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Abstract

This paper is concerned with the global wellposedness of the Euler-Poisson-alignment (EPA) system. 
This system arises from collective dynamics, and features two types of nonlocal interactions: the repulsive 
electric force and the alignment force. It is known that the repulsive electric force generates oscillatory 
solutions, which is difficult to be controlled by the nonlocal alignment force using conventional comparison 
principles. We construct invariant regions such that the solution trajectories cannot exit, and therefore obtain 
global wellposedness for subcritical initial data that lie in the invariant regions. Supercritical regions of 
initial data are also derived which leads to finite-time singularity formations. To handle the oscillation and 
the nonlocality, we introduce a new way to construct invariant regions piece by piece in the phase plane 
of a reformulation of the EPA system. Our result is extended to the case when the alignment force is 
weakly singular. The singularity leads to the loss of a priori bounds crucial in our analysis. With the help of 
improved estimates on the nonlocal quantities, we design non-trivial invariant regions that guarantee global 
wellposedness of the EPA system with weakly singular alignment interactions.
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1. Introduction

In this paper, the point of concern is the following one-dimensional Euler-Poisson-alignment 
(EPA) system

ρt + (ρu)x = 0, (1.1a)

ut + uux = −kφx +
∫
R

ψ(x − y)(u(y) − u(x))ρ(y)dy, (1.1b)

− φxx = ρ − c, (1.1c)

subject to smooth initial density and velocity

(ρ(t, ·), u(t, ·))∣∣
t=0 = (ρ0 ≥ 0, u0).

This system can be viewed as the pressureless Euler equations with two types of nonlocal 
interacting forces on the right-hand side of the momentum equation (1.1b): the electric force and 
the alignment force.

The electric force is modeled through an interacting potential φ, that is governed by the Pois-
son equation (1.1c), with a constant c representing the background charge that can be zero or a 
positive constant. The parameter k signifies the property of the underlying force: repulsive k > 0
or attractive k < 0. When only electric force is present, i.e. ψ ≡ 0, (1.1) reduces to the classi-
cal Euler-Poisson system. It has been an area of intensive study due to their vast relevance in 
modeling physical phenomena [5,12,14,20–22], including semiconductor and plasma dynamics.

The alignment force describes the collective motion of an interacting system, where the in-
fluence function ψ characterizes the strength of the pairwise velocity alignment interaction. 
Naturally, ψ(x) = ψ(|x|) is assumed to be radial and decreasing in R+. When only alignment 
force is present, i.e. k = 0, the system reduces to the Euler-alignment system, which serves as 
a macroscopic realization of the celebrated agent-based Cucker-Smale flocking model [7,8], cf.
[11] for a derivation.

The EPA system lies in a framework of collective dynamics involving interactions among 
three zones: long-range attraction, short-range repulsion, and mid-range alignment [6]. The elec-
tric force within this system can be understood as an interactive force that arises from attractive 
or repulsive Newtonian potentials.

The purpose of this work is to study the global regularity of the EPA system (1.1) for general 
initial data. It is well-known that the finite-time breakdown of the pressureless Euler equations is 
generic, see e.g. [16]. In particular, for all smooth initial data such that u0 is non-increasing, the 
solutions develop finite-time shock formations. On the other hand, the interacting forces intend 
to help avoiding the singularities.

For the 1D Euler-Poisson system with a repulsive force, a critical threshold phenomenon is 
shown in [10]: there exists a large class of subcritical initial data that lead to global smooth 
solutions, while a class of supercritical initial data lead to finite-time shock formations. See e.g. 
[17–19,27,28,30] on extensions to higher dimensions and with pressure.

For the Euler-alignment system, a similar critical threshold phenomenon is observed in [26]
when the influence function ψ is bounded, cf. also [6,13]. Recently, there is a growing interest on 
singular influence function that are unbounded at the origin. When ψ is strongly singular, namely 
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ψ is non-integrable near the origin, it has been shown in [9,25] that all non-vacuous periodic 
initial data lead to global smooth solutions. When ψ is weakly singular, namely unbounded but 
integrable at the origin, critical thresholds are obtained in [29], also see [4] for improved bounds 
on density with any integrable ψ . For recent development on the Euler-alignment system, we 
refer readers to the book [24] and the references therein.

For the EPA system (1.1), we expect the critical threshold phenomenon when the influence 
function ψ in the alignment force is bounded. Such behavior has been first shown in [6], where 
the Poisson equation (1.1c) is assumed to have a zero background (c = 0). The result extends 
to any attractive or repulsive forces through a potential that is less singular than the Newtonian 
potential. The authors in [2] study the EPA system with attractive electric forces (k < 0) and 
nonzero, non-constant background (c(x) > 0). The dynamics are more subtle. They design highly 
non-trivial comparison principles to take care of the nonlocality that arises from the alignment 
force, and manage to obtain bounds on subcritical and supercritical regions of initial data, thus 
describing the critical threshold phenomenon.

Our main focus of this paper is on the EPA system (1.1) where the electric forces are repul-
sive (k > 0) and with non-zero background (c > 0). This type of electric forces is physically 
relevant. The solution to the corresponding Euler-Poisson system is known to generate solutions 
that oscillate, e.g. [10]. Such distinct feature makes it difficult to incorporate with the nonlocal 
alignment forces. In particular, the comparison principles used in [2] are no longer valid. New 
analytical tools are needed to capture the critical threshold phenomenon.

For convenience, we assume the spatial domain to be a torus T = [− 1
2 , 12 ), namely we con-

sider 1-periodic data. We shall comment that many of our results can be extended to the whole 
real line case with

∞∫
−∞

(ρ0(x) − c)dx = 0.

We shall leave this case for future investigation.
Under the spatial domain T , the Poisson equation (1.1c) requires the background charge to 

be the average density, that is conserved in time due to (1.1a). We have

c =
∫
T

ρ0(x)dx. (1.2)

One useful parameter that plays an important role in quantifying the strength of the electric force 
is

λ = 2

√
k

c
. (1.3)

It is assumed to be a positive finite number throughout this paper. The alignment force can be 
equivalently expressed as

∫
ψper(y)(u(x + y) − u(x))ρ(x + y)dy,
T
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with the periodic influence function

ψper(x) :=
∑
m∈Z

ψ(x + m), ∀ x ∈ T ,

which is symmetric with respect to zero. We will continually use ψ to represent the periodic 
influence function for simplicity.

Our first main result is on the global wellposedness of the EPA system (1.1) with repulsive 
electric force k > 0 and bounded alignment influence:

0 ≤ ψmin ≤ ψ(x) ≤ ψmax, ∀ x ∈T . (1.4)

We construct a class of subcritical initial data and show solutions are globally regular; on the 
other hand, we also find a class of supercritical initial data such that solutions experience finite-
time singularity formations. The precise descriptions of such critical threshold phenomenon are 
stated in Theorems 2.2 and 2.5. Depending on the relative strength between the electric force 
and the alignment force, there are three different scenarios: (i). weak alignment (ψmax < λ), 
(ii). strong alignment (ψmin ≥ λ), and (iii). medium alignment (ψmin < λ ≤ ψmax). We construct 
subcritical regions �i and supercritical regions �i on initial data for each scenario, that leads to 
either global wellposedness or finite-time blowup, respectively.

In particular, when the alignment force is weak or medium, the solution is oscillatory. Instead 
of a direct comparison with an auxiliary system, we construct an invariant region in the phase 
plane of the solutions along each characteristic path. The novelty of our construction is that 
we use different auxiliary systems to build segments of the boundary of the invariant regions, 
and then glue them together. This allows us to handle the nonlocal alignment force while the 
underlying Euler-Poisson system is highly oscillatory.

We would like to point out a special case when ψ is a constant, known as all-to-all alignment 
interactions. In this case, the alignment force reduces to a local and linear damping, and (1.1)
becomes the damped Euler-Poisson system. The invariant regions that we constructed are con-
sistent with the sharp critical threshold conditions obtained in [1] on the damped Euler-Poisson 
system.

The next focus is on the singular alignment interactions. When ψ is strongly singular, the 
EPA system (1.1) was studied in [15]. The surprising result indicates that the alignment force 
dominates the electric force, regardless of whether the electric force is attractive or repulsive. 
Any smooth non-vacuous initial data lead to global smooth solutions. The argument holds even 
if we drop the assumption ψ ≥ 0, namely misalignment is allowed, as discussed in [23].

Our second main result is on the EPA system (1.1) with repulsive electric force k > 0 and 
weakly singular alignment influence:

ψ(x) ≥ 0, ∀ x ∈T , and ‖ψ‖L1(T ) < +∞. (1.5)

In particular, ψ can be unbounded at x = 0. Although the singularity is not strong enough to pro-
duce dominating dissipation like the strongly singular case, the global behavior is not expected 
to be the same as the case when ψ is bounded. Without the L∞ bound on ψ , we do not have the 
following a priori bounds on the quantity ψ ∗ ρ (here ∗ denotes the spatial convolution)
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ψmc ≤
∫
T

ψ(y)ρ(t, x − y)dy ≤ ψMc, ∀ t ≥ 0, (1.6)

which plays an essential role in the global regularity of the Euler-alignment system (see [29]), as 
well as our approach to the EPA system with bounded alignment interactions.

