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Abstract—The naming game (NG) is a classic model for study-
ing the emergence and evolution of language within a population.
In this article, we extend the traditional NG model to encompass
multiple committed opinions and investigate the system dynamics
on the complete graph with an arbitrarily large population and
random networks of finite size. For the fully connected complete
graph, the homogeneous mixing condition enables us to use
mean-field theory to analyze the opinion evolution of the system.
However, when the number of opinions increases, the number of
variables describing the system grows exponentially. To mitigate
this, we focus on a special scenario where the largest group of
committed agents competes with a motley of committed groups,
each of which is smaller than the largest one, while initially, most
of uncommitted agents hold one unique opinion. This scenario is
chosen for its recurrence in diverse societies and its potential for
complexity reduction by unifying agents from smaller committed
groups into one category. Our investigation reveals that when
the size of the largest committed group reaches the critical
threshold, most of uncommitted agents change their beliefs to
this opinion, triggering a phase transition. Further, we derive the
general formula for the multiopinion evolution using a recursive
approach, enabling investigation into any scenario. Finally, we
employ agent-based simulations to reveal the opinion evolution
and dominance transition in random graphs. Our results provide
insights into the conditions under which the dominant opinion
emerges in a population and the factors that influence these
conditions.

Index Terms—Divide-and-conquer, mean-field theory, naming
game (NG), tipping point.

I. INTRODUCTION

RESEARCH on opinion spreading and collective behavior
in social systems has spanned over four decades, with

significant interest from both mathematical and sociophysics
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perspectives [1], [2], [3]. The seminal voter model, introduced
by Holley and Liggett [4], initiated this exploration, wherein
actors, holding binary opinions (−1 and +1), adopt the opinion
of their randomly chosen neighbors at each step. Subsequent
models such as the Sznajd model [5] and majority-rule model
[6] have been proposed to investigate binary opinion compe-
tition and language evolution. Later, the naming game (NG)
model [7], [8] has been developed to study language emergence
and evolution, allowing for some agents to hold both opinions
simultaneously [9]. Recently, evolutionary game models have
emerged to elucidate social influencing from the perspective of
cooperative behavior [10], [11].
Here, we employ the NG model to study the opinion dy-

namics under various scenarios. Introduced as a linguistic evo-
lution model, the NG was initially used as a model for the
formation of a vocabulary from different observations, and it
demonstrated how a population of agents can collectively con-
verge to a single unique word for labeling different objects
or observations in their environment [7], [12]. Later, it has
been used as a mathematical model for the dynamics of social
influence, which describes the evolution of competing opin-
ions through the dyadic interactions between agents. Various
approaches have been proposed to investigate the evolution and
dynamics within the NG model, including mean-field theory
[13], [14], [19], agent-based models [15], and Bayesian theory
[16], [17], [18]. A number of studies have examined the spread
and evolution of opinions on regular lattices [19], as well as
on diverse complex networks, including random graphs [20],
[21], small-world (SW) networks [22], [23], and scale-free (SF)
networks [24].
Furthermore, recent research has also been conducted to

understand the NG model in the presence of committed agents
[13], [14], [25], [26]. When individuals encounter multiple dis-
crete choices or opinions, some may follow the choices of their
peers or acquaintances. However, other individuals in the sys-
tem may advocate a single opinion and refuse to consider any
others, to which we refer as committed agents or zealots [27],
[28]. The presence of zealotry strongly biases the evolution of
the opinions toward those held by the committed minorities
[29]. Even the presence of one group with committed agents of
modest size may convert most uncommitted agents to adopting
the opinion of committed agents [30], [31], and such phenom-
ena have been observed in real social systems and experiments
[32], [33], [34].
In this study, we focus on the NG with multiple competing

opinions and explore how committed members influence opin-
ion evolution. Given the presence of mixed states that involve
more than a single opinion, monitoring the state of the system
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withm distinct single opinions becomes extremely challenging,
as there are 2m − 1 possible combinations of opinions which
are proportional to the number of state variables needed to
describe the system evolution. Such exponential growth of state
variables makes this problem intractable even for the case with
the number of opinions, m, larger than 10.
There are a limited number of studies discussing the effects of

committed minorities on the evolution of the system and on pos-
sible tipping points in multiopinion NGs [35], [36]. For some
special scenarios, one may reduce the system complexity by
inspecting symmetry and making appropriate approximations
[35]. We adapt this approach to investigate the influence of
committed agents and phase transition in the quasi-symmetric
setup. However, the approximation might fail if no symmetry
is preserved. Our strategy is to focus on the key features of the
system. Since the system state is determined by the density evo-
lution of each single opinion, it is not necessary to distinguish
or record all mixed states. Instead, one only needs to keep track
of the density distribution and spreading probability of each
single opinion. By anonymizing mixed states, the number of
states to be monitored is reduced, making the analysis of the
system more manageable. This approach is general and can be
applied to a wide range of scenarios.
The main contributions of this article can be summarized

as follows.
1) We design the multiopinion NG model to study the sce-
nario where the group of the largest committed size com-
petes with other smaller committed groups on a complete
graph, and we identify the critical transition for the largest
group to dominate the system.

2) Two special scenarios are constructed to approximate
the opinion evolution and identify tipping points for the
system under arbitrary configurations, which significantly
reduces system complexity and facilitates the analysis of
opinion competition and dominance transition.

3) We observe that the groups of smaller committed sizes
can either promote or hinder the opinion of the largest
committed size to dominate the system, depending on the
number and distribution of committed agents among the
small groups.

4) A recursive approach for the discrete-time NG dynamics
on a complete graph is derived, yielding results consistent
with the mean-field theory. This method enables a precise
description of the system’s behavior under any initial
configuration.

5) Agent-based models are employed to simulate the
discrete-time dynamics across three types of finite-size
networks of real-world characteristics, illustrating the
“divide and conquer” phenomena.

