

1 **Multivariate optimization for extraction of 2-methylimidazole and**
2 **4-methylimidazole from *açaí*-based food products using polymeric ionic liquid-**
3 **based sorbent coatings in solid-phase microextraction coupled to gas**
4 **chromatography–mass spectrometry**

5

6 Luis Eduardo SILVA NASCIMENTO^{a,b}, Bhawana THAPA^b, Wellington DA SILVA
7 OLIVEIRA^c, Plínio RIBEIRO RODRIGUES^d, Helena TEIXEIRA GODOY^a, Jared L.
8 ANDERSON^{b*}

9

10 ^a Department of Food Science and Nutrition, School of Food Engineering, University of
11 Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862, Campinas, SP, Brazil

12 ^b Department of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, IA 50011,
13 USA

14 ^c Reference Laboratory for Physical, Sensory and Statistics Analysis, Science and Food
15 Quality Center, Institute of Food Technology (ITAL), Avenida Brasil 2880, 13070-178
16 Campinas, São Paulo, Brazil

17 ^d Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo
18 (USP), Avenida Lineu Prestes, 748, 05508-000, Cidade Universitária, São Paulo, SP,
19 Brazil

20 *** Corresponding author:**

21 Jared L. Anderson
22 Department of Chemistry
23 Iowa State University
24 1605 Gilman Hall
25 Ames, IA 50011
26 Tel.: +1 515-294-8356
27 E-mail address: andersoj@iastate.edu
28 ORCID: 0000-0001-6915-8752
29

30 **Keywords**

31 Central composite rotatable design; *Euterpe oleracea*; food analysis; food contaminant;
32 plackett-burman design; SPME.

33

34 **Abstract**

35 In this study, polymeric ionic liquids featuring different functional moieties were applied
36 as sorbent coatings in direct-immersion solid-phase microextraction (DI-SPME) for the
37 extraction of 2-methylimidazole (2-MI) and 4-methylimidazole (4-MI) from *açai*-based
38 food products followed by gas chromatography-mass spectrometry (GC-MS) analysis.
39 The analytical method was optimized using a sequential experimental design. Variables
40 used in GC-MS such as desorption time, as well as for SPME-DI, including extraction
41 time, extraction temperature, incubation time of extraction, amount of NaCl in the extract,
42 and stirring rate, were optimized. The fitness-for-purpose of the method was verified by
43 the linearity of matrix-matched calibration curves ($R^2 \geq 0.9921$), adequate recoveries
44 (81.7–89.7 %), and precision (relative standard deviations ≤ 11.2 %). The method was
45 applied to twenty-five samples of *açai*-based food products. 4-MI was found in four
46 samples whereas 2-MI was not detected above the limit of detection. The method was
47 found to be suitable for quality control analysis.

48

49 **1. INTRODUCTION**

50 *Açai*-based food products are derived from the edible parts of the *Euterpe oleracea*
51 palm tree fruits. The largest cultivated area for these products is in the eastern Brazilian
52 Amazon region. Over the past few years, *açai*-based food products have experienced an
53 expansion due to their increased sales within Brazil. Recently, another significant
54 contributing factor has been the growing presence of these products within the

55 international market (CONAB, 2021).

56 The molecules 2-methylimidazole (2-MI) and 4-methylimidazole (4-MI) are
57 process contaminants that may be present in *açai*-based food products. Overall,
58 contamination of foods by 2-MI and 4-MI occurs through the following two pathways:
59 (1) the most likely source is when food is sweetened using guaraná syrup that contains
60 caramel colorants E150c (Class III) and E150d (Class IV); (2) The other pathway involves
61 the heating of carbohydrates and nitrogenous compounds. In the latter case, the
62 pasteurization process leads to the formation of contaminants. However, the likelihood of
63 this scenario is low, as the pasteurization process occurs within a short period of time
64 preventing the formation of large amounts of these toxic compounds (Akbari et al., 2023).

65 The International Agency for Research on Cancer (IARC) has classified 2-MI and
66 4-MI as possibly carcinogenic to humans (IARC, 2023). Additionally, the European Food
67 Safety Authority (EFSA) establishes acceptable daily intake (ADI) levels of 100 and 300
68 mg kg⁻¹ body weight per day for 4-MI in caramel colorants Class III and Class IV,
69 respectively (EFSA, 2011). Furthermore, the European Commission's regulations set
70 limits of 200 and 250 mg of 4-MI per kg⁻¹ for caramel colorants Class III and Class IV,
71 respectively (EC, 2012). On the other hand, there are no regulations that establish limits
72 for 2-MI. More restrictively, using the Cramer classification scheme, the toxicological
73 threshold of concern (TTC) value is 90 µg per person per day for each compound (More
74 et al., 2019).

75 Several methods have been proposed to determine 2-MI and 4-MI in foodstuffs.
76 Due to their high polarity and low volatility, their analysis can be challenging in food
77 matrices containing high water content, such as *açai*-based food products. To overcome
78 these challenges, derivatization steps have been used prior to gas chromatography (GC)
79 and liquid chromatography (which commonly uses a polar column). However, these

80 sample preparation methods require laborious and time-consuming steps, in addition to
81 the use of toxic solvents (Revelou et al., 2021). Approaches that are environmentally
82 sustainable, such as green extraction methodologies that do not involve the use of toxic
83 solvents or the production of by-products, have been applied in food analysis.
84 Additionally, user-friendly and simplified methods are also highly sought after. In this
85 context, microextraction techniques, including solid-phase microextraction (SPME),
86 have been utilized for the determination of food contaminants (Pedersen-Bjergaard, 2019;
87 Revelou et al., 2021).

88 Over the past few years, polymeric ionic liquids (PIL) have been explored as a
89 new class of sorbent coatings for SPME (Cagliero, Nan, et al., 2016; Meng et al., 2011;
90 Zeger et al., 2022). Due to the tunability of their chemical structures, which often include
91 different monomers and dicationic crosslinkers, these materials can provide unique
92 selectivity owing to their affinity for different target analytes (Zeger et al., 2022).
93 Additionally, studies have demonstrated that PIL-based SPME produces advantageous
94 analytical results compared to other commercially available coatings (Cagliero, Ho, et al.,
95 2016; Gionfriddo et al., 2018; Zeger et al., 2022). Furthermore, functionalizing PILs with
96 polar and hydrogen-bonding-capable substituents increases their affinity towards highly
97 polar analytes, resulting in improved selectivity and fulfillment of a gap left by
98 commercial coatings (Yu et al., 2013).

99 The successful implementation of SPME requires careful evaluation of the factors
100 that can influence extraction efficiency. Multivariate tools, namely Plackett-Burman (PB)
101 and central composite rotatable design (CCRD), have thus been applied for this step
102 because they provide optimal extraction conditions for all independent variables
103 simultaneously investigated, in addition to providing information regarding their
104 interactions. Also, multivariate methods require a lower number of runs, less time, and

105 resulting lower analysis costs compared to univariate optimization, which deals with one
106 variable at a time. In this context, Derringer and Suich's tool is a statistical method that
107 analyzes the ideal simultaneous extraction conditions for all studied analytes (Galindo et
108 al., 2021; Oliveira et al., 2020).

109 To the best of our knowledge, no studies have addressed sequential multivariate
110 optimization for the extraction of 2-MI and 4-MI from any food sample or for improving
111 the extraction method's performance using PIL-based SPME. For this purpose, three
112 imidazolium-based PIL sorbent coatings comprised of different functional moieties
113 appended to the ionic liquid (IL) monomers and dicationic IL crosslinkers were examined.
114 The aim of this study was to develop and validate a method for the quantitative analysis
115 of 2-MI and 4-MI in *açaí*-based food products using PIL-based SPME assisted by
116 multivariate optimization and combined with GC-MS. In addition, the developed method
117 eliminates the need for any derivatization step, which commonly employed in the analysis
118 of 2-MI and 4-MI by GC. The incidence of these analytes was investigated in twenty-five
119 samples of *açaí*-based food products obtained from Brazil and the United States.

120

121 **2. MATERIALS AND METHODS**

122 **2.1. Samples**

123 Twenty-five samples of *açaí*-based food products were purchased from different
124 manufacturers in Brazil and the United States. Table 1 displays in detail more information
125 about each sample. The samples were kept frozen at $-18^{\circ}\text{C} \pm 2^{\circ}\text{C}$ until analysis. All
126 samples were analyzed in triplicate.

127 For all steps involving analysis with a food matrix (sections: 2.3.2, 2.3.3, 2.3.4,
128 and 2.5), it was used a representative blank sample formulated by mixing the samples

129 shown in Table 1, including *açaí* pulp, *açaí* with strawberry, *açaí* with banana, and *açaí*
130 with guaraná syrup in a ratio of 1:1:1:1 (w/w).

131

132 **Table 1.** Main ingredients and country of origin of analyzed *açaí*-based food products, as
133 well as their sample name.

Sample	Main ingredients*	Origin	Sample	Main ingredients*	Origin
A	<i>Açaí</i> pulp with strawberry	Brazil	N	<i>Açaí</i> pulp	Brazil
B	<i>Açaí</i> pulp with guaraná	Brazil	O	<i>Açaí</i> pulp	Brazil
C	<i>Açaí</i> pulp with strawberry	Brazil	P	<i>Açaí</i> pulp	U.S.
D	<i>Açaí</i> pulp with strawberry	Brazil	Q	<i>Açaí</i> pulp with guaraná	U.S.
E	<i>Açaí</i> pulp with guaraná	Brazil	R	<i>Açaí</i> pulp with guaraná	U.S.
F	<i>Açaí</i> pulp with guaraná	Brazil	S	<i>Açaí</i> pulp with guaraná	U.S.
G	<i>Açaí</i> pulp with strawberry	Brazil	T	<i>Açaí</i> pulp	U.S.
H	<i>Açaí</i> pulp with banana	Brazil	U	<i>Açaí</i> pulp	U.S.
I	<i>Açaí</i> pulp with banana	Brazil	V	<i>Açaí</i> pulp	U.S.
J	<i>Açaí</i> pulp with banana	Brazil	W	<i>Açaí</i> pulp	U.S.
K	<i>Açaí</i> pulp	Brazil	X	<i>Açaí</i> pulp	U.S.
L	<i>Açaí</i> pulp	Brazil	Y	<i>Açaí</i> pulp	U.S.
M	<i>Açaí</i> pulp	Brazil	-	-	-

134 * Classification was printed on the packaging of each sample. All samples contained
135 guaraná syrup among their ingredients.

