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Abstract

This paper is concerned with the global wellposedness of the Euler-Poisson-alignment (EPA) system.
This system arises from collective dynamics, and features two types of nonlocal interactions: the repulsive
electric force and the alignment force. It is known that the repulsive electric force generates oscillatory
solutions, which is difficult to be controlled by the nonlocal alignment force using conventional comparison
principles. We construct invariant regions such that the solution trajectories cannot exit, and therefore obtain
global wellposedness for subcritical initial data that lie in the invariant regions. Supercritical regions of
initial data are also derived which leads to finite-time singularity formations. To handle the oscillation and
the nonlocality, we introduce a new way to construct invariant regions piece by piece in the phase plane
of a reformulation of the EPA system. Our result is extended to the case when the alignment force is
weakly singular. The singularity leads to the loss of a priori bounds crucial in our analysis. With the help of
improved estimates on the nonlocal quantities, we design non-trivial invariant regions that guarantee global
wellposedness of the EPA system with weakly singular alignment interactions.
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1. Introduction

In this paper, the point of concern is the following one-dimensional Euler-Poisson-alignment
(EPA) system

pr + (pu)x =0, (1.1a)

ur +uuy = —kox + / Y(x =) uly) —ux)p(y)dy, (1.1b)
R

—¢x=p—c, (1.1¢)

subject to smooth initial density and velocity

(o2, ) ut, )|,y = (o = 0, uo).

This system can be viewed as the pressureless Euler equations with two types of nonlocal
interacting forces on the right-hand side of the momentum equation (1.1b): the electric force and
the alignment force.

The electric force is modeled through an interacting potential ¢, that is governed by the Pois-
son equation (1.1c), with a constant ¢ representing the background charge that can be zero or a
positive constant. The parameter k signifies the property of the underlying force: repulsive k > 0
or attractive k < 0. When only electric force is present, i.e. Y =0, (1.1) reduces to the classi-
cal Euler-Poisson system. It has been an area of intensive study due to their vast relevance in
modeling physical phenomena [5,12,14,20-22], including semiconductor and plasma dynamics.

The alignment force describes the collective motion of an interacting system, where the in-
fluence function i characterizes the strength of the pairwise velocity alignment interaction.
Naturally, ¥ (x) = ¥ (]x|) is assumed to be radial and decreasing in R. When only alignment
force is present, i.e. k = 0, the system reduces to the Euler-alignment system, which serves as
a macroscopic realization of the celebrated agent-based Cucker-Smale flocking model [7,8], cf.
[11] for a derivation.

The EPA system lies in a framework of collective dynamics involving interactions among
three zones: long-range attraction, short-range repulsion, and mid-range alignment [6]. The elec-
tric force within this system can be understood as an interactive force that arises from attractive
or repulsive Newtonian potentials.

The purpose of this work is to study the global regularity of the EPA system (1.1) for general
initial data. It is well-known that the finite-time breakdown of the pressureless Euler equations is
generic, see e.g. [16]. In particular, for all smooth initial data such that u( is non-increasing, the
solutions develop finite-time shock formations. On the other hand, the interacting forces intend
to help avoiding the singularities.

For the 1D Euler-Poisson system with a repulsive force, a critical threshold phenomenon is
shown in [10]: there exists a large class of subcritical initial data that lead to global smooth
solutions, while a class of supercritical initial data lead to finite-time shock formations. See e.g.
[17-19,27,28,30] on extensions to higher dimensions and with pressure.

For the Euler-alignment system, a similar critical threshold phenomenon is observed in [26]
when the influence function ¥ is bounded, cf. also [6,13]. Recently, there is a growing interest on
singular influence function that are unbounded at the origin. When v is strongly singular, namely
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Y is non-integrable near the origin, it has been shown in [9,25] that all non-vacuous periodic
initial data lead to global smooth solutions. When v is weakly singular, namely unbounded but
integrable at the origin, critical thresholds are obtained in [29], also see [4] for improved bounds
on density with any integrable ¢ . For recent development on the Euler-alignment system, we
refer readers to the book [24] and the references therein.

For the EPA system (1.1), we expect the critical threshold phenomenon when the influence
function v in the alignment force is bounded. Such behavior has been first shown in [6], where
the Poisson equation (1.1c) is assumed to have a zero background (¢ = 0). The result extends
to any attractive or repulsive forces through a potential that is less singular than the Newtonian
potential. The authors in [2] study the EPA system with attractive electric forces (k < 0) and
nonzero, non-constant background (c¢(x) > 0). The dynamics are more subtle. They design highly
non-trivial comparison principles to take care of the nonlocality that arises from the alignment
force, and manage to obtain bounds on subcritical and supercritical regions of initial data, thus
describing the critical threshold phenomenon.

Our main focus of this paper is on the EPA system (1.1) where the electric forces are repul-
sive (k > 0) and with non-zero background (c > 0). This type of electric forces is physically
relevant. The solution to the corresponding Euler-Poisson system is known to generate solutions
that oscillate, e.g. [10]. Such distinct feature makes it difficult to incorporate with the nonlocal
alignment forces. In particular, the comparison principles used in [2] are no longer valid. New
analytical tools are needed to capture the critical threshold phenomenon.

For convenience, we assume the spatial domain to be a torus T = [—%, %), namely we con-
sider 1-periodic data. We shall comment that many of our results can be extended to the whole
real line case with

f (po(x) —c)dx =0.

We shall leave this case for future investigation.
Under the spatial domain T, the Poisson equation (1.1c) requires the background charge to
be the average density, that is conserved in time due to (1.1a). We have

c:/,oo(x)dx. (1.2)
T

One useful parameter that plays an important role in quantifying the strength of the electric force

1S
\/?
A=2,/~. (1.3)
C

It is assumed to be a positive finite number throughout this paper. The alignment force can be
equivalently expressed as

/ Yper (V) (Uu(x +y) —u(x))p(x +y)dy,
T
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with the periodic influence function

Yper(¥) := Y Y(x+m), VxeT,

meZ

which is symmetric with respect to zero. We will continually use i to represent the periodic
influence function for simplicity.

Our first main result is on the global wellposedness of the EPA system (1.1) with repulsive
electric force k > 0 and bounded alignment influence:

0=<Ymin =Y () <¥max, VxeT. (1.4)

We construct a class of subcritical initial data and show solutions are globally regular; on the
other hand, we also find a class of supercritical initial data such that solutions experience finite-
time singularity formations. The precise descriptions of such critical threshold phenomenon are
stated in Theorems 2.2 and 2.5. Depending on the relative strength between the electric force
and the alignment force, there are three different scenarios: (i). weak alignment (Ypmax < A),
(ii). strong alignment (Yrmin > A), and (iii). medium alignment (Vmin < A < ¥max)- We construct
subcritical regions ¥; and supercritical regions A; on initial data for each scenario, that leads to
either global wellposedness or finite-time blowup, respectively.

In particular, when the alignment force is weak or medium, the solution is oscillatory. Instead
of a direct comparison with an auxiliary system, we construct an invariant region in the phase
plane of the solutions along each characteristic path. The novelty of our construction is that
we use different auxiliary systems to build segments of the boundary of the invariant regions,
and then glue them together. This allows us to handle the nonlocal alignment force while the
underlying Euler-Poisson system is highly oscillatory.

We would like to point out a special case when 1 is a constant, known as all-to-all alignment
interactions. In this case, the alignment force reduces to a local and linear damping, and (1.1)
becomes the damped Euler-Poisson system. The invariant regions that we constructed are con-
sistent with the sharp critical threshold conditions obtained in [1] on the damped Euler-Poisson
system.

The next focus is on the singular alignment interactions. When 1 is strongly singular, the
EPA system (1.1) was studied in [15]. The surprising result indicates that the alignment force
dominates the electric force, regardless of whether the electric force is attractive or repulsive.
Any smooth non-vacuous initial data lead to global smooth solutions. The argument holds even
if we drop the assumption ¥ > 0, namely misalignment is allowed, as discussed in [23].

