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Abstract

We consider the compressible Euler system with a family of nonlinear velocity alignments. The system 

is a nonlinear extension of the Euler-alignment system in collective dynamics. We show the asymptotic 
emergent phenomena of the system: alignment and flocking. Different types of nonlinearity and nonlocal 
communication protocols are investigated, resulting in a variety of different asymptotic behaviors.
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1. Introduction

In this paper, the point of concern is the following pressureless Euler system with alignment 
interactions

{
∂tρ + ∇ · (ρu) = 0,

∂t (ρu) + ∇ · (ρu ⊗ u) = ρA[ρ,u],
(1.1)

where the density ρ : R
d × R+ → R and the momentum ρu : R

d × R+ → R
d . The nonlocal 

alignment force A[ρ, u] takes the form

A[ρ,u](x, t) =

∫

Rd

φ(x − y)�(u(y, t) − u(x, t))ρ(y, t) dy. (1.2)

The function φ is known as the communication protocol. It measures the strength of the pairwise 

alignment interaction. We naturally assume that φ is radially symmetric and decreasing along the 

radial direction.
The mapping � : R

d → R
d describes the type of alignment. One typical choice is the linear 

mapping �(z) = z. The corresponding system (1.1)-(1.2) is known as the pressure-less Euler-
alignment system.

1.1. The Euler-alignment system

The Euler-alignment system arises as the macroscopic description of the celebrated Cucker-
Smale model [9] for animal flocks

⎧
⎪⎪«
⎪⎪¬

ẋi = vi,

v̇i =
1

N

N∑

j=1

φ(xi − xj )(vj − vi).
(1.3)
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Here {xi, vi}
N
i=1 denotes the locations and velocities of the N agents. The Euler-alignment system 

can be derived from (1.3) via a kinetic description, see e.g. [15,12].
The Euler-alignment system has been extensively studied in the past decade. The global well-

posedness theory has been established for different types of communication protocols. When 

φ is bounded and Lipschitz, a critical threshold phenomenon was discovered in [32]: subcrit-
ical initial data lead to globally regular solutions, while supercritical initial data lead to finite 

time shock formations. In one dimension, a sharp threshold condition was found in [5]; while in 

higher dimensions, sharp results are only available for uni-directional [19] and radial [35] flows.
Another interesting type of communication protocol is when φ is singular, namely

φ(r) = r−α, (1.4)

with α > 0. In particular, when φ is strongly singular with α = d + 2s > d , the alignment oper-
ator is closely related to the fractional Laplacian (−�)s , bringing a regularization effect to the 

solution. In one-dimensional periodic domain, global regularity is proved for all non-vacuous 
initial data in [29] for s ∈ [ 1

2 , 1) and in [11] for s ∈ (0, 12 ). The result has been extended to gen-
eral communication protocols that behave like (1.4) near the origin, see e.g. [17,25]. The effect 
of the vacuum is discussed in [33,2]. In higher dimensions, global wellposedness result is only 

known for small initial data [27,10].
When φ is weakly singular with α ∈ (0, d), the global behavior is known to be similar to the 

bounded Lipschitz case. A slightly different critical threshold is obtained in [34]. It has been 

further discussed in [20]. The borderline case α = d is studied in [1].
We shall mention that another active branch on the wellposedness theory for the Euler-

alignment system is to incorporate pressure. See e.g. [7,8,36,6,3,31]. For more results on the 

Euler-alignment system, we refer to the recent book by Shvydkoy [28].

1.2. Alignment and flocking

The Euler-alignment system exhibits remarkable asymptotic behaviors: alignment and flock-

ing. These collective behaviors are inherited from the Cucker-Smale model (1.3). The mathemat-
ical representation of hydrodynamic alignment and flocking are defined as follows.

Let (ρ, u) be a solution to the system (1.1)-(1.2). Let us define the spatial diameter D and 

velocity diameter V as follows:

D(t) = diam
(
suppρ(·, t)

)
and V(t) = sup

x,y∈supp(ρ(·,t))

|u(x, t) − u(y, t)|. (1.5)

The long time collective behaviors of the system can be identified from the following two con-
cepts:

(i). Flocking: spatial diameter is bounded in all time, namely there exists a constant D < ∞

such that

D(t) ≤ D, ∀ t ≥ 0. (1.6)

(ii). Alignment: the asymptotic velocity is a constant, or equivalently, velocity diameter decays 
to zero

200



M. Black and C. Tan Journal of Differential Equations 380 (2024) 198–227

Fig. 1. Gallery of results.

lim
t→∞

V(t) = 0. (1.7)

We say the flocking and alignment are unconditional if (1.6) and (1.7) hold for all initial data; 
we say the flocking and alignment are conditional if whether (1.6) and (1.7) hold depend on 

initial data: subcritical initial data lead to flocking and alignment, while supercritical initial data 

lead to no flocking and no alignment. In addition, we introduce the following new concept.

Definition 1.1 (Semi-unconditional flocking and alignment). We say flocking and alignment 
are semi-unconditional if (1.6) and (1.7) hold for subcritical initial density, and for any initial 
velocity. More precisely, there exists a subcritical region on D0, for any V0, such that semi-

unconditional if (1.6) hold.

The flocking property for the Cucker-Smale model (1.3) has been studied in [14,26]. The 

same phenomenon is shown for strong solutions to the Euler-alignment system in [32] (see [22]
for results on weak solutions). Interestingly, the asymptotic behaviors vary for different commu-
nication protocols (1.4), particularly on the integrability of φ at infinity. When α ∈ [0, 1], φ is 
non-integrable at infinity, we refer the communication protocol has a fat tail. In this case, the so-
lution has unconditional flocking and alignment properties. Moreover, V (t) decays exponentially 

in time (known as fast alignment). When α > 1, φ is integrable at infinity, and the communica-
tion protocol has a thin tail. In this case, the flocking and alignment are conditional. See Scenario 

0 (S0) in Fig. 1 for more details.
The flocking behavior for the Euler-alignment system has been further investigated in [30]. 

They showed fast flocking: density ρ(x, t) converges to a traveling wave solution ρ∞(x − t ū)

exponentially in time. See [21,18,22,3] for more development.
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1.3. Nonlinear velocity alignment

We consider a new family of alignment interactions (1.2), where the mapping � takes the 

form

�(z) = |z|p−2z. (1.8)

In particular when p = 2, � is linear and the system (1.1)-(1.2) reduces to the Euler-alignment 
system.

The nonlinear velocity alignment was introduced in [13] for the agent-based Cucker-Smale 

type dynamics

⎧
⎪⎪«
⎪⎪¬

ẋi = vi,

v̇i =
1

N

N∑

j=1

φ(xi − xj )�(vj − vi).
(1.9)

It has been further analyzed in [41,24,16]. The kinetic representation of (1.9) was introduced and 

studied in [4].
The system (1.1)-(1.2) was derived and studied recently in [31,23] as a formal hydrodynamic 

representation of the model (1.9), named p-alignment hydrodynamics.
One motivation of considering the nonlinearity in (1.8) is its natural connection to the frac-

tional p-Laplacian

(−�)spu(x) = cs,p,d P.V .

∫

Rd

�(u(x) − u(y))

|x − y|d+2s
dy.

Indeed, if we take a strongly singular communication protocol (1.4) with α = d + 2s and enforce 

the density ρ ≡ 1, then the nonlinear velocity alignment acts like fractional p-Laplacian

cs,p,d A[1,u](x, t) = −(−�)spu(x, t).

Its nonlocal and nonlinear feature has drawn a lot of attentions lately. The fractional p-Laplacian 

evolution equation

∂tu = (−�)spu

has been extensively studied in a recent series of works by Vásquez [37–40].

1.4. Main results

In this paper, we study the Euler system (1.1)-(1.2) with nonlinear velocity alignment (1.8). 
While the global wellposedness is an interesting problem of its own, our focus here is on the 

asymptotic behavior of the system.
The focus of this paper is on the asymptotic behavior of the Euler system (1.1)-(1.2) with 

nonlinear velocity alignment (1.8). As discovered in [31], the nonlinearity leads to diverse align-
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ment and flocking behaviors. In particular, the convergence of the velocity diameter in (1.7) has 
a polynomial decay in time, in oppose to the linear alignment p = 2, where the decay rate is 
exponential.

Fig. 1 is a collection of asymptotic behaviors of the system (1.1)-(1.2) with different non-
linear velocity alignment parametrized by p, and different types of communication protocols 
parameterized by α. Our results are summarized as follows.

Scenario 1 (S1): p > 3, 0 ≤ α < 1. The system has unconditional alignment (1.7) with poly-
nomial decay rate 

1−α
p−α−2 . Due to the strong nonlinearity, there is no guaranteed flocking. But the 

spatial diameter has a sub-linear growth. See Theorem 3.1 for detailed descriptions. We further 
show in Theorem 4.1 that the decay rate on V(t) and the growth rate on D(t) are optimal.

Scenario 2 (S2): 2 < p < 3, 0 ≤ α < 1. The system has unconditional flocking (1.6), and 

alignment (1.7) with polynomial decay rate 
1

p−2 (Theorem 3.3). Moreover, the decay rate on 

V(t) is optimal (Theorem 4.2).
Borderline Scenario (Sb): p = 3, 0 ≤ α < 1. The spatial diameter can have a logarithmic 

growth. This is also a logarithmic correction to the decay on the velocity diameter (Theorem 3.5). 
The rates are optimal (Theorem 4.3).

Scenario 3 (S3): 2 < p < 3, α > 1. The asymptotic behaviors are conditional. For subcriti-
cal initial data, the system exhibits flocking and alignment with the same rate as in Scenario 2 

(Theorem 5.1). On the other hand, there are supercritical initial data that lead to no alignment, 
namely (1.7) is violated (Theorem 5.3). Moreover, we show that the flocking and alignment are 

semi-unconditional.
Scenario 4 (S4): p > 3, α > 1. For any initial spatial and velocity diameters (D0, V0), regard-

less of how small they are, we construct initial data that lead to no alignment (Theorem 5.5). 
This observation underscores the instability of the alignment state (V0 = 0) under the influence 

of minor perturbations.
The polynomial decay in time for the system was discovered by Tadmor in a very recent work 

[31], covering Scenarios 1 and 2. We provide alternative proofs for the results in Theorems 3.1
and 3.3. Our approach provides qualitative and explicit conditions on (D0, V0) that ensure flock-
ing. This allows us to obtain results for all aforementioned scenarios using the same analytical 
framework. Moreover, we show that the decay rates are optimal, as well as an explicit logarithmic 

correction in the borderline case p = 3.
The flocking behavior of the agent-based Cucker-Smale type dynamics (2 < p < 3) was in-

vestigated in [13], using a smartly chosen Lyapunov functional that was first introduced in [14]. 
This can be applied to Scenarios 2 and 3 in our system. See Section 2.3 for details of this ap-
proach. The asymptotic behaviors for general choices of p was studied in [16]. The result seems 
to depend on the number of agents N , and can not be extended to the macroscopic system (with 

N → ∞).
Our approach makes use of the method of invariant region. The idea is to construct an invariant 

region to the rescaled spatial and velocity diameters, and show that the relevant quantities stay 

inside the region in all time. Compared with the Lyapunov functional approach, our method can 

cover the cases when the nonlinearity is strong (p ≥ 3). It can also be used to detect the no 

alignment property.
We would like to highlight our results in Scenario 3. With a thin tail, the system exhibits 

conditional flocking. This has been proved in [13] using the Lyapunov functional approach. 
See Theorem 2.3 for the full description. We show a surprising result that the flocking is semi-

unconditional: the subcritical region that ensures flocking is independent of the initial velocity.
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Finally, we comment that our results are based on the analysis to paired inequalities (2.2). The 

framework established by Tadmor in [31] works beautifully for general pressure laws. Paired 

inequalities similar to (2.2) were derived, using the energy fluctuation δE to replace the velocity 

diameter V . Thanks to the inequalities on (D, δE), our results can be extended to the compressible 

Euler system with nonlinear velocity alignment and general choices of pressure.

1.5. Outline of the paper

We start with presenting a collection of preliminaries in Section 2, including the derivation of 
the paired inequalities (2.2) and some related results in the literature. In Section 3, we study the 

asymptotic behaviors of our system when the communication protocol has a fat tail. This covers 
the results in Scenarios 1 and 2, as well as the borderline scenario. We then show in Section 4
that the quantitative rates of decay or growth that we obtained are sharp. Finally, Section 5 is 
devoted to Scenarios 3 and 4, when the communication protocol has a thin tail. In particular, we 

show semi-unconditional flocking and alignment in Scenario 3.

2. Preliminaries

Let us rewrite our main system equivalently as the evolution of (ρ, u).

⎧
⎪⎪⎪⎪«
⎪⎪⎪⎪¬

∂tρ + ∇ · (ρu) = 0,

∂tu + u · ∇u = A[ρ,u],

A[ρ,u](x, t) =

∫

Rd

φ(x − y)�(u(y, t) − u(x, t))ρ(y, t) dy, �(z) = |z|p−2z.
(2.1)

2.1. The paired inequalities

We start with the derivation of the following paired ordinary differential inequalities on (D, V)

that play an important role in the analysis of the asymptotic behavior of our system:

{
D′(t) ≤ V(t),

V ′(t) ≤ −Cφ(D(t))V(t)p−1,
with

{
D(0) = D0,

V(0) = V0.
(2.2)

This type of inequalities was first introduced in [14] (with p = 2), in the context of the agent-
based Cucker-Smale model, and in [13] for general p > 1. Using a similar idea, it was derived 

for the Euler-alignment system (p = 2) in [32]. More recently, Tadmor in [31] derived (2.2) from 

(2.1), not only for any p > 1, but also adapted general pressure laws.
For the sake of self-consistency, we present a derivation of (2.2) for our system (2.1), with 

general choice of p ∈ (1, ∞).
We assume that (2.1) has a global solution in the following sense:

ρ ∈ C
(
R+;Pc(R

d)
)
, u ∈ C

(
R+;C1

b(Rd)
)d

, (2.3)

where the space Pc consists probability measures with compact support, and C1
b is the space of 

bounded and differentiable functions.
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We shall emphasize that establishing the uniqueness and stability of the solution in (2.3) is 
relatively straightforward, primarily because of the smoothness of the velocity field. Neverthe-
less, it’s important to acknowledge that the pursuit of global existence presents a formidable 

challenge, given the potential development of shocks within finite time intervals. In this context, 
our focus is directed towards examining the asymptotic behaviors of the solution. We intend to 

explore the theory of global well-posedness in future research endeavors.

Proposition 2.1. Let p > 1. Suppose (ρ, u) is a solution to the system (2.1) in the sense of (2.3). 
Define (D, V) as in (1.5). Then, (D(t), V(t)) are continuous in time, and the paired inequalities 

(2.2) hold almost everywhere in t .

Proof. Let us fix a time t . Let z, w ∈ supp(ρ(·, t)) such that the maximum velocity diameter is 
attained, namely

V(t) = |u(z, t) − u(w, t)|.

Clearly, ∇u(w, t) = ∇u(z, t) = 0. Applying (2.1)2 and Rademacher’s Lemma (e.g. [28, Lemma 

3.5]), we obtain

d

dt
V(t)2 =2

(
u(z, t) − u(w, t)

)
·
(
∂tu(z, t) − ∂tu(w, t)

)

=2
(
u(z, t) − u(w, t)

)
·
(
A[ρ,u](z, t) − A[ρ,u](w, t)

)
.

Next, we work on the alignment force. For simplicity, we shall suppress the t-dependence 

throughout the rest of the proof.

A[ρ,u](z) − A[ρ,u](w)

=

∫

Rd

φ(z − y)�(u(y) − u(z))ρ(y) dy −

∫

Rd

φ(w − y)�(u(y) − u(w))ρ(y) dy

=

∫

Rd

(
φ(z − y) − η

)
�(u(y) − u(z))ρ(y) dy

−

∫

Rd

(
φ(w − y) − η

)
�(u(y) − u(w))ρ(y) dy

+ η

∫

Rd

(
�(u(y) − u(z)) − �(u(y) − u(w))

)
ρ(y) dy.

Here, we take η = φ(D(t)) so that φ(z − y) − η > 0 and φ(w − y) − η > 0.
Since � is odd and increasing, and w, z are where the maximum is attained, we have

(
u(z) − u(w)

)
· �(u(y) − u(z)) ≤ 0,

(
u(z) − u(w)

)
· �(u(y) − u(w)) ≥ 0,

for any y ∈ supp(ρ). Therefore, we have
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d

dt
V(t)2 ≤ 2

(
u(z) − u(w)

)
· η

∫

Rd

(
�(u(y) − u(z)) − �(u(y) − u(w))

)
ρ(y) dy.

Take our �(z) = |z|p−2z in (1.8). When p > 1, elementary calculus implies the following bound

(
u(z) − u(w)

)
·
(
�(u(y) − u(z)) − �(u(y) − u(w))

)
≤ −22−p|u(z) − u(w)|p,

for any y ∈ supp(ρ), where the equality is achieved when y = z+w
2 . Apply the bound and we get

d

dt
V(t)2 ≤ −23−pηV(t)p

∫

Rd

ρ(y) dy.

Note that the total mass 
∫

Rd ρ(y) dy = 1 is conserved in time. We conclude with

V
′(t) ≤ −Cφ(D(t))V(t)p−1, where C = −22−p. �

2.2. Global communication

One scenario where the global behavior can be easily obtained is when the communication 

protocol has a positive lower bound,

φ(r) ≥ φ > 0, ∀ r ≥ 0. (2.4)

In this case, (2.2) implies the following results.

Theorem 2.2. Let p > 1 and φ satisfy (2.4). Take any bounded (D0, V0). Suppose (D, V) satisfies 

(2.2). Then, we have

• If 1 < p < 2, there exists a finite time T∗ such that limt→T∗ V(t) = 0.

• If p = 2, then V(t) decays to zero exponentially in time, V(t) � e−κt .

• If p > 2, then V(t) decays to zero algebraically in time, V(t) � t−β∗ , with the decay rate 

β∗ = 1
p−2 .

Moreover, we have

• If 1 < p < 3, the solution flocks.

• If p = 3, D(t) has logarithmic growth in time, D(t) � log t .

• If p > 3, D(t) has sublinear growth in time, D(t) � t1−β∗ .

Proof. Since φ is lower bounded, we apply (2.2)2 and get

V
′(t) ≤ −Cφ V

p−1(t).

For p = 2, we have the exponential decay

V(t) ≤ V0e
−Cφ t .
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For p 
= 2, separation of variable yields

V(t) ≤
(
V

2−p

0 − (2 − p)Cφ t
) 1

2−p .

When p < 2, we have V(T∗) = 0 at T∗ =
V

2−p
0

(2−p)Cφ
. When p > 2, we get V(t) � t

− 1
p−2 .

For D(t), we plug in the bounds on V to the integral form of (2.2)1

D(t) ≤ D(0) +

t∫

0

V(τ ) dτ.

When p < 3, 
∫ ∞

0 V(τ ) dτ converges and hence D(t) is bounded uniformly in time. When p ≥ 3, 
we have

t∫

0

V(s) ds �

{
t

p−3
p−2 p > 3,

log t p = 3.

Therefore, D(t) has a bound that grows sub-linearly in time. �

Note that the results hold for any initial data. Therefore, the alignment and flocking properties 
are unconditional.

2.3. Flocking via Lyapunov functional

A more interesting scenario is when the communication protocol φ(r) decays to zero as r →

∞. In particular, we consider φ(r) ∼ r−α near infinity with α > 0, namely there exist positive 

constants λ < � and R such that

λr−α ≤ φ(r) ≤ �r−α, ∀ r ≥ R. (2.5)

This scenario has been studied in [14] when the alignment operator A[ρ, u] is linear in u, namely 

the p = 2 case. The result has been extended to 2 < p < 3 in [13]. The flocking behavior (1.6) is 
obtained, by brilliantly introducing a Lyapunov functional

E(t) = V
3−p(t) + (3 − p)Cψ(D(t)), ψ(D(t)) :=

D(t)∫

D0

φ(r) dr.

One can check that

E
′(t) ≤ (3 − p)V2−p ·

(
− Cφ(D(t))V(t)p−1) + (3 − p)Cφ(D(t)) · V(t) = 0.

This leads to E(t) ≤ E(0), and in particular
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(3 − p)Cψ(D(t)) ≤ V
3−p

0 ⇒ D(t) ≤ ψ−1

(
V

3−p

0

(3 − p)C

)
.

If the communication protocol φ has a fat tail, i.e. φ is non-integrable at infinity, the range of 
ψ covers R+. Hence, ψ−1 is well-defined for any V0. This leads to unconditional flocking.

If the communication protocol φ has a thin tail, i.e. φ is integrable at infinity, the range of ψ
contains [0, 

∫ ∞

D0
φ(r) dr). Then flocking is guaranteed if

V
3−p

0

(3 − p)C
<

∞∫

D0

φ(r) dr.

We summarize the results as follows.

Theorem 2.3 ([14,13]). Let 2 ≤ p < 3 and φ satisfy (2.5). Suppose (D, V) satisfies (2.2). Then,

• For fat tail communication α < 1: for any initial data (D0, V0), the flocking property (1.6)
holds, with

D =

(
D

1−α
0 +

1 − α

(3 − p)λC
V

3−p

0

) 1
1−α

.

• For thin tail communication α > 1: the flocking property (1.6) holds when the initial data 

(D0, V0) satisfies

D0V
3−p
α−1

0 ≤

(
(3 − p)λC

α − 1

) 1
α−1

. (2.6)

Once the flocking property is shown, one can apply Theorem 2.2 with φ = φ(D) and obtain 

alignment with polynomial decay rate 
1

p−2 .
The Lyapunov functional approach is simple and elegant. However, in the case when α > 1, 

the sufficient condition (2.6) depends on V0. Therefore, the resulting flocking behavior is not 
semi-unconditional. We will show an improved result of semi-unconditional flocking in Theo-
rem 5.1.

3. Fat tail communications: unconditional flocking and alignment

In this section, we study the asymptotic behaviors of our system (2.1) with fat tail communi-
cation protocols φ that satisfy (2.5) with α ∈ (0, 1). Our main goal is to analyze the long time 

behaviors of the paired inequalities (2.2).

3.1. Heuristics

Let us start with a heuristic argument on the asymptotic behaviors of the system. For a simple 

illustration, we assume the equalities hold in (2.2).
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Suppose V(t) ∼ t−β for some β ∈ (0, 1). Then, D(t) ∼ t1−β . The growth of D(t) will have 

an effect on the lower bound of φ(D(t)). Indeed, we have φ(D(t))Vp−1 ∼ t−α(1−β)−β(p−2). To 

match the rate of V ′(t) ∼ t−β−1, we should have

−α(1 − β) − β(p − 1) = −β − 1, or equivalently β =
1 − α

p − 2 − α
.

Hence, we expect the following asymptotic behavior

V(t) ∼ t
− 1−α

p−2−α , D(t) ∼ t
1− 1−α

p−2−α .

Note that the rates above are subject to the assumption β < 1, or equivalently p > 3.
For β > 1, V(t) is integrable and therefore D(t) ≤D is bounded. Then φ(D(t)) has a positive 

lower bound φ = φ(D) > 0. Theorem 2.2 suggests that the asymptotic behavior would be

V(t) ∼ t
− 1

p−2 , D(t) ≤ D.

The heuristic arguments agree with the asymptotic alignment and flocking behaviors with 

rates in Fig. 1. The rest of the section is devoted to a rigorous study of the arguments. We intro-
duce a method based on constructing invariant regions to obtain the desired bounds. Moreover, 
we will show unconditional alignment and flocking properties to the solutions.

Before delving into the details, it’s worth noting that Theorems 3.1 and 3.3 have been demon-
strated in [31]. However, we present an alternative analytical perspective in this work. Impor-
tantly, the underlying idea and methodology can be readily extended to address other scenarios. 
As such, we provide a comprehensive exposition of our approach here.

3.2. Scenario 1: unconditional alignment and sub-linear growth

We first state our result on the asymptotic behaviors of (D, V) when p > 3.

Theorem 3.1. Let p > 3 and φ satisfy (2.5) with α ∈ [0, 1). Take any bounded (D0, V0). Suppose 

(D, V) satisfies (2.2). Then, we have

D(t) � t
1− 1−α

p−2−α , V(t) � t
− 1−α

p−2−α . (3.1)

To prove the theorem, we first scale (D, V) according to the expected time scales. Define

D(t) = (t + 1)β
∗−1

D(t), V (t) = (t + 1)β
∗

V(t), (3.2)

where for simplicity we denote

β∗ =
1 − α

p − 2 − α
. (3.3)

Then, the bounds in (3.1) hold if (D, V ) are bounded.
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To control (D, V ), we calculate their dynamics using (2.2). It yields

D′(t) = (β∗ − 1)(t + 1)β
∗−2

D(t) + (t + 1)β
∗−1

D
′(t) ≤

1

t + 1

(
(β∗ − 1)D(t) + V (t)

)

and

V ′(t) =β∗(t + 1)β
∗−1

V(t) + (t + 1)β
∗

V
′(t) (3.4)

≤
β∗

t + 1
V (t) − (t + 1)β

∗

Cφ
(
(t + 1)1−β∗

D(t)
)
· (t + 1)−β∗(p−1)V (t)p−1

≤
1

t + 1

(
β∗V (t) − λCD(t)−αV (t)p−1).

Here, we have used the definition of β∗ (3.3) and the assumption on φ (2.5) in the last inequality.
To obtain an autonomous system of inequalities, we shall introduce a new time variable

τ = log(t + 1),

so that dτ
dt

= 1
t+1 . For simplicity, we still use (D, V ) to denote the corresponding functions of τ . 

This yields the paired inequalities

{
D′(τ ) ≤ (β∗ − 1)D(τ) + V (τ),

V ′(τ ) ≤ β∗V (τ) − λCD(τ)−αV (τ)p−1,
with

{
D(0) = D0,

V (0) = V0.
(3.5)

We are left to show that (D, V ) are bounded, using the inequalities in (3.5). Theorem 3.1 is 
proved given the following proposition.

Proposition 3.2. Let (D0, V0) ∈ R+ × R+. Suppose (D, V ) satisfies (3.5). Then (D, V ) are 

bounded in all time, namely there exist finite constants D and V , depending on D0, V0, p, α, 

such that

D(τ) ≤ D, V (τ) ≤ V , ∀ τ ≥ 0. (3.6)

We shall remark that Proposition 3.2 works for any initial data (D0, V0). Therefore, the result-
ing alignment behavior is unconditional.

Proof of Proposition 3.2. We make use of the method of invariant region. The plan is to con-
struct a bounded region in R+ × R+ that contains (D0, V0), and show that the trajectory of 
(D(τ), V (τ)) never exits the region.

Define

M = max

{
V0, (1 − β∗)D0,

(
β∗

λC(1 − β∗)α

) 1
p−2−α

}
, (3.7)

and consider the region
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Fig. 2. An illustration of the invariant region A defined in (3.8). To the right of the red line, D′ ≤ 0. Above the blue curve, 
V ′ ≤ 0. Hence, trajectories can not exit A. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

A =

[
0,

M

1 − β∗

]
× [0,M] . (3.8)

Fig. 2 illustrates the invariant region. From the definition, it is easy to see that (D(0), V (0)) ∈ A.
We now show that (D(τ), V (τ)) ∈ A for all τ ≥ 0. Let us argue by contradiction. Suppose 

there exists a finite time τ such that (D(τ), V (τ)) /∈ A. Then by continuity, there must exists a 

time τ∗ such that (D, V ) exits the region A at τ = τ∗, namely

(D(τ∗),V (τ∗)) ∈ ∂A and D(τ∗+),V (τ∗+)) /∈ A.

There are two cases.
Case 1: (D, V ) exits to the right, namely D(τ∗) =

M
1−β∗ , V (τ∗) ∈ [0, M], and D(τ∗+) >

M
1−β∗ . We apply (3.5)1 and get the following inequality

D′(τ∗) ≤ −(1 − β∗)D(τ∗) + V (τ∗) ≤ −(1 − β∗) ·
M

1 − β∗
+ M = 0.

Hence, D(τ∗+) ≤ D(τ∗). This leads to a contradiction.
Case 2: (D, V ) exits to the top, namely D(τ∗) ∈ [0, M

1−β∗ ], V (τ∗) = M , and V (τ∗+) > M . 
We apply (3.5)2 and obtain

V ′(τ∗) ≤β∗V (τ∗) − λCD(τ∗)
−αV (τ∗)

p−1 ≤ β∗M − λC ·
(1 − β∗)α

Mα
· Mp−1

=β∗M

(
1 −

λC(1 − β∗)α

β∗
Mp−2−α

)
≤ 0,

where the definition of M in (3.7) ensures the last inequality. Hence, V (τ∗+) ≤ V (τ∗). This leads 
to a contradiction.

We have shown that the dynamics of (D, V ) is flowing inward at the boundary (see illustration 

in Fig. 2). Therefore (D, V ) can not exit A from either side of the boundary. Therefore, (D, V )

has to stay inside A in all time. We conclude with (3.6) with

D =
M

1 − β∗
and V = M,

with β∗ and M defined in (3.3) and (3.7) respectively, depending on D0, V0, p and α. �
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Theorem 3.1 is a direct consequence of Proposition 3.2. Indeed, we have

D(t) ≤ D(t + 1)1−β∗

and V(t) ≤ V (t + 1)−β∗

,

which leads to (3.1). Since the result holds for any initial conditions (D0, V0), the system has 
unconditional alignment. There is no guaranteed flocking in this scenario due to the nonlinearity. 
However, we obtain a bound on the growth of D(t) that is sub-linear in time.

3.3. Scenario 2: unconditional flocking and alignment

When 2 < p < 3, the heuristic argument suggests the asymptotic flocking and alignment phe-
nomena (3.1). We will show these behaviors are unconditional.

Theorem 3.3. Let p ∈ (2, 3) and φ satisfy (2.5) with α ∈ [0, 1). Take any bounded (D0, V0). 

Suppose (D, V) satisfies (2.2). Then, we have

D(t) ≤ D, V(t)� t
− 1

p−2 .

Similarly to Scenario 1, we start with an appropriate time scaling on (D, V). We shall only 

rescale V and define

V (t) = (t + 1)β∗V(t),

where we denote

β∗ =
1

p − 2
. (3.9)

The notion of β∗ will be used throughout the rest of the paper.
Our goal is to bound (D, V ). We shall construct an invariant region

A = [0,D] × [0,V ],

such that (D(t), V (t)) can not exit.
Unlike Scenario 1, since we do not scale D, we can not find D such that the dynamics if 

flowing inward at the boundary. Instead, the following bound holds as long as (D, V ) stays 
inside A

D(t) ≤D0 +

t∫

0

V(s) ds = D0 +

t∫

0

(s + 1)−β∗V (s) ds ≤ D0 +
V

β∗ − 1
.

Hence, (D, V ) can not exit to the right if we have

D0 +
V

β∗ − 1
≤ D. (3.10)
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To argue that (D, V ) can not exit to the top, we compute the dynamics of V as in (3.4) and 

get

V ′(t) ≤
1

t + 1

(
β∗V (t) − λCD(t)−αV (t)p−1) ≤

1

t + 1
β∗V (t)

(
1 −

λC

β∗D
α V (t)p−2

)
.

Therefore, the same argument in Case 2 of Proposition 3.2 implies that (D, V ) can not exit to the 

top of A if we pick

V ≥ max

⎧
«
¬V0,

(
β∗D

α

λC

)β∗

«
¬
­ . (3.11)

If we can find (D, V ) such that (3.10) and (3.11) hold, then A is an invariant region.
Observe that the two conditions (3.10) and (3.11) imply

V �D � V
p−2
α = V

1
αβ∗ . (3.12)

When 
p−2
α

> 1, we can pick a large enough V such that both inequalities hold. Let us state the 

following proposition.

Proposition 3.4. Let 2 < p < 3 and 0 < α < p − 2. Then there exist (D, V ) such that (3.10) and 

(3.11) hold.

Proof. Let D = 2V
β∗−1 . We will pick V such that (3.10) and (3.11) hold.

First, if V ≥ (β∗ − 1)D0 we have

D0 +
V

β∗ − 1
≤

2V

β∗ − 1
= D.

Next, since p − 2 − α > 0, we have

V ≥

(
β∗D

α

λC

) 1
p−2

=

(
β∗2α

λC(β∗ − 1)α

) 1
p−2

V
α

p−2 ⇔ V ≥

(
β∗2α

λC(β∗ − 1)α

) 1
p−2−α

. (3.13)

Hence, (3.10) and (3.11) hold if we pick

V = max

{
V0, (β∗ − 1)D0,

(
β∗2α

λC(β∗ − 1)α

) 1
p−2−α

}
and D =

2V

β∗ − 1
. �

Note that Proposition 3.4 fails for α ∈ (p − 2, 1). Indeed, when 
p−2
α

< 1, (3.13) becomes

V ≤

(
β∗2α

λC(β∗ − 1)α

) 1
p−2−α

.
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Hence, we are not able to find V if V0 >
(

β∗2α

λC(β∗−1)α

) 1
p−2−α

.

To obtain unconditional flocking and alignment (namely show Theorem 3.3 for any initial 
data), we need to upgrade our method. The idea is the following. We start with a sub-optimal 
scaling on V and show that V(t) � (t + 1)−β for some β ∈ (1, β∗). This will lead to flocking: 
D(t) ≤ D. Then we can obtain the optimal decay rate β∗ applying Theorem 2.2.

Proof of Theorem 3.3. Given any β ∈ (1, β∗), we rescale V and define

V (t) = (t + 1)βV(t).

We will construct an invariant region

A = [0,D] × [0,V ],

and show (D, V ) stays in A in all time.
First, a similar argument as (3.10) implies that (D, V ) can not exit to the right if

D0 +
V

β − 1
≤ D. (3.14)

Next, we focus on the condition that ensures that (D, V ) can not exit to the top of the invariant 
region A. Compute

V ′(t) ≤
β

t + 1
V (t) −

λC

(t + 1)β(p−2)
D(t)−αV (t)p−1

≤
β

t + 1
V (t)

(
1 −

λC

D
α (t + 1)(β∗−β)(p−2)V (t)p−2

)
.

Fix any time tc. Define

V tc =

(
D

α

λC

)β∗

(tc + 1)−(β∗−β).

Then for any t ≥ tc, we have

1 −
λC

D
α (t + 1)(β∗−β)(p−2)V

p−2
tc

≤ 0.

Therefore, V (t) can not exit [0, V tc ] after time tc.
To control V (t) before time tc, we apply a rough bound V(t) ≤ V0, or equivalently

V (t) ≤ (t + 1)βV0 ≤ (tc + 1)βV0, ∀ t ∈ [0, tc].
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We pick the optimal tc = t∗c where

t∗c + 1 =
D

α

λCV
p−2
0

such that (t∗c + 1)βV0 = V t∗c
. Then the argument above implies that (D, V ) can not exit to the 

top of the invariant region A if we pick

V = V t∗c
=

V
(β∗−β)(p−2)

0

(λC)β
D

αβ
. (3.15)

Remark 3.1. Conditions (3.14) and (3.15) imply

V �D � V
1

αβ .

This improves the bounds in (3.12). In particular, we can choose β such that 1
αβ

> 1 such that a 

large enough V can ensure both inequalities hold.

Now we find (D, V ) such that (3.14) and (3.15) hold. Plug in (3.15) to (3.14), we get the 

condition

D0 +
V

(β∗−β)(p−2)

0

(β − 1)(λC)β
D

αβ
≤ D. (3.16)

Pick β such that

β ∈
(
1,min{β∗,

1
α
}
)
.

Since αβ < 1, a large enough D will satisfy (3.16), for any given (D0, V0). Indeed, we may pick

D = max

⎧
«
¬2D0,

(
2V1−β(p−2)

0

(β − 1)(λC)β

) 1
1−αβ

«
¬
­ ,

and V from (3.15).
We have shown that with our choice of (D, V ), the dynamics (D, V ) stays in the invariant 

region A in all time. This implies the flocking phenomenon

D(t) ≤ D, ∀ t ≥ 0.

Finally, we can repeat the proof of Theorem 2.2 with φ = φ(D) and conclude that V(t) �

t−β∗ . �
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3.4. The borderline scenario: logarithmic growth

From the heuristics, we expect V(t) ∼ t−1 when p = 3. This implies a possible logarithmic 

growth on D(t), that may then further affect the decay rate of V .

Theorem 3.5. Let p = 3 and φ satisfy (2.5) with α ∈ [0, 1). Take any bounded (D0, V0). Suppose 

(D, V) satisfies (2.2). Then, we have

D(t) � (log t)
1

1−α , V(t) � t−1(log t)
α

1−α . (3.17)

Remark 3.2. We see from (3.1) that the power on the logarithmic correction depends on α. In 

particular, when α = 0, we have D(t) � log t and V(t) � t−1. This coincides with the result in 

Theorem 2.2. The power that we obtained is sharp.

Proof. We start with the scaling in (3.2) and follow the same procedure that leads to (3.5). Since 

p = 3, we have β∗ = 1. So there is no scaling on D and

V (t) = (t + 1)V(t).

Then for this special case, (3.5) reads

{
D′(τ ) ≤ V (τ),

V ′(τ ) ≤ V (τ) − λCD(τ )−αV (τ)2,
with

{
D(0) = D0,

V (0) = V0.
(3.18)

Now we perform another time scaling on τ

D̃(τ ) = (τ + 1)−(γ+1)
D(τ ), Ṽ (τ ) = (τ + 1)−γ V (τ).

Note that since τ = log(t + 1), the scaling above is logarithmic in t . Our goal is to find a smallest 
power γ such that (D̃(τ ), ̃V (τ)) are uniformly bounded in τ , namely

D̃(τ ) ≤ D, Ṽ (τ ) ≤ V , ∀ τ ≥ 0. (3.19)

This would immediately implies the following bounds with logarithmic growth:

D(t) ≤ D(log(t + 1) + 1)γ+1, V(t) ≤ V (t + 1)−1(log(t + 1) + 1)γ .

To obtain (3.19), we apply (3.18) and compute

D̃′(τ ) = − (γ + 1)(τ + 1)−(γ+2)
D(τ ) + (τ + 1)−(γ+1)

D
′(τ )

≤
1

τ + 1

(
− (γ + 1)D̃(τ ) + Ṽ (τ )

)
,

Ṽ ′(τ ) = − γ (τ + 1)−(γ+1)V (τ) + (τ + 1)−γ V ′(τ )

≤ −
γ

τ + 1
Ṽ (τ ) + Ṽ (τ )

(
1 − (τ + 1)γ−(γ+1)α · λCD̃(τ)−αṼ (τ )

)
.
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We observe that when γ − (γ + 1)α < 0, or equivalently γ < α
1−α

, the dominate contribution 

to the dynamics of Ṽ in large time is Ṽ ′(τ ) ≤ Ṽ (τ ), leading to an uncontrollable exponential 
growth. Indeed, we will show in Theorem 4.3 that (3.19) can be violated with the choice of γ . 
On the other hand, when γ − (γ + 1)α > 0, or equivalently γ > α

1−α
, we have Ṽ ′(τ ) ≤ 0 if τ is 

large enough. Hence, the optimal rate γ is such that γ − (γ + 1)α = 0, namely

γ =
α

1 − α
.

The dynamics of (D̃, ̃V ) satisfy

{
D̃′(τ ) ≤ 1

τ+1

(
− 1

1−α
D̃(τ ) + Ṽ (τ )

)
,

Ṽ ′(τ ) ≤ Ṽ (τ )
(
1 − λCD̃(τ)−αṼ (τ )

)
,

with

{
D̃(0) = D0,

Ṽ (0) = V0.
(3.20)

Next, to verify (3.19), we construct an invariant region

A = [0,D] × [0,V ],

such that (D̃, ̃V ) stays in A in all time. Note that (3.20) has the same structure as (3.5). Therefore, 
we can directly apply Proposition 3.2 and find (D, V ). More precisely,

V = max

{
V0,

1

1 − α
D0,

(
(1 − α)α

λC

) 1
1−α

}
and D = (1 − α)V .

Finally, we conclude that

D(t) ≤ D(log(t + 1) + 1)
1

1−α , V(t) ≤ V (t + 1)−1(log(t + 1) + 1)
α

1−α .

This finishes the proof of (3.17). �

4. Sharpness of the decay rates

In this section, we show that the decay rates of the velocity alignment that we obtain are 

sharp. In particular, the sharp decay rates can be achieved under the setup when there are two 

groups that are moving away from each other. For simple illustration, we consider the following 

two-particle initial configuration in one-dimension

ρ0 = δx=
x0
2

+ δx=−
x0
2
, ρ0u0 =

v0

2
δx=

x0
2

−
v0

2
δx=−

x0
2
, (4.1)

where x0 > 0, v0 > 0, and δx=x0 denotes the Dirac delta function at x0. So we have two particles 
with initial distance x0 and they move away from each other with relative velocity v0. One can 

formally check that

ρ(t) = δ
x=

x(t)
2

+ δ
x=−

x(t)
2

, ρu(t) =
v(t)

2
δ
x=

x(t)
2

−
v(t)

2
δ
x=−

x(t)
2

,

is a solution of the system (2.1) in the sense of (2.3), where (x(t), v(t)) satisfies
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{
x′ = v,

v′ = −φ(x)�(v) = −φ(x)vp−1,
with

{
x(0) = x0,

v(0) = v0.

Observe that D(t) = x(t) and V(t) = v(t). Therefore, the dynamics of (D, V) has the same 

structure as (2.2), with the inequalities replaced by equalities.

{
D′(t) = V,

V ′(t) = −φ(D(t))V(t)p−1,
with

{
D(0) = x0,

V(0) = v0.
(4.2)

We will study (4.2) and show that the optimal decay (and growth) rates are achieved under the 

current setup.
Our first result considers the Scenario 1: p > 3.

Theorem 4.1. Let p > 3 and φ satisfy (2.5) with α ∈ [0, 1). Suppose (D, V) satisfies (4.2), with 

initial data x0 > 0 and v0 > 0. Then, we have

D(t) ∼ t
1− 1−α

p−2−α , V(t) ∼ t
− 1−α

p−2−α . (4.3)

Proof. The upper bounds are already proved in Theorem 3.1. We focus on the lower bounds

D(t) � t
1− 1−α

p−2−α , V(t) � t
− 1−α

p−2−α . (4.4)

Apply the scaling (3.2) and derive the following dynamics similar as (3.5)

{
D′(τ ) = −(1 − β∗)D(τ) + V (τ),

V ′(τ ) ≥ β∗V (τ) − �D(τ)−αV (τ)p−1,
with

{
D(0) = x0,

V (0) = v0.

Here, we recall β∗ = 1
p−2 , as defined in (3.9). When p > 3, we have 0 < β∗ < 1.

To obtain lower bounds on (D, V ), consider the following invariant region

B =

[
m

1 − β∗
,∞

)
× [m,∞),

where

m = min

{
v0, (1 − β∗)x0,

(
β∗

�(1 − β∗)α

) 1
p−2−α

}
> 0.

By definition, (x0, v0) ∈ B . The same argument as Proposition 3.2 implies that the dynamics 
of (D, V ) can not exit B . See Fig. 3 for a quick illustration.

Therefore, we obtain

D(t) ≥ D (t + 1)1−β∗

, and V(t) ≥ V (t + 1)−β∗

,

with
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Fig. 3. An illustration of the invariant region B defined in (3.8). To the left of the red line, D′ ≥ 0. Below the blue curve, 
V ′ ≥ 0. Hence, trajectories can not exit B .

D =
m

1 − β∗
> 0, and V = m > 0.

This finishes the proof of (4.4), and consequently (4.3). �

Next, we consider the Scenario 2: 2 < p < 3.

Theorem 4.2. Let p ∈ (2, 3) and φ satisfy (2.5) with α ∈ [0, 1). Suppose (D, V) satisfies (4.2), 
with initial data x0 > 0 and v0 > 0. Then, we have

D(t) ∼ 1, V(t) ∼ t
− 1

p−2 . (4.5)

Proof. We start with a trivial bound D′(t) = V(t) ≥ 0. This leads to a lower bound D(t) ≥ x0 >

0. Then from (4.2)2 we obtain

V
′(t) ≥ −φ(x0)V(t)p−1 ⇒ V(t) ≥

(
(p − 2)φ(x0) t + v

−(p−2)

0

)− 1
p−2

.

Together with Theorem 3.3, we conclude with (4.5). �

Finally, we state the result on the borderline scenario p = 3. The proof is similar to Theo-
rem 4.1. We omit the details.

Theorem 4.3. Let p = 3 and φ satisfy (2.5) with α ∈ [0, 1). Suppose (D, V) satisfies (4.2), with 

initial data x0 > 0 and v0 > 0. Then, we have

D(t) ∼ (log t)
1

1−α , V(t) ∼ t−1(log t)
α

1−α .

5. Thin tail communications: conditional flocking and alignment

In this section, we move to the case when the communication protocol has a thin tail, that is, 
φ satisfies (2.5) with α > 1.

As stated in Theorem 2.3, a major feature of the thin tail communications is that the flocking 

and alignment are conditional, namely for a class of subcritical initial data. We will show the 

phenomenon using the method of invariant region.
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For p ∈ (2, 3), we obtain a subcritical region S, defined in (5.3), that greatly enlarges the area 

in (2.6). We further show that the flocking and alignment are semi-unconditional (see Defini-
tion 1.1). On the other hand, we also construct supercritical initial data that lead to no alignment. 
For p > 3, we show that this is no alignment regardless of how small D0 and V0 are.

5.1. Scenario 3: flocking and alignment for subcritical initial data

Let us start our discussion on the case when p ∈ (2, 3). We obtain the conditional flocking 

and alignment result.

Theorem 5.1. Let p ∈ (2, 3) and φ satisfy (2.5) with α > 1. Suppose (D, V) satisfies (2.2). There 

exists a subcritical region S ∈ R+ × R+ such that for any (D0, V0) ∈ S, we have

D(t) ≤ D, V(t)� t
− 1

p−2 . (5.1)

Proof. We follow the proof of Theorem 3.3 until reaching the inequality (3.16). Since α > 1 and 

β > 1, there might not exist D that satisfies (3.16). Indeed, if we view (3.16) as

f (D) = D0 +
V

1−β(p−2)

0

(β − 1)(λC)β
D

αβ
−D ≤ 0.

One can easily check that f attains its minimum at

D =

(
(β − 1)(λC)β

αβV
1−β(p−2)

0

) 1
αβ−1

,

with

fmin = f (D) = D0 − (αβ − 1)

(
(β − 1)(λC)β

(αβ)αβ

) 1
αβ−1

V
−

1−β(p−2)
αβ−1

0 .

Therefore, if (D0, V0) satisfies

D0V

1−β(p−2)
αβ−1

0 ≤ (αβ − 1)

(
(β − 1)(λC)β

(αβ)αβ

) 1
αβ−1

, (5.2)

then (3.16) holds, and we have D(t) ≤ D. Applying Theorem 2.2, we conclude that V(t) �

t
− 1

p−2 .
Since the argument above works for any β ∈ (1, 1

p−2 ), we can define the subcritical region S

as

S =
{
(D0,V0) ∈ R+ × R+ : ∃ β ∈ (1, 1

p−2 ) such that (5.2) holds
}

. � (5.3)
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Fig. 4. An illustration of the subcritical region S.

Let us comment on the subcritical region S. Fig. 4 provides an illustration of S in (5.3). It is a 

union of the regions in (5.2) by varying β ∈ (1, 1
p−2 ). A surprising observation is: (D0, V0) ∈ S

as long as D0 < D∗
0 , regardless of how big V0 is. We state the following proposition.

Proposition 5.2. The region S defined in (5.3) satisfies

[0,D∗
0) × R+ ⊂ S, where D

∗
0 := (αβ∗ − 1)

(
(β∗ − 1)(λC)β∗

(αβ∗)αβ∗

) 1
αβ∗−1

.

The proposition can be proved by taking β → β∗ in (5.2), observing that the power of V0

becomes limβ→β∗

1−β(p−2)
αβ−1 = 0, and the right hand side of (5.2) is continuous in β . We omit the 

detailed proof.
Proposition 5.2 implies semi-unconditional flocking and alignment: if D0 ∈ (0, D∗

0), for any 

V0 > 0, we apply Theorem 5.1 and obtain flocking and alignment (5.1).

Remark 5.1. The result can be extended to the linear case p = 2. Indeed, we have β∗ = ∞. When 

taking β∗ → ∞, we get D∗
0 → (λC)1/α in Proposition 5.2. Hence, if D0 ∈ (0, (λC)1/α), for 

any V0 > 0, we obtain flocking and fast alignment. Therefore, we conclude that the asymptotic 

behaviors are semi-unconditional.

5.2. Scenario 3: no alignment for supercritical initial data

In this part, we construct supercritical initial data that lead to no alignment, that is 
limt→∞ V(t) 
= 0. It indicates that the flocking and alignment are indeed conditional.

We use the two-particle initial configuration (4.1).

Theorem 5.3. Let p ∈ (2, 3) and φ satisfy (2.5) with α > 1. Suppose (D, V) satisfies (4.2). There 

exists a supercritical region T ∈ R∗ × R∗, such that for any (x0, v0) ∈ T , there exist D > 0 and 

V > 0 such that

D(t) ≥ D(t + 1), and V(t) ≥ V > 0. (5.4)
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Proof. We start with applying the following scaling on D to (4.2)

D(t) = (t + 1)−1
D(t),

and compute

D′(t) = − (t + 1)−2
D(t) + (t + 1)−1

D
′(t) = (t + 1)−1( − D(t) + V(t)

)
, (5.5)

V
′(t) ≥ − �D(t)−α

V(t)p−1 = −(t + 1)−α�D(t)−α
V(t)p−1. (5.6)

We will construct an invariant region

B = [D,∞) × [V,∞)

and argue that the dynamics of (D, V) stays in B in all time.
First, we check that (D, V) can not exit from below. From (5.6) we get

V
′(t) ≥ −(t + 1)−α�D−α

V(t)p−1,

as long as D(t) ≥ D. This can be further simplified using separation of variables

V(t) ≥

(
1

v
p−2
0

+
(p − 2)�D−α

α − 1

(
1 − (t + 1)−(α−1)

)
)− 1

p−2

≥

(
1

v
p−2
0

+
(p − 2)�D−α

α − 1

)− 1
p−2

.

Therefore, if we pick

V =

(
1

v
p−2
0

+
(p − 2)�D−α

α − 1

)− 1
p−2

> 0, (5.7)

then V(t) can not drop below V .
Next, we check that (D, V) can not exit to the left if

D ≤ min{x0,V}. (5.8)

Indeed, if there exists a time t∗ such that D(t∗) = D, D(t∗+) < D and V(t∗) ≥ V . Then (5.5)
implies D′(t∗) ≤ 0, which leads to a contradiction.

Conditions (5.7) and (5.8) guarantee that (D, V) stays in the invariant region B . This directly 

implies (5.4).
We are left to find (D, V) that satisfies (5.7) and (5.8). Rewrite the conditions as

f (D) := v
−(p−2)

0 Dα − Dα−(p−2) +
(p − 2)�

α − 1
≤ 0 and D ≤ x0. (5.9)

The inequality f (D) ≤ 0 has a solution if and only if
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fmin = −
p − 2

α

(
α − (p − 2)

α

) α−(p−2)
p−2

v
α−(p−2)

0 +
(p − 2)�

α − 1
≤ 0,

or equivalently

v0 ≥

(