The rest of the article is organized as follows: Section II
provides an overview of the interaction mechanism of the
NG and its variants, as well as its dynamical evolution from
the perspective of mean-field theory; Section III focuses on
the original model on complete graphs and discusses critical
transitions for three designed scenarios; Section IV presents
a recursive approach for the listener-only variant of the NG
on complete graphs; Section V, we employ the agent-based

model to simulate the original NGmodel on complex networks;
and finally, we summarize our findings and discuss potential
avenues for future research.

II. MODEL DESCRIPTION AND MEAN-FIELD APPROXIMATION

In the NGmodel [7], [12], [19] with several distinct opinions,
each agent holds a subset of opinions that defines its state. This
state may change because of this agent’s interaction with other
agents when it acts as a speaker or listener.
For the original version of NG dynamics, at each NG state,

a randomly selected agent acts as a speaker. This speaker ran-
domly chooses an opinion from its opinion state and sends it to
a randomly selected neighbor, who then becomes the listener.
If the listener already has the sent opinion in its opinion state,
both speaker and listener retain only this opinion, otherwise,
the listener adds it to its opinion state. There is a special type
of agent whose opinion state contains only one opinion, and
it holds its opinion unchanged during the entire dynamics.
Such agents are immune to any influence but can spread their
opinions to their neighbors when acting as speakers. We refer to
them as committed agents or zealots. The model mechanism is
summarized in Fig. 1. In addition to this original model, there
are two variants, which limit changes to only one of the two
interacting roles, named the “listener-only” and “speaker-only”
versions. For the “listener-only” type, only the opinion state of
listeners can bemodified. In this article, we focus on the original
NG model and its “listener-only” variant.
First, we investigate the opinion dynamics on the complete

graph, where mean-field theory can be applied to systemat-
ically study the evolution of opinion states. For the general
scenario withm unique single opinions, an uncommitted agent
can hold one of M = 2m − 1 opinion states at each stage.
For instance, when m= 3, the possible opinion states are A,
B, C, AB, AC, BC, and ABC. Under the condition of ho-
mogeneous mixing, the mean-field differential equations are
written as

dxk

dt
=

M∑
i=1

M∑
j=1

U
(k)
ij xixj +

M∑
i=1

m∑
j=1

V
(k)
ij xiPj

+

m∑
i=1

M∑
j=1

W
(k)
ij Pixj . (1)

This equation describes the changes in the density of un-
committed agents holding different opinion states as well as
the interactions between the uncommitted agents and com-
mitted agents. The density xi(i= 1, 2, . . . ,m) represents the
fraction of uncommitted agents holding the single opinion state
i, and the density xi (i=m+ 1,m+ 2, . . . ,M ) represents the
fraction of agents holding the mixed opinion state i. Pi(i=
1, 2, . . . ,m) is the density of zealots committed to the single
opinion i, which remains constant over time. The matrices U ,
V , and W contain the coefficients determined by the interac-
tion mechanism, and they differ for the three versions of the
interaction rules. Specifically, U (k)

ij is the probability that the
interaction between the uncommitted speaker with the opin-
ion state i and the uncommitted listener with j gives rise to
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Fig. 1. Illustration of model dynamics (original version). Agents hold one
or multiple opinions on the question “the most popular sport in the world,”
and may update their opinions after an interaction (indicated by the yellow
border of the opinion box). (a) Interaction between uncommitted speaker and
uncommitted listener: uncommitted speaker sends one of its three opinions
randomly (“soccer” in the example) to an uncommitted neighbor (listener).
If the listener already holds this opinion, both agents retain only this sent
opinion (“soccer”) as their new state, which is considered a success toward
consensus. Otherwise, the listener adds the sent opinion to its state, resulting in
a failure. (b) Interaction between committed speaker and uncommitted listener:
committed speaker sends the only opinion to an uncommitted listener. Only
the listener may change its status depending on whether the consensus is
reached. (c) Interaction between uncommitted speaker and committed listener:
uncommitted speaker communicates with a committed listener. Similar to (b),
only the speaker may change its status. (d) Interaction between committed
speaker and committed listener: both speaker and listener are committed to
a single opinion. Their statuses are not updated regardless of whether it is a
success or failure.

the opinion state k. V (k)
ij is the probability that results in the

speaker adopting the opinion state k for the interaction between
the uncommitted speaker holding the opinion state i and the
committed listener with j. Similarly, W (k)

ij is the probability
that results in the listener adopting the opinion state k for the
interaction between the committed speaker holding the opinion
state i and the uncommitted listener with j. The densities xi

and Pi must sum up to 1, so we have
∑M

i=1 xi +
∑m

i=1 Pi = 1.
For the systemwith a small number of single opinions,m, the

numerical integration of the mean-field differential equation,
(1), can be performed to obtain the density evolution of each
opinion state in the NG model. However, as the number of

all opinion states, M , which includes both single and mixed
opinions, increases exponentially with m, performing direct
numerical simulations becomes computationally infeasible and
impractical for large values of m.

III. ORIGINAL VERSION

First, the original version of NG dynamics is analyzed using
mean-field differential equations, with a focus on the density
evolution of each opinion state in the presence of committed
minorities. This section includes the study of three scenarios
varying in complexity, the first with two single opinions, the
second with three single opinions, and the third with m single
opinions in general.

A. The Two-Opinion Scenario

In the scenario of m= 2, there are two opinions, A and B,
in the system competing against each other. (1) reduces to two
mean-field equations

dxA

dt
=−xAxB + x2AB + xABxA +

3
2
PAxAB − PBxA

dxB

dt
=−xAxB + x2AB + xABxB +

3
2
PBxAB − PAxB .