Our second main result is on the EPA system (1.1) with repulsive electric force £ > 0 and
weakly singular alignment influence:

() =0, YxeT, and [¢ ) <+oo. (1.5)

In particular, ¥ can be unbounded at x = 0. Although the singularity is not strong enough to pro-
duce dominating dissipation like the strongly singular case, the global behavior is not expected
to be the same as the case when v is bounded. Without the L°° bound on ¥, we do not have the
following a priori bounds on the quantity i * p (here * denotes the spatial convolution)
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wmcs/w(y)po,x—y)dyswc, Viz0, (1.6)
T

which plays an essential role in the global regularity of the Euler-alignment system (see [29]), as
well as our approach to the EPA system with bounded alignment interactions.

We construct a subcritical region on initial data such that the solution is globally regular. The
main idea is to replace (1.6) by

IIWIILlpminS/W(y)/)(t,x—y)dyi V1Lt pmax, V1 =0, (1.7)
T

where the bounds depend on the maximum and minimum of the solution p. Then choose ap-
propriate constants pmin and pmax, and build an invariant region that is a subset of {pg : Pmin <
00(x) < pmax}. However, with the bound (1.7), we are not able to obtain a non-trivial invariant
region using our analytical framework, with any choice of ppin and pmax. Indeed, for the Euler-
alignment system, it is observed in [29] that, without the a priori bounds like (1.6), additional
treatments are required to control pmax, and the critical threshold is different from the scenario
when ¥ is bounded. The presence of the electric force adds another layer of complexity. To over-
come such difficulty, we obtain refined bounds of (1.7), stated in Lemma 4.1, making use of the
equation (1.2). With the refined bounds, we can obtain non-trivial invariant regions by the right
choices of pmin and pmax, and show global regularity of the EPA system (1.1) if initial data lie in
these subcritical regions. The precise statement is presented as Theorem 2.6.

This paper is arranged as follows. Section 2 contains the statements of the main results in this
paper. Section 3 entails the constructions of the subcritical and supercritical regions for (1.1) with
bounded alignment influence, proving Theorems 2.2 and 2.5. The first three subsections focus
on the subcritical regions to the three different scenarios respectively. The fourth subsection is
on the construction of the supercritical regions. Section 4 is devoted to the construction of the
invariant region for (1.1) with weakly singular alignment influence, proving Theorem 2.6.

2. Main results
Let us start with a reformulation for the EPA system (1.1) through an auxiliary variable
G=uy+v*p,

introduced in [6]. System (1.1) can be expressed in the following equivalent form

G+ (Gu)y =k(p — ), (2.1a)
pr + (pu)x =0, (2.1b)
uy =G — ¥ *xp. (2.1¢)

The velocity u can be recovered from (2.1c). It is uniquely defined up to a constant shift. The
constant can then be uniquely determined by the total momentum fT pudx, which is conserved
in time.
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We state a local wellposedness result for smooth solutions to (2.1). The proof can be done
using energy estimates on the derivatives of (G, p). See [29, Theorem 2.1] for a complete proof
when k = 0. The result can be easily extended to the case when k # 0, cf. also [3,15].

Theorem 2.1 (Local wellposedness). Consider the system (2.1) with initial data
Goe H(T), s>1, poe(LlnH)TD), 2.2)
and interactions with k e R, ¢ € L! (T). Then, there exists a time T > 0 such that the solution
GeC([0,T]; H(T)), peC([0,T1; (LY nH*)(T)).
Consequently, the EPA system (1.1) has a smooth solution
peC([0,T]; (LY nH(T)), uec(0,T]; HTHT)).

Moreover, T can be extended as long as

T
[ (1661 + . ) < . 23
0

The regularity criterion (2.3) indicates: the global-in-time bounds on G and p are sufficient to
obtain global regularity.

Our first main result focuses on repulsive electric force A > 0 and bounded influence functions
Y in the alignment force (1.4).

Theorem 2.2 (Global solutions). Consider (2.1) with repulsive electric force k > 0 and bounded
alignment influence  satisfying (1.4). Suppose the initial data (G, po) satisfies (2.2). Then

1. Weak alignment (Ymax < A): under the admissible condition

tan __ z _T_ T
e (1—e z )
2 (1 +e_ﬂ?)

if the initial data lie in the subcritical region X1, namely

Ymax — Vmin <

A, 2.4)

(Go(x), po(x)) € =1, VxeT,

then (G, p) remain bounded in all time.
2. Strong alignment (VYmin > A): if the initial data lie in the subcritical region %o, namely

(Go(x), po(x)) € £2, VxeT,
then (G, p) remain bounded in all time.
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3. Medium alignment (Vmin < A < ¥max): under the admissible condition

tan—12
z

e

Ymax — Ymin < AN
2<1+e_7)

A, 2.5)

if the initial data lie in the subcritical region X3, namely

(Go(x), po(x)) € 3, VxeT,
then (G, p) remain bounded in all time.

Consequently, (2.1) has a global smooth solution. Here, the parameters 7 and 7 are defined as

2 2
7= (wiax) -1 and 7:= <1/fj:ﬁn> -1 (2.6)

Note that Z, 7 could be real, purely imaginary, as well as infinity. The regions X1, ¥y and 23 are
subsets of R x Ry, defined in (3.20), (3.28) and (3.31) respectively.

Remark 2.3. The subcritical regions X, ¥, are illustrated in Fig. 1. The shape of X3 is similar
to 3. We would like to point out that the steady-state solution (G, p) = (c||¥||;1,¢) to (2.1) is
included in the subcritical regions X1, ¥, and X3. This corresponds to the steady-state solution
p(x) =c and u(x) = u to (1.1). Therefore, our subcritical regions are non-empty, and contain a
large class of physically meaningful initial data, including the states around a steady state.

Remark 2.4. When v (x) = ¢ is a constant, the alignment force becomes a local and linear
damping. Our constructed invariant regions agree with the sharp subcritical threshold obtained in
[1]. The admissible conditions (2.4) and (2.5) automatically hold. For general i, the admissible
conditions ensure the nonlocality is not too strong, and the invariant regions are non-trivial.

Theorem 2.5 (Finite time breakdown). Under the same assumptions as Theorem 2.2, we have

1. Weak alignment (Vrmax < A): If there exists xo € T that lie in the supercritical region Aj,
namely

(Go(x0). po(x0)) € Ay,
then (G, p) becomes unbounded at a finite time.

2. Strong and medium alignment (Yrmax > 1) If there exists xo € T that lie in the supercritical
region Ay, namely

(Go(x0), po(x0)) € Aa,
then (G, p) becomes unbounded at a finite time.
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G G

(a) Weak alignment (A = /2, %max = (b) Strong alignment (A = /2, ¢max =
0.75, Yrain = 0.25) 2, Yrmin = 1.5)

Fig. 1. Shapes of X1, X7, A1, Aj.

2

Moreover, at the blowup time t. and location x., the solution generates a singular shock, with

lim p(t,x;) =oc0 or0, lim G(t,x.)=—o00, lim u,(t,x.) = —o0.
t—>t. t—>to t—te

The regions A1, Ay are defined in (3.32), (3.33) respectively.

Our second main result concerns the EPA system with weakly singular alignment influence
(1.5). Although one would expect a similar critical threshold phenomenon for the global behav-
iors of the solutions, the lack of boundedness on ¥ would yield a lack of apriori control on ¥ % p,

resulting a different subcritical region for global smooth solutions.

Theorem 2.6 (On weakly singular alignment force). Consider (2.1) with repulsive electric force
k > 0 and weakly singular alignment influence  satisfying (1.5). Suppose the initial data

(Go, po) satisfies (2.2). Then

1. Weak alignment (|| |1 —y < %): under the admissible condition

41l —2y) <

2(1+e7F)
if the initial data lie in the subcritical region ©\, namely
(Go(x), po(»)) €Zp, VxeT,

then (G, p) remain bounded in all time.
2. Strong alignment (y > %): if the initial data lie in the subcritical region £3, namely

(Go(x), po(v)) € X7, VxeT,
then (G, p) remain bounded in all time.
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(a) Weak alignment (A = 4,[|¢]|,x = (b) Strong alignment (A = v/2, |91 =
2,v = 0.95) 2,v = 0.95)

Fig. 2. Shapes of £}, £2 .

3. Medium alignment (y < % < ||¥l|l1 — v): under the admissible condition

tan—!2

e :
2<1+e_%)

if the initial data lie in the subcritical region ¥3, namely

(1Yl = 2y) < A, (2.8)

(Go(x). po(x)) €=}, VxeT,
then (G, p) remain bounded in all time.

