analyze high dimensional correlated channel gain data samples due to
the distinct architecture of the generative adversarial networks. The
adversarial training process of the GAN model is pivotal to significantly
reduce the suitable search range of channel gain in order to identify its
correlation with the actual channel gain data samples.

Effect of GAN-parameters on Training: In Fig. 4, we demonstrate the
impact of the number of epochs and the size of the training dataset on
the accuracy of the proposed GAN-aided channel estimation scheme.
We consider several configurations of training parameters by tuning
the number of epochs and the size of training datasets. For each
configuration, the estimation accuracy is calculated via NMSE as a
function of SNR γ. We observe that increasing γ for each configuration
increases the estimation performance and hence decreases the NMSE.
Moreover, increasing the number of epochs and the size of datasets
decreases the channel estimation error notably. However, increasing the
size of the datasets beyond 50,000 and the number of epochs more than
4000 does not yield significant performance gain in terms of NMSE. It is
worth mentioning that increasing the number of datasets and the number
of training epochs essentially increases the training computations and
time, hence, it requires a tradeoff between optimal performance and
computational complexity.

Comparison of Proposed Channel Estimation Scheme with Base-
line Schemes: In Figs. 5 and 6, we demonstrate the effectiveness of
the proposed GAN-based channel estimation scheme for sequential
on-off and all-on schemes, respectively. In particular, we present the
NMSE of the proposed and baseline schemes as a function of γ.
For both the considered sequential on-off and all-on schemes, we
observe that NMSE decreases with increasing γ, as expected. It is
seen that the NMSE performance of both sequential on-off and all-on
modes of operation are almost similar, but the hardware complexity
and device latency of the sequential on-off mode are much higher
compared to all-on. The sequential on-off mode requires an additional

Fig. 5. Estimation error for IRS sequential on-off.

Fig. 6. Estimation error for IRS all-on.

switching mechanism to turn on-off the PREs of IRS in order to
control the amplitude of the individual PRE that increases hardware
complexity. Moreover, the proposed GAN-aided channel estimation
scheme outperforms the LSE, DNN, and CNN schemes over the en-
tire range of considered γ. However, the performance gap between
the proposed and LSE schemes is large for low SNR and small for
high SNR. For instance, denoting the performance improvement fac-
tor ρ = NMSE of Proposed Scheme/NMSE of LSE, γ = 10 dB and
γ = 25 dB results in ρ = 20 and 4, respectively for all-on scheme.
The NMSE performance is also compared with the multiple-residual
dense network (MRDN) model proposed in [9], the WGAN [13], and
the WGAN-GP [21]. The results demonstrate that the proposed GAN
model can estimate the cascaded channels of IRS for both modes
of operation with slightly lower error than [9], [13], and [21]. It is
worth mentioning that adversarial networks can deeply analyze multi-
dimensional data to extract the correlation features more efficiently
during the training process while considering addressing different levels
of noise power spectral density. On the contrary, the LSE scheme de-
grades the estimation accuracy in low SNR. However, the LSE approach
includes matrix inversion and multiplication to compute cascaded
channel gains that show less complexity than the proposed scheme. The
deep convolutional layers of the generator and discriminator networks
in the considered GAN yield enhanced performance in predicting
highly correlated cascaded channels as long as the hyper-parameters
are optimized efficiently.
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V. CONCLUSION

In this paper, we proposed a novel GAN-based channel estimation
method for IRS-aided communication systems. The benefits of using
GAN to analyze the correlation of multi-dimensional channel data have
been explored to leverage accurate channel estimation in IRS-assisted
communication systems. Furthermore, it has been demonstrated that
the optimized GAN-based approach can estimate actual IRS cascaded
channels with greater accuracy compared to the LSE method. The
proposed approach can also outweigh widely employed DNN and CNN
solutions in terms of accuracy in estimating IRS cascaded channels. In
future work, GAN-based channel estimation can be implemented in
more complicated IRS-assisted communication systems and could be
compared with some other highly optimized deep learning techniques
to determine the best technique in order to ensure high accuracy in
channel estimation.
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