We construct a subcritical region on initial data such that the solution is globally regular. The 
main idea is to replace (1.6) by

‖ψ‖L1ρmin ≤
∫
T

ψ(y)ρ(t, x − y)dy ≤ ‖ψ‖L1ρmax, ∀ t ≥ 0, (1.7)

where the bounds depend on the maximum and minimum of the solution ρ. Then choose ap-
propriate constants ρmin and ρmax, and build an invariant region that is a subset of {ρ0 : ρmin ≤
ρ0(x) ≤ ρmax}. However, with the bound (1.7), we are not able to obtain a non-trivial invariant 
region using our analytical framework, with any choice of ρmin and ρmax. Indeed, for the Euler-
alignment system, it is observed in [29] that, without the a priori bounds like (1.6), additional 
treatments are required to control ρmax, and the critical threshold is different from the scenario 
when ψ is bounded. The presence of the electric force adds another layer of complexity. To over-
come such difficulty, we obtain refined bounds of (1.7), stated in Lemma 4.1, making use of the 
equation (1.2). With the refined bounds, we can obtain non-trivial invariant regions by the right 
choices of ρmin and ρmax, and show global regularity of the EPA system (1.1) if initial data lie in 
these subcritical regions. The precise statement is presented as Theorem 2.6.

This paper is arranged as follows. Section 2 contains the statements of the main results in this 
paper. Section 3 entails the constructions of the subcritical and supercritical regions for (1.1) with 
bounded alignment influence, proving Theorems 2.2 and 2.5. The first three subsections focus 
on the subcritical regions to the three different scenarios respectively. The fourth subsection is 
on the construction of the supercritical regions. Section 4 is devoted to the construction of the 
invariant region for (1.1) with weakly singular alignment influence, proving Theorem 2.6.

2. Main results

Let us start with a reformulation for the EPA system (1.1) through an auxiliary variable

G = ux + ψ ∗ ρ,

introduced in [6]. System (1.1) can be expressed in the following equivalent form

Gt + (Gu)x = k(ρ − c), (2.1a)

ρt + (ρu)x = 0, (2.1b)

ux = G − ψ ∗ ρ. (2.1c)

The velocity u can be recovered from (2.1c). It is uniquely defined up to a constant shift. The 
constant can then be uniquely determined by the total momentum 

∫
T ρudx, which is conserved 

in time.
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We state a local wellposedness result for smooth solutions to (2.1). The proof can be done 
using energy estimates on the derivatives of (G, ρ). See [29, Theorem 2.1] for a complete proof 
when k = 0. The result can be easily extended to the case when k 
= 0, cf. also [3,15].

Theorem 2.1 (Local wellposedness). Consider the system (2.1) with initial data

G0 ∈ Hs(T ), s > 1
2 , ρ0 ∈ (L1+ ∩ Hs)(T ), (2.2)

and interactions with k ∈R, ψ ∈ L1(T ). Then, there exists a time T > 0 such that the solution

G ∈ C
([0, T ];Hs(T )

)
, ρ ∈ C

([0, T ]; (L1+ ∩ Hs)(T )
)
.

Consequently, the EPA system (1.1) has a smooth solution

ρ ∈ C
([0, T ]; (L1+ ∩ Hs)(T )

)
, u ∈ C

([0, T ];Hs+1(T )
)
.

Moreover, T can be extended as long as

T∫
0

(
‖G(t, ·)‖L∞ + ‖ρ(t, ·)‖L∞

)
dt < ∞. (2.3)

The regularity criterion (2.3) indicates: the global-in-time bounds on G and ρ are sufficient to 
obtain global regularity.

Our first main result focuses on repulsive electric force λ > 0 and bounded influence functions 
ψ in the alignment force (1.4).

Theorem 2.2 (Global solutions). Consider (2.1) with repulsive electric force k > 0 and bounded 
alignment influence ψ satisfying (1.4). Suppose the initial data (G0, ρ0) satisfies (2.2). Then

1. Weak alignment (ψmax < λ): under the admissible condition

ψmax − ψmin <
e

tan−1 ẑ
ẑ

(
1 − e

− π
z̃
− π

ẑ

)
2
(

1 + e
− π

z̃

) λ, (2.4)

if the initial data lie in the subcritical region �1, namely

(
G0(x), ρ0(x)

) ∈ �1, ∀x ∈T ,

then (G, ρ) remain bounded in all time.
2. Strong alignment (ψmin ≥ λ): if the initial data lie in the subcritical region �2, namely

(
G0(x), ρ0(x)

) ∈ �2, ∀x ∈T ,

then (G, ρ) remain bounded in all time.
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3. Medium alignment (ψmin < λ ≤ ψmax): under the admissible condition

ψmax − ψmin <
e

tan−1 ẑ
ẑ

2
(

1 + e
− π

z̃

)λ, (2.5)

if the initial data lie in the subcritical region �3, namely

(
G0(x), ρ0(x)

) ∈ �3, ∀x ∈T ,

then (G, ρ) remain bounded in all time.

Consequently, (2.1) has a global smooth solution. Here, the parameters ẑ and z̃ are defined as

ẑ :=
√(

λ

ψmax

)2

− 1 and z̃ :=
√(

λ

ψmin

)2

− 1. (2.6)

Note that ẑ, z̃ could be real, purely imaginary, as well as infinity. The regions �1, �2 and �3 are 
subsets of R ×R+, defined in (3.20), (3.28) and (3.31) respectively.

Remark 2.3. The subcritical regions �1, �2 are illustrated in Fig. 1. The shape of �3 is similar 
to �1. We would like to point out that the steady-state solution (G, ρ) = (c‖ψ‖L1, c) to (2.1) is 
included in the subcritical regions �1, �2 and �3. This corresponds to the steady-state solution 
ρ(x) ≡ c and u(x) ≡ ū to (1.1). Therefore, our subcritical regions are non-empty, and contain a
large class of physically meaningful initial data, including the states around a steady state.

Remark 2.4. When ψ(x) ≡ ψ is a constant, the alignment force becomes a local and linear 
damping. Our constructed invariant regions agree with the sharp subcritical threshold obtained in 
[1]. The admissible conditions (2.4) and (2.5) automatically hold. For general ψ , the admissible 
conditions ensure the nonlocality is not too strong, and the invariant regions are non-trivial.

Theorem 2.5 (Finite time breakdown). Under the same assumptions as Theorem 2.2, we have

1. Weak alignment (ψmax < λ): If there exists x0 ∈ T that lie in the supercritical region �1, 
namely

(
G0(x0), ρ0(x0)

) ∈ �1,

then (G, ρ) becomes unbounded at a finite time.
2. Strong and medium alignment (ψmax ≥ λ): If there exists x0 ∈ T that lie in the supercritical 

region �2, namely

(
G0(x0), ρ0(x0)

) ∈ �2,

then (G, ρ) becomes unbounded at a finite time.
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Fig. 1. Shapes of �1,�2,�1,�2.

Moreover, at the blowup time tc and location xc, the solution generates a singular shock, with

lim
t→t−c

ρ(t, xc) = ∞ or 0, lim
t→t−c

G(t, xc) = −∞, lim
t→t−c

ux(t, xc) = −∞.

The regions �1, �2 are defined in (3.32), (3.33) respectively.

Our second main result concerns the EPA system with weakly singular alignment influence 
(1.5). Although one would expect a similar critical threshold phenomenon for the global behav-
iors of the solutions, the lack of boundedness on ψ would yield a lack of apriori control on ψ ∗ρ, 
resulting a different subcritical region for global smooth solutions.

Theorem 2.6 (On weakly singular alignment force). Consider (2.1) with repulsive electric force 
k > 0 and weakly singular alignment influence ψ satisfying (1.5). Suppose the initial data 
(G0, ρ0) satisfies (2.2). Then

1. Weak alignment (‖ψ‖L1 − γ < λ
2 ): under the admissible condition

4(‖ψ‖L1 − 2γ ) <
e

tan−1 ẑ
ẑ

(
1 − e

− π
z̃
− π

ẑ

)
2
(

1 + e
− π

z̃

) λ, (2.7)

if the initial data lie in the subcritical region �1
L, namely

(
G0(x), ρ0(x)

) ∈ �1
L, ∀x ∈T ,

then (G, ρ) remain bounded in all time.
2. Strong alignment (γ ≥ λ

2 ): if the initial data lie in the subcritical region �2
L, namely

(
G0(x), ρ0(x)

) ∈ �2
L, ∀x ∈T ,

then (G, ρ) remain bounded in all time.
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Fig. 2. Shapes of �1
L
,�2

L
.

3. Medium alignment (γ < λ
2 ≤ ||ψ ||1 − γ ): under the admissible condition

4(||ψ ||L1 − 2γ ) <
e

tan−1 ẑ
ẑ

2
(

1 + e
− π

z̃

)λ, (2.8)

if the initial data lie in the subcritical region �3
L, namely

(
G0(x), ρ0(x)

) ∈ �3
L, ∀x ∈T ,

then (G, ρ) remain bounded in all time.

Consequently, (2.1) has a global smooth solution. Here, γ = ∫ 1
1/2 ψ∗(x) dx, where ψ∗ : (0, 1] →

R is the decreasing rearrangement of ψ on T . The parameters ẑ and z̃ are defined as

ẑ :=
√(

λ

2(‖ψ‖L1 − γ )

)2

− 1 and z̃ :=
√(

λ

2γ

)2

− 1. (2.9)

The regions �1
L, �2

L and �3
L are subsets of R ×R+ defined in (4.19), (4.21) and (4.22) respec-

tively.

Remark 2.7. Unlike the case when ψ is bounded, the subcritical regions �i
L’s are subsets of 

{(G0, ρ0) : ρmin ≤ ρ0 ≤ ρmax} for appropriate choices of 0 ≤ ρmin < c < ρmax < ∞. Fig. 2(a) 
illustrates the shape of �1

L and �2
L. The steady-state solution (G, ρ) = (c‖ψ‖L1, c) ∈ �i

L. Hence, 
the region �i

L contains initial data around the steady state.