(2)

By definition, xA + xB + xAB + PA + PB = 1. Together with
(2), the two-opinion model can be analytically and numerically
solved. Such a system can exhibit rich dynamics, including
saddle-node bifurcation, indicating that it may have multiple
stable equilibria [14], [37]. Additionally, the dominance of the
system is primarily determined by the committed sizes of two
competing opinions [14].
Here, we are interested in the scenario in which one opinion

(let us say A) has a higher fraction of committed agents than
the other opinion, B, but the latter is initially supported by all
uncommitted agents, making it the majority opinion. However,
committed agents of opinion A can assimilate uncommitted
agents, thus causing opinionA to eventually become the major-
ity opinion. Previous studies [13], [14] have shown that there
exists a minimal fraction of committed agents, denoted by P (c)

A ,
which is required for a fast phase transition of the dominant
opinion from B to A. Below this threshold, the waiting time
for such a transition grows exponentially with the number of
agents, making it infeasible to observe in practical cases.
To understand the final dominant state of the system, a new

variable, ni, is introduced, which represents the total fraction
of agents holding opinion i in equilibrium. This fraction in-
cludes both the committed and uncommitted agents that support
opinion i, ni = x

(s)
i + Pi, whereas for mixed opinion states, ni

only accounts for the uncommitted agents, ni = x
(s)
i , because

committed agents only advocate their single opinions. Previous
studies [13] have shown that in the absence of committed agents
advocating opinion B (PB = 0, PA > 0), a minimal fraction
of committed agents advocating opinion A (P (c)

A ) of approx-
imately 0.098 is required to trigger a fast transition from the
majority opinionB toA. As Fig. 2 shows, when both committed
groups, A and B, are present, there are two types of transitions,
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Fig. 2. Phase transition from B dominance to A dominance and the corresponding tipping points for two-opinion scenario (m= 2). All uncommitted agents
support B initially. (a) Dominance transition of A: stable density of agents with opinion A, nA, changes as a function of the committed fraction PA for
different values of PB . As PA increases, the system is dominated by A. (b) Tipping point P (c)

A : critical point P (c)
A changes with PB . The increase in PB

raises the value of the critical points for A to dominate. The blue dots represent the discontinuous transition of nA versus PA, while the red ones represent
the continuous change.

the discontinuous transition and the continuous one, which
may occur depending on their committed fractions. They are
separated by the point (P (c), P (c))≈ (0.162, 0.162) [14]. For
PB > P (c), the fraction of agents holding opinion A increases
continuously with PA, and the critical points lie on the line
P

(c)
A = PB .

B. Three-Opinion Scenario

A slightly more complex system arises with three opinions:
A, B, and C, with two opinions A and C committed by two
minor fractions of committed agents and, initially, the majority
of agents are uncommitted and they all hold opinion B. We ask a
similar question as in the previous example. For the scenario of
PA > PC , to enable opinion A to dominate the system, what is
the minimal fraction of committed agents, P (c)

A , and how does
this threshold depend on the committed fraction of the opinion
C? According to (1), the evolution of each state variable can
be numerically integrated.
Depending on the fractions of agents committed to opinions

A andC, the system can be dominated by any of three opinions.
Observed from Fig. 3, for small values of PC (< 0.06), the
system exhibits a discontinuous transition from being domi-
nated by B to A dominance when the committed fraction PA

is above the critical point. In contrast, for large values of PC ,
the system undergoes a continuous transition, where opinion
A wins the competition against C by increasing PA to the
critical point. Additionally, the relationship between the critical
point P (c)

A and PC is nonmonotonic, as shown in Fig. 3(d).
As PC increases, P

(c)
A decreases first with the transition being

discontinuous. These observations indicate that increasing the
population committed to C speeds up the spread of opinion
A to the majority of uncommitted agents, as long as PC is
smaller than a certain value [PC ≈ 0.077 at the lowest point
in Fig. 3(b)]. Otherwise, P (c)

A increases linearly with PC , sig-
naling a change of relationship between opinionsA and C from
collaboration to competition. Unlike the previous two-opinion
scenario, this one includes both the discontinuous transition
and the continuous one. It is noteworthy that the critical point

separating the two types of transitions remains the same as in
the two-opinion scenario.

C. The General Scenario—Multiopinion Model

For the general scenario with m single opinions (A, B, C1,
C2, C3,..., Cm−2), it is of interest to understand the impact of
committed agents on the majority of uncommitted agents and
potential for one single opinion to dominate over other competi-
tors. Consider a scenario where most of uncommitted agents
support a single opinion, denoted as B, while the remaining
agents are committed to m− 1 single opinions. Among these
m− 1 opinions, the one with the largest committed fraction,
denoted as A, has the ability to reverse the majority of uncom-
mitted agents from supporting B to supporting A. The question
then arises as to the minimum fraction of committed agents,
P

(c)
A , required for such a transition to occur. To streamline the
analysis, the committed agents supporting opinions other than
A are grouped into a single category, referred to as Ã, with
a combined committed fraction of PÃ. This simplification is
justified as none of the single opinions in the group Ã can
prevail in the competition with a larger committed group A.
However, the number of competing opinions in the group Ã,
m− 2, their total committed fraction, PÃ, and the allocation
of these committed agents, Pi, may all potentially affect the
critical point, P (c)

A .
Hence, we investigate the impact of such factors on the

dominance transition of opinion dynamics by constructing three
different scenarios for allocating committed agents within the
group Ã.
1) Scenario S0: It is randomly distributed. The committed
fraction, Pi, of each single opinion in group Ã is gen-
erated by a truncated Gaussian distribution with a mean
of p0 = PÃ/(m− 2), a predefined SD σ = 0.02 and a
restricted interval [0, PÃ]. One should note that the actual
SD can differ from the predefined value as shown in
Fig. 6. This distribution allows for any value between
0 and PÃ, though subject to a constraint that their sum
totals PÃ.
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Fig. 3. Phase transition from B or C dominance to A dominance and the corresponding tipping points for three-opinion scenario (m= 3). All uncommitted
agents support B initially. (a) Fraction of agents supporting A: stable fraction of agents with opinion A changes as a function of the committed fractions PA

and PC . Similarly, (b) fraction of agents supporting B and (c) fraction of agents supporting C show the change of nB and nc, respectively. As PA increases,
the system is dominated by A, including continuous and discontinuous transitions. When PA is below the tipping point P (c)

A , the system is dominated by B

for small PC (< 0.1) and dominated by C for large PC . (d) Tipping point P
(c)
A : critical point P (c)

A changes with PC . As PC increases, the transition nA

versus PA changes from the discontinuous transition (blue dots) to the continuous transition (red dots).