Consequently, (2.1) has a global smooth solution. Here, y = fll/z Y*(x)dx, where y* : (0, 1] —
R is the decreasing rearrangement of  on T. The parameters 7 and 7 are defined as

\/ A 2 A2
Z:= — ) -1 d 7:= — ] —1. 2.9
¢ (2(|I1ﬁllu —y)> e s (2y> @9

The regions EIL, E% and Zi are subsets of R x R defined in (4.19), (4.21) and (4.22) respec-
tively.

Remark 2.7. Unlike the case when i is bounded, the subcritical regions EiL’s are subsets of
{(Go, P0) : Pmin < Po < Pmax} for appropriate choices of 0 < pmin < ¢ < Pmax < 0©. Fig. 2(a)

illustrates the shape of ElL and E%. The steady-state solution (G, p) = (c||¥ |l 1,¢) € Ei. Hence,
the region EiL contains initial data around the steady state.

Remark 2.8. The admissible conditions (2.7) and (2.8) are similar to (2.4) and (2.5) respectively.
Since v is unbounded, Ymax — Y¥min is replaced by 4(||y||.1 — 2y). Note that ||[y||,1 — 2y >0,
and the equality holds if and only if ¥/ (x) = ¢ is a constant. Hence, just like the comment in
Remark 2.4, the admissible condition says that the nonlocality is not too strong. The parameters
Z and 7 are also revised to adapt the unboundedness of .
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3. The EPA system with bounded alignment influence

Consider the characteristic path x(¢) originated at o € T

dx
I =u(t,x()), x(0)=«a. 3.1

From (2.1b) and (2.1a), we obtain the system
G'=-G(G~ V¥ *p)+k(p—oc), (3.2a)
p'=—p(G - xp), (3.2b)

with initial data G(0) = Go() and p(0) = po(a). Here ' denotes the derivative along the char-
acteristic path

d
@)= Zf(t’ x(0) = fi(t,x(®)) +ut, x @) fr (t,x(1)).

In the proofs of Theorems 2.2 and 2.5, we will justify that the initial data when p (0) = 0 can be
handled separately. For now, we assume that p(0) > 0. We can further apply the transformation

G 1
wi=—, §i=— 3.3)
o P
to (3.2) and obtain the dynamics
w =k — kcs, (3.4a)
sSS=w—s*xp). (3.4b)

This ODE system is not closed along each characteristic path due to the nonlocal nature of the
term v * p. We shall analyze this nonlocal system by establishing a type of comparison argument.
To this end, we introduce a family of auxiliary systems

p =k —keq, (3.5a)
q'=p—Bq. (3.5b)

with p = p(t; B), g = q(t; B), where B is a parameter. For each given B, (3.5) is a linear system
that can be solved explicitly. We can rewrite (3.5) as

/
9= ¢
where the coefficient matrix has two eigenvalues

—B £ /BT — dke
—L—

—
— O
|
k-
S
[
—
<
|
—a [
[E—

_ﬂ q-<
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Note that ¥ % p has apriori bounds (1.4), which we recall here: Bmin < ¥ * p < Bmax, Where we
denote

Bmax = C¥max,  Pmin = C¥min. (3.6)

It is natural to consider the following two particular auxiliary systems with 8 = Smax and Bmin:

A Buax ]’ N A PBmax
e | G
~_M / _ ~_M
ial | e o7

We would like to remark that there is no direct comparison principle between the solutions
to the nonlocal system (w(t), s(¢)) and the local auxiliary system (p(t), §(t)) or (p(t), (1)),
particularly when B is small, in which case the eigenvalues are not real, and the solutions are
oscillatory. Instead, we shall obtain a comparison in the phase plane, and obtain an invariant
region that the trajectory (w, s) cannot exit.

3.1. Weak alignment

We begin with the case where all admissible values of 8 € [Bmin, Bmax] are such that

B? < ke,

and in such case (B/c, 1/c) is an asymptotically stable spiral point. Physically, this places a
restriction on the upper bound of i * p. Hence, we call this scenario the weak alignment case.
We will construct an invariant region using specific trajectories of the above auxiliary systems,
see Fig. 3. At this point, we establish some notation to be used in this section,

] 1 2 ) 1 2
6= oAk = By, 1= oy/ake — B,

We will now construct the invariant region (X7) as in Fig. 3. We divide this construction into
three steps, each pertaining to one of the segments of the boundary of X}. We will start from the
origin and move backwards in time.

Step 1: The first segment of the curve is the trajectory to (3.7a) starting at the origin, going
into the second quadrant, and ending when it hits the line ¢ = 1/c while going backwards in
time. Hence, if we solve for p, § with p(0) =0, g(0) = 0, then the other end point of the curve is
(p("), q(1]°%)), where ¢}°¢ is the first negative time for which g (¢") = 1/c. Let p}’* := p(t}"*).
Since (3.7a) is a simple linear system, we can explicitly solve for its solution with initial data
(p(0),4(0)) = (0,0,

ﬁ%ax
p t p ~ — A
Bmax e_f’m% Bmax cosdr A ¢
c c 0

sinft |,

pt) =
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3.5

Exact Threshold

3t &

25¢ 2
2.

T 15

1r /
05F

p

Fig. 3. Invariant region.

1 e_ﬂmzaxf ,3
gty =-— —— (cosét + == sinét) .
c c 26

1 1 20
G = - = 11" =—tan”! .
c 9 max

Hence,

ko -1 (20
p,iue:ﬂmax _\/ge PY; tan (ﬁmax) (38)

c

Bmax \/? an~l@)
= — ./ —e I
C C

with Z as defined at the end of Section 1.

Lemma 3.1. pi € \/E (—1.2—e).

Proof. We write the expression for p{’ as,

1 tan—! Var2—| 1
f(‘[)z\/z ——e Va1 || r:m>—.
C T ,Bmax 2

One can evaluate that f is a monotonically decreasing function with

lim f(r)=Q2— e)\/g and lim f(r)= —\/E
;-%— c T—00 I

T— 5

Hence, the result holds. O
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Also note that p’ > 0 and ¢’ < 0 in this region. Hence, the first segment is given by,

Cr={(p.q): (p(1),q(1)), 1 € [1", 0]} (3.9

Step 2: The second segment is constructed using the trajectory of the system (3.7b). To have
a closed region, the starting point of this segment should be the endpoint of the first segment. To
this end, let p, g be solutions to IVP (3.7b) with p(0) = p}’¢, §(0) = 1/c. This segment starts at
(p}’¢, 1/c), traces the trajectory of (p, g) upwards and ends when it hits the ¢ = 1/c line again
in the first quadrant. We denote the end point as (p3, 1/c). In particular, p3’* = p(t,’*) where
13°¢ is the first negative time where g(z,”°) = 1/c. We have

- . wepn . 2
p(t) = ﬂmm ﬁmzm <p11"€ — 'Bmm) cosOt + Pi_Pmin émm _ Puin sinft
c 20 2¢6

Bmin?

1 ) : -

g)=-+ S (p}”e — 'Bmm> sint.
c 0 c

Consequently,

Bmin Pmin™ Bmin
péue_ (téi)e)= " e 2 p}ue_

c
. Bmin™ Bmin™
_ Fmin <1 4o ) e (3.10)
C
_ Bmin

(l +e%) - pi”ee%.
c

Here, we emphasize an important issue. We must have that py’* > Buax/c, for otherwise we
would not be able to obtain a closed invariant region. The following Lemma states a condition to
ensure this.

Lemma 3.2. pY¢ > Biax/c if and only if

13

"> (Ban — i) (14¢7F).

\/];e tan

Proof. From (3.8) and (3.10), we have

we Bmax _ Bmin (1 +€%> pwee— Bmax
c C ! C

%)
_ ﬁmine% _ (ﬁmax _ ﬁe%) e% _ max — Bmin
C C C C
Z\/E zpa i Bmax — Pmin (1+e%)>o (3.11)
C C ) '
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We will use the inequality in the above form later in Lemma 3.4 to obtain a final condition. How-
ever, we can further rewrite this to obtain the inequality as in the statement of the Lemma. O

Remark 3.3. The condition in Lemma 3.2 is sharp. A relaxed condition could be derived using
Lemma 3.1,

Bmax — Bmin < e% (,Bmin + (e — 2)«/%) .

However, we will make use of the sharp condition because it is evident from (3.11) that if ¢ =
constant, then there is no need for such a condition.