136

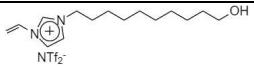
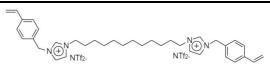
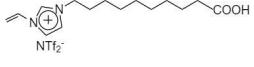
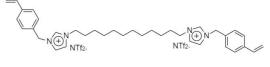
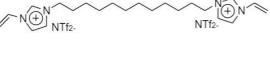
137 **2.2. Chemicals**

138 Ethyl acetate (ACS reagent, $\geq 99.5\%$) was purchased from Millipore-Sigma (St.
139 Louis, MO, USA). Lithium bis[(trifluoromethyl)sulfonyl]imide (LiNTf₂) was obtained

140 from Synquest Laboratories (Alachua, FL, USA). Silver nitrate, hydrogen peroxide \geq
141 29%, chloroform \leq 99.8%, sodium chloride, and acetone \geq 99.5 were purchased from
142 Fisher Scientific (Pittsburgh, PA, USA). Dimethyl sulfoxide-d6 (D, 99.9%) was
143 purchased from Cambridge Isotope Laboratories, Inc. (Tewksbury, MA, USA). 2-
144 hydroxy-2-methylpropiophenone (DAROCUR 1173) was purchased from TCI (Portland,
145 OR, USA). Methanol HPLC grade \geq 99.9%, acetonitrile (HPLC grade), acrylonitrile \geq
146 99.9, 1-vinylimidazole \geq 99 %, 1,12-dibromododecane 98%, 10-bromodecanoic acid
147 95%, 10-bromo-1-decanol 90%, imidazole 99%, vinyltrimethoxysilane 98%, 2-
148 methylimidazole 99%, 4(5) methylimidazole 98%, and (\pm)-menthol were purchased from
149 Sigma-Aldrich[®] (St. Louis, MO, USA). Super elastic nitinol wire (external diameter of
150 127 μ m) was acquired from Component Supply (Sparta, TN, USA). Polyacrylate SPME
151 fibers (85 μ m) were purchased from Supelco (St. Louis, MO, USA). Epoxy adhesive
152 paste (Resin type epoxy and hardener) was purchased from J-B WELD (Sulphur Springs,
153 TX, USA). A multi-analyte working solution containing the native standards (2-MI and
154 4-MI) was prepared using Milli-Q[®] water at a concentration of 100 μ g mL⁻¹. The internal
155 standard (IS), (\pm)-menthol, was prepared as a working solution at a concentration of 10
156 μ g mL⁻¹. The Milli-Q[®] water was obtained from the Simplicity[®] UV Water Purification
157 System (Millipore SAS, Molsheim, GES, France).

158

159 **2.3. Sample preparation**






160 *2.3.1. Preparation of PIL-based SPME fibers*

161 In this study, three different PIL-based SPME fibers were developed and are
162 denoted as PIL 1, PIL 2 and PIL 3 as shown in Table 2. The PIL 1 fiber was based on the
163 IL monomer 1-vinyl-3-(10-hydroxydecyl)imidazolium
164 bis[(trifluoromethyl)sulfonyl]imide [NTf₂⁻]. The PIL 2 and PIL 3 fibers were based on

165 the 1-vinyl-3-(9-carboxynonyl)imidazolium $[\text{NTf}_2^-]$ IL monomer. Two different
 166 crosslinkers were used, 1,12-di(3-vinylbenzylimidazolium)dodecane 2 $[\text{NTf}_2^-]$ for PIL 1
 167 and PIL 2, and 1,12-di(3-vinylimidazolium)dodecane 2 $[\text{NTf}_2^-]$ for PIL 3. All reactions
 168 used to prepare the ILs were carried out under the same previously reported conditions
 169 (Anderson & Armstrong, 2005; Cagliero, Nan, et al., 2016; Joshi et al., 2014).

170

171 **Table 2.** Structural composition, approximate film thickness, and phase volume of the
 172 PIL-based sorbent coatings examined in this study.

Fiber	IL monomer	IL crosslinker	Approximate film thickness (μm) ^a	Volume (μL) ^{b,c}
	Structural composition			
PIL1			86 \pm 10	0.17 \pm 0.01
	$([\text{VC}_{10}\text{OHIM}^+] \text{[NTf}_2^-])$	$([(\text{VBIM})_2\text{C}_{12}^{+2}]2\text{[NTf}_2^-])$		
PIL2			68 \pm 8	0.14 \pm 0.01
	$([\text{VC}_9\text{COOHIM}^+] \text{[NTf}_2^-])$	$([(\text{VBIM})_2\text{C}_{12}^{+2}]2\text{[NTf}_2^-])$		
PIL3			66 \pm 11	0.14 \pm 0.01
	$([\text{VC}_9\text{COOHIM}^+] \text{[NTf}_2^-))$	$([(\text{VIM})_2\text{C}_{12}^{+2}]2\text{[NTf}_2^-])$		

173 PIL: polymeric ionic liquid, IL: ionic liquid

174 ^aaverage calculated using $n = 10$ samples, ^bthe procedure used for calculation and a
 175 representative optical micrograph of the PIL-based fiber droplet (Figure S5) are provided
 176 in section 2.3.1.3. ^caverage calculated using $n = 3$ samples.

177

178 Preparation of the PIL-based fibers was performed in the following three steps:
 179 (1) synthesis of the IL monomers and IL crosslinkers, (2) derivatization of the nitinol

180 wires, and (3) *on fiber* UV co-polymerization of the IL monomer and IL crosslinker. ^1H
181 NMR spectra (Figure S1, S2, S3, and S4) are provided in Supplementary Material.

182

183 2.3.1.1. *Derivatization of nitinol wire*

184 Nitinol wires were cut into 1.5 cm segments and immersed in boiling hydrogen
185 peroxide (30% w/w) for 3 h at 72 °C to derivatize the substrate surface with active
186 hydroxyl moieties (Ti–OH). The wires were then dried overnight in a vacuum oven at 80
187 °C. The oxidized wires were subsequently functionalized with vinyltrimethoxysilane
188 (VTMS) at 85 °C for 5 h to chemically bond the organosilane (vinyl moieties) to the
189 surface of the alloy (Ho et al., 2014). The free vinyl groups on the surface of the
190 functionalized nitinol acted as active points to chemically attach the PIL to the solid
191 support. After functionalization, the nitinol wires were then glued onto a commercial
192 SPME assembly (Ho et al., 2014).

193

194 2.3.1.2. *On fiber* UV co-polymerization of the polymeric ionic liquid

195 The homemade SPME device was constructed by using a previously published
196 procedure (Ho et al., 2014). Functionalized nitinol was attached to SPME holder using a
197 mix of epoxy adhesive paste, including resin (steel) and hardener mixed at a ratio of 1:1.
198 A full cure was reached for 24 hours at room temperature. Next, the functionalized nitinol
199 was cleaned with a soft paper napkin with acetone and dried in hot air for 20 seconds
200 before the IL was applied. A 1.3 cm length of the nitinol functionalized with VTMS was
201 then dip-coated with a solvent-free mixture containing the IL monomer, IL crosslinker
202 (50% w/w, with respect to the monomer) and the photo-initiator DAROCUR 1173 (5%
203 w/w, with respect to the monomer) as a free radical initiator. This mixture was previously
204 prepared under agitation for 5 min at 35 °C ± 1 °C. Afterwards, the fiber was exposed to

205 360 nm UV light for 2 h min using an RPR-100 UV photochemical reactor with a spinning
206 carousel (Southern New England Ultraviolet Company, Bradford, CT, USA). The
207 stability of the crosslinked PIL-based coatings (fiber) was investigated by adding the fiber
208 first to 20% methanol for 5 min, followed by another 10 min and finally for 15 min. The
209 coating must not dissolve for the fiber to be considered efficient for injection to the GC-
210 MS. The fiber was conditioned twice at 220 °C for 30 min.

211

212 2.3.1.3. *Calculation of the volumes of sorbent coatings*

213 Since PIL sorbent coatings often tend to form droplets, and to calculate the
214 volumes of sorbent coatings, the actual volumes of all droplets were summed. Each
215 droplet was ellipsoid in shape and thus their volumes were calculated first using the
216 following formula for the volume of ellipsoid (V_e):

217

218 $V_e = 4/3\pi a b c$, where $a = l/2$ (l = length of ellipsoid), $b = c = d/2$ (d = diameter of
219 ellipsoid)

220

221 The volume of the nitinol wire (core of the fiber, V_c) within each ellipsoid was
222 then calculated using the formula for cylinder:

223

224 $V_c = \pi r^2 h$, where h = length of wire within the ellipsoid and $r = 127/2$ (the diameter of
225 nitinol wire was 127 μm)

226

227 The actual volume of each droplet (V_d) was then calculated by subtracting the
228 volume of nitinol wire by the volume of ellipsoid ($V_d = V_e - V_c$).

229 Upon calculation of actual volumes for all droplets, the total volume of sorbent
230 was calculated by summing the actual volumes of all droplets.

231

232 2.3.1.4. *Optical microscopy analysis*

233 Microscopy images were obtained using a 10x infinite plan achromatic objective
234 lens fitted onto an LB-241 Biological Digital Microscope with a BCN2F-0.37 \times 23.2 mm
235 Eyepiece Adapter connected to an LC-35 - 5MP USB2.0 Graphics Accelerated
236 Microscope Camera (LABOMED Inc., Los Angeles, CA, USA). Image acquisition was
237 obtained using the software Capture 2.1.