Remark 2.8. The admissible conditions (2.7) and (2.8) are similar to (2.4) and (2.5) respectively. 
Since ψ is unbounded, ψmax − ψmin is replaced by 4(‖ψ‖L1 − 2γ ). Note that ‖ψ‖L1 − 2γ ≥ 0, 
and the equality holds if and only if ψ(x) ≡ ψ is a constant. Hence, just like the comment in 
Remark 2.4, the admissible condition says that the nonlocality is not too strong. The parameters 
ẑ and z̃ are also revised to adapt the unboundedness of ψ .
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3. The EPA system with bounded alignment influence

Consider the characteristic path x(t) originated at α ∈T

dx

dt
= u(t, x(t)), x(0) = α. (3.1)

From (2.1b) and (2.1a), we obtain the system

G′ = −G(G − ψ ∗ ρ) + k(ρ − c), (3.2a)

ρ′ = −ρ(G − ψ ∗ ρ), (3.2b)

with initial data G(0) = G0(α) and ρ(0) = ρ0(α). Here ′ denotes the derivative along the char-
acteristic path

f ′(t) = d

dt
f (t, x(t)) = ft (t, x(t)) + u(t, x(t))fx(t, x(t)).

In the proofs of Theorems 2.2 and 2.5, we will justify that the initial data when ρ(0) = 0 can be 
handled separately. For now, we assume that ρ(0) > 0. We can further apply the transformation

w := G

ρ
, s := 1

ρ
(3.3)

to (3.2) and obtain the dynamics

w′ = k − kcs, (3.4a)

s′ = w − s(ψ ∗ ρ). (3.4b)

This ODE system is not closed along each characteristic path due to the nonlocal nature of the 
term ψ ∗ρ. We shall analyze this nonlocal system by establishing a type of comparison argument. 
To this end, we introduce a family of auxiliary systems

p′ = k − kcq, (3.5a)

q ′ = p − βq, (3.5b)

with p = p(t; β), q = q(t; β), where β is a parameter. For each given β , (3.5) is a linear system 
that can be solved explicitly. We can rewrite (3.5) as

[
p − β

c

q − 1
c

]′
=
[

0 −kc

1 −β

][
p − β

c

q − 1
c

]
,

where the coefficient matrix has two eigenvalues

−β ±√β2 − 4kc
.

2
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Note that ψ ∗ ρ has apriori bounds (1.4), which we recall here: βmin ≤ ψ ∗ ρ ≤ βmax, where we 
denote

βmax = cψmax, βmin = cψmin. (3.6)

It is natural to consider the following two particular auxiliary systems with β = βmax and βmin:

[
p̂ − βmax

c

q̂ − 1
c

]′
=
[

0 −kc

1 −βmax

][
p̂ − βmax

c

q̂ − 1
c

]
, (3.7a)

[
p̃ − βmin

c

q̃ − 1
c

]′
=
[

0 −kc

1 −βmin

][
p̃ − βmin

c

q̃ − 1
c

]
. (3.7b)

We would like to remark that there is no direct comparison principle between the solutions 
to the nonlocal system (w(t), s(t)) and the local auxiliary system (p̂(t), q̂(t)) or (p̃(t), q̃(t)), 
particularly when β is small, in which case the eigenvalues are not real, and the solutions are 
oscillatory. Instead, we shall obtain a comparison in the phase plane, and obtain an invariant 
region that the trajectory (w, s) cannot exit.

3.1. Weak alignment

We begin with the case where all admissible values of β ∈ [βmin, βmax] are such that

β2 < 4kc,

and in such case (β/c, 1/c) is an asymptotically stable spiral point. Physically, this places a 
restriction on the upper bound of ψ ∗ ρ. Hence, we call this scenario the weak alignment case. 
We will construct an invariant region using specific trajectories of the above auxiliary systems, 
see Fig. 3. At this point, we establish some notation to be used in this section,

θ̃ := 1

2

√
4kc − β2

min, θ̂ := 1

2

√
4kc − β2

max.

We will now construct the invariant region (�∗
1) as in Fig. 3. We divide this construction into 

three steps, each pertaining to one of the segments of the boundary of �∗
1. We will start from the 

origin and move backwards in time.
Step 1: The first segment of the curve is the trajectory to (3.7a) starting at the origin, going 

into the second quadrant, and ending when it hits the line q = 1/c while going backwards in 
time. Hence, if we solve for p̂, q̂ with p̂(0) = 0, q̂(0) = 0, then the other end point of the curve is 
(p̂(twe

1 ), q̂(twe
1 )), where twe

1 is the first negative time for which q̂(twe
1 ) = 1/c. Let pwe

1 := p̂(twe
1 ). 

Since (3.7a) is a simple linear system, we can explicitly solve for its solution with initial data 
(p̂(0), q̂(0)) = (0, 0),

p̂(t) = βmax

c
+ e− βmax t

2

⎛
⎝−βmax

c
cos θ̂ t + k − β2

max
2c

θ̂
sin θ̂ t

⎞
⎠ ,
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Fig. 3. Invariant region.

q̂(t) = 1

c
− e− βmax t

2

c

(
cos θ̂ t + βmax

2θ̂
sin θ̂ t

)
.

q̂(twe
1 ) = 1

c
=⇒ twe

1 = −1

θ̂
tan−1

(
2θ̂

βmax

)
.

Hence,

pwe
1 = βmax

c
−
√

k

c
e

βmax
2θ̂

tan−1
(

2θ̂
βmax

)
(3.8)

= βmax

c
−
√

k

c
e

tan−1(ẑ)
ẑ ,

with ẑ as defined at the end of Section 1.

Lemma 3.1. pwe
1 ∈

√
k
c
(−1, 2 − e).

Proof. We write the expression for pwe
1 as,

f (τ) =
√

k

c

(
1

τ
− e

tan−1
√

4τ2−1√
4τ2−1

)
, τ =

√
kc

βmax
>

1

2
.

One can evaluate that f is a monotonically decreasing function with

lim
τ→ 1

2
+ f (τ) = (2 − e)

√
k

c
and lim

τ→∞f (τ) = −
√

k

c
.

Hence, the result holds. �
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Also note that p̂′ > 0 and q̂ ′ < 0 in this region. Hence, the first segment is given by,

C1 = {(p, q) : (p̂(t), q̂(t)), t ∈ [twe
1 ,0]}. (3.9)

Step 2: The second segment is constructed using the trajectory of the system (3.7b). To have 
a closed region, the starting point of this segment should be the endpoint of the first segment. To 
this end, let p̃, q̃ be solutions to IVP (3.7b) with p̃(0) = pwe

1 , q̃(0) = 1/c. This segment starts at 
(pwe

1 , 1/c), traces the trajectory of (p̃, q̃) upwards and ends when it hits the q = 1/c line again 
in the first quadrant. We denote the end point as (pwe

2 , 1/c). In particular, pwe
2 = p̃(twe

2 ) where 
twe
2 is the first negative time where q̃(twe

2 ) = 1/c. We have

p̃(t) = βmin

c
+ e− βmin t

2

[(
pwe

1 − βmin

c

)
cos θ̃ t +

(
pwe

1 βmin

2θ̃
− β2

min

2cθ̃

)
sin θ̃ t

]
,

q̃(t) = 1

c
+ e− βmin t

2

θ̃

(
pwe

1 − βmin

c

)
sin θ̃ t .

q̃(twe
2 ) = 1

c
=⇒ twe

2 = −π

θ̃
.

Consequently,

pwe
2 = p̃(twe

2 ) = βmin

c
− e

βminπ

2θ̃

(
pwe

1 − βmin

c

)

= βmin

c

(
1 + e

βminπ

2θ̃

)
− pwe

1 e
βminπ

2θ̃

= βmin

c

(
1 + e

π
z̃

)
− pwe

1 e
π
z̃ .

(3.10)

Here, we emphasize an important issue. We must have that pwe
2 > βmax/c, for otherwise we 

would not be able to obtain a closed invariant region. The following Lemma states a condition to 
ensure this.

Lemma 3.2. pwe
2 > βmax/c if and only if

√
kce

tan−1 ẑ
ẑ > (βmax − βmin)

(
1 + e

− π
z̃

)
.

Proof. From (3.8) and (3.10), we have

pwe
2 − βmax

c
= βmin

c

(
1 + e

π
z̃

)
− pwe

1 e
π
z̃ − βmax

c

= βmin

c
e

π
z̃ −

(
βmax

c
−
√

k

c
e

tan−1(ẑ)
ẑ

)
e

π
z̃ − ψ∗

max − βmin

c

=
√

k

c
e

π
z̃
+ tan−1 ẑ

ẑ −
(

βmax − βmin

c

)(
1 + e

π
z̃

)
> 0. (3.11)
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We will use the inequality in the above form later in Lemma 3.4 to obtain a final condition. How-
ever, we can further rewrite this to obtain the inequality as in the statement of the Lemma. �
Remark 3.3. The condition in Lemma 3.2 is sharp. A relaxed condition could be derived using 
Lemma 3.1,

βmax − βmin < e
π
z̃

(
βmin + (e − 2)

√
kc
)

.

However, we will make use of the sharp condition because it is evident from (3.11) that if ψ ≡
constant , then there is no need for such a condition.

The second segment of the boundary of invariant region is,

C2 = {(p, q) : (p̃(t), q̃(t)), t ∈ [twe
2 ,0)}. (3.12)

Step 3: For the third segment, we again use (3.7a) but with different initial conditions than 
the ones for the first segment. The third segment should start from the ending point of the second 
segment, i.e., p̂(0) = pwe

2 and q̂(0) = 1/c. On solving, we obtain

p̂(t) = βmax

c
+ e− βmax t

2

[(
pwe

2 − βmax

c

)
cos θ̂ t +

(
pwe

2 βmax

2θ̂
− β2

max

2cθ̂

)
sin θ̂ t

]
,

q̂(t) = 1

c
+ e− βmax t

2

θ̂

(
pwe

2 − βmax

c

)
sin θ̂ t .