The second segment of the boundary of invariant region is,
Cr={(p,q): (p(1),q(1)), 1 € [1,*, 0)}. (3.12)
Step 3: For the third segment, we again use (3.7a) but with different initial conditions than

the ones for the first segment. The third segment should start from the ending point of the second
segment, i.e., p(0) = py’* and 4(0) = 1/c. On solving, we obtain

N Pmaxt A we 2 N
p(;):@Jre— 2 [<p§ve_@>cosgt+<m_&a}> smg,]
C

26 26
1 o
qt)y=- ¢ 5 (pé”e - —ﬂmax> sinft.
C

Set

P3¢ = p(3’), (3.13)

where 13" is the first negative time when ¢ (;"¢) = 0. Hence, ;"¢ is the largest negative root of
the following,

A

0

Cpgje — Bmax

/Smaxtg"e

e T sin013’¢ = —

To ensure the invariant region is closed, it should be that while traveling in the negative time
direction, the trajectory hits the p-axis first before completing the outward spiral turn. The fol-
lowing Lemma ensures this.

Lemma 3.4. Let tg be the first negative time such that §'(ty) = 0. Then ¢ (to) < 0 if and only if

tan—! (%)

(Bmax — Bmin) (1+e_%>e’ <«/k_c(1—e*%*%). (3.14)

Proof. Solving for §(¢) = 0, we obtain that

~

019 = —m + tan" ' (3).
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Applying the condition g (#y) < 0, we obtain

1 _ Pmaxtg ﬂ
e 2 A
-+ - Py — T ) sinfry < 0
c 0 c
_ Bmaxtg . é é
e~ 2z sinffy< ————-——.
szzve — Bmax

Plugging in the value of 7y, we need that

bi4 tan~!

7l )
e: T (epy® — Bmax) — Vke > 0.

Note that (3.11) in Lemma 3.2 is indeed a necessary and sufficient condition for p}’® — Biax/c >
0 to hold. Hence, we can use (3.11) in the above expression to obtain a single final condition. To
this end, we want

7 _tan"1@)

eTT T (cpy — Bmax) — Ve
gitan_J(ﬁ) §+m"_Al 6) .
- ) Viee: T = (Bmax — Bmin)(1 +¢7) ) = Vke

tan— ! (5)

= Ve (375~ 1) = (Bnax = frn) (1 +eD)e T 77 >0,

This finishes the proof to the Lemma. O

Finally, we can define the last segment of the boundary of X%,

C3={(p.q): (), 4(1)), 1 €[t5,0)}. (3.15)

We define the following set

%7 := open set enclosed by Cy, C2, C3 and p-axis. (3.16)

By our construction, we know that ET is well-defined.
Next, we have the following Proposition.

Proposition 3.5. Ler 4kc > B2,... Let the initial conditions for (3.4) be such that (w(0), s(0)) €

max-*

1. Then (w(t), s(t)) € X7 forall t > 0.

We will prove the Proposition by drawing comparison between the solution trajectory (w, s)
and the boundary of X7}. Due to the presence of oscillations, a time based comparison between
systems (3.4) and (3.7) cannot be derived. To circumvent this, we will draw comparisons in the

(p, q) plane.
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Proof. We will show that a solution trajectory to (3.4) with initial data in ¥} can never touch
its boundary as time increases. By getting rid of the time parameter ¢ in the systems (3.7a) and
(3.7b), we obtain the following two trajectory equations below. These will play a significant role
in proving the invariance of X7.

dq P~ 4 Prmax

49 _ p = qPmax 3.17
dp ~ k—keq (3.172)
ﬂ _ P — 4 Bmin (3.17b)
dp  k—keg '

We start by showing a contradiction if the trajectory touches Cy. To this end, assume a point
(w1, s1) € C1 where the trajectory meets C;. Therefore, w; <0 and s; < 1/c. For a reminder,
any portion of C; is (p, §(p)) with appropriate initial conditions and values of p. We also get
rid of the time parameter in (3.4) to write s as a function of another variable and satisfying,

d _
ds _p=sv=p (3.18)
dp k —kcs

We have s; = g(w;) = s(wy). Since w | wis) 0, the trajectory (p, s(p)) was moving in the
positive p direction before touching C1, see Flg 4(a). Note that,

d(é_s)_p_glﬁmax p—s(*p)

dp k —kcq k —kes
_ —cp(s —¢) — (Bmaxq@ — (¥ * p)s) + ¢G4 (Bmax — ¥ * p)
N k(1 —cg)(1 —cs)
_(ep =¥ *xp)(G@ —5) = G(Bmax — ¥ * p)(1 —cs)
- k(1 —cg)(1 —cs)
(cp — ¥ *xp) G (Bmax — ¥ * p)

BT YT A Ay vy

In a neighborhood of p = w; (if w; = 0 consider left neighborhood),

d(q—s) (cp =Y *p)
dp k(l—cq)(l—c s)

(G —s).
Upon integration in the interval (w; — €, wy), € > 0 being sufficiently small, we obtain

d
P <.

- - oo

0=g(wy) —s(wy) < (G(w1 —€) —s(wy — €)) &1~ F=GENT-G)

This is a contradiction. Hence, a trajectory with initial point inside %] can never touch Cy. A
very similar argument holds for C3.

Now we show for C,. For sake of contradiction, suppose there exists a point (w3, s2) € Ca

where the trajectory, (w, s), touches C;. For a reminder, any portion of C, is (p, g(p)) with

appropriate initial conditions and range of p. Owing to our assumptions, we have 1/c < s, =
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(a) Trajectory touching Cf. (b) Trajectory touching Cs.

Fig. 4. Trajectories touching boundary of 7.

s(wz) = g (wy). Since w’ | (wn.52) < 0, the solution trajectory (p, s(p)) was traveling in the nega-
tive p direction when it toucffecf C», see Fig. 4(b). Similar to our previous calculations we obtain
from (3.17b) and (3.18) that,

dg—s) _ (p—yx*p) (~_S)+é(1/f*p—ﬂmin)
dp  k(—es)(—cq) 1 k(1 —cq)

In a neighborhood of p = w»,

dG=5) __(p—v+p)

k-

Upon integration in the interval (w;, wy + €), for € > 0 sufficiently small, we obtain

dp

5 B fu)2+e cp—Yrkp _
0<q(wa+e) —s(wr+e€) <(q(wr) —s(wp))e’2 Ki—aGNU=car) ™" = (.

Hence, the solution trajectory cannot cross C>.

Moreover, a trajectory (w, s) starting from any point (p, 0) with p > 0 will go up into the
region because at any such point,

sl|(p’0) =w— (¥ * /0)5|(p,0) =pP> 0.
This completes the proof to the proposition. O

Now we will transform X7 to obtain an invariant region for (3.2). To this end, define a map
by F :R?> — R2,

F(p.q)=(p/q.1/q). (3.19)
F is invertible for g > 0. We define

%)= F(Z%), (3.20)
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G

Fig. 5. Cy, C2, C3 as transformed to original coordinates (G, p).

which is an invariant region for (G, p). See Fig. 5 for the shape of the subcritical region, X1, in
(G, p) coordinates.

Remark 3.6. In Fig. 5, the p coordinate of the tip of X is 1/¢*, where g* is the ¢ coordinate of
the highest point of %, see Fig. 3. The expression of ¢* can be explicitly written as,

7 _tan— 1)

1 ez i Bmin
L R — we). (3.21
7=5 Vke ( c N )

Since p{’® < 0 from Lemma 3.1, we have that ¢* > 1/c. Also, from Fig. 5, we see that there is
no point (G, p) in ¥ such that p < 1/g*.

As a direct result of Proposition 3.5 and transformation (3.3), we have the following corollary.
Corollary 3.7. Let 4kc > ,Béax and (3.14) holds. Let initial conditions for (3.2) be such that
(G(0), p(0)) € Z1. Then (G(t), p(t)) € Xy forall t > 0. In particular, G, p are bounded for any
time.

3.2. Strong alignment

Now, we handle the case where all admissible values of 8 € [ Bmin, Bmax] in (3.5) are such that

B% > dke.

In such a case (B/c, 1/c) is an asymptotically stable node and the solutions to (3.7a) and (3.7b)
will not have any sinusoidal components. We call this scenario the strong alignment case. As be-
fore, we will construct an invariant region using specific trajectories. Unlike the invariant region
constructed in Section 3.1, here we will have an unbounded subcritical region, ¥, see Fig. 6.
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Fig. 6. Invariant region.