238

239 2.3.2. *Fiber selection for extraction of 2-MI and 4-MI*

240 The extraction efficiency test was carried out using the variables fitted in level -1
241 of the Plackett–Burman (PB) Design (Table S1). Briefly, assessment of the fibers was
242 performed using the following variables: extraction time (30 min), extraction temperature
243 (30 °C), incubation time (5 min), NaCl (5% - w/v), desorption time (1 min), and stirring
244 rate (200 RPM). Table 2 describes the chemical composition of the PIL-based fibers. The
245 extraction procedure was performed similarly as reported in section 2.3.4. A commercial
246 polyacrylate (PA) fiber was used for comparison purposes.

247

248 2.3.3. *Multivariate optimization*

249 The conditions employed to extract 2-MI and 4-MI from *açaí*-based food products
250 were optimized using direct-immersion solid-phase microextraction (DI-SPME) through
251 the PB, CCRD, and Derringer and Suich designs to identify the best extraction condition.
252 For this, the sample was spiked with native standards at a concentration of 1 mg kg⁻¹
253 through the addition of 10 μ L of the multi-analyte working solution. Additionally, the IS

254 was added at a concentration of 0.1 mg kg⁻¹ using 10 µL of its respective working
255 solution. As result, optimization was based on the peak area values for each compound.
256 In summary, PB design was used to determine the most important independent variables
257 that impact the extraction of these compounds. The following variables were evaluated at
258 two levels, high (+1) and low (-1), including incubation time (min), extraction time
259 (min), extraction temperature (°C), amount of NaCl (%, w/v), stirring rate (RPM), and
260 desorption time (min). Table S1 shows the design matrix with the coded and real values
261 for the studied variables. The experimental design included 12 trials and 3 central points,
262 resulting in 15 independent trials (Table S2). The variables were analyzed using 10% of
263 significance, in order to minimize the risk of excluding an important variable in the next
264 step (Galindo et al., 2021).

265 Subsequently, variables that showed a significant effect were optimized through a
266 CCRD (p<0.05). The CCRD was based on a 2³ factorial design evaluated at different
267 levels, low level (-1), central point (0), high level (+1), and axial points (- α and + α) to
268 determine the optimized extraction conditions (Table S3). The experiment was performed
269 randomly in an effort to mitigate the effect of nonessential variables (Table S4).

270 Finally, the desirability function proposed by Derringer and Suich (Derringer &
271 Suich, 1980) was used to obtain the best response simultaneously for both compounds.
272 This function is based on individual responses of each compound and then combined into
273 their global desirability function. This desirability is based on maximization of analyte
274 extraction and is measured in the range from 0.0 to 1.0 values where 0.0 indicates an
275 undesirable value and 1.0 indicates a very desirable value. Furthermore, Derringer and
276 Suich's tool (D&S) uses the experimental results obtained from CCRD to perform its
277 statistical analyses. The mathematical models indicated by the desirability function were
278 experimentally validated and used to extract the compounds proposed in this study.

279 In summary, CCRD is used to individually determine the best extraction
280 conditions for each investigated analyte, while D&S is employed to achieve the optimal
281 extraction conditions for all analytes simultaneously.

282 The PB and CCRD results were processed by the Protimiza Experimental Design
283 software (Protimiza Experimental Design, Campinas, SP, Brazil). The experiments
284 obtained from Derringer and Suich's tool were conducted using Design Expert 6.0
285 software (Stat-Ease, Minneapolis, MN, USA).

286

287 2.3.4. *Extraction method*

288 The optimized extraction condition involved the following steps: 1 g of
289 homogenized *açaí*-based food product sample was weighed into a 20 mL glass vial. Then,
290 15 mL of water was added followed by vortexing for 30 s. For the salting out effect, 0.75
291 g of NaCl was added with subsequent stirring for 30 s. The vial containing the sample
292 was incubated for 5 min. The incubation and extraction temperature were 57.1 °C. In
293 addition, the extraction condition was obtained using a stirring rate of 567 RPM for 100
294 min and thermal desorption of the analytes in the GC inlet for 3 min.

295

296 2.4. **Chromatographic conditions and mass spectrometry**

297 For 2-MI and 4-MI quantification, gas chromatograph-mass spectrometry (GC–
298 MS) (Agilent, Santa Clara, CA, USA) was used. The system consisted of a 7890B GC
299 coupled with a single quadrupole 5977A (Agilent, Santa Clara, CA, USA) mass
300 spectrometer with an electron ionization (EI) chamber. GC separation was achieved on
301 an Agilent J&W HP-FFAP capillary column (30m × 0.25 mm ID × 0.25 µm film
302 thickness, Agilent, Santa Clara, CA, USA). The oven temperature was programmed
303 initially at 60 °C for 0.9 min, increased to 140 °C at 10 °C min⁻¹ and held for 1 min,

304 ramped to 170 °C at 2 °C min⁻¹, and finally ramped to 230 °C at 30 °C min⁻¹ and held
305 for 5 min, with a total run of 31.9 min. Ultra-high purity helium (Matheson, CO, USA)
306 was used as the carrier gas at 1.0 mL min⁻¹. The GC inlet was maintained at 240 °C in
307 spitless mode (100 ml min⁻¹ at 1 min). The electron ionization energy was 70 eV. The
308 temperatures of the MS transfer line, ion source, and the MS quadrupole were set to 235
309 °C, 235 °C, and 180 °C, respectively. System control and data acquisition were performed
310 in MassHunter software, version B.07.00. (Agilent, Santa Clara, CA, USA).

311 Analyses were conducted with a solvent delay of 4 min. Data were initially
312 acquired in SCAN mode (mass range: 50–350 *m/z*) to locate and identify 2-MI, 4-MI, and
313 the IS in the samples. Selected ion monitoring (SIM) was used for analysis of each
314 compound. Three specific ions were selected for the analysis of each compound,
315 including one as the target ion (quantification: 82 *m/z* for 2-MI and 4-MI) and two as
316 qualifying ions (qualifier ion: 81 and 54 *m/z* for 2-MI and 4-MI). The analytes were
317 confirmed by comparing the ions and retention times using their commercial standards.
318 Quantification was performed by internal standardization including one quantifier ion and
319 two as qualifying ions (target ion: 71 *m/z*, qualifier ion: 81 and 95 *m/z*).
320

321 2.5. In-house validation

322 Validation of the optimized method was assessed considering the requirements of
323 the Commission Decision 2002/657/EC (EC, 2002). The method was validated for limit
324 of detection (LOD), limit of quantification (LOQ), linearity, recovery, matrix effects, and
325 precision intra- and inter-days.

326 LOD and LOQ were defined as the lowest concentration in a spiked blank sample
327 that achieved signal-to-noise ratios of 3:1 and 10:1, respectively. Linearity was evaluated
328 in solvent and matrix-matched calibration curves where seven calibration levels (with

329 equidistant points of 20.83) were used with concentrations ranging from 75 to 200 μg
330 kg^{-1} . Recovery (%) assays were performed in three concentration levels (LOQ, 100, and
331 200 $\mu\text{g k}^{-1}$) using six replicates. The matrix effect (ME) was calculated for each
332 compound, where $\text{ME}(\%) = \text{Matrix Effect} (\%) = [(\text{matrix-matched calibration slope} -$
333 $\text{solvent calibration slope})/\text{solvent calibration slope}] \times 100$ (Nascimento et al., 2023).

334 Precision was performed using a spiked blank sample, at three concentration
335 levels (LOQ, 100, and 200 $\mu\text{g kg}^{-1}$) in triplicate for repeatability (intra-day precision) and
336 reproducibility (inter-day precision – three days) studies. The precision results were
337 expressed as relative standard deviation (%RSD).

338

339 **2.6. Practical aspects and green assessment of the analytical method**

340 In order to evaluate the environmental sustainability and practicality of the
341 analytical methodology employed in this study, the Green Analytical Procedure Index
342 (GABI) (Płotka-Wasylka, 2018) and the Blue Applicability Grade Index (BAGI)
343 (Manousi et al., 2023), respectively, were utilized. GABI assesses parameters ranging
344 from sample collection to final determination, utilizing five pentagrams to gauge the
345 environmental impact of each segment of the analytical procedure. Meanwhile, BAGI
346 assigns scores to a pictogram, reflecting aspects related to the practicality and
347 applicability of an analytical method. This pictogram delineates the strengths and
348 weaknesses of procedural steps in terms of practicality and applicability. To analyze its
349 results, this index is categorized into 10 groups that scrutinize analytical determinations
350 and sample preparation steps.

351

352 **3. RESULTS AND DISCUSSION**

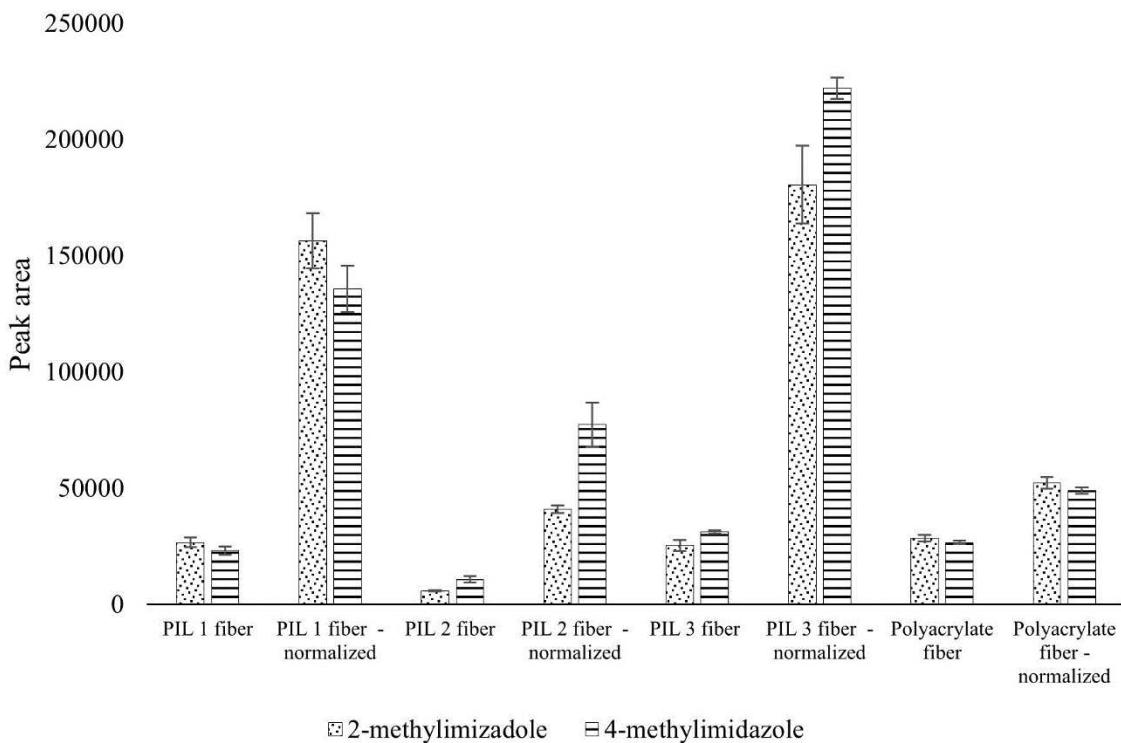
353 **3.1. Structural design of crosslinked PIL-based sorbent coatings**