2) Scenario S1: It is perfectly symmetric.m− 2 opinions in
the group Ã share the equal fraction of committed agents,
Pi = p0. The quantity, p0, in the later context also refers
to the average committed fractions of agents advocating
any single opinion in the group Ã.

3) Scenario S2: It is extremely polarized. In contrast to sce-
nario S1, we maximize the deviation of Pi in group Ã to
establish a highly uneven distribution of committed frac-
tions. Provided that the single opinion A has the largest
committed fraction in the system, the largest committed
fraction in the group Ã should be smaller than PA. To set
up the numerical simulation, we choose max{Pi}= p1 =
PA − 10−3 and maximize the number of opinions with
the committed fraction p1, which is n1 = �PÃ/p1�. The
remaining committed agents, p2 = PÃ − n1p1(< p1), are
assigned to another single opinion. In this scenario, there
arem− n1 − 3 (≥ 0) single opinions in group Ã without
any committed followers. Within group Ã, Pi can take
three values, p1, p2, and 0. As there are no uncommitted
agents assigned to group Ã, some single opinions may
end up with no supporters. To compare with scenarios S0

and S1, the number of single opinions is still considered
as m.

The mean-field (1) can be directly integrated to analyze the
opinion dynamics for a system with a limited number of sin-
gle opinions. However, for a system with many opinions m,
this method becomes computationally infeasible because the
number of variables, M , increases exponentially with m. To
overcome this challenge, simpler scenarios with symmetry are
considered, as described in scenarios S1 and S2. The simplified
structures of scenarios S1 and S2 allow for a more efficient
and manageable study of the critical transition in comparison to
direct numerical integration for scenario S0 with random initial
configurations. In scenario S1, a collection of single opinions
(denoted as the group Ã) is designed to have an equal fraction
of committed agents with no uncommitted supporters. Under
the assumption of homogeneous mixing in a complete graph,
the fraction of supporters for these opinions is expected to
evolve in the same fashion. Consequently, the number of state
variables to be monitored is reduced from 2m − 1 to 4m− 5.
For example, when m= 5 where single opinions are A, B,
C1, C2, C3. Opinions C1, C2, and C3 are assigned the same
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Fig. 4. Density of agents supporting single opinions at the steady state in scenario S1. The number of opinions is set as m= 6. The fractions of agents
holding opinions A, B, and C (representing any single opinion C1, C2, C3, or C4 in group Ã) are shown in (a)–(c), respectively. As PA increases, the
system is dominated by A, including continuous and discontinuous transitions. When PA is below the tipping point P (c)

A , the system is dominated by B for
small PÃ (< 0.2) and dominated by the unified group Ã for large PÃ.

Fig. 5. Phase transition and the critical points in scenario S1. For different values of m (m= 4, 5, 6, 7, 8, 9), the critical point p(c)A changes with (a) p0
and (b) PÃ (PÃ = (m− 2)p0). The initial decrease of P (c)

A with p0 (or PÃ) indicates that the minority group facilitates the dominance of A, corresponding
to the discontinuous transition. The linear increasing regime suggests the competition between A and the unified group Ã, corresponding to the continuous
transition.

fraction of committed agents, so the fraction of uncommitted
agents they can assimilate to themselves is expected to be the
same by symmetry. Further, some mixed opinion states, such as
C1C2, C1C3, and C2C3, or AC1, AC2, and AC3 also have the
same uncommitted supporters as time progresses. This results
in a reduction in the number of state variables that need to be
monitored. A similar argument also applies to scenario S2 as
some of the opinions in group Ã have the same fraction of
committed agents.
Next, we focus on the evolution of the fraction of agents

supporting opinion A, which is assigned the largest committed
fraction, and explore the critical transition where this opinion
assimilates most of the uncommitted individuals across the
three scenarios. In scenario S1, for small values of PÃ, the
system undergoes a discontinuous transition fromB dominance
toA dominance as PA increases (Fig. 4). Also, as seen in Fig. 5,
the critical point P (c)

A shows a nonmonotonic behavior as PÃ

or p0 increases. The presence of a small committed group plays
a key role in the formation of a dominant opinion. Initially,
the critical value P (c)

A decreases as the committed fraction p0
of the small groups increases, indicating that as the number
of committed individuals in these groups grows, they become
more effective in promoting the dominance of opinion A. This

implies a catalyzing role of small groups for disseminating
opinion A to uncommitted agents. The initial decrease in P (c)

A

can be attributed to the increased chance for interactions and
conversions between the committed individuals in the smaller
groups and the uncommitted individuals in the system. More-
over, the nonmonotonic behavior of P (c)

A with increasing PÃ

or p0 also indicates the presence of a threshold effect. Beyond
a certain value of PÃ or p0, the critical value P

(c)
A begins to

increase, indicating that the positive influence of the smaller
committed groups on the dominant opinion’s growth reverses.
The linear relationship instead shows the competition between
opinionA and other opinions with a smaller committed fraction,
which can also be confirmed by comparing Fig. 4(a) and 4(c).
To explore how the value of the tipping pointP (c)

A depends on
the allocation of committed agents to group Ã, we manipulate
the committed fraction Pi while preserving PÃ in scenario S0.
Results displayed in Fig. 6(a) show a nonmonotonic behavior
of the critical point P (c)

A as a function of the maximum value
of Pi in group Ã. The initial decrease of P

(c)
A indicates that the

presence of a large fraction of committed agents within group
Ã is beneficial for opinion A to be adopted by most of the
uncommitted agents compared to the case when the committed
agents are equally distributed among them− 2 single opinions.
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Fig. 6. Critical point for A to dominate in scenario S0. The number of opinions is set as m= 6. (a) For different values of the minority committed fraction,
p0 = 0.03, 0.04, 0.05, 0.06, P

(c)
A changes with the maximum of Pi in group Ã with an initial decrease followed by a linear increase. (b) P (c)

A changes with
the standard deviation (SD) of Pi, which only includes the data of the decreasing regime in (a). This indicates that stronger opponents within the unified
group Ã may lower the critical values for A to dominate, provided that this unified group is not the largest opponent. (a) Critical point changes with max(Pi).
(b) Critical point changes with SD (Pi).