We first define some notation to be used in construction of E;. Set

); ._ﬁmax+\/m ); __ﬁmax_\/m
+ = s =
2

— . 2 9
. Bmin + v ﬁr%ﬁn — dkc 5 Prmin — V 'Brznin — dkc
Y+ = ) ’ V- = ) .

Remark 3.8. In this Section as well as Section 3.3, we should point out that if 82,,, = 4kc, then
the expressions of p, § have different form than the ones when B2, > 4kc, which is assumed for
calculations below. However, the calculated expressions for pi¢, p3°, pg"e always hold, although
in the limit sense when B2,,, = 4kc. A more detailed note about this is mentioned right after the
proof of Lemma 3.9.

Step 1: The first segment of the curve, Cy, is the trajectory to (3.7a) with the starting point at
origin and the ending point lying on the line ¢ = 1/c in the second quadrant. Set p{® := p(#{°)
so that (pi¢, 1/c) is the end point of Cy lying in the second quadrant. Here, £ is the negative
time when ¢ (#{°) = 1/c with p(0) = 4(0) = 0. On solving, we obtain,

k 5 . 5 .
py=mx (f—%V—f - Ley+f>,
¢ /Bl — dke \ V- V+
1 1 ; ;

10 P — (;9 e Pl - p_e—wf).
€ oy/BEu — dke "

When g(t]°) = 1/c,

(Vb st )i _ -

e
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Consequently, using the fact that yy_ = kc, we have

Pse — ﬂmaX — k e ﬁmax{ ( Y ﬁmax74k" )/7 7*\/ ﬂmax4kc>
: ¢ \% IBmax

_ Bmax i k ‘gmax’l ]/_;,_ )/_
c ,3 - 4kc J/— Y+

,Bmax k ﬂrna—xfl < )
= — Ke 2
¢ V7=7+
~ lgmax
_ Pmax _ \/? (v_)iﬁ (3.22)
c\y ) .

c P

Lemma 3.9. pi° e \/E [—(e —2),0).

Proof. (3.22) can be rewritten as a function of essentially one variable,

1
k(1 1+ /1 —412)\ 2142 Vke
g =/-[--|——= . t=—" re(0,1/2].
c T 1—\/1—41'2 ﬂmax

One can check that the above function is decreasing with

[k
lim g(r)=2—e¢e),/— and lim g(r)=0.
c =0t

—(1/2)"
Hence, the result holds. O

Since the ODE system (3.7a) is well-posed, g(1/2) = f(1/2) = —(e — 2)/k/c, where f is
as defined in proof of Lemma 3.1. Moreover, if Bmax = 2+/kc (or equivalently T = 1/2), then the
point p}¢ = p{’* = —(e — 2)y/k/c. The relation between f and g is much more. In fact, they are
equal if we extend each of their domains to R, see Remark 3.10.

Remark 3.10. We recall f here,

k 1 tan~! Var2—1 1
f(f)=\/i<——e 4r-l ) T> .
c\t 2

As a function into R, f is defined only for > 1/2. We aim to extend it to accommodate 7 € Rt.
It turns out that

tan—! V42| 1 + m 1 4t
PR — , 1€(0,00).
—v1—4aT
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-1, tan—Liy

To see this, let z := +/412 — 1,y := +/1 — 412, Consequently, Py h(y). We
have,

tan(In(h™)) = iy
el In(hY) _ e In(h'?)

i (eiln(hiy) + e*ilﬂ(h"y)) =t

h=Y — By
_1+y
_—l—y’

==Y

h%

and finally,

1
1 %
h(y)=<l+—y>2 .
—y

Owing to Remark 3.10, the formula for p{¢ is the same as p{"¢, which is,

se :Bmax k M
pl = — — —e z s
c C

where 7 is purely imaginary and output of tan~! is the principal value.
We now define the first segment of boundary of X%,

Cr={(p.q): (p(1).q4(1), t €[1;°,0)}. (3.23)

Step 2: Now, we move on to the second segment. For this part, we need the solutions to (3.7b)
with initial condition p(0) = pi® and g(0) = 1/c. Hence,

Bmin T (Bmin — Cpie)

Cy /ﬂgﬁn — 4kc

=y Pl ()

¢ V 'Briin — 4kc

Note that p, g are strictly decreasing for t < 0 and lim;_, _ o, p(¢) = lim;—, o, G(t) = 00. We
now define C,.

A = (7= = pre7),

Co={(p.q): (p(1),4(1)), t € (=00, 0]} (3.24)

This completes our construction and we are ready to define X3.

%5 = unbounded open set surrounded by Cy, C2, {(p,0) : p > 0} on 3 sides.  (3.25)
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Our construction ensures X3 is well-defined. The following proposition states the invariance of
5.
2

Proposition 3.11. Let 4kc < ﬂgﬁn. Consider the ODE system (3.4). If (w(0), s(0)) € X5 then
(w(?),s(t)) € I3 for all t > 0. In particular, w, s remain bounded and s(t) > 0 for all time.

Proof. The proof for the part that (w, s) never crosses C; or C is very similar to that in the
proof of Proposition 3.5. So, we will omit it here. We prove that s > 0 and w, s remain bounded.

The only points where the trajectory (w,s) could cross the p-axis are of the form (p, 0)
where p > 0. However, at any such point, s’ > 0 and therefore, the trajectory moves upwards.
Consequently, s(¢) > 0 for all # > 0. As a result,

w =k —kes <k.
Therefore, w is bounded from above. Moreover,
sS=w—syxp<w,
and hence, s is bounded from above. O
Similar to what we did in Section 3.1, we will now transform Z; to obtain an invariant region
for (3.2). However, due to the fact that E; is unbounded, through (3.3) we have that there are
points in F(X3) with positive but arbitrarily small values of p. This indicates that the subcritical

region might contain points where p = 0 which we miss in the above analysis due to working
with the transformed variables, (3.3). Indeed if p = 0 in (3.2a), then

G' =—G(G— Y *p)—kec=—(G*>— Gy * p +kc)

_—<G— w*p_m) (G— ‘”*H\/W) (3.26)
Noting that
w0 o) =
therefore, if
G(0) > Piin =y P — ke (3.27)

2 3

then G(¢) is bounded for all times. So, due to the balancing effect of the strong alignment, we
have subcritical data for p = 0 as well, which was not the case for ¥ in Section 3.1. Owing to
the above analysis and using F as in (3.19), we define
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Fig. 7. C1, C; as transformed to original coordinates (G, p).

(G 0) G ﬂmin 4/ 'Br%lin — dkc

2 ’

%)= F(ZHU (3.28)

which is an invariant region for (G, p). See Fig. 7 for the shape of the subcritical region in (G, p)
coordinates.

Remark 3.12. We define the invariant region ¥, using the map (3.19). However, since Cy, C»
are merely solution trajectories to a linear system, we can indeed denote X, through a function
representing these solutions. In particular, there exists a Lipschitz continuous function &, such
that

L ={(G,p): G >E&(p), p€l0,00)]}.

Proposition 3.13. Let 4kc < ﬂfﬁn. Let initial conditions for (3.2) be such that (G(0), p(0)) € X5.
Then (G(t), p(t)) € Xy forall t > 0. In particular, G(t), p(t) are bounded for any time.

Proof. Note thatif p(0) = 0in (3.2), then p = 0. Also, if (G(0), p(0)) € F(X%), then as a direct
result of Proposition 3.11 and transformations (3.3), we conclude that (G(¢), p(1)) € F(X3) for
all t > 0. Consequently, p(0) > 0 = p(¢) > 0 for further times. In particular, this justifies that
we can handle the p(0) = 0 = p case separately. From (3.27) above, we conclude the result for
this case. This finishes the proof to the Proposition. O

3.3. Medium alignment

This is the case where the range of 8 € [Bmin, Bmax] 1n (3.5) is such that ,Bilin < 4kc < ﬂrznax'
We call this scenario the medium alignment case. Here, we will use analysis of both Sections 3.1
and 3.2. The invariant region here is closed as in Section 3.1 where 4kc > B2,.. The procedure
to calculate p"¢, p5'°, pg"e is very similar to what it is in Sections 3.1 and 3.2. So, we omit the

calculations. We get
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ﬂ k lan_lf

me se max —

ple=p°=—— —\/je z
C C

Ci={(p.9): (p®),q), 1 €[5}, 0)},

with p, ¢ and ¢ as in Step 1 of Section 3.2, and

pgne — ﬁrzin (1 —G—E%) _pqnee%-

Similar to the condition (3.11) in Section 3.1, to have a closed invariant region, we need

pg/le > IBmax .