354 PIL-based sorbent coatings comprised of different combinations of IL monomers
355 and crosslinkers were synthesized to examine their selectivity towards 2-MI and 4-MI.
356 Their performance was then compared with a commercial PA fiber. The composition of
357 the PIL sorbent coatings tested in this study is provided in Table 2. In an effort to enhance
358 the polarity of the sorbent coatings, various IL monomers were tailored to incorporate
359 polar groups to the terminal end of the alkyl chain. Polar compounds have been previously
360 shown to be readily extracted when the PIL cationic moiety contains polar substituent
361 groups (Pacheco-Fernández et al., 2019). Thus, a hydroxyl moiety was introduced to PIL
362 1, while carboxylic acid moieties were incorporated into PIL 2 and PIL 3, thereby
363 permitting an examination of the effects of hydrophilic interactions on the extraction
364 selectivity of these analytes. Furthermore, the crosslinker composition featured vinyl
365 benzyl moieties in PIL 1 and PIL 2, with a vinyl moiety present in PIL 3.

366 Aromatic moieties (vinyl benzyl groups) were introduced into the crosslinker of
367 PIL 1 and PIL 2, as this functional group may enhance specificity in the extraction of
368 aromatic compounds. This interaction occurs by enhancing π - π interactions between
369 aromatic analytes and the vinyl benzyl-terminated PIL (Pacheco-Fernández et al., 2016;
370 Yu et al., 2016). Additionally, the $[\text{NTf}_2]^-$ anion was incorporated into all PIL sorbent
371 coatings to exploit its capability in the extraction of polar analytes, while also providing
372 high thermal stability. This latter characteristic is particularly desirable as the GC inlet
373 operates at high temperatures (Ho et al., 2011; Meng et al., 2011)

374 Lastly, the analytes 2-MI (pKa 7.86) and 4-MI (pKa 7.51) are classified as weak
375 bases (basic analytes) and exhibit hydrophilic characteristics ($\log K_{\text{ow}} = 0.24$ for 2-MI
376 and 0.23 for 4-MI) (PubChem, 2023). Therefore, enhancing interactions between the
377 functionalized PIL and basic analytes can occur through hydrogen bonding interactions
378 (Yu et al., 2016). This interaction is favored due to the presence of an unsubstituted

379 nitrogen in imidazole, which acts as a hydrogen-bond acceptor for the N-H group
380 (Hachuła et al., 2010). Consequently, the incorporation of hydroxyl and carboxylic acid
381 moieties into the PIL chemical structure facilitates hydrogen bonding interactions,
382 leading to potential improvement in hydrogen bonding acidity (Yu et al., 2016).


383

384 **3.2. Fiber selection for extraction of 2-MI and 4-MI**

385 Because the phase volume values used for preparing the PIL fibers were different,
386 the results could potentially show misleading analyte extraction efficiencies due to these
387 variations. Therefore, normalization was employed to adjust the extraction efficiency
388 based on the sorbent phase volume using the following equation: $n = \text{peak area} / \text{phase}$
389 volume value.

390 Figure 1 depicts both non-normalized and normalized data with results expressed
391 as chromatographic peak area. For normalization of the PA fiber, the phase volume was
392 determined based on information available in the literature for coating this type of fiber.
393 A phase volume value of 0.543 μL was used for the PA coating based on previous
394 reported data (Shirey, 2012).

395

396 2-methylimidazole 4-methylimidazole

397 **Figure 1.** Normalized and non-normalized bar graphs showing a comparison of extraction
 398 efficiency of each fiber (three PIL fibers and one commercial PA fiber) for 2-
 399 methylimidazole and 4-methylimidazole.

400 PIL: Polymeric Ionic Liquid

401

402 Observing the chart, it is possible to note an increase in extraction efficiency when
 403 comparing normalized and non-normalized data, which was more obvious for the PIL
 404 fibers. This phenomenon occurs because the PIL fibers offered greater extraction
 405 efficiency per phase volume compared to the PA fiber. Regarding the difference among
 406 the phase volume of different PIL fibers, this was already expected since they were
 407 manufactured in-house. Therefore, some variations can be expected during fiber
 408 preparation.

409 Taking into account the normalized data, the PA fiber showed lower extraction
 410 efficiency than those obtained from PIL fibers for both analytes (except for 2-MI, which
 411 obtained higher extraction efficient only regarding PIL 2 fiber), even though the PA fiber

412 had the highest phase volume (approximately three times greater than that used for the
413 PIL fibers). This phenomenon is likely due to the presence of interferents, usually found
414 in complex matrices like food samples, that may hinder the performance of the PA fiber
415 and resulting in analytical issues such as low sensitivity, when compared to PIL fibers
416 (Pacheco-Fernández et al., 2019). Furthermore, the results showed that the PIL-based
417 absorbent coating is more efficient than the commercial fiber absorbent coating tested in
418 this work. Consequently, it is possible to infer that the extraction of these analytes per
419 unit of phase volume is higher in the PIL-based fiber, which highlights the performance
420 of these materials compared to that already found in the market.

421 Regarding the non-normalized data, 4-MI was best extracted using PIL 3. On the
422 other hand, 2-MI was more effectively extracted using the PA fiber. Despite the fact that
423 2-MI is considered possibly carcinogenic to humans (IARC, 2023), neither the EFSA nor
424 the European Commission Regulation has yet established a threshold for this analyte. As
425 a result, the regulation only specifies 4-MI. For this reason, PIL 3 was selected for the
426 subsequent step (multivariate optimization) and for performing analytical validation of
427 the method, as it demonstrated the best performance in the extraction of 4-MI (EC, 2012;
428 EFSA, 2011).

429 As shown in Figure 1, the extraction efficiencies of both analytes varied based on
430 the type of fiber used. Given that absorption is the primary extraction mechanism of both
431 the PA and PIL fibers, the analytes can readily partition into the sorbent materials (Carriço
432 et al., 2020). As a result, the concentration of each analyte (despite them being isomers)
433 may be influenced by their competition for sorbent active sites. Additionally, the coating
434 thickness influences the absorption capacity of the fibers (Carriço et al., 2020).

435 For the 2-MI, the fibers that provided the best extraction response (considering
436 the data without normalization) followed the decreasing order: PA fiber > PIL 1 > PIL 3

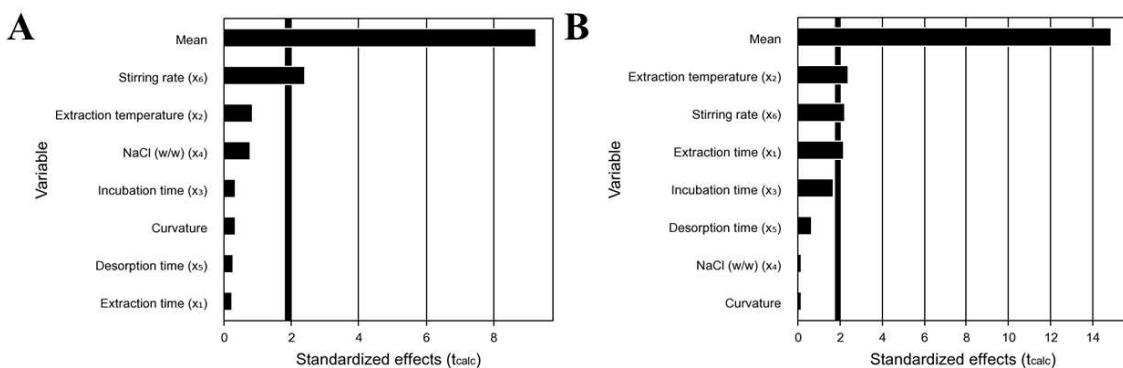
437 > PIL 2. Among the PIL fibers, the sorbent coating featuring a hydroxyl group (PIL 1)
438 exhibited superior extraction efficiency compared to the other PIL fibers. Furthermore,
439 this fiber possessed a greater film thickness and approximately 0.21 times more sorbent
440 volume than the other PIL fibers, as indicated in Table 2. Therefore, it can be inferred
441 that PIL 1 had a higher amount of PIL, resulting in improved extraction efficiency.
442 Similar findings were previously demonstrated by Cagliero and co-workers, who
443 investigated different IL monomers incorporating either a hydroxy group or a carboxylic
444 group appended to the IL cation for the extraction of the polar acrylamide analyte. Their
445 work concluded that the hydroxy moiety exhibited superior extraction performance
446 compared to the carboxylic moiety (Cagliero, Ho, et al., 2016).

447 Concerning 4-MI, the extraction efficiency (considering the non-normalized data)
448 was observed in the following decreasing order: PIL 3 > PA > PIL 1 > PIL 2. PIL 3
449 featured a carboxylic acid moiety and the observed data aligns with a study that
450 demonstrated superior performance for the carboxylic acid moiety over the hydroxy
451 moiety for the extraction of polar analytes (Nacham et al., 2016).