Fig. 7. Critical point P (c)
A changes with p0 in three scenarios S0, S1, and S2. The number of opinions is set as (a) m= 4, (b) m= 5, and (c) m= 6. For

scenario S0, only the data where P
(c)
A is along the decreasing branch with max(Pi) in Fig. 6 is included. The tipping points in scenarios S1 and S2 provide

the upper and lower bound for S0.

Fig. 8. Steady state nA changes with PA in three scenarios S0, S1, and S2 with m= 6 opinions. The average committed fraction in group Ã is set as
(a) p0 = 0.02, (b) p0 = 0.04, and (c) p0 = 0.06. The stable fraction in scenario S0 can be approximated by S1 and S2.

This conclusion can also be confirmed by observing howP
(c)
A

changes with the SD of Pi in Fig. 6(b). However, it is worth
noting that a higher Pi does not always result in a favorable
outcome in terms of the dominance of opinion A. For opinion
A to become dominant, its committed fraction PA must be
greater than any other committed fraction in the group Ã, which
explains the linear increase of P (c)

A observed in the results of
p0 = 0.05. The nonmonotonic behavior of the critical value of
P

(c)
A highlights the importance of considering the effects of

different distributions of committed fractions on the overall
dynamics of the system, especially the dominance transition.
From the observation in Fig. 6, one may expect that scenario

S2 has a smaller critical point P
(c)
A than S1 as the SD of

committed sizes in group Ã is maximized. This expectation
is confirmed by Fig. 7. The critical points obtained from two
scenarios, S1 and S2, provide the upper and lower bounds for
scenario S0, respectively. Additionally, one can compare the
steady states of the three scenarios in Fig. 8. Scenarios S1 and
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Fig. 9. Divide and conquer. The number of total committed agents in group Ã is set as PÃ = 0.1, 0.12, 0.14, 0.16. The critical point P (c)
A in scenario S1

is determined by using the recursive approach in (a) and the integration of the differential equations in (b). The critical point, P (c)
A , exhibits a nonmonotonic

relationship with the number of single opinions, m. This implies that dividing the committed agents into a moderate number of competing minorities can
facilitate the dominance of opinion A among the uncommitted agents in the system.

S2 also provide a good approximation for the steady state nA in
scenario S0. It is observed that the critical point P

(c1)
A in scenar-

ios S1 is always greater than P
(c2)
A in scenario S2, and the two

critical points P (c1)
A and P

(c2)
A divide the parameter space into

three parts. For values of PA less than P
(c2)
A , scenario S1 yields

the lower bound of nA while S2 provides the upper bound. For
P

(c2)
A < PA < P

(c1)
A , both scenarios establish the lower bound.

For PA > P
(c1)
A or the case when there are no critical points,

scenario S1 corresponds to the upper limit of nA while S2 cor-
responds to the lower limit. By investigating scenarios S1 and
S2 of symmetric setup, the critical points and the steady states of
opinionAwith the largest committed fraction in scenario S0 are
well estimated.
We now analyze the opinion competition from another per-

spective. The key question is to determine the dynamics of
opinionA as it competes against opinionsB and Ã. As shown in
Fig. 9(a), the critical point, P (c)

A , in scenario S1 has a nonmono-
tonic relationship with the number of single opinions,m. Given
a fixed committed fraction, PÃ, as m increases, the individual
committed fraction, p0 (= PÃ/(m− 2)), in group Ã decreases,
weakening the opposition from this group. The initial decrease
of P (c)

A reveals the validity of the divide-and-conquer policy,
whereby the more opinions split among themselves the commit-
ted agents of group Ã, the easier it is for opinion A to dominate
uncommitted agents in the system. Reversing this rule reveals
that the major obstacle to the opinion A dominance is the small
number of opinions in the group Ã. However, ifm continues to
increase, the critical point P (c)

A also increases, suggesting that
opinion B becomes the major threat. In this scenario, a strong
opponent, Ã, (large p0) can be helpful for opinionA to dominate
the system, thus making group Ã a friend of opinion A, in line
with the Heider balance theory rule [38] that states “The enemy
of my enemy is my friend”. This “divide and conquer” phe-
nomenon has been observed in other systems, such as pathogen
infection dynamics, where increasing diversity of host species
may either amplify or buffer the disease outbreaks depending on

the transmission types [39]. Additionally, a similar phenomenon
has also been reported in the multispecies system, where outside
invasions are more likely to succeed as the number of species
increases [40].

IV. SIMPLIFICATION BY RECURSIVE RELATIONSHIP

In the previous section, we explored methods for establishing
symmetrical distributions of committed agents and utilizing
mean-field frameworks to simplify the continuous-time dynam-
ics, thereby approximating opinion dynamics for scenarios with
arbitrary distributions of committed agents. In this section, we
shift our focus to its discrete-time version and introduce a
more general method for reducing system complexity using
the recursive approach. This approach enables a more focused
examination of the evolution of supporters for single opinions
by anonymizing mixed states, facilitating the determination of
the dominant opinion in a more efficient manner.