We have the following Lemma.

Lemma 3.14. py’¢ > Bmax/c if and only if

—1s

tan_ " 2 e
Vkee™ T > (Bax — Bin) (1+¢7F). (3.29)
The proof is very similar to that of Lemma 3.2. We then have,

Ca={(p.q): (p(1),3(1)), 1 €1, 0},

with p, g and £}’¢ as in Step 2 of Section 3.1.
We complete our construction by finding the point p3'¢ and the third segment of the boundary
of the invariant region. The desired curve is the portion of the solution to (3.7a) with p(0) = p5'

and ¢(0) = 1/c. Using this, we obtain

e ﬁmax
Bina (PE" ‘- T)
+
c Bax — dkc

p() = (Pret = poei1),

gty=—-+

¢ V IBI%laX — ke

g is unbounded and strictly increasing for ¢ < 0, hence, there exists a unique 5" < 0 such that
q(#5'*) = 0. 13" is the unique solution of

me __ ﬂmax)
1 <p2 c (e_);—l . e_};‘*'t) .

_p —5 4
e —eT =
cpy — Bmax

And p§'¢ := p(ty'®). Also,
C3={(p.q): (p(1),4(1)), t €[5, 0)}.
And
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Eg‘ := open set enclosed by Cy, C2, C3 and p-axis. (3.30)
Finally, we obtain the invariant region for the (G, p) plane. Set
Y3 = F(X3). (3.31)
We can now have the following Proposition.

Proposition 3.15. Let ﬁrznin < 4kc < Bmax and (3.29) holds. Let initial conditions for (3.2) be
such that (G(0), p(0)) € X3. Then (G(t), p(t)) € X3 forall t > 0.

The proof is very similar to that of Proposition 3.7.
3.4. Global smooth solutions
We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. Assume the hypothesis of Assertion (1). Ymax < A implies 4kc > ﬁfnax
which means this case lies in the purview of Section 3.1. Also, the admissible condition (2.4) can
be rewritten as (3.14). As a result, by Lemma 3.4, the invariant region X is well defined.

Now suppose (Go(x), po(x)) € X1 for all x € T. Then along any characteristic path (3.1),
the initial data to (3.2), (G(0), p(0)) € X1. By Corollary 3.7, (G(¢), p(t)) € X1 forall t > 0 and
G (1), p(t) are bounded along all characteristic paths. Finally, we can apply Theorem 2.1 and
conclude that (p, u) are global-in-time smooth solutions to (1.1).

The proof to Assertions (2) and (3) in the Theorem is very similar only that in place of Corol-
lary 3.7 used above, we use Propositions 3.13 and 3.15 respectively. O

3.5. Finite time breakdown

This section is devoted to the proof of Theorem 2.5. The procedure of construction is very
similar to that in Sections 3.1, 3.2 and 3.3. The only difference is that we use the system (3.7b)
wherever we used (3.7a) and vice-versa. As a result, Smax and Bmin interchange places in the rel-
evant expressions. We only state the crucial steps and Propositions in obtaining the supercritical
region.

Weak alignment (4kc > B2.,)
We have

Bi={(p.q): (p(1),3(1), t €[1}*, 0},

where p, g are solutions to (3.7b) with initial conditions p(0) = g(0) =0, and ¢;¢ < 0 is the first
negative time when g (¢“) = 1/c. Also,

: k an— !z
pllue = ﬁ(t{l)e) — IBmln _ \/jel - .
c Cc

We have the same bounds of p}’* as in Lemma 3.1, p{"¢ € \/k/c (—1, —(2 — e)). Next, we have
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By={(p.q): (p(1),4(1)), t €[, 01},

we 24

where p, g are solutions to (3.7a) with initial conditions p(0) = p{’*, §(0) = 1/c, and t}’* < 0 is
the first negative time when g (#,"°) = 1/c. Also,

ﬁ max

c

Py =py) = (l + e%) - p’l"ee%.

Since p{”® < 0, we have that py’® > Bmin/c and we do not need any extra condition (like (3.11))

to close the invariant region. Lastly,

By={(p.q9): (p(D). (1)), 1 €13, 0)},
where p, g are solutions to (3.7b) with initial conditions p(0) = py¢,g(0) = 1/c, and 5’ <0
is the first negative time when g (#;"°) = 0. Here again, we do not need any extra condition (like
(3.14)) for invariant region to be well-defined. To see this, just interchange SBmax and Bmin to

see that the right hand side of (3.14) becomes negative. Therefore, the condition holds trivially.
Finally, we define

A’} = unbounded open set outside B; U By U B3 with g > 0.
We then have the following Proposition.

Proposition 3.16. Let 4kc > ﬂrznax. Let the initial conditions for (3.4) be such that (w(0), s(0)) €
A7. Then there exists t. > 0 such that s(t.) = 0. Also, w(z.) <O.

Proof. The proof that the trajectory (w, s) does not touch A7 is very similar to that of Proposi-
tion 3.5. And from the signs of w’, s’, it can be concluded that the trajectory hits ¢ = 0 line for
some time, ¢, > 0, in the second quadrant. Hence, w(z,) <0. O

Due to A} being unbounded, we have supercritical region for points where p =0 as well.
Here, we have all such points in the supercritical region.

Ay =F(A))U{(G,0):G eR}. (3.32)
To see the inclusion of the points (G, 0), we prove a Lemma.
Lemma 3.17. Let a function h satisfy
W =—h*—a®h+ o),

where a is a bounded function and w is a constant with 4w — supa® > 0. Then for any initial
data h(0), there exists tc > 0 such that lim,_,,~ h(1) = —o0.
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Proof. First, observe that
W =—h*+ah—w

(-9 -

_ 2
- _4a) supa
- 4

2

< 0.

Therefore, h is strictly decreasing and can achieve any negative number. In particular, for some
to > 0, h(tp) < min{0, infa}. Consequently for ¢ > fo,

W < —h(h —infa).

Since h(fy) < min{0, infa}, it admits a Riccati type blowup. Indeed on comparing above
differential inequality with an equality, we obtain lim h(t) = —oo for some t. < fg +

(=h)~'. O

t—>1.

Owing to this Lemma, Proposition 3.16 and transformation (3.3), we have the following
Corollary.

Corollary 3.18. Let 4kc > B2, . Let initial conditions for (3.2) be such that (G(0), p(0)) € Aj.

max-*
Then there exists t. > 0 such that

lim G(t,x;) =—o0, lim p(t,x.) =00 or0,
t—t. t—t.

for some x. € T.
Proof. Note that if p(0) =0 in (3.2), then p = 0 and from (3.2a),
G' = —(G* = Gy * p + ko).

We can have h = G,a(t) = ¥ % p,w = kc in Lemma 3.17 and the hypothesis is satisfied.
Hence, for some ¢, > 0, lim,__ - G(t) = —oo irrespective of G(0). Also, if p(0) > 0 with

t—t.
(G0, p0) e F (A’l‘), then from Proposition 3.16 and transformations (3.3), we have the ex-
istence of ¢, > 0 such that limtﬁl; p(t) = oo and hm;%,; G (t) = —oo. This finishes the proof

to the Corollary. O

3.6. Strong and medium alignment (4kc < p2..)
These two cases are similar, so we state the construction together. We have
Bi={(p.q): (p(1),4(1)), t €[t}¢,0)},
where p, g are solutions to (3.7b) with initial conditions p(0) = g(0) =0, and #* < 0 is the
first negative time (for medium alignment) and the unique time (for strong alignment), when

q(°) =1/c. Next,
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By={(p,q): (p(1),4(1)), 1 € (—00,0]},

where p, ¢ are solutions to (3.7a) with initial conditions p(0) = p}’*, §(0) = 1/c. We can now
define AJ.

A; = unbounded open set surrounded by Bi, B2, {(p,0) : p < 0} on 3 sides.