452

453 3.3. Multivariate optimization

454 A multivariate sequential design was selected to optimize the extraction method
455 using the PIL 3 fiber. When using a factor-by-factor approach in optimization, a
456 significant amount of information can be missing during the analysis process as this
457 method does not allow for the simultaneous assessment of interactions among all
458 independent variables. Therefore, multivariate optimization was applied and contains
459 features that yield better statistical results, such as the concurrent occurrence of
460 interactions between factors when compared to factor-by-factor optimization. The


461 sequential optimization employed in this study consisted of the following three steps: (1)
462 PB; (2) CCRD; and (3) Derringer & Suich's tools.

463

464 *3.3.1. Plackett-Burman design (PB)*

465 The PB assay was employed to assess the impact of each independent variable on
466 the extraction efficiency of the investigated analytes. The experiment was performed with
467 a blank sample spiked with 2-MI and 4-MI at 1 mg kg⁻¹. PB screening revealed that among
468 the studied factors, extraction time (X₁), extraction temperature (X₂), and stirring rate
469 (X₆) exhibited a significant effect ($p < 0.1$) on the extraction process, as depicted in Figure
470 2. Furthermore, Table S5 shows the main effects estimated on the 2-MI and 4-MI and
471 their *p*-values from the PB.

472

473

474 **Figure 2.** Pareto chart of the Plackett-Burman design response for 2-methylimidazole (A)
475 and 4-methylimidazole (B).

476

477 The effect of extraction time (X₁) on the extraction capacity of both analytes was
478 investigated. The results showed that this variable exhibited a positive effect on the
479 extraction of 4-MI, implying that the extraction capacity increases as the extraction time
480 is extended until equilibrium is reached (Oliveira et al., 2020; Souza-Silva & Pawliszyn,
481 2015). Furthermore, the extraction temperature (X₂) was another variable that exhibited

482 a positive effect on the extraction of 4-MI. The extraction temperature is associated with
483 a decrease in viscosity which facilitates increased diffusivity of the analyte in the extract
484 during the pre-equilibrium step. Another characteristic of this positive effect implies that
485 an elevated temperature can enhance the extraction of analytes bound within the food
486 matrix. Consequently, the analyte can transition into its free form in aqueous media
487 (Oliveira et al., 2020; Souza-Silva & Pawliszyn, 2015).

488 The stirring rate (X_6) demonstrated a positive effect on the extraction of both
489 analytes. An increase in the stirring rate can enhance mass transport phenomena, leading
490 to improved diffusion of the analytes from the sample to the sorbent coating.
491 Consequently, better agitation enhances the extraction response for these analytes (Souza-
492 Silva & Pawliszyn, 2015).

493 Previous studies employed the PB method to evaluate the effects of the variables
494 described earlier in this section using commercial fibers for extraction by SPME. Oliveira
495 and co-workers reported that the extraction temperature and extraction time also exhibited
496 a positive and significant effect on the extraction of volatile organic compounds using
497 commercial fibers (Oliveira et al., 2020). Additionally, Souza-Silva and Pawliszyn
498 observed that variables such as stirring rate and extraction temperature demonstrated a
499 positive and significant effect on the extraction of certain pesticides (Souza-Silva &
500 Pawliszyn, 2015). Upon investigating the Scopus database with the research terms
501 ["Plackett-Burman" and "Polymeric Ionic Liquid" and "SPME"], no work was found
502 utilizing PB for the optimization of extraction performance using PIL-based fibers.

503 Regarding the incubation time (X_3), no statistical significance was noted. This
504 outcome suggests that prolonged exposure of the extract (in the extraction vial) to
505 elevated temperatures could potentially disrupt the equilibrium conditions, negatively
506 impacting the distribution coefficient of the analyte (K_{fs}) (Oliveira et al., 2020; Souza-

507 Silva & Pawliszyn, 2015). Although this parameter is more closely associated with the
508 headspace mode (HS) than the DI mode, the pre-incubation step must be executed to
509 ensure uniform temperature distribution throughout the sample vial and to mitigate
510 potential reproducibility issues (Souza-Silva & Pawliszyn, 2015). The shortest incubation
511 time employed in the PB experiment (5 min) was maintained for CCRD runs, without
512 adversely affecting the extraction efficiency.

513 The amount of NaCl (X_4) surprisingly did not yield any statistically significant
514 effect on any of the compounds under assessment. It was anticipated that NaCl might
515 enhance the extraction capacity in SPME through the salting-out effect, especially given
516 the high solubility of these analytes in water. Moreover, amines are generally susceptible
517 to the salting-out effect. A possible explanation for the obtained result could be linked to
518 the quantity of NaCl used. Excessive amounts of NaCl could potentially impact the
519 integrity of the fiber coatings, leading to damage. Consequently, a reduced number of
520 active sites may be available for extraction (Kataoka et al., 2000). As a result, the amount
521 of NaCl was set at the lowest level from the PB study (5% (0.750g) NaCl – w/v) to ensure
522 the longevity of the fiber without compromising extraction of the compounds.

523 In terms of desorption time (X_5), it can be stated that the desorption temperatures
524 used in the PB design demonstrated similar behavior for both analytes, and as a result,
525 did not have a statistically significant impact on the results. Thus, the desorption time was
526 fixed at 1 minute.

527 For the next optimization step (CCRD), independent variables that presented a
528 significant effect in the PB design were evaluated. Because the PB design is considered
529 to be saturated, its curvature is investigated through its central point. It is possible to
530 obtain lower or higher values in the other assays displayed in the PB screening. Thus, it
531 is assumed that a curvature can be created. Through the curvature test, it is therefore

532 possible to ascertain whether the statistically significant factors were disguised, either due
533 to an increase in standard error or due to the *p*-value. Furthermore, this test can determine
534 if the analysis was carried out using an ideal range, thereby making it a robust method.

535 It was found that the curvature for both analytes was not significant. This implies
536 that curvature is not present in the central point area and that the variable ranges used in
537 this screening were ideal for performing this design.

538

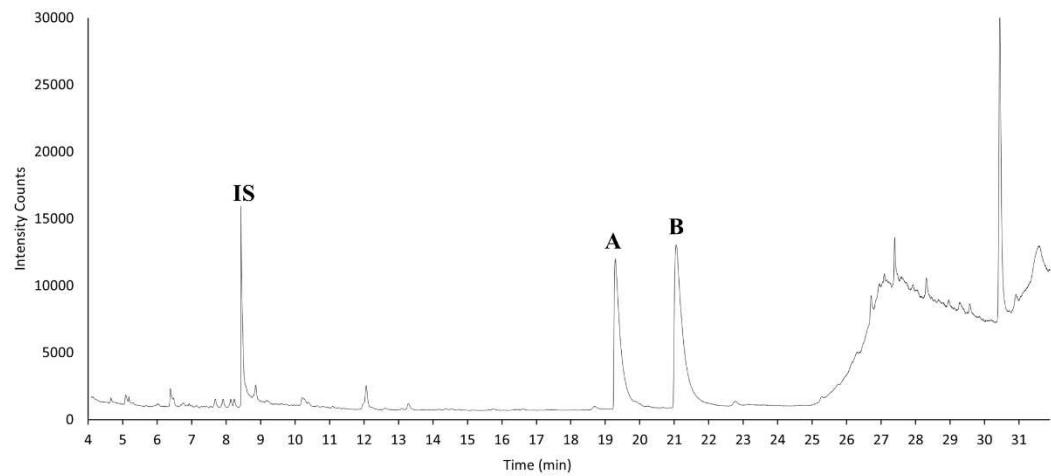
539 *3.3.2. Central composite rotatable design (CCRD) and Derringer and Suich's tool*

540 After identifying the independent variables through PB screening, a CCRD was
541 executed to determine the optimal extraction conditions for both analytes. Consequently,
542 due to the positive effects demonstrated by the selected variables in the PB screening, the
543 range of each variable within the CCRD was expanded. The factor levels and
544 experimental domain applied to the CCRD are displayed in Table S3. Furthermore, Table
545 S4 illustrates the CCRD with both coded and real variables for the extraction of 2-MI and
546 4-MI in *açai*-based food products.

547 Details for a new prediction model (reparametrized model), such as statistical
548 coefficients, *p*-values, model fit, and regression significance, present ideal criteria for
549 achieving good analytical performance (Table S6). In summary, the parametric models
550 exhibited coefficients of determination of 93.56% and 94.75% for 2-MI and 4-MI,
551 respectively, demonstrating that the values from the studied area yielded a good predictive
552 model. Furthermore, the predictive model for both analytes did not exhibit a lack of fit;
553 that is, it was not deemed significant, with values of 0.5114 and 0.2124 for 2-MI and 4-
554 MI, respectively.

555 Since the studied compounds exhibited distinct optimal extraction conditions in
556 the design of experiments (response surface methodology), as illustrated in Figure S6,

557 D&S were employed to attain the best simultaneous extraction response for both
558 compounds. As a result, the algorithm proposed the following conditions: an extraction
559 time of 100 minutes, an extraction temperature of 57.1 °C, and a stirring rate of 567 RPM.
560 Moreover, these conditions exhibited a desirability score of 0.848. The model provided
561 by D&S was experimentally confirmed in triplicate by comparing the predicted responses
562 (peak area) with those obtained through experimentation, as shown in Table S7.


563 Lastly, it is worth noting that multivariate optimization improved the extraction
564 capacity by 7 times when compared to non-optimized assays. This result confirms that
565 the design of experiments (DoE) employed in this study was effective in enhancing the
566 analytical response of the analytes.

567

568 **3.4. In-house validation**

569 The suitability of the PIL-based SPME method for the extraction of 2-MI and 4-
570 MI in *açai*-based food products was evaluated using the performance criteria displayed
571 in Table 3. In addition, a representative chromatogram (Figure 3) and spectra (Figure S7),
572 along with reference spectra (Figure S8) obtained from NIST, are provided in the
573 supplementary material.