A. Establish Recursive Relationship

Since the committed agents define the dominant state in NG
dynamics at equilibrium, it is sufficient to focus on only the den-
sity evolution of supporters for single opinions. We introduce
a quantity Q

(t)
i , which represents the probability of a single

opinion i being communicated at step t from the population
[35], and we establish an iteration function for the opinion
density at step t based on the state at step t− 1. It has been
shown that the original NG dynamics and the listener-only
version on the complete graph have qualitatively similar results
[8]. It is easier to derive the iterative function by considering
only the state change of listeners, so, we develop our framework
for the listener-only version.
For an uncommitted agent to adopt a single opinion i at

step t, it must have held the opinion i in its list at step t− 1
and received opinion i at step t. By unifying all mixed states
that contain opinion i into one variable, xi+, such require-
ments are outlined by (3). The first term describes the scenario
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when a listener already holding the single opinion i receives
the signal i, and the second term corresponds to the scenario
when a listener in the mixed state xi+ hears opinion i. After
the interaction, the listener in both scenarios either remains
in the single state i or adapts to it. Next, one can establish
the recursive relationship of the mixed state containing two
opinions, i and j, in (4). Specifically, if a listener initially
supports opinion i (j) and subsequently receives signal j (i),
it will switch to the mixed state, ij. This equation accounts
for the scenario where a listener holds one opinion but is in-
fluenced by another received opinion through interaction with
other agents. Similarly, the recursive relationship of the mixed
state containing three single opinions is derived in (5). Fur-
thermore, one can easily generalize the iteration function of
the mixed state containing n single opinions as (6), where
Sn(i1, i2, . . . , in) represents all permutations of a set containing
n elements

x
(t)
i = x

(t−1)
i Q

(t−1)
i + x

(t−1)
i+ Q

(t−1)
i (3)

x
(t)
ij = x

(t−1)
i Q

(t−1)
j + x

(t−1)
j Q

(t−1)
i (4)

x
(t)
ijk = x

(t−1)
ij Q

(t−1)
k + x

(t−1)
ik Q

(t−1)
j + x

(t−1)
jk Q

(t−1)
i

= x
(t−2)
i Q

(t−2)
j Q

(t−1)
k + x

(t−2)
j Q

(t−2)
i Q

(t−1)
k

+ x
(t−2)
i Q

(t−2)
k Q

(t−1)
j + x

(t−2)
k Q

(t−2)
i Q

(t−1)
j

+ x
(t−2)
j Q

(t−2)
k Q

(t−1)
i + x

(t−2)
k Q

(t−2)
j Q

(t−1)
i

=
∑

(i′,j′,k′)∈S3(i,j,k)
x
(t−2)
i′ Q

(t−2)
j′ Q

(t−1)
k′ (5)

x
(t)
i1i2...in

=
∑

(i′1,i
′
2,...,i

′
n)∈Sn(i1,i2,...,in)

x
(t−n+1)
i′1

×Q
(t−n+1)
i′2

Q
(t−n)
i′3

. . . Q
(t−2)
i′n−1

Q
(t−1)
i′n

. (6)

B. The Focus on Single Opinions

To simplify the computation and focus on the density distri-
bution of single opinions, xi, the need to calculate or record all
mixed states is eliminated. Instead, only Qi and xi+ need to
be tracked. The density evolution of mixed states containing
opinion i, such as xĩi, xĩĩi, and xĩĩĩi, can be derived using
(6), where ĩ refers to any single opinion other than opinion
i. Therefore, the number of variables is reduced from 2m − 1
to m2.
By summing up (4) over a subset that includes any single

opinion j other than i, one can obtain x(t)

ĩi
as (7), whereM is

the set ofm single opinions, andM\ i represents the set of all
single opinions excluding opinion i

x
(t)

ĩi
= x

(t−1)
i

∑

j∈M\i
Q

(t−1)
j +Q

(t−1)
i

∑

j∈M\i
x
(t−1)
j . (7)

Similarly, one can derive the general formula for the mixed
state of length n+ 1 with opinion i and other n distinct opin-
ions, x(t)

i ĩ ... ĩ︸︷︷︸
n

x
(t)

i ĩ ... ĩ︸︷︷︸
n

=
∑
j∈M

x
(t−n)
j

∑

i∈(j1,...,jn)∈M\j
Q

(t−n)
j1

, . . . , Q
(t−1)
jn

.

(8)

In (8), j1,..., jn are n distinct integers, representing n different
single opinions. By definition, opinion i must be one of n
distinct single opinions j1, . . . , jn.
The primary aim is to monitor the temporal evolution of

single opinions, as captured by (3). This requires computing
the probability of transmitting opinion i, Q(t)

i , and the density
of mixed states, x(t)

i+ , (i= 1, 2, . . . ,m) at each interaction step
t. According to the interaction rule, only speakers with a single
opinion i in their list can communicate opinion i. Additionally,
for the mixed state, each single opinion in the list has an equal
probability of being transmitted. Therefore, Q(t)

i and x
(t)
i+ are

expressed as follows, respectively:

Q
(t)
i = x

(t)
i + P

(t)
i +

1
2
x
(t)

ĩi
+
1
3
x
(t)

ĩĩi
+ . . .+

1
m
x
(t)

ĩĩĩi ... ĩ︸ ︷︷ ︸
n

(9)

x
(t)
i+ = x

(t)

ĩi
+ x

(t)

ĩĩi
+ x

(t)

ĩĩĩi
+ . . .+ x

(t)

ĩĩĩi ... ĩ︸ ︷︷ ︸
n

. (10)

By employing recursive functions (3), (8), (9), and (10), one
can calculate the density evolution of single opinions for any
initial condition, offering computational efficiency compared to
mean-field differential equations. Comparing the system evo-
lution obtained by two approaches in Fig. 10, we find that the
results are nearly identical, validating the recursive approach.
One can further simplify the computation if the system’s stable
state is of primary interest, which means that the probabilities of
communicating opinion i at different time steps are the same.
Therefore, these probabilities Q(t)

i , Q
(t−1)
i ,..., Q(t−n)

i can be
represented by one quantity Q(s)

i .