Set

pwe
3 := p̂(twe

3 ), (3.13)

where twe
3 is the first negative time when q̂(twe

3 ) = 0. Hence, twe
3 is the largest negative root of 

the following,

e− βmax twe
3

2 sin θ̂ twe
3 = − θ̂

cpwe
2 − βmax

.

To ensure the invariant region is closed, it should be that while traveling in the negative time 
direction, the trajectory hits the p-axis first before completing the outward spiral turn. The fol-
lowing Lemma ensures this.

Lemma 3.4. Let t0 be the first negative time such that q̂ ′(t0) = 0. Then q̂(t0) < 0 if and only if

(βmax − βmin)
(

1 + e
− π

z̃

)
e
− tan−1(ẑ)

ẑ <
√

kc
(

1 − e
− π

ẑ
− π

z̃

)
. (3.14)

Proof. Solving for q̂(t) = 0, we obtain that

θ̂ t0 = −π + tan−1(ẑ).
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Applying the condition q̂(t0) < 0, we obtain

1

c
+ e− βmax t0

2

θ̂

(
pwe

2 − βmax

c

)
sin θ̂ t0 < 0

e− βmax t0
2 sin θ̂ t0 < − θ̂

cpwe
2 − βmax

.

Plugging in the value of t0, we need that

e
π
ẑ
− tan−1(ẑ)

ẑ (cpwe
2 − βmax) − √

kc > 0.

Note that (3.11) in Lemma 3.2 is indeed a necessary and sufficient condition for pwe
2 −βmax/c >

0 to hold. Hence, we can use (3.11) in the above expression to obtain a single final condition. To 
this end, we want

e
π
ẑ
− tan−1(ẑ)

ẑ (cpwe
2 − βmax) − √

kc

= e
π
ẑ
− tan−1(ẑ)

ẑ

(√
kce

π
z̃
+ tan−1(ẑ)

ẑ − (βmax − βmin)(1 + e
π
z̃ )

)
− √

kc

= √
kc
(
e

π
ẑ
+ π

z̃ − 1
)

− (βmax − βmin)(1 + e
π
z̃ )e

π
ẑ
− tan−1(ẑ)

ẑ > 0.

This finishes the proof to the Lemma. �
Finally, we can define the last segment of the boundary of �∗

1,

C3 = {(p, q) : (p̂(t), q̂(t)), t ∈ [t∗3 ,0)}. (3.15)

We define the following set

�∗
1 := open set enclosed by C1,C2,C3 and p-axis. (3.16)

By our construction, we know that �∗
1 is well-defined.

Next, we have the following Proposition.

Proposition 3.5. Let 4kc > β2
max. Let the initial conditions for (3.4) be such that (w(0), s(0)) ∈

�∗
1 . Then (w(t), s(t)) ∈ �∗

1 for all t > 0.

We will prove the Proposition by drawing comparison between the solution trajectory (w, s)
and the boundary of �∗

1. Due to the presence of oscillations, a time based comparison between 
systems (3.4) and (3.7) cannot be derived. To circumvent this, we will draw comparisons in the 
(p, q) plane.
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Proof. We will show that a solution trajectory to (3.4) with initial data in �∗
1 can never touch 

its boundary as time increases. By getting rid of the time parameter t in the systems (3.7a) and 
(3.7b), we obtain the following two trajectory equations below. These will play a significant role 
in proving the invariance of �∗

1.

dq̂

dp
= p − q̂βmax

k − kcq̂
, (3.17a)

dq̃

dp
= p − q̃βmin

k − kcq̃
. (3.17b)

We start by showing a contradiction if the trajectory touches C1. To this end, assume a point 
(w1, s1) ∈ C1 where the trajectory meets C1. Therefore, w1 ≤ 0 and s1 < 1/c. For a reminder, 
any portion of C1 is (p, q̂(p)) with appropriate initial conditions and values of p. We also get 
rid of the time parameter in (3.4) to write s as a function of another variable and satisfying,

ds

dp
= p − sψ ∗ ρ

k − kcs
. (3.18)

We have s1 = q̂(w1) = s(w1). Since w′∣∣
(w1,s1)

> 0, the trajectory (p, s(p)) was moving in the 
positive p direction before touching C1, see Fig. 4(a). Note that,

d(q̂ − s)

dp
= p − q̂βmax

k − kcq̂
− p − s(ψ ∗ ρ)

k − kcs

= −cp(s − q̂) − (βmaxq̂ − (ψ ∗ ρ)s) + csq̂(βmax − ψ ∗ ρ)

k(1 − cq̂)(1 − cs)

= (cp − ψ ∗ ρ)(q̂ − s) − q̂(βmax − ψ ∗ ρ)(1 − cs)

k(1 − cq̂)(1 − cs)

= (cp − ψ ∗ ρ)

k(1 − cq̂)(1 − cs)
(q̂ − s) − q̂(βmax − ψ ∗ ρ)

k(1 − cq̂)

In a neighborhood of p = w1 (if w1 = 0 consider left neighborhood),

d(q̂ − s)

dp
≤ (cp − ψ ∗ ρ)

k(1 − cq̂)(1 − cs)
(q̂ − s).

Upon integration in the interval (w1 − ε, w1), ε > 0 being sufficiently small, we obtain

0 = q̂(w1) − s(w1) ≤ (q̂(w1 − ε) − s(w1 − ε)
)
e

∫ w1
w1−ε

(cp−ψ∗ρ)

k(1−cq̂(p))(1−cs(p))
dp

< 0.

This is a contradiction. Hence, a trajectory with initial point inside �∗
1 can never touch C1. A 

very similar argument holds for C3.
Now we show for C2. For sake of contradiction, suppose there exists a point (w2, s2) ∈ C2

where the trajectory, (w, s), touches C2. For a reminder, any portion of C2 is (p, q̃(p)) with 
appropriate initial conditions and range of p. Owing to our assumptions, we have 1/c < s2 =
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Fig. 4. Trajectories touching boundary of �∗
1.

s(w2) = q̃(w2). Since w′∣∣
(w2,s2)

< 0, the solution trajectory (p, s(p)) was traveling in the nega-
tive p direction when it touched C2, see Fig. 4(b). Similar to our previous calculations we obtain 
from (3.17b) and (3.18) that,

d(q̃ − s)

dp
= (cp − ψ ∗ ρ)

k(1 − cs)(1 − cq̃)
(q̃ − s) + q̃(ψ ∗ ρ − βmin)

k(1 − cq̃)
.

In a neighborhood of p = w2,

d(q̃ − s)

dp
≤ (cp − ψ ∗ ρ)

k(1 − cs)(1 − cq̃)
(q̃ − s).

Upon integration in the interval (w2, w2 + ε), for ε > 0 sufficiently small, we obtain

0 < q̃(w2 + ε) − s(w2 + ε) ≤ (q̃(w2) − s(w2)) e

∫ w2+ε
w2

cp−ψ∗ρ
k(1−cs(p))(1−cq̃(p))

dp = 0.

Hence, the solution trajectory cannot cross C2.
Moreover, a trajectory (w, s) starting from any point (p, 0) with p > 0 will go up into the 

region because at any such point,

s′∣∣
(p,0)

= w − (ψ ∗ ρ)s|(p,0) = p > 0.

This completes the proof to the proposition. �
Now we will transform �∗

1 to obtain an invariant region for (3.2). To this end, define a map 
by F :R2 → R2,

F(p,q) = (p/q,1/q). (3.19)

F is invertible for q > 0. We define

�1 := F(�∗
1), (3.20)
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Fig. 5. C1,C2,C3 as transformed to original coordinates (G,ρ).

which is an invariant region for (G, ρ). See Fig. 5 for the shape of the subcritical region, �1, in 
(G, ρ) coordinates.

Remark 3.6. In Fig. 5, the ρ coordinate of the tip of �1 is 1/q∗, where q∗ is the q coordinate of 
the highest point of �∗

1, see Fig. 3. The expression of q∗ can be explicitly written as,

q∗ = 1

c
+ e

π
z̃
− tan−1(z̃)

z̃√
kc

(
βmin

c
− pwe

1

)
. (3.21)

Since pwe
1 < 0 from Lemma 3.1, we have that q∗ > 1/c. Also, from Fig. 5, we see that there is 

no point (G, ρ) in �1 such that ρ < 1/q∗.

As a direct result of Proposition 3.5 and transformation (3.3), we have the following corollary.

Corollary 3.7. Let 4kc > β2
max and (3.14) holds. Let initial conditions for (3.2) be such that 

(G(0), ρ(0)) ∈ �1. Then (G(t), ρ(t)) ∈ �1 for all t > 0. In particular, G, ρ are bounded for any 
time.

3.2. Strong alignment

Now, we handle the case where all admissible values of β ∈ [βmin, βmax] in (3.5) are such that

β2 ≥ 4kc.

In such a case (β/c, 1/c) is an asymptotically stable node and the solutions to (3.7a) and (3.7b)
will not have any sinusoidal components. We call this scenario the strong alignment case. As be-
fore, we will construct an invariant region using specific trajectories. Unlike the invariant region 
constructed in Section 3.1, here we will have an unbounded subcritical region, �∗, see Fig. 6.
2
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Fig. 6. Invariant region.

We first define some notation to be used in construction of �∗
2. Set

γ̂+ := βmax +√β2
max − 4kc

2
, γ̂− := βmax −√β2

max − 4kc

2
,

γ̃+ :=
βmin +

√
β2

min − 4kc

2
, γ̃− :=

βmin −
√

β2
min − 4kc

2
.

Remark 3.8. In this Section as well as Section 3.3, we should point out that if β2
max = 4kc, then 

the expressions of p̂, q̂ have different form than the ones when β2
max > 4kc, which is assumed for 

calculations below. However, the calculated expressions for pse
1 , pse

2 , pme
3 always hold, although 

in the limit sense when β2
max = 4kc. A more detailed note about this is mentioned right after the 

proof of Lemma 3.9.