574

575

576 **Figure 3.** Representative chromatogram of a spiked sample with the internal standard
577 (IS), 2-methylimidazole (A), and 4-methylimidazole (B).

578

579 **Table 3.** Method performance characteristics obtained using the PIL based-SPME-GC-MS method.

Compound	LOD ($\mu\text{g kg}^{-1}$)	LOQ ($\mu\text{g kg}^{-1}$)	Linearity, R^2 (range of $75\text{--}200\ \mu\text{g kg}^{-1}$)	Precision, RSD %						Matrix effect (%)	
				Recovery (%), n = 3			Intra-day, n = 3 (Inter-day, n = 9)				
				Matrix-matched curve	75	100	200	75	100	200	
					$\mu\text{g kg}^{-1}$	$\mu\text{g kg}^{-1}$	$\mu\text{g kg}^{-1}$	$\mu\text{g kg}^{-1}$	$\mu\text{g kg}^{-1}$	$\mu\text{g kg}^{-1}$	
2-methylimidazole	25	75	0.9921	87.1	89.7	86.1	11.2	7.9	7.1	30	
								(8.6)	(7.1)	(7.6)	
4-methylimidazole	25	75	0.9932	83.1	81.7	87.4	6.2	6.5	3.6	37	
								(9.2)	(9.8)	(8.3)	

580 ^awater; LOD: limit of detection; LOQ: limit of quantification; R^2 : coefficient of determination; RSD: relative standard deviation.

581 The LOD and LOQ values achieved the same limits for both analytes. The
582 analytical limits met the criteria established by the food safety assessment agencies,
583 namely EFSA and the European Commission, as well as the Cramer classification
584 scheme. Due to the lack of specific regulations for limits on 2-MI and 4-MI in foodstuffs,
585 the analytical method limits were established using the limits set for caramel colorants.

586 Signal enhancements were observed for both analytes. Due to complexities of the
587 ingredients present in *açaí*-based food products, including macro and micronutrients and
588 other organic compounds, the signal intensity can be affected (Nascimento et al., 2023).
589 Thus, in order to mitigate the observed matrix effect, matrix-matched calibration curves
590 were used for analytical quantification. Adequate linearity was obtained for both analytes
591 with a coefficient of determination (R^2) ≥ 0.9921 .

592 Repeatability (intra-day precision), reproducibility (inter-day precision), and
593 recovery were employed to assess the extraction efficiency of the proposed method. The
594 intra-day precision, expressed in terms of the relative standard deviation (RSD %), ranged
595 from 7.1% to 11.2% for 2-MI and from 3.6% to 6.5% for 4-MI. In the case of the inter-
596 day precision (RSD%), values between 7.1% and 8.6% for 2-MI and 8.3% and 9.8% for
597 4-MI were observed. Experimental results showed that the recovery for 2-MI ranged from
598 86.1% to 89.7%, and for 4-MI ranged from 83.1% to 87.4%. Precision and recovery tests
599 comply with the performance criteria set by Commission Decision 2002/657/EC (EC,
600 2002). This commission established that the recovery test using a mass fraction $\geq 10 \mu\text{g}$
601 kg^{-1} shall have results between 80% and 110%, and the precision test for concentrations
602 lower than $100 \mu\text{g kg}^{-1}$ shall have a coefficient of variation as low as possible.

603
604 **3.5. Application and comparison of the method with others reported in the**
605 **literature**

606 Both secondary amines analyzed in this work represent a significant challenge in
607 sample preparation due to their chemical characteristics. In general, previous studies that
608 have investigated these amines require the use of long and laborious extraction processes,
609 such as a derivatization process (Cunha et al., 2016), or methods with low cost-
610 effectiveness, including employing single-use and expensive cartridges (Stone, 2017).
611 Due to their hydrophilic nature, they are not suitable for accurate determination by GC-
612 MS using a (5%-phenyl)-methylpolysiloxane phase capillary column (Cunha et al.,
613 2016). For this reason, the authors needed to derivatize these molecules to increase their
614 partition coefficient leading to improved performance upon analysis by GC-MS (Xu et
615 al., 2009). On the other hand, Cagliero et al. did not use a derivatization process when
616 analyzing acrylamide since they used a polar chromatographic stationary phase combined
617 with DI-SPME and a PIL-based fiber (Cagliero, Ho, et al., 2016). This analytical
618 technique was suitable for extracting polar analytes from food samples. Thus, in this
619 work, PIL-DI-SPME associated with a polar capillary column was used to avoid carrying
620 out the derivatization process. Additionally, due to the fact that 2-MI and 4-MI are low
621 volatility organic compounds and have low vapor pressure (0.01 [mmHg]) and high-water
622 solubility (PubChem, 2023), DI-SPME was chosen for performing this analysis.

623 Currently, the field of analytical chemistry has focused on green analysis,
624 avoiding the use of organic solvents. In an investigation on the Scopus database using the
625 terms “2-methylimidazole’ OR ‘4-methylimidazole’ AND ‘GC-MS’”, no paper was found
626 that has developed a method by GC-MS for food analysis without using organic solvents,
627 whether in the extraction, derivatization step, or pH correction of the extract. According
628 to this search, this is the first solvent-free method for the simultaneous analysis of 2-MI
629 and 4-MI in a food matrix using microextraction technique. Additionally, there are few
630 studies that investigate these analytes simultaneously. In summary, Table 4 shows a

631 comparison of the method developed in this study with others previously published in the
632 literature using the aforementioned terms in the Scopus database.

Table 4. Comparison of the method using PIL-based sorbent coatings and SPME-GC-MS with other GC-based methods.

Analyte	Sample	Extraction method	Use of organic solvents	Derivatization process*	Capillary column	Reference
4-MI	Brown colored foods and beverages	Ion-pair extraction	Yes (bis-2-ethylhexylphosphate, chloroform, hydrochloric acid, acetonitrile, isobutanol, pyridine, isobutyl chloroformate)	Yes	low-polarity (DB-5MS)	(Lee & Lee, 2016)
4-MI	Cooked meat	Solvent extraction	Yes (acetonitrile, isobutanol, pyridine, Isobutyl chloroformate, hexane)	Yes	mid-polarity (DB-35)	(Karim & Smith, 2015)
4-MI	Ammonia Caramel	Ion-pair extraction	Yes (bis(2-ethylhexyl) phosphoric acid, chloroform, hydrochloric acid, acetonitrile, isobutanol, pyridine, isobutyl chloroformate, isoctane).	Yes	low-polarity (RTX-5M)	(Wieczorek et al., 2018)
4-MI	Soluble coffee and coffee substitutes	Solvent extraction	Yes (methanol, bis-2-ethylhexylphosphate, chloroform, hydrochloric acid, acetonitrile, isobutanol, pyridine, isobutyl chloroformate)	Yes	low-polarity (DB-5MS)	(Cunha et al., 2016)

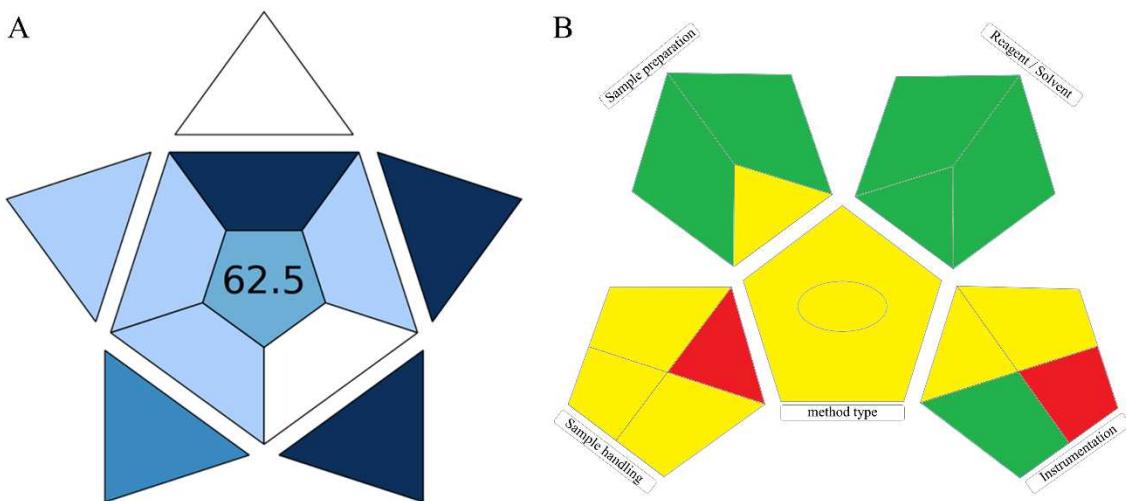
4-MI	Balsamic vinegars and processed sauces	Ion-pair extraction	Yes (bis-2-ethylhexylphosphate, chloroform, acetonitrile, isobutanol, pyridine, isobutyl chloroformate, isoctane)	Yes	low-polarity (DB-5MS)	(Cunha et al., 2014)
2-MI and 4-MI	<i>Açaí</i> -based food products	PIL-based SPME	No	no	high-polarity (HP-FFAP)	This work

634 * All derivatization procedures were based on the method using isobutyl chloroformate. 2-MI: 2-methylimidazole; 4-MI: 4-methylimidazole; PIL:
 635 polymeric ionic liquid; SPME: solid phase microextraction.

636 **3.6. Occurrence of 2-methylimidazole and 4-methylimidazole in *açaí*-based food**

637 **products**

638 The validated method was applied to the evaluation of 2-MI and 4-MI in 25
639 samples of *açaí*-based food products (Table 1). 4-MI was quantified in samples B, E, and
640 F at 79, 81, and 87 $\mu\text{g kg}^{-1}$, respectively. In sample S, 4-MI was detected below the LOQ.
641 None of the samples showed 2-MI content above the LOD. Assuming that the formation
642 of 2-MI is lower than the formation of 4-MI in foods (Wu et al., 2015), it was expected
643 that 2-MI could have either low or no content in this matrix sample.