V. THE MULTIOPINION SYSTEM ON RANDOM NETWORKS

In previous sections, our focus was on understanding opin-
ion dynamics within a complete graph. However, real-world
communication often occurs within complex networks. Hence,
in this section, we delve into investigating the NG dynamics
across diverse network models characterized by real-world fea-
tures. We aim to identify the tipping point for the dominance
transition. While, in principle, it is possible to develop a het-
erogeneous (degree-based) mean-field approximation scheme
[41], [42], we do not pursue that approach here. Instead, we
resort to the agent-based simulation (i.e., using node-based
local update rules) to study the density evolution of agents
supporting different opinions more precisely. On a networked
system, agents can be chosen as either speakers or listeners and
communicate their opinions with one of their neighbors at each
interaction step. Following this exchange, their opinion states
are updated according to the NG rule. To set up the agent-
based simulation, we employ a system size of N = 1000, a
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Fig. 10. Comparison between the recursive approach and the differential equations. The evolution of the uncommitted fraction for opinions A (B) [shown
in (a)] and C1 (same as C2, C3, C4, thus denoted as C) [shown in (b)] are obtained by two methods. The number of opinions is set as m= 6, the fraction
of agents committed to A is PA = 0.1, and the fraction of agents committed to each minority opinion is PC = PC1 = PC2 = PC3 = PC4 = 0.025. Initially,
all the uncommitted agents support opinion B, xB(t= 0) = 0.8. (a) Fraction of supporting A(B). (b) Fraction of supporting C.

Fig. 11. Time evolution of the fraction of agents supporting opinion A on Erdős–Rényi (ER) networks. The system comprises N = 1000 agents, with an
average degree of 〈k〉= 8 and an interaction time of T = 1000. There are m= 5 single opinions, with a committed fraction of p0 = 0.01 for each opinion in
group Ã, and different values of the fraction committed to opinion A for (a) PA = 0.02, (b) PA = 0.03, and (c) PA = 0.04. In each panel, there are L= 50
random realizations, with each line representing one of these realizations.

simulation time of T = 1000 (defined as the number of pairwise
interactions for each agent on average), and conduct L= 50
random realizations unless specific parameter choices are pro-
vided. All committed agents are selected uniformly at random
in this study. We acknowledge that the different strategies for
allocating the committed minorities on the network can yield
varying results [21], especially for heterogeneous networks. A
systematic exploration of these strategies is beyond the scope
of this article.
We examine a problem similar to what we discussed in the

previous sections, with a slight variation: all single opinions
now have committed supporters. The opinion with the largest
committed fraction is denoted as A. For simplicity, when the
other m− 1 opinions share the same fraction of committed
fraction, p0, and are initially supported by the same number
of uncommitted agents, they can be classified into one group
by symmetry, denoted as Ã with the total committed fraction
PÃ = (m− 1)p0. For the finite networked system, either the
opinion A or one of the opinions in Ã would dominate the
system in the steady state. Our focus lies on determining the
critical point, P (c)

A , at which opinion A achieves dominance,
and understanding how the number of single opinions, m, in-
fluences this critical point.

A. The Impact of Random Communication Topology—ER
Networks

The first model we explore is ER networks [43] because of
its wide research interests. As agents have different connec-
tivity in random networks and the system size is finite, the
evolution and the dominant opinion in the stable state can vary
slightly from one realization to another, observed from Fig. 11.
This variability arises also due to the random selection order
of agents as speakers and listeners. These factors introduce
randomness in finite systems, resulting in variations in the
system’s behavior.
To represent the system state, the average fraction 〈ni〉 of

agents supporting the opinion i is defined in the following
equation, where L is the number of realizations. Additionally,
we introduce the ratio Ri as the fraction of realizations that end
up being dominated by opinion i:

〈ni〉= 1
L

L∑
j=1

n
(j)
i . (11)

Fig. 12 shows that as the committed fraction PA increases,
there is a critical transition from a low density to the domi-
nant state for the average fraction of agents holding opinion

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on July 15,2024 at 05:36:59 UTC from IEEE Xplore.  Restrictions apply. 



MA et al.: DIVIDE-AND-CONQUER POLICY IN THE NAMING GAME 11

Fig. 12. State of opinion A changes with its committed fraction PA for different values of m on ER networks. The system consists of N = 1000 agents
with an average degree of 〈k〉= 8. The fraction of committed agents in group Ã is PÃ = 0.06. (a) Fraction of agents supporting A: average fraction of agents
supporting opinion A at steady state changes with PA. (b) Ratio of realizations being dominated by A: ratio of the random realizations that end up with A

as the dominant state. Both quantities, 〈n(s)
A 〉 and RA, exhibit a discontinuous transition with PA, and the critical points decrease as the number of opinions

increases. This again validates the “divide and conquer” phenomenon, as A becomes easier to dominate when the unified group has more divided opinions.

Fig. 13. Heat map of the critical point P (c)
A changes with the number of single opinions and the average degree of networks. (a) ER networks, (b) SW

networks, and (c) SF networks. The number of agents is N = 1000. The total fraction of committed agents in the group Ã is PÃ = 0.06. The critical point
is the smallest committed fraction which enables half of the realizations to stabilize with opinion A as a dominant state. The critical point increases as the
average degree increases. It indicates that sparse random communication structures can amplify the impact of committed members, such that opinion A is
easier to dominate.

A, 〈n(s)
A 〉, as well as for the ratio RA. To further investigate

the transition on ER networks, we define the critical point on
random networks, denoted by P (c)

A , as the smallest committed
fraction that enables the transition ratio RA to exceed (1/2)
(Note that our chosen conventional cutoff value (1/2) does
not affect the findings). To analyze the relationship between
the average degree 〈k〉 and the critical point P (c)

A on random
networks, we examined complete graphs and networks with
varying average degree 〈k〉, as shown in Fig. 13(a). Our results
indicate that as the number of single opinions m increases,
the critical point P (c)

A decreases, in line with the divide-and-
conquer policy. Additionally, we observed that the critical point
decreases as the average network degree decreases, suggesting
that sparse random communication structures may amplify the
impact of committed members on the system, such that opinion
Awith the largest committed fraction is easier to dominate. This
phenomenon has been observed in the two-opinion NG system
[42], and it has been also reported in other social dynamics,
including innovation spreading dynamics [44], [45], and evo-
lutionary games [46].

B. Critical Points in Different Types of Random Networks

Having analyzed how the degree of random networks affects
the evolution of stable states in our system, we next look into
this evolution for random networks with real-world character-
istics. ER random networks are often noted as not reflecting
the properties displayed in many real-world networks, such as
power-law degree distribution and SW connectivity, and varied
nodes clustering. To understand how the stable state might
evolve in real-world networks, we extend our analysis to SF
and SW networks.
SF networks, such as those generated by the Barabasi–Albert

model [47], are networks with a power-law degree distribution.
While there is debate on how pervasive these properties are in
the real world, they are found in many technological and bio-
logical networks [48] with a common example being the World
WideWeb. SW networks, such as those generated by theWatts–
Strogatz model [49], have high clustering coefficients and low
average path lengths [50], which are properties seen in many
real-world networks such as social networks, telecommunica-
tions networks, and brain networks.We test these two properties
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by generating SF networks with the Barabasi–Albert model and
SW networks using the Watts–Strogatz model. We utilize the
NetworkX library [51] to implement these generators.
In Fig. 13, we show the critical points as a function of the

number of single opinionsm and the average degree of the gen-
erated SF and SW networks. For these more complex networks,
the general relationship between the number of opinions, the
average degree, and the critical point remains the same. For all
network types, we see that either the decrease in the average
degree of networks or the increase in the number of opinions
can lower the critical point.
We also see some interesting behaviors specific to the new

network structures. For SF networks, the critical point is slightly
smaller than that seen in the ER networks. The presence of
hub nodes in SF networks, where none exist in the other two
types, explains this decrease in critical points. The power-law
degree distribution gives us several highly connected nodes in
the network that can facilitate the quick spreading of a single
opinion throughout the network. Many poorly connected nodes
need a lot of time to succeed in propagating their opinions
to other nodes. Hence, they often end up adopting one of the
opinions frequently propagated by the hubs.
For the SW networks, the critical point is significantly higher

across the board. This is due, in part, to the significantly
larger clustering present in these networks. Higher clustering
allows for single opinions to become entrenched in locally
dense portions of the network. Once entrenched, these opin-
ions become harder to unseat, due to the weaker connectivity
around the cluster. It is even more difficult, in highly modular
networks, for the system to converge to a single dominant
opinion [21].

VI. DISCUSSION

In this study, we focus on the competition of the opinion
with the largest fraction of committed agents against other
opinions with committed agents and the opinion with the ma-
jority of uncommitted supporters. We study such competition
using the original NG dynamics and its listener-only version.
While continuous-time mean-field differential equations can
accurately describe the opinion evolution for complete graphs in
the infinite-size limit, the complexity of systems with multiple
opinions grows exponentially, making direct integration of the
corresponding differential equations impractical.
To address this challenge, we introduce two simplified sce-

narios, S1 and S2, which feature more symmetric setups. These
scenarios significantly reduce computational complexity and
provide upper and lower bounds for the critical point [P (c)

A ]
of dominance transition in the scenario with an arbitrary dis-
tribution of committed agents. Through comparative analysis
of critical transitions across the three scenarios, we highlight
the significant influence of the distribution of committed agents
within the minority committed group, Ã, in determining P (c)

A .
Specifically, the number of opinions and the distribution pattern
of committed agents within group Ã can either facilitate or
hinder the propagation and eventual dominance of opinion A
over uncommitted agents. When opinion B without committed

followers is the primary competitor, augmenting the number of
committed agents in Ã can lower P (c)

A by diminishing the sup-
port for opinionB. Conversely, if agents committed to opinions
other than A are the main opponents, increasing their number
requires a higher fraction of agents committed to A, thereby
raising the critical point.
Furthermore, to enhance the accuracy of depicting the NG

opinion dynamics and capture critical transitions across various
initial conditions in a computationally manageable manner, we
develop the discrete-time recursive approach. This method fo-
cuses more on the evolution of single opinions by consolidat-
ing mixed states with the same opinion into a single variable
and introducing the probability of a randomly chosen speaker
communicating any single opinion. By streamlining compu-
tations while preserving the system’s dynamics, this frame-
work offers an efficient representation of NG dynamics in a
complete graph.
Additionally, to gain insights into opinion evolution within

real-world structures, we conducted agent-based simulations
to understand system dynamics and capture critical transitions
across various finite-sized networks. In our experimental setup,
the primary committed group advocates for opinion A, while
the remaining agents, both committed and uncommitted, are
evenly distributed among other minor committed opinions. Our
observations reveal a strategy akin to the divide-and-conquer
policy, where dividing agents into more minor groups results in
a reduced critical fraction of agents committed toA required for
system dominance. This phenomenon suggests that segment-
ing agents facilitate easier domination of the opinion with the
largest committed size in the system.
While we presented two frameworks to simplify the mul-

tiopinion NG model, there are some limitations to this work.
First, extending the theoretical analysis to networks of various
topologies would provide a more comprehensive understanding
of opinion dynamics in real-world scenarios. Second, we can
introduce varied commitments to allow individuals to stick
to a single opinion temporarily while maintaining their long-
term flexibility, particularly relevant for moderately commit-
ted agents. Third, we would also like to extend the original
NG model from pairwise interactions to group interactions,
allowing for the consideration of discussions within groups of
friends, which is common in real-life situations.
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