Here, we have

_ /B2 _
AzzF(Aj)u{(G,O):G<’3max Pinax 4kc}. (3.33)

2

Indeed when p = 0, from (3.26) we have that if

. - 2 max — 2 -
G(0)<m1n1//*p \/(ﬁ*p) 4dkc =,3 V Bhax — 4kc

2 ’

then G(t) — —oo in finite time.
We have the following Proposition.

Proposition 3.19. Let 4kc < B2,... Let initial conditions for (3.2) be such that (G (0), p(0)) € As.

max-*
Then there exists t. > 0 such that

Iim G(¢t,x.) =—o0, lim p(t,x.) =00 or0,
t—>ts =1

for some x. € T.
We now give the proof to Theorem 2.5.

Proof of Theorem 2.5. Assume the hypothesis of Assertion (1). Y¥rmax < A implies 4kc > ,B%ax
which means this case lies in the purview of Section 3.1. Now suppose (Go(xop), po(x0)) € A for
some xg € T. Then consider the dynamics (3.2) along the characteristic path (3.1) with x(0) =
X0, and apply Corollary 3.18. We have

lim G(t,x.) =—o00, lim p(z,x;) =00 or0.
s t—t.

This proves Assertion (1). The proof to Assertion (2) in the Theorem is very similar only that in
place of Corollary 3.18 used above, we use Proposition 3.19. O

4. The EPA system with weakly singular alignment influence

In this section, we tackle the case when ¢ € LL(T). In particular, v need not be bounded as
was assumed in Section 3. This type of alignment forces is known as weakly singular.
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4.1. Improved bounds on ¥ x p
The main difficulty of applying our theory in Section 3 to the EPA system with weakly singular

alignment influence is that the bounds on ¥ * p in (1.4) no longer hold. A natural replacement of
the bounds is (1.5), which we recall here:

Il L1 omin < ¥ * 0 < |Vl L1 Pmax- 4.1
A major issue arises that the bounds depend on the unknown p. If we were to pick pmax and pmin

and use the bounds (4.1) in place of Bmax, Bmin as in Section 3, then the invariant region X need
to satisfy

inf{p : (G, p) € £} > pmin,  sup{p: (G, p) € T} < Pmax, (4.2)
in order to keep (4.1) valid. However, after detailed analysis, it turns out that there are no values
of pPmax and pmin With which the constructed invariant region X satisfies (4.2).

To overcome this difficulty, we make improvements to the bounds (4.1) leveraging the addi-
tional property on p

/p(t,x)dx:c, Vi>0.
T

In particular, we have the following key Lemma.

Lemma 4.1. Let p be any nonnegative, periodic function satisfying

/p(X)dx =c, and pPmin<p*) =< Pmax, VX €T, 4.3)
T

Lety €L }‘_(T). Then there exist two non-negative constants y| and y» such that

Pmin”df”Ll + (Pmax — Pmin) Y1 < / Y —y)p(y)dy < pmaX”I/f”Ll — (Pmax — Pmin)y2, (4.4)
T

for any x € T. Moreover, y1 and v, can be expressed by

1 1
y = / Wy, = f v () dy,

Pmax —¢ €~ Pmin
Pmax —Pmin Pmax —Pmin

where ¥* : (0, 1] = R is the decreasing rearrangement of ¥ on T.
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Proof. For the lower bound, fix an x € T. Consider the set

A={yeT :¢¥(x —y)>y*d)}, with |A|=d:=%,

and define a function

Pmin YEA

, 4.5)
Pmax Y€ A=T\A

P(Y) = PminXA(Y) + Pmax XA (y) = {
where X 4 denotes the indicator function of set A. Let us check

[vf(x — VG dy = pmmfwu ~ ) dy + pmax / Vi — y)dy
T A Ac

d 1
= Pmin f V*(y)dy + Pmax / V() dy = pminl¥ 21 + (Pmax — Pmin)V1-
0 d

It remains to show

/ Yx —y)(p(y)—p(y))dx >0.
T
Indeed, we have

/w(x—y)(p(y)—ﬁ(y))dy=/¢(x—y)(p(y)—pmm)dy+/W(x—y)(p(y)—pmax)dy
T A Ac

> ¥ (d) f (0() = pmin) dy + ¥ () / (PO = P dy
A Ac

=@ [ [ £y = prin A1 = P AT | =9 @) (¢ = pind = pras(1 = ) =0,
T

The upper bound can be obtained similarly by considering the set

A={yeT :yx—y>y*@), with [Al=d=—"rmn

9
Pmax — Pmin

and the function

AW = PmaxX 1) + Pmin & 4 (v)-

We omit the details of the proof. O
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Remark 4.2. The function p in (4.5) is the minimizer of the optimization problem

mgn/w(x W)y,
T

subject to the constraints in (4.3). Indeed, the Lagrange function of the constraint minimization
problem is

IXPJH’H%K)Zi/(¢P4‘MNP“ﬁmﬂ‘—Mﬂp‘—pmm)—K0>dy+KC,
T

where g1, € L°(T) and « € R are Lagrange multipliers. The Karush-Kuhn-Tucker (KKT)
conditions read

Y+ ur —puy —k =0, (Stationarity),

Pmin < P < Pmax> / p(y)dy =c, (Primal feasibility),
T
ni, 2 >0, (Dual feasibility),

(0 — Pmax)1 = (P — pmin)t2 =0, (Complementary slackness).
We choose ©1 = —min{0, ¥ — «} and po = max{0, { — «}. This ensures that the stationarity
and dual feasibility conditions are satisfied. The complementary slackness conditions require
0 = pmax When ¢ < « and p = ppin When ¢ > «. Finally, to ensure the primal feasibility, we
obtain k = ¥*(d). Altogether, we end up with (4.5).
As a special case of Lemma 4.1, if we choose pmax and pmin as

0 < Pmin <€ < Pmax £2¢,  Pmin + Pmax = 2¢, (4.6)

then (4.4) holds with

1
m=n=w=/WUMM
1
2

It will dramatically simplify the analysis. We also observe

1
2 </w*<y>dy= Wl
0

In the following construction, we will choose

Pmin =0,  Pmax = 2c. 4.7
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We shall comment that (4.6) is not the only choice that leads to an invariant region. We will keep
using the notations pmax and pmin throughout the construction for generality.

4.2. Construction of invariant region

We shall construct the invariant region in light of ¥* as in Section 3. The main difference
would be that the region X* need to satisfy the additional restriction (4.2). We will make use of
the improved bounds (4.4). Let us denote

Bmax 1= Pmax”W”Ll — (Pmax — Pmin) 2. (4.8a)
Bmin := Pminll¥ 121 + (Omax — Pmin) V1, (4.8b)

Unlike definition (3.6), Bmax and Bmin depend on the density pmax and pmin.

We will carry over the same notations from Section 3 to avoid excess notations. However, it
should be noted that the functions Z, Z, 3 , 0 now depend on pmax, Pmin- To avoid confusion we
restate the expressions for z, Z,

4 4k
LR S Ty s ) (4.9)
IBmax 'Bmin

Note that if we choose pmax and pmin as in (4.7), then Z and Z have the explicit forms in (2.9).
Our construction of the invariant region will follow the procedure in Section 3. Here we focus
on the construction of the weak alignment case 7. The other two cases can be treated similarly.
Let us assume Bpax < 2./ke.
Step 1: On the (p, ¢) plane, we construct the first segment of the boundary of the invariant
region

Ci={(p, @) : (p(t),q(1)), 1 € 11,01}, (4.10)

where (p, ¢) satisfy the dynamics

P =k —keq, q' = p — Pmaxd,

with initial data

p(0) =Lmx - G0) =

Pmax pmdx

and time #; <0 such that g(z1) = 1/c. Here we choose a different initial point that Section 3.1.
We take ¢(0) = —, so that p(0) < pmax. The choice of p(0) ensures p(t) < Pmax, Which is
necessary for (4. 2) ) to hold.

Using similar calculations as in Step 1 of Section 3.1, we have

2
_ Bmax

A (kc 5 A
Bmax cOs Ot — 7@ sinft |,

N lgmax _ Pmaxt 1 1
— —e 2
C

c Pmax
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1 max ! 1 1 ~ A
@(l)=——6’7ﬂT <—— ) <cos9t+'3;5)( sin@t).

4 4 Pmax

The final point of Cy is (p1, 1/c) where

p1:=ﬁ(n)=ﬁmax—«/ﬁ(l— ! )ei @.11)

C  Pmax

The value of p; depends on the choices of ppax and pPmin-

The point (p1, 1/c) should be the starting point of the next segment C,. To make sure C»
continues to move upward as we trace time in the negative direction, we require that p; lies at
the left hand-side of @, which is the equilibrium state of the auxiliary system (3.7b). p; < @
can be equivalently expressed as

lan’li
Brnax — Buin < Ve (1 — ) e T . (4.12)

Pmax
Step 2: Assume that (4.12) holds. We continue with the next segment of the boundary of the

invariant region

Cr={(p.q): (p(1),q (1)), 1 € [12, 01}, (4.13)

where (p, ¢) satisfy the dynamics

ﬁ/:k_kcq’ q/zﬁ_ﬂmian
with initial data p(0) = p1, g(0) = %, and 7, is the first negative time such that g(2) = 1/c.
Using similar calculations as in Step 1 of Section 3.1, we have

2
i Bmin’ i ~ H . -
5(1) Brin o <[71 ﬂmm) cos Ot plﬂimn ﬂmlf sinér |,
c c 26 2c6

_ Bmin!

1 2 : -
c?(t)=—+e - (p1—'8mm>sint9t.
c 2} c

We find that the final point of C3 is (p2, 1/c) where

.Bmin

c

pri= i) =0 (146F) = pref, (4.14)
which also depends on the choices of pmax and Pmin.

The point (p2, 1/c) should be the starting point of the next segment C3. To make sure C3
continues to move downward as we trace time in the negative direction, we require that p; lies

at the right hand-side of Bmax \which is the equilibrium state of the auxiliary system (3.7a).

c
p2> B M2 can be equivalently expressed as

C an—! 2 e
Bnax — Banin < Vke (1 - ) e _. (4.15)

Pmax
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where R is defined in (4.12). Note that condition (4.15) is stronger than (4.12).
Step 3: Assume that (4.15) holds. The next segment of the boundary of invariant region

C3={(p,q): (p(1),4(1)), 1 € [13,0]} (4.16)

is constructed from the dynamics

Ia/zk_kcq,\» é/zﬁ_ﬂmaxév

with initial data p(0) = p», §(0) = =, and 73 is the first negative time such that §(#3) = 1/ pmax.
We have
2
_ Bmaxt?
p(l‘) _ ,Bmax to |:<P . Bmax ) 9t + (pLBrAnax _ ﬂde) 51n9t]
c 20 2¢H
PBmax?
1 -T2 ~
G0 =-+ 5 (pz - —ﬂma") sint.
c 0 c

To ensure the existence of #3 such that g (#3) = 1/pmax, we state the following Lemma.

Lemma 4.3. Let t, be the first negative time such that §'(t,) = 0. Then §(t,) < 1/pmax if and
only if

(ﬂmax - ,Bmin) (1 + €7%> e_‘an_;(i) < «/E (1 — ,Or:ax) (l — 6_%_%) ,

or equivalently,

.Bmax_lgmin<\/§<l— )e% . @ 4.17)

(1+e %)

Pmax

The proof of the Lemma follows similar arguments as Lemma 3.4, which we will omit here.
The admissible condition (4.17) is similar as (3.14), differed only by a factor, as the starting
point of the construction is different. The Lemma ensures that the trajectory of Cjz hits the line
q = 1/pmax first before completing the outward spiral turn. Moreover, at the intersection p3 =
p(3) > ﬂ max Tt is easy to observe that condition (4.17) is stronger than (4.12) and (4.15).

Now We are ready to construct the invariant region

Zz = open set enclosed by C1, C, C3 and Cy, (4.18)

where Cj is the line segment

Co={p.ipedm py g=-L1

Fig. 8 gives an illustration of the invariant region. We can further make use of the transformation
F as in (3.19) to obtain the invariant region 21L in the (G, p) plane
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4 -
3 5
T2
1 H
0 . 3 . . .
0 2 4 6 8 10 12
*  Starting point g=1/a P=Brnind
Highest point (q*) ——P=8 5,

Fig. 8. Invariant region for k =4, ¢ = 1, pmax = 2, pmin = 0 and influence function with [[y/[|;1 =2, y; =y =0.95.

EL = F(X]). (4.19)
See Fig. 2(a) for an illustration of Z}‘.

Proposition 4.4 (Invariant region). Let 4kc > ﬁm ax- Assume condition (4.17) holds. Consider the
initial value problem of (3.4) with (w(0), s(0)) € X7 . In addition, assume

Bmin < V¥ * 0 < Brmax- (4.20)
Then the solution (w(t), s(t)) € Xj forallt > 0.

Proof. The arguments that the trajectory does not cross Cy, C2, C3 are entirely similar to the
ones in the proof of Proposition 3.5. If (w, s) € C4, meaning w > % and s = p%, we get from

(3.4b) that

S/Zw_s(w*p)>ﬂm—ax_ * Bmax = 0.

Pmax Pmax

Therefore, trajectories can not touch trajectories with initial point inside X7 never touch Cy as
well. By continuity of the trajectories, we conclude that (w(¢), s(¢)) stays in )Tz all time. O

For the other two cases, E%, Z% can be constructed very much alike as long the lines of %5, 33
respectively. The only difference is that the corresponding invariant regions on the (p, g) plane
now start from a point in the first quadrant, namely ( o ) instead of the origin. Since the
respective calculations and consequent proof to the second and third assertions of Theorem 2.6
follows along the lines of the first assertion, we only prove the first assertion here and state the
regions %2, Ei.

2 = F(Zh), 4.21)
where,
Z; = unbounded open set surrounded by C1, Co, {(p,0): p > %} on 3 sides,
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with Cy as in (3.23) and p, ¢ with initial data (%, p#) and C, as in (3.24). Similarly,
max max

¥ = F(%3), (4.22)

where,

Z§ = open set enclosed by Cy, C», C3 and g = pnlm ,

L.

” Pmax

with C1, C,, C3 as in Section 3.3 but C| obtained from p, ¢ with initial data (ﬂ max
4.3. Proof of Theorem 2.6

We are ready to apply Proposition 4.4 and prove Theorem 2.6. We will only prove the weak
alignment case. The other two cases work similarly. We choose pmax = 2¢ and ppin = 0 as in
(4.7). It implies

Pmax = 20(|W’”L1 —vy) and PBpin =2cy.

Let us validate all the assumptions in Proposition 4.4. First, the hypothesis of the Theorem
Wl —y <5 implies

Blax = 42 (IW Il 1 — ¥)? < dke.
Second, the admissible condition (2.7) implies (4.17). Indeed, we have

an—!2 T n
Jie e (1 _e_?_z)
2 (1+e7%) '

Finally, owing to Lemma 4.1, we conclude that (4.20) holds as long as p is uniformly bounded
above by 2c¢ (and below by 0).

Consider subcritical initial data (Go(x), po(x)) € EIL for all x € T. Along each charac-
teristic path (3.1), there is dynamics (3.4) with initial data (w(0), s(0)) € 7. We claim that
(w(t), s(t)) € X7 for any ¢ > 0 along any characteristic path.

Let us argue by contradiction. Suppose there exists a first time fy and a characteristic path
such that (w(ty), s(f0)) ¢ E* By continuity of the dynamics (3.4), we have that along every

Bmax — Pmin = 26(”1;0”141 —-2y) <

characteristic path (w(ty), s(to)) € E* Since E* c{(p,q):q > 1 } we obtain the uniform

bound s(fp, x) > Z and hence p(fp, x) € (0, 2c]. Now, we can apply Proposition 4.4 and get
(w(ty), s(ty)) € Ez. This leads to a contradiction.

Collecting all characteristic paths, and applying the transformation F in (3.19), we conclude
that (G(¢, x), p(t,x)) € Zi for all x € T and ¢ > 0. Therefore, (G, p) remain bounded in all
time. Consequently, by Theorem 2.1, we have that (p, u) is global-in-time smooth solution to

(1.1).
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Remark 4.5. We would like to remark the invariant region ElL is a subset of

{(G.p): ¢ < P < Pmax),

where g™ is the highest tip of X7 . This leads to an improved bound on ppin, and consequently
better bounds on Bmin and Bmax. Repeating the procedure with the new bounds, we can obtain a
larger invariant region. Finding the optimal (or largest) invariant region is beyond the scope of
this paper. We shall leave this for future investigations.
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