644 Finally, despite the quantified concentration being below the ADI established by
645 EFSA and the European Commission's regulations, it is worth mentioning that the EFSA
646 Panel on Food Additives and Nutrient Sources added to Food highlighted that the
647 anticipated dietary exposure of child and adult populations may exceed the ADIs for
648 caramels, including III and IV (EFSA, 2011). Thus, findings reported in this work can be
649 useful for regulatory authorities to enhance the information on the food basket that
650 contains 2-MI and 4-MI.

651

652 **3.7. Practical aspects and green assessment of the analytical method**

653 According to BAGI, it is recommended that a total score of 60 out of 100 be
654 achieved so that the analytical procedure can be classified as a practical method (Manousi
655 et al., 2023). Thus, the method developed in this work (PIL-based SPME-GC-MS)
656 achieved sufficient parameters to be classified as an analytical approach that has
657 practicality and applicability for use in routine analysis laboratories (Figure 4(A)).
658 Furthermore, BAGI pictograms can comprise qualitative features based on different hues
659 of dark blue, blue, light blue, and white, which represent high, medium, low, and no
660 compliance with the method's practical criteria, respectively (Manousi et al., 2023).

661 Overall, BAGI can be considered as a complementary tool to other tools that assess the
662 green capacity of an analytical method. In this case, a GABI tool was used to evaluate the
663 green criteria, using pentagrams colored green, yellow, and red, representing low,
664 medium, and high environmental impact, respectively (Płotka-Wasylka, 2018).

665
666 **Figure 4.** (A) Pictogram reflecting the aspects related to the practicality and applicability
667 of the methodology by the Blue Applicability Grade Index (BAGI), and (B) pentagrams
668 showing the environmental impact of the analytical procedure by the Green Analytical
669 Procedure Index (GABI).

670
671 As depicted in Fig. 4(B), the GABI tool showed that the analytical method
672 developed in this work had a low or medium environmental impact. The pictogram
673 obtained predominantly highlighted in green and yellow, equivalent to 87% of the parts
674 of all the pictograms, indicating a satisfactory analytical method. The category that ranked
675 the use of solvents and reagents showed the best performance in the greenness
676 assessment, with all parts of the pictogram marked in green. Regarding the red part in the
677 sample handling pictogram, this classification was addressed to the collection topic of the
678 sample. However, it must also be considered that for some analyses, it is not possible to

679 perform them on-site, as they require instruments only available in the laboratory. Thus,
680 the significance of these green assessment tools lies in their ability to pinpoint additional
681 vulnerabilities in the analytical process and contribute to the exploration of fresh,
682 environmentally-friendly alternatives.

683 Lastly, the pictogram addressing the instrumentation assessment displayed one
684 part classified in red color. This part refers to waste, which in this method generated
685 around 15 mL of waste. However, it is worth highlighting that this waste comprised water,
686 sample, and NaCl, which can undergo a recycling process.

687

688 **4. Conclusions**

689 An analytical method based on PIL-DI-SPME coupled to GC-MS was developed
690 and fully validated for the simultaneous determination of 2-MI and 4-MI in *açai*-based
691 food products from Brazil and the United States. Three different PIL-based sorbent
692 coatings were examined in this study and a commercial PA fiber was used for comparison
693 purposes. Overall, the PIL-based fiber coating used in this work exhibited better
694 extraction efficiency than commercial fiber when comparing their fiber volumes.
695 Therefore, the PIL-based fiber was chosen to perform all optimized experiments,
696 including the sequential multivariate optimization and analytical validation, due to its
697 superior extraction efficiency compared to the others. DoE was able to increase the
698 extraction capacity by 7 times as opposed to under non-optimized conditions. Validation
699 criteria such as LOD, LOQ, linearity, recovery, matrix effects, and intra- and inter-days
700 precision were evaluated to ensure the suitability of the analytical method. All validation
701 parameters complied with the requirements of Commission Decision 2002/657/EC
702 concerning performance of analytical methods. Furthermore, the extraction approach
703 developed in this work for the analysis of 2-MI and 4-MI by GC-MS is novel since it did

704 not require the use of an organic solvent or a derivatization step. The validated method
705 was applied to 25 samples, and 4-MI was identified in four samples ranging from < LOQ
706 to 87 $\mu\text{g kg}^{-1}$. None of the samples showed a 2-MI content above the LOD. This is the
707 first study using PIL-SPME coupled to GC-MS to identify and quantify 2-MI and 4-MI
708 in food samples. It is expected that this data can be useful in the field of food quality
709 control and can contribute to the knowledge of these contaminants in consumers' diets.

710

711 **CRediT authorship contribution statement**

712 **Luis Eduardo Silva Nascimento:** Conceptualization, Methodology, Software,
713 Validation, Formal analysis, Investigation, Resources, Data curation, Writing - original
714 draft, Writing - review & editing, Visualization. **Bhawana Thapa:** Methodology,
715 Investigation, and Writing - review & editing. **Wellington da Silva Oliveira:**
716 Conceptualization, Methodology, Software, Formal analysis, Resources, Writing - review
717 & editing, and Supervision. **Plínio Ribeiro Rodrigues:** Software, Formal analysis,
718 Resources, and Writing - Review & Editing. **Helena Teixeira Godoy:** Conceptualization,
719 Methodology, Writing - review & editing, Supervision, Project administration, and
720 Funding acquisition. **Jared L. Anderson:** Conceptualization, Methodology, Resources,
721 Writing - review & editing, Visualization, Supervision, Project administration, and
722 Funding acquisition.

723

724 **Acknowledgments**

725 This research was supported by the São Paulo Research Foundation (FAPESP) -
726 grant#2021/11821-1; #2020/10990-1; #2020/02728-5. J.L.A. acknowledges support
727 from the Chemical Measurement and Imaging Program at the National Science
728 Foundation (CHE-2203891).

729

730 **Reference**

731 Akbari, N., Shafaroodi, H., Jahanbakhsh, M., Sabah, S., Molaeefaghaei, E., &
732 Sadighara, P. (2023). 4-Methylimidazole, a carcinogenic component in food,
733 amount, methods used for measurement; a systematic review. *Food Chemistry: X*,
734 18, 100739. <https://doi.org/10.1016/J.FOCHX.2023.100739>

735 Anderson, J. L., & Armstrong, D. W. (2005). Immobilized ionic liquids as high-
736 selectivity/high-temperature/high- stability gas chromatography stationary phases.
737 *Analytical Chemistry*, 77(19), 6453–6462.
738 <https://doi.org/https://doi.org/10.1021/ac051006f>

739 Cagliero, C., Ho, T. D., Zhang, C., Bicchi, C., & Anderson, J. L. (2016). Determination
740 of acrylamide in brewed coffee and coffee powder using polymeric ionic liquid-
741 based sorbent coatings in solid-phase microextraction coupled to gas
742 chromatography–mass spectrometry. *Journal of Chromatography A*, 1449, 2–7.
743 <https://doi.org/10.1016/J.CHROMA.2016.04.034>

744 Cagliero, C., Nan, H., Bicchi, C., & Anderson, J. L. (2016). Matrix-compatible sorbent
745 coatings based on structurally-tuned polymeric ionic liquids for the determination
746 of acrylamide in brewed coffee and coffee powder using solid-phase
747 microextraction. *Journal of Chromatography A*, 1459, 17–23.
748 <https://doi.org/10.1016/J.CHROMA.2016.06.075>

749 Carriço, I. R., Marques, J., Trujillo-Rodriguez, M. J., Anderson, J. L., & Rocha, S. M.
750 (2020). Sorbent coatings for solid-phase microextraction targeted towards the
751 analysis of death-related polar analytes coupled to comprehensive two-dimensional
752 gas chromatography: Comparison of zwitterionic polymeric ionic liquids versus
753 commercial coatings. *Microchemical Journal*, 158, 105243.

754 https://doi.org/10.1016/J.MICROC.2020.105243

755 CONAB. (2021). *Conab - Histórico Mensal Açaí*. <https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuario-e-extrativista/analises-do-mercado/historico-mensal-de-acai>

756

757

758 Cunha, S. C., Senra, L., Cruz, R., Casal, S., & Fernandes, J. O. (2016). 4-Methylimidazole in soluble coffee and coffee substitutes. *Food Control*, 63, 15–20. <https://doi.org/10.1016/J.FOODCONT.2015.11.006>

759

760

761 Cunha, S. C., Senra, L., Fernandes, J. O., & Cunha, S. C. (2014). Gas Chromatography-Mass Spectrometry Analysis of 4-Methylimidazole in Balsamic Vinegars and Processed Sauces. *Food Analytical Methods*, 7(7), 1519–1525. <https://doi.org/10.1007/S12161-013-9782-6>

762

763

764

765 Derringer, G., & Suich, R. (1980). Simultaneous Optimization of Several Response Variables. *Journal of Quality Technology*, 12(4), 214–219. <https://doi.org/10.1080/00224065.1980.11980968>

766

767

768 EC, E. C. (2002). Commission Decision of 14 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (notified under document number C(2002) 3044) (Text with EEA relevance) (2002/657/EC). *Official Journal of the European Communities*, L 221, 8. <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02002D0657-20221128>

769

770

771

772

773

774 EC, E. C. (2012). Commission Regulation (EU) No 231/2012 of 9 March 2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council. *Official Journal of the European Communities*, L83, 1–295. <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02012R0231-20230730>

775

776

777

778

779 EFSA, E. F. S. A. (2011). Scientific Opinion on the re-evaluation of caramel colours (E
780 150 a,b,c,d) as food additives. *EFSA Journal*, 9(3).