Step 1: The first segment of the curve, C1, is the trajectory to (3.7a) with the starting point at 
origin and the ending point lying on the line q = 1/c in the second quadrant. Set pse

1 := p̂(tse1 )

so that (pse
1 , 1/c) is the end point of C1 lying in the second quadrant. Here, t se1 is the negative 

time when q̂(t se1 ) = 1/c with p̂(0) = q̂(0) = 0. On solving, we obtain,

p̂(t) = βmax

c
− k√

β2
max − 4kc

(
γ̂+
γ̂−

e−γ̂−t − γ̂−
γ̂+

e−γ̂+t

)
,

q̂(t) = 1

c
− 1

c
√

β2
max − 4kc

(
γ̂+e−γ̂−t − γ̂−e−γ̂+t

)
.

When q̂(t se1 ) = 1/c,

e

(√
β2

max−4kc

)
t se1 = γ̂−

γ̂+
.
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Consequently, using the fact that γ̂+γ̂− = kc, we have

pse
1 = βmax

c
− k√

β2
max − 4kc

e− βmax tse1
2

(
γ̂+
γ̂−

e
tse1
2

√
β2

max−4kc − γ̂−
γ̂+

e
− tse1

2

√
β2

max−4kc

)

= βmax

c
+ k√

β2
max − 4kc

e− βmax tse1
2

(
−
√

γ̂+
γ̂−

+
√

γ̂−
γ̂+

)

= βmax

c
− ke− βmax tse1

2

(
1√

γ̂−γ̂+

)

= βmax

c
−
√

k

c

(
γ̂+
γ̂−

) βmax

2
√

β2
max−4kc

. (3.22)

Lemma 3.9. pse
1 ∈

√
k
c

[−(e − 2),0).

Proof. (3.22) can be rewritten as a function of essentially one variable,

g(τ) =
√

k

c

⎛
⎝1

τ
−
(

1 + √
1 − 4τ 2

1 − √
1 − 4τ 2

) 1

2
√

1−4τ2

⎞
⎠ , τ =

√
kc

βmax
, τ ∈ (0,1/2].

One can check that the above function is decreasing with

lim
τ→(1/2)−

g(τ) = (2 − e)

√
k

c
and lim

τ→0+ g(τ) = 0.

Hence, the result holds. �
Since the ODE system (3.7a) is well-posed, g(1/2) = f (1/2) = −(e − 2)

√
k/c, where f is 

as defined in proof of Lemma 3.1. Moreover, if βmax = 2
√

kc (or equivalently τ = 1/2), then the 
point pse

1 = pwe
1 = −(e − 2)

√
k/c. The relation between f and g is much more. In fact, they are 

equal if we extend each of their domains to R+, see Remark 3.10.

Remark 3.10. We recall f here,

f (τ) =
√

k

c

(
1

τ
− e

tan−1
√

4τ2−1√
4τ2−1

)
, τ ≥ 1

2
.

As a function into R, f is defined only for τ ≥ 1/2. We aim to extend it to accommodate τ ∈ R+. 
It turns out that

e
tan−1

√
4τ2−1√

4τ2−1 =
(

1 + √
1 − 4τ 2

1 − √
1 − 4τ 2

) 1

2
√

1−4τ2

, τ ∈ (0,∞).
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To see this, let z := √
4τ 2 − 1, y := √

1 − 4τ 2. Consequently, e
tan−1 z

z = e
tan−1 iy

iy =: h(y). We 
have,

tan(ln(hiy)) = iy

ei ln(hiy ) − e−i ln(hiy )

i
(
ei ln(hiy ) + e−i ln(hiy )

) = iy

h−y − hy

h−y + hy
= −y

h2y = 1 + y

1 − y
,

and finally,

h(y) =
(

1 + y

1 − y

) 1
2y

.

Owing to Remark 3.10, the formula for pse
1 is the same as pwe

1 , which is,

pse
1 = βmax

c
−
√

k

c
e

tan−1(ẑ)
ẑ ,

where ẑ is purely imaginary and output of tan−1 is the principal value.
We now define the first segment of boundary of �∗

2,

C1 = {(p, q) : (p̂(t), q̂(t)), t ∈ [t se1 ,0)}. (3.23)

Step 2: Now, we move on to the second segment. For this part, we need the solutions to (3.7b)
with initial condition p̃(0) = pse

1 and q̃(0) = 1/c. Hence,

p̃(t) = βmin

c
+ (βmin − cpse

1 )

c

√
β2

min − 4kc

(
γ̃−e−γ̃+t − γ̃+e−γ̃−t

)
,

q̃(t) = 1

c
+ (βmin − cpse

1 )√
β2

min − 4kc

(
e−γ̃+t − e−γ̃−t

)
.

Note that p̃, q̃ are strictly decreasing for t < 0 and limt→−∞ p̃(t) = limt→−∞ q̃(t) = ∞. We 
now define C2.

C2 = {(p, q) : (p̃(t), q̃(t)), t ∈ (−∞,0]}. (3.24)

This completes our construction and we are ready to define �∗
2.

�∗
2 = unbounded open set surrounded by C1,C2, {(p,0) : p > 0} on 3 sides. (3.25)
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Our construction ensures �∗
2 is well-defined. The following proposition states the invariance of 

�∗
2.

Proposition 3.11. Let 4kc ≤ β2
min. Consider the ODE system (3.4). If (w(0), s(0)) ∈ �∗

2 then 
(w(t), s(t)) ∈ �∗

2 for all t > 0. In particular, w, s remain bounded and s(t) > 0 for all time.

Proof. The proof for the part that (w, s) never crosses C1 or C2 is very similar to that in the 
proof of Proposition 3.5. So, we will omit it here. We prove that s > 0 and w, s remain bounded.

The only points where the trajectory (w, s) could cross the p-axis are of the form (p, 0)

where p > 0. However, at any such point, s′ > 0 and therefore, the trajectory moves upwards. 
Consequently, s(t) > 0 for all t > 0. As a result,

w′ = k − kcs < k.

Therefore, w is bounded from above. Moreover,

s′ = w − sψ ∗ ρ ≤ w,

and hence, s is bounded from above. �
Similar to what we did in Section 3.1, we will now transform �∗

2 to obtain an invariant region 
for (3.2). However, due to the fact that �∗

2 is unbounded, through (3.3) we have that there are 
points in F(�∗

2) with positive but arbitrarily small values of ρ. This indicates that the subcritical 
region might contain points where ρ = 0 which we miss in the above analysis due to working 
with the transformed variables, (3.3). Indeed if ρ = 0 in (3.2a), then

G′ = −G(G − ψ ∗ ρ) − kc = −(G2 − Gψ ∗ ρ + kc)

= −
(

G − ψ ∗ ρ −√(ψ ∗ ρ)2 − 4kc

2

)(
G − ψ ∗ ρ +√(ψ ∗ ρ)2 − 4kc

2

)
. (3.26)

Noting that

max

(
ψ ∗ ρ −

√
(ψ ∗ ρ)2 − 4kc

)
= βmin −

√
β2

min − 4kc

< βmin +
√

β2
min − 4kc = min

(
ψ ∗ ρ +

√
(ψ ∗ ρ)2 − 4kc

)
,

therefore, if

G(0) >
βmin −

√
β2

min − 4kc

2
, (3.27)

then G(t) is bounded for all times. So, due to the balancing effect of the strong alignment, we 
have subcritical data for ρ = 0 as well, which was not the case for �1 in Section 3.1. Owing to 
the above analysis and using F as in (3.19), we define
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Fig. 7. C1,C2 as transformed to original coordinates (G,ρ).

�2 := F(�∗
2) ∪

⎧⎪⎨
⎪⎩(G,0) : G >

βmin −
√

β2
min − 4kc

2

⎫⎪⎬
⎪⎭ , (3.28)

which is an invariant region for (G, ρ). See Fig. 7 for the shape of the subcritical region in (G, ρ)

coordinates.

Remark 3.12. We define the invariant region �2 using the map (3.19). However, since C1, C2
are merely solution trajectories to a linear system, we can indeed denote �2 through a function 
representing these solutions. In particular, there exists a Lipschitz continuous function ξa such 
that

�2 ={(G,ρ) : G > ξa(ρ), ρ ∈ [0,∞)} .

Proposition 3.13. Let 4kc < β2
min. Let initial conditions for (3.2) be such that (G(0), ρ(0)) ∈ �2. 

Then (G(t), ρ(t)) ∈ �2 for all t > 0. In particular, G(t), ρ(t) are bounded for any time.

Proof. Note that if ρ(0) = 0 in (3.2), then ρ ≡ 0. Also, if (G(0), ρ(0)) ∈ F(�∗
2), then as a direct 

result of Proposition 3.11 and transformations (3.3), we conclude that (G(t), ρ(t)) ∈ F(�∗
2) for 

all t > 0. Consequently, ρ(0) > 0 =⇒ ρ(t) > 0 for further times. In particular, this justifies that 
we can handle the ρ(0) = 0 ≡ ρ case separately. From (3.27) above, we conclude the result for 
this case. This finishes the proof to the Proposition. �
3.3. Medium alignment

This is the case where the range of β ∈ [βmin, βmax] in (3.5) is such that β2
min < 4kc ≤ β2

max. 
We call this scenario the medium alignment case. Here, we will use analysis of both Sections 3.1
and 3.2. The invariant region here is closed as in Section 3.1 where 4kc > β2

max. The procedure 
to calculate pme

1 , pme
2 , pme

3 is very similar to what it is in Sections 3.1 and 3.2. So, we omit the 
calculations. We get
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pme
1 = pse

1 = βmax

c
−
√

k

c
e

tan−1 ẑ
ẑ ,

C1 = {(p, q) : (p̂(t), q̂(t)), t ∈ [t se1 ,0)
}
,

with p̂, q̂ and t se1 as in Step 1 of Section 3.2, and

pme
2 = βmin

c

(
1 + e

π
z̃

)
− pme

1 e
π
z̃ .

Similar to the condition (3.11) in Section 3.1, to have a closed invariant region, we need

pme
2 >

βmax

c
.

We have the following Lemma.

Lemma 3.14. pwe
2 > βmax/c if and only if

√
kce

tan−1 ẑ
ẑ > (βmax − βmin)

(
1 + e

− π
z̃

)
. (3.29)

The proof is very similar to that of Lemma 3.2. We then have,

C2 = {(p, q) : (p̃(t), q̃(t)), t ∈ [twe
2 ,0)

}
,

with p̃, q̃ and twe
2 as in Step 2 of Section 3.1.

We complete our construction by finding the point pme
3 and the third segment of the boundary 

of the invariant region. The desired curve is the portion of the solution to (3.7a) with p̂(0) = pme
2

and q̂(0) = 1/c. Using this, we obtain

p̂(t) = βmax

c
+
(
pme

2 − βmax
c

)
√

β2
max − 4kc

(
γ̂+e−γ̂−t − γ̂−e−γ̂+t

)
,

q̂(t) = 1

c
+
(
pme

2 − βmax
c

)
√

β2
max − 4kc

(
e−γ̂−t − e−γ̂+t

)
.

q̂ is unbounded and strictly increasing for t < 0, hence, there exists a unique tme
3 < 0 such that 

q̂(tme
3 ) = 0. tme

3 is the unique solution of

e−γ̂+t − e−γ̂−t = γ̂

cpme
2 − βmax

.

And pme
3 := p̂(tme

3 ). Also,

C3 = {(p, q) : (p̂(t), q̂(t)), t ∈ [tme
3 ,0)

}
.

And
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�∗
3 := open set enclosed by C1,C2,C3 and p-axis. (3.30)

Finally, we obtain the invariant region for the (G, ρ) plane. Set

�3 = F(�∗
3). (3.31)

We can now have the following Proposition.

Proposition 3.15. Let β2
min < 4kc ≤ βmax and (3.29) holds. Let initial conditions for (3.2) be 

such that (G(0), ρ(0)) ∈ �3. Then (G(t), ρ(t)) ∈ �3 for all t > 0.

The proof is very similar to that of Proposition 3.7.

3.4. Global smooth solutions

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. Assume the hypothesis of Assertion (1). ψmax < λ implies 4kc > β2
max

which means this case lies in the purview of Section 3.1. Also, the admissible condition (2.4) can 
be rewritten as (3.14). As a result, by Lemma 3.4, the invariant region �1 is well defined.

Now suppose (G0(x), ρ0(x)) ∈ �1 for all x ∈ T . Then along any characteristic path (3.1), 
the initial data to (3.2), (G(0), ρ(0)) ∈ �1. By Corollary 3.7, (G(t), ρ(t)) ∈ �1 for all t > 0 and 
G(t), ρ(t) are bounded along all characteristic paths. Finally, we can apply Theorem 2.1 and 
conclude that (ρ, u) are global-in-time smooth solutions to (1.1).

The proof to Assertions (2) and (3) in the Theorem is very similar only that in place of Corol-
lary 3.7 used above, we use Propositions 3.13 and 3.15 respectively. �
3.5. Finite time breakdown

This section is devoted to the proof of Theorem 2.5. The procedure of construction is very 
similar to that in Sections 3.1, 3.2 and 3.3. The only difference is that we use the system (3.7b)
wherever we used (3.7a) and vice-versa. As a result, βmax and βmin interchange places in the rel-
evant expressions. We only state the crucial steps and Propositions in obtaining the supercritical 
region.

Weak alignment (4kc > β2
max)

We have

B1 = {(p, q) : (p̃(t), q̃(t)), t ∈ [twe
1 ,0)

}
,

where p̃, q̃ are solutions to (3.7b) with initial conditions p̃(0) = q̃(0) = 0, and twe
1 < 0 is the first 

negative time when q̃(twe
1 ) = 1/c. Also,

pwe
1 := p̃(twe

1 ) = βmin

c
−
√

k

c
e

tan−1 z̃
z̃ .

We have the same bounds of pwe as in Lemma 3.1, pwe ∈ √
k/c (−1, −(2 − e)). Next, we have
1 1
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B2 = {(p, q) : (p̂(t), q̂(t)), t ∈ [twe
2 ,0]} ,

where p̂, q̂ are solutions to (3.7a) with initial conditions p̂(0) = pwe
1 , q̂(0) = 1/c, and twe

2 < 0 is 
the first negative time when q̂(twe

2 ) = 1/c. Also,

pwe
2 := p̂(twe

2 ) = βmax

c

(
1 + e

π
ẑ

)
− pwe

1 e
π
ẑ .

Since pwe
1 < 0, we have that pwe

2 > βmin/c and we do not need any extra condition (like (3.11)) 
to close the invariant region. Lastly,

B3 = {(p, q) : (p̃(t), q̃(t)), t ∈ [twe
3 ,0)

}
,

where p̃, q̃ are solutions to (3.7b) with initial conditions p̃(0) = pwe
2 , q̃(0) = 1/c, and twe

3 < 0
is the first negative time when q̃(twe

3 ) = 0. Here again, we do not need any extra condition (like 
(3.14)) for invariant region to be well-defined. To see this, just interchange βmax and βmin to 
see that the right hand side of (3.14) becomes negative. Therefore, the condition holds trivially. 
Finally, we define

�∗
1 = unbounded open set outside B1 ∪ B2 ∪ B3 with q > 0.

We then have the following Proposition.

Proposition 3.16. Let 4kc > β2
max. Let the initial conditions for (3.4) be such that (w(0), s(0)) ∈

�∗
1 . Then there exists tc > 0 such that s(tc) = 0. Also, w(tc) < 0.

Proof. The proof that the trajectory (w, s) does not touch �∗
1 is very similar to that of Proposi-

tion 3.5. And from the signs of w′, s′, it can be concluded that the trajectory hits q = 0 line for 
some time, tc > 0, in the second quadrant. Hence, w(tc) < 0. �

Due to �∗
1 being unbounded, we have supercritical region for points where ρ = 0 as well. 

Here, we have all such points in the supercritical region.

�1 = F(�∗
1) ∪ {(G,0) : G ∈R} . (3.32)

To see the inclusion of the points (G, 0), we prove a Lemma.

Lemma 3.17. Let a function h satisfy

h′ = −(h2 − a(t)h + ω),

where a is a bounded function and ω is a constant with 4ω − supa2 > 0. Then for any initial 
data h(0), there exists tc > 0 such that lim − h(t) = −∞.
t→tc
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Proof. First, observe that

h′ = −h2 + ah − ω

= −
(
h − a

2

)2 − 4ω − a2

4

≤ −4ω − supa2

4
< 0.

Therefore, h is strictly decreasing and can achieve any negative number. In particular, for some 
t0 ≥ 0, h(t0) < min{0, infa}. Consequently for t > t0,

h′ < −h(h − infa).

Since h(t0) < min{0, infa}, it admits a Riccati type blowup. Indeed on comparing above 
differential inequality with an equality, we obtain limt→t−c h(t) = −∞ for some tc < t0 +
(−h(t0))

−1. �
Owing to this Lemma, Proposition 3.16 and transformation (3.3), we have the following 

Corollary.

Corollary 3.18. Let 4kc > β2
max. Let initial conditions for (3.2) be such that (G(0), ρ(0)) ∈ �1. 

Then there exists tc > 0 such that

lim
t→t−c

G(t, xc) = −∞, lim
t→t−c

ρ(t, xc) = ∞ or 0,

for some xc ∈ T .

Proof. Note that if ρ(0) = 0 in (3.2), then ρ ≡ 0 and from (3.2a),

G′ = −(G2 − Gψ ∗ ρ + kc).

We can have h = G, a(t) = ψ ∗ ρ, ω = kc in Lemma 3.17 and the hypothesis is satisfied. 
Hence, for some tc > 0, limt→t−c G(t) = −∞ irrespective of G(0). Also, if ρ(0) > 0 with 
(G(0), ρ(0)) ∈ F(�∗

1), then from Proposition 3.16 and transformations (3.3), we have the ex-
istence of tc > 0 such that limt→t−c ρ(t) = ∞ and limt→t−c G(t) = −∞. This finishes the proof 
to the Corollary. �
3.6. Strong and medium alignment (4kc ≤ β2

max)

These two cases are similar, so we state the construction together. We have

B1 = {(p, q) : (p̃(t), q̃(t)), t ∈ [t se1 ,0)
}
,

where p̃, q̃ are solutions to (3.7b) with initial conditions p̃(0) = q̃(0) = 0, and t se1 < 0 is the 
first negative time (for medium alignment) and the unique time (for strong alignment), when 
q̃(t se) = 1/c. Next,
1
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B2 = {(p, q) : (p̂(t), q̂(t)), t ∈ (−∞,0]} ,

where p̂, q̂ are solutions to (3.7a) with initial conditions p̂(0) = pwe
1 , q̂(0) = 1/c. We can now 

define �∗
2.

�∗
2 = unbounded open set surrounded by B1,B2, {(p,0) : p < 0} on 3 sides.

Here, we have

�2 = F(�∗
2) ∪

{
(G,0) : G <

βmax −√β2
max − 4kc

2

}
. (3.33)

Indeed when ρ = 0, from (3.26) we have that if

G(0) < min
ψ ∗ ρ −√(ψ ∗ ρ)2 − 4kc

2
= βmax −√β2

max − 4kc

2
,

then G(t) → −∞ in finite time.
We have the following Proposition.

Proposition 3.19. Let 4kc ≤ β2
max. Let initial conditions for (3.2) be such that (G(0), ρ(0)) ∈ �2. 

Then there exists tc > 0 such that

lim
t→t−c

G(t, xc) = −∞, lim
t→t−c

ρ(t, xc) = ∞ or 0,

for some xc ∈ T .

We now give the proof to Theorem 2.5.

Proof of Theorem 2.5. Assume the hypothesis of Assertion (1). ψmax < λ implies 4kc > β2
max

which means this case lies in the purview of Section 3.1. Now suppose (G0(x0), ρ0(x0)) ∈ �1 for 
some x0 ∈ T . Then consider the dynamics (3.2) along the characteristic path (3.1) with x(0) =
x0, and apply Corollary 3.18. We have

lim
t→t−c

G(t, xc) = −∞, lim
t→t−c

ρ(t, xc) = ∞ or 0.

This proves Assertion (1). The proof to Assertion (2) in the Theorem is very similar only that in 
place of Corollary 3.18 used above, we use Proposition 3.19. �
4. The EPA system with weakly singular alignment influence

In this section, we tackle the case when ψ ∈ L1+(T ). In particular, ψ need not be bounded as 
was assumed in Section 3. This type of alignment forces is known as weakly singular.
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4.1. Improved bounds on ψ ∗ ρ

The main difficulty of applying our theory in Section 3 to the EPA system with weakly singular 
alignment influence is that the bounds on ψ ∗ρ in (1.4) no longer hold. A natural replacement of 
the bounds is (1.5), which we recall here:

‖ψ‖L1ρmin ≤ ψ ∗ ρ ≤ ‖ψ‖L1ρmax. (4.1)

A major issue arises that the bounds depend on the unknown ρ. If we were to pick ρmax and ρmin
and use the bounds (4.1) in place of βmax, βmin as in Section 3, then the invariant region � need 
to satisfy

inf{ρ : (G,ρ) ∈ �} ≥ ρmin, sup{ρ : (G,ρ) ∈ �} ≤ ρmax, (4.2)

in order to keep (4.1) valid. However, after detailed analysis, it turns out that there are no values 
of ρmax and ρmin with which the constructed invariant region � satisfies (4.2).

To overcome this difficulty, we make improvements to the bounds (4.1) leveraging the addi-
tional property on ρ

∫
T

ρ(t, x) dx = c, ∀ t ≥ 0.

In particular, we have the following key Lemma.

Lemma 4.1. Let ρ be any nonnegative, periodic function satisfying

∫
T

ρ(x)dx = c, and ρmin ≤ ρ(x) ≤ ρmax, ∀ x ∈T . (4.3)

Let ψ ∈ L1+(T ). Then there exist two non-negative constants γ1 and γ2 such that

ρmin‖ψ‖L1 + (ρmax − ρmin)γ1 ≤
∫
T

ψ(x − y)ρ(y) dy ≤ ρmax‖ψ‖L1 − (ρmax − ρmin)γ2, (4.4)

for any x ∈ T . Moreover, γ1 and γ2 can be expressed by

γ1 =
1∫

ρmax−c
ρmax−ρmin

ψ∗(y) dy, γ2 =
1∫

c−ρmin
ρmax−ρmin

ψ∗(y) dy,

where ψ∗ : (0, 1] → R is the decreasing rearrangement of ψ on T .
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Proof. For the lower bound, fix an x ∈T . Consider the set

A = {y ∈ T : ψ(x − y) > ψ∗(d)}, with |A| = d := ρmax − c

ρmax − ρmin
,

and define a function

ρ̃(y) = ρminXA(y) + ρmaxXAc (y) =
{

ρmin y ∈A
ρmax y ∈Ac = T\A , (4.5)

where XA denotes the indicator function of set A. Let us check

∫
T

ψ(x − y)ρ̃(y) dy = ρmin

∫
A

ψ(x − y)dy + ρmax

∫
Ac

ψ(x − y)dy

= ρmin

d∫
0

ψ∗(y) dy + ρmax

1∫
d

ψ∗(y) dy = ρmin‖ψ‖L1 + (ρmax − ρmin)γ1.

It remains to show ∫
T

ψ(x − y)(ρ(y) − ρ̃(y)) dx ≥ 0.

Indeed, we have

∫
T

ψ(x − y)(ρ(y) − ρ̃(y)) dy =
∫
A

ψ(x − y)(ρ(y) − ρmin) dy +
∫
Ac

ψ(x − y)(ρ(y) − ρmax) dy

≥ ψ∗(d)

∫
A

(ρ(y) − ρmin) dy + ψ∗(d)

∫
Ac

(ρ(y) − ρmax) dy

= ψ∗(d)

⎛
⎝∫
T

ρ(y)dy − ρmin |A| − ρmax |Ac|
⎞
⎠= ψ∗(d)

(
c − ρmind − ρmax(1 − d)

)
= 0.

The upper bound can be obtained similarly by considering the set

Â = {y ∈ T : ψ(x − y) > ψ∗(d)}, with |Â| = d̂ := c − ρmin

ρmax − ρmin
,

and the function

ρ̂(y) = ρmaxXÂ(y) + ρminXÂc (y).

We omit the details of the proof. �

111



M. Bhatnagar, H. Liu and C. Tan Journal of Differential Equations 375 (2023) 82–119
Remark 4.2. The function ρ̃ in (4.5) is the minimizer of the optimization problem

min
ρ

∫
T

ψ(x − y)ρ(y) dy,

subject to the constraints in (4.3). Indeed, the Lagrange function of the constraint minimization 
problem is

L(ρ,μ1,μ2, κ) =
∫
T

(
ψρ + μ1(ρ − ρmax) − μ2(ρ − ρmin) − κρ

)
dy + κc,

where μ1, μ2 ∈ L∞+ (T ) and κ ∈ R are Lagrange multipliers. The Karush-Kuhn-Tucker (KKT) 
conditions read

ψ + μ1 − μ2 − κ = 0, (Stationarity),

ρmin ≤ ρ̃ ≤ ρmax,

∫
T

ρ̃(y)dy = c, (Primal feasibility),

μ1,μ2 ≥ 0, (Dual feasibility),

(ρ̃ − ρmax)μ1 = (ρ̃ − ρmin)μ2 = 0, (Complementary slackness).

We choose μ1 = − min{0, ψ − κ} and μ2 = max{0, ψ − κ}. This ensures that the stationarity 
and dual feasibility conditions are satisfied. The complementary slackness conditions require 
ρ̃ ≡ ρmax when ψ < κ and ρ̃ ≡ ρmin when ψ > κ . Finally, to ensure the primal feasibility, we 
obtain κ = ψ∗(d). Altogether, we end up with (4.5).

As a special case of Lemma 4.1, if we choose ρmax and ρmin as

0 ≤ ρmin < c < ρmax ≤ 2c, ρmin + ρmax = 2c, (4.6)

then (4.4) holds with

γ1 = γ2 = γ :=
1∫

1
2

ψ∗(y) dy.

It will dramatically simplify the analysis. We also observe

2γ <

1∫
0

ψ∗(y) dy = ‖ψ‖L1 .

In the following construction, we will choose

ρmin = 0, ρmax = 2c. (4.7)
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We shall comment that (4.6) is not the only choice that leads to an invariant region. We will keep 
using the notations ρmax and ρmin throughout the construction for generality.

4.2. Construction of invariant region

We shall construct the invariant region in light of �∗ as in Section 3. The main difference 
would be that the region �∗ need to satisfy the additional restriction (4.2). We will make use of 
the improved bounds (4.4). Let us denote

βmax := ρmax‖ψ‖L1 − (ρmax − ρmin)γ2. (4.8a)

βmin := ρmin‖ψ‖L1 + (ρmax − ρmin)γ1, (4.8b)

Unlike definition (3.6), βmax and βmin depend on the density ρmax and ρmin.
We will carry over the same notations from Section 3 to avoid excess notations. However, it 

should be noted that the functions ẑ, ̃z, θ̂ , θ̃ now depend on ρmax, ρmin. To avoid confusion we 
restate the expressions for ẑ, ̃z,

ẑ =
√

4kc

β2
max

− 1, z̃ =
√

4kc

β2
min

− 1. (4.9)

Note that if we choose ρmax and ρmin as in (4.7), then ẑ and z̃ have the explicit forms in (2.9).
Our construction of the invariant region will follow the procedure in Section 3. Here we focus 

on the construction of the weak alignment case �∗
1. The other two cases can be treated similarly. 

Let us assume βmax < 2
√

kc.
Step 1: On the (p, q) plane, we construct the first segment of the boundary of the invariant 

region

C1 = {(p, q) : (p̂(t), q̂(t)), t ∈ [t1,0]}, (4.10)

where (p̂, q̂) satisfy the dynamics

p̂′ = k − kcq̂, q̂ ′ = p̂ − βmaxq̂,

with initial data

p̂(0) = βmax
ρmax

, q̂(0) = 1
ρmax

and time t1 < 0 such that q̂(t1) = 1/c. Here we choose a different initial point that Section 3.1. 
We take q(0) = 1

ρmax
so that ρ(0) ≤ ρmax. The choice of p(0) ensures ρ(t) ≤ ρmax, which is 

necessary for (4.2) to hold.
Using similar calculations as in Step 1 of Section 3.1, we have

p̂(t) = βmax

c
− e− βmax t

2

(
1

c
− 1

ρmax

)⎛⎝βmax cos θ̂ t − (kc − β2
max
2 )

θ̂
sin θ̂ t

⎞
⎠ ,
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q̂(t) = 1

c
− e− βmax t

2

(
1

c
− 1

ρmax

)(
cos θ̂ t + βmax

2θ̂
sin θ̂ t

)
.

The final point of C1 is (p1, 1/c) where

p1 := p̂(t1) = βmax

c
− √

kc

(
1

c
− 1

ρmax

)
e

tan−1 ẑ
ẑ . (4.11)

The value of p1 depends on the choices of ρmax and ρmin.
The point (p1, 1/c) should be the starting point of the next segment C2. To make sure C2

continues to move upward as we trace time in the negative direction, we require that p1 lies at 
the left hand-side of βmin

c
, which is the equilibrium state of the auxiliary system (3.7b). p1 <

βmin
c

can be equivalently expressed as

βmax − βmin <
√

kc

(
1 − c

ρmax

)
e

tan−1 ẑ
ẑ . (4.12)

Step 2: Assume that (4.12) holds. We continue with the next segment of the boundary of the 
invariant region

C2 = {(p, q) : (p̃(t), q̃(t)), t ∈ [t2,0]}, (4.13)

where (p̃, q̃) satisfy the dynamics

p̃′ = k − kcq̃, q̃ ′ = p̃ − βminq̃,

with initial data p̃(0) = p1, q̃(0) = 1
c
, and t2 is the first negative time such that q̃(t2) = 1/c.

Using similar calculations as in Step 1 of Section 3.1, we have

p̃(t) = βmin

c
+ e− βmin t

2

[(
p1 − βmin

c

)
cos θ̃ t +

(
p1βmin

2θ̃
− β2

min

2cθ̃

)
sin θ̃ t

]
,

q̃(t) = 1

c
+ e− βmin t

2

θ̃

(
p1 − βmin

c

)
sin θ̃ t .

We find that the final point of C2 is (p2, 1/c) where

p2 := p̃(t2) = βmin

c

(
1 + e

π
z̃

)
− p1e

π
z̃ , (4.14)

which also depends on the choices of ρmax and ρmin.
The point (p2, 1/c) should be the starting point of the next segment C3. To make sure C3

continues to move downward as we trace time in the negative direction, we require that p2 lies 
at the right hand-side of βmax

c
, which is the equilibrium state of the auxiliary system (3.7a). 

p2 >
βmax

c
can be equivalently expressed as

βmax − βmin <
√

kc

(
1 − c

)
e

tan−1 ẑ
ẑ · e

π
z̃

π , (4.15)

ρmax 1 + e z̃
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where R is defined in (4.12). Note that condition (4.15) is stronger than (4.12).
Step 3: Assume that (4.15) holds. The next segment of the boundary of invariant region

C3 = {(p, q) : (p̂(t), q̂(t)), t ∈ [t3,0]} (4.16)

is constructed from the dynamics

p̂′ = k − kcq̂, q̂ ′ = p̂ − βmaxq̂,

with initial data p̂(0) = p2, q̂(0) = 1
c
, and t3 is the first negative time such that q̂(t3) = 1/ρmax. 

We have

p̂(t) = βmax

c
+ e− βmax t

2

[(
p2 − βmax

c

)
cos θ̂ t +

(
p2βmax

2θ̂
− β2

max

2cθ̂

)
sin θ̂ t

]
,

q̂(t) = 1

c
+ e− βmax t

2

θ̂

(
p2 − βmax

c

)
sin θ̂ t .

To ensure the existence of t3 such that q̂(t3) = 1/ρmax, we state the following Lemma.

Lemma 4.3. Let t∗ be the first negative time such that q̂ ′(t∗) = 0. Then q̂(t∗) < 1/ρmax if and 
only if

(βmax − βmin)
(

1 + e
− π

z̃

)
e
− tan−1(ẑ)

ẑ <
√

kc

(
1 − c

ρmax

)(
1 − e

− π
ẑ
− π

z̃

)
,

or equivalently,

βmax − βmin <
√

kc

(
1 − c

ρmax

)
e

tan−1 ẑ
ẑ · (1 − e

− π
ẑ
− π

z̃ )

(1 + e
− π

z̃ )
. (4.17)

The proof of the Lemma follows similar arguments as Lemma 3.4, which we will omit here. 
The admissible condition (4.17) is similar as (3.14), differed only by a factor, as the starting 
point of the construction is different. The Lemma ensures that the trajectory of C3 hits the line 
q = 1/ρmax first before completing the outward spiral turn. Moreover, at the intersection p3 =
p̂(t3) >

βmax
ρmax

. It is easy to observe that condition (4.17) is stronger than (4.12) and (4.15).
Now we are ready to construct the invariant region

�∗
L = open set enclosed by C1,C2,C3 and C4, (4.18)

where C4 is the line segment

C4 =
{
(p, q) : p ∈ (

βmax
ρmax

,p3), q = 1
ρmax

}
.

Fig. 8 gives an illustration of the invariant region. We can further make use of the transformation 
F as in (3.19) to obtain the invariant region �1 in the (G, ρ) plane
L
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Fig. 8. Invariant region for k = 4, c = 1, ρmax = 2, ρmin = 0 and influence function with ‖ψ‖
L1 = 2, γ1 = γ2 = 0.95.

�1
L := F(�∗

L). (4.19)

See Fig. 2(a) for an illustration of �1
L.

Proposition 4.4 (Invariant region). Let 4kc > β2
max. Assume condition (4.17) holds. Consider the 

initial value problem of (3.4) with (w(0), s(0)) ∈ �∗
L. In addition, assume

βmin ≤ ψ ∗ ρ ≤ βmax. (4.20)

Then the solution (w(t), s(t)) ∈ �∗
L for all t > 0.

Proof. The arguments that the trajectory does not cross C1, C2, C3 are entirely similar to the 
ones in the proof of Proposition 3.5. If (w, s) ∈ C4, meaning w >

βmax
ρmax

and s = 1
ρmax

, we get from 
(3.4b) that

s′ = w − s (ψ ∗ ρ) >
βmax
ρmax

− 1
ρmax

· βmax ≥ 0.

Therefore, trajectories can not touch trajectories with initial point inside �∗
L never touch C4 as 

well. By continuity of the trajectories, we conclude that (w(t), s(t)) stays in �∗
L all time. �

For the other two cases, �2
L, �3

L can be constructed very much alike as long the lines of �2, �3
respectively. The only difference is that the corresponding invariant regions on the (p, q) plane 
now start from a point in the first quadrant, namely (βmax

ρmax
, 1

ρmax
), instead of the origin. Since the 

respective calculations and consequent proof to the second and third assertions of Theorem 2.6
follows along the lines of the first assertion, we only prove the first assertion here and state the 
regions �2

L, �3
L.

�2
L = F(�∗

2), (4.21)

where,

�∗ = unbounded open set surrounded by C1,C2, {(p,0) : p >
βmax } on 3 sides,
2 ρmax
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with C1 as in (3.23) and p̂, q̂ with initial data (βmax
ρmax

, 1
ρmax

) and C2 as in (3.24). Similarly,

�3
L = F(�∗

3), (4.22)

where,

�∗
3 = open set enclosed by C1,C2,C3 and q = 1

ρmax
,

with C1, C2, C3 as in Section 3.3 but C1 obtained from p̂, q̂ with initial data (βmax
ρmax

, 1
ρmax

).

4.3. Proof of Theorem 2.6

We are ready to apply Proposition 4.4 and prove Theorem 2.6. We will only prove the weak 
alignment case. The other two cases work similarly. We choose ρmax = 2c and ρmin = 0 as in 
(4.7). It implies

βmax = 2c(‖ψ‖L1 − γ ) and βmin = 2cγ.

Let us validate all the assumptions in Proposition 4.4. First, the hypothesis of the Theorem 
‖ψ‖L1 − γ < λ

2 implies

β2
max = 4c2(‖ψ‖L1 − γ )2 < 4kc.

Second, the admissible condition (2.7) implies (4.17). Indeed, we have

βmax − βmin = 2c(‖ψ‖L1 − 2γ ) <

√
kc

2
·
e

tan−1 ẑ
ẑ

(
1 − e

− π
z̃
− π

ẑ

)
(

1 + e
− π

z̃

) .

Finally, owing to Lemma 4.1, we conclude that (4.20) holds as long as ρ is uniformly bounded 
above by 2c (and below by 0).

Consider subcritical initial data (G0(x), ρ0(x)) ∈ �1
L for all x ∈ T . Along each charac-

teristic path (3.1), there is dynamics (3.4) with initial data (w(0), s(0)) ∈ �∗
L. We claim that 

(w(t), s(t)) ∈ �∗
L for any t ≥ 0 along any characteristic path.

Let us argue by contradiction. Suppose there exists a first time t0 and a characteristic path 
such that (w(t0), s(t0)) /∈ �∗

L. By continuity of the dynamics (3.4), we have that along every 
characteristic path (w(t0), s(t0)) ∈ �∗

L. Since �∗
L ⊂ {(p, q) : q ≥ 1

ρmax
}, we obtain the uniform 

bound s(t0, x) ≥ 1
2c

and hence ρ(t0, x) ∈ (0, 2c]. Now, we can apply Proposition 4.4 and get 
(w(t0), s(t0)) ∈ �∗

L. This leads to a contradiction.
Collecting all characteristic paths, and applying the transformation F in (3.19), we conclude 

that (G(t, x), ρ(t, x)) ∈ �1
L for all x ∈ T and t ≥ 0. Therefore, (G, ρ) remain bounded in all 

time. Consequently, by Theorem 2.1, we have that (ρ, u) is global-in-time smooth solution to 
(1.1).
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Remark 4.5. We would like to remark the invariant region �1
L is a subset of

{(G,ρ) : 1
q∗ ≤ ρ ≤ ρmax},

where q∗ is the highest tip of �∗
L. This leads to an improved bound on ρmin, and consequently 

better bounds on βmin and βmax. Repeating the procedure with the new bounds, we can obtain a 
larger invariant region. Finding the optimal (or largest) invariant region is beyond the scope of 
this paper. We shall leave this for future investigations.
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