781 <https://doi.org/10.2903/j.efsa.2011.2004>

782 Galindo, M. V., Oliveira, W. da S., & Godoy, H. T. (2021). Multivariate optimization of
783 low-temperature cleanup followed by dispersive solid-phase extraction for
784 detection of Bisphenol A and benzophenones in infant formula. *Journal of*
785 *Chromatography A*, 1635, 461757.
786 <https://doi.org/10.1016/J.CHROMA.2020.461757>

787 Gionfriddo, E., Souza-Silva, É. A., Ho, T. D., Anderson, J. L., & Pawliszyn, J. (2018).
788 Exploiting the tunable selectivity features of polymeric ionic liquid-based SPME
789 sorbents in food analysis. *Talanta*, 188, 522–530.
790 <https://doi.org/10.1016/J.TALANTA.2018.06.011>

791 Hachuła, B., Nowak, M., & Kusz, J. (2010). Crystal and molecular structure analysis of
792 2-methylimidazole. *Journal of Chemical Crystallography*, 40(3), 201–206.
793 <https://doi.org/https://doi.org/10.1007/s10870-009-9634-9>

794 Ho, T. D., Canestraro, A. J., & Anderson, J. L. (2011). Ionic liquids in solid-phase
795 microextraction: A review. *Analytica Chimica Acta*, 695(1–2), 18–43.
796 <https://doi.org/10.1016/J.ACA.2011.03.034>

797 Ho, T. D., Toledo, B. R., Hantao, L. W., & Anderson, J. L. (2014). Chemical
798 immobilization of crosslinked polymeric ionic liquids on nitinol wires produces
799 highly robust sorbent coatings for solid-phase microextraction. *Analytica Chimica*
800 *Acta*, 843, 18–26. <https://doi.org/10.1016/J.ACA.2014.07.034>

801 IARC. (2023). *List of Classifications – IARC Monographs on the Identification of*
802 *Carcinogenic Hazards to Humans*. <https://monographs.iarc.who.int/list-of-classifications>

804 Joshi, M. D., Ho, T. D., Cole, W. T. S., & Anderson, J. L. (2014). Determination of
805 polychlorinated biphenyls in ocean water and bovine milk using crosslinked
806 polymeric ionic liquid sorbent coatings by solid-phase microextraction. *Talanta*,
807 118, 172–179. <https://doi.org/10.1016/J.TALANTA.2013.10.014>

808 Karim, F., & Smith, J. S. (2015). Detection and Quantification of 4(5)-Methylimidazole
809 in Cooked Meat. *Journal of Food Science*, 80(2), T465–T471.
810 <https://doi.org/10.1111/1750-3841.12748>

811 Kataoka, H., Lord, H. L., & Pawliszyn, J. (2000). Applications of solid-phase
812 microextraction in food analysis. *Journal of Chromatography A*, 880(1–2), 35–62.
813 [https://doi.org/10.1016/S0021-9673\(00\)00309-5](https://doi.org/10.1016/S0021-9673(00)00309-5)

814 Lee, S., & Lee, K. G. (2016). Analysis and risk assessment of 4(5)-methylimidazole in
815 brown colored foods and beverages. *Food Additives and Contaminants: Part B
816 Surveillance*, 9(1), 59–65. <https://doi.org/10.1080/19393210.2015.1127294>

817 Manousi, N., Wojnowski, W., Płotka-Wasylka, J., & Samanidou, V. (2023). Blue
818 applicability grade index (BAGI) and software: a new tool for the evaluation of
819 method practicality. *Green Chemistry*, 25(19), 7598–7604.
820 <https://doi.org/10.1039/D3GC02347H>

821 Meng, Y., Pino, V., & Anderson, J. L. (2011). Role of counteranions in polymeric ionic
822 liquid-based solid-phase microextraction coatings for the selective extraction of
823 polar compounds. *Analytica Chimica Acta*, 687(2), 141–149.
824 <https://doi.org/10.1016/J.ACA.2010.11.046>

825 More, S. J., Bampidis, V., Benford, D., Bragard, C., Halldorsson, T. I., Hernández-
826 Jerez, A. F., Hougaard Bennekou, S., Koutsoumanis, K. P., Machera, K., Naegeli,
827 H., Nielsen, S. S., Schlatter, J. R., Schrenk, D., Silano, V., Turck, D., Younes, M.,
828 Gundert-Remy, U., Kass, G. E. N., Kleiner, J., ... Wallace, H. M. (2019).

829 Guidance on the use of the Threshold of Toxicological Concern approach in food
830 safety assessment. *EFSA Journal*, 17(6).

831 <https://doi.org/10.2903/J.EFSA.2019.5708>

832 Nacham, O., Clark, K. D., & Anderson, J. L. (2016). Extraction and Purification of
833 DNA from Complex Biological Sample Matrices Using Solid-Phase
834 Microextraction Coupled with Real-Time PCR. *Analytical Chemistry*, 88(15),
835 7813–7820. <https://doi.org/https://doi.org/10.1021/acs.analchem.6b01861>

836 Nascimento, L. E. S., Wrona, M., da Silva Oliveira, W., Nerín, C., & Teixeira Godoy,
837 H. (2023). A study on the migration of primary aromatic amines in packaged açaí-
838 based (Euterpe oleracea Mart.) products. *Food Packaging and Shelf Life*, 38,
839 101118. <https://doi.org/10.1016/J.FPSL.2023.101118>

840 Oliveira, W. da S., Monsalve, J. O., Nerin, C., Padula, M., & Godoy, H. T. (2020).
841 Characterization of odorants from baby bottles by headspace solid phase
842 microextraction coupled to gas chromatography-olfactometry-mass spectrometry.
843 *Talanta*, 207, 120301. <https://doi.org/10.1016/J.TALANTA.2019.120301>

844 Pacheco-Fernández, I., Najafi, A., Pino, V., Anderson, J. L., Ayala, J. H., & Afonso, A.
845 M. (2016). Utilization of highly robust and selective crosslinked polymeric ionic
846 liquid-based sorbent coatings in direct-immersion solid-phase microextraction and
847 high-performance liquid chromatography for determining polar organic pollutants
848 in waters. *Talanta*, 158, 125–133.
849 <https://doi.org/10.1016/J.TALANTA.2016.05.041>

850 Pacheco-Fernández, I., Trujillo-Rodríguez, M. J., Kuroda, K., Holen, A. L., Jensen, M.
851 B., & Anderson, J. L. (2019). Zwitterionic polymeric ionic liquid-based sorbent
852 coatings in solid phase microextraction for the determination of short chain free
853 fatty acids. *Talanta*, 200, 415–423.

854 <https://doi.org/10.1016/J.TALANTA.2019.03.073>

855 Pedersen-Bjergaard, S. (2019). Analytical microextraction – Present status and future
856 directions. *TrAC Trends in Analytical Chemistry*, 118, 770.

857 <https://doi.org/10.1016/J.TRAC.2019.07.004>

858 Płotka-Wasylka, J. (2018). A new tool for the evaluation of the analytical procedure:
859 Green Analytical Procedure Index. *Talanta*, 181, 204–209.

860 <https://doi.org/10.1016/J.TALANTA.2018.01.013>

861 PubChem. (2023). *PubChem*. <https://pubchem.ncbi.nlm.nih.gov/>

862 Revelou, P. K., Xagoraris, M., Alissandrakis, E., Pappas, C. S., & Tarantilis, P. A.
863 (2021). A Review of the Analytical Methods for the Determination of 4(5)-
864 Methylimidazole in Food Matrices. *Chemosensors 2021, Vol. 9, Page 322*, 9(11),
865 322. <https://doi.org/10.3390/CHEMOSENSORS9110322>

866 Shirey, R. E. (2012). SPME Commercial Devices and Fibre Coatings. In J. Pawliszyn
867 (Ed.), *Handbook of Solid Phase Microextraction* (pp. 99–133). Elsevier.
868 <https://doi.org/10.1016/B978-0-12-416017-0.00004-8>

869 Souza-Silva, É. A., & Pawliszyn, J. (2015). Direct immersion solid-phase
870 microextraction with matrix-compatible fiber coating for multiresidue pesticide
871 analysis of grapes by gas chromatography-time-of-flight mass spectrometry (DI-
872 SPME-GC-ToFMS). *Journal of Agricultural and Food Chemistry*, 63(18), 4464–
873 4477. <https://doi.org/https://doi.org/10.1021/jf506212j>

874 Stone, J. (2017). Sample preparation techniques for mass spectrometry in the clinical
875 laboratory. In H. Nair & C. William (Eds.), *Mass Spectrometry for the Clinical
876 Laboratory* (pp. 37–62). Academic Press. [https://doi.org/10.1016/B978-0-12-800871-3.00003-1](https://doi.org/10.1016/B978-0-12-
877 800871-3.00003-1)

878 Wieczorek, M. N., Przygoński, K., & Jeleń, H. H. (2018). Determination of 4-

879 Methylimidazole in Ammonia Caramel Using Gas Chromatography-Tandem Mass
880 Spectrometry (GC-MS/MS). *Journal of Food Quality*, 2018.
881 <https://doi.org/10.1155/2018/4696074>

882 Xu, L., Basheer, C., & Lee, H. K. (2009). Chemical reactions in liquid-phase
883 microextraction. *Journal of Chromatography A*, 1216(4), 701–707.
884 <https://doi.org/10.1016/J.CHROMA.2008.10.005>

885 Yu, H., Ho, T. D., & Anderson, J. L. (2013). Ionic liquid and polymeric ionic liquid
886 coatings in solid-phase microextraction. *TrAC Trends in Analytical Chemistry*, 45,
887 219–232. <https://doi.org/10.1016/J.TRAC.2012.10.016>

888 Yu, H., Merib, J., & Anderson, J. L. (2016). Crosslinked polymeric ionic liquids as
889 solid-phase microextraction sorbent coatings for high performance liquid
890 chromatography. *Journal of Chromatography A*, 1438, 10–21.
891 <https://doi.org/10.1016/J.CHROMA.2016.02.027>

892 Zeger, V. R., Bell, D. S., Herrington, J. S., & Anderson, J. L. (2022). Selective isolation
893 of pesticides and cannabinoids using polymeric ionic liquid-based sorbent coatings
894 in solid-phase microextraction coupled to high-performance liquid
895 chromatography. *Journal of Chromatography A*, 1680, 463416.
896 <https://doi.org/10.1016/J.CHROMA.2022.463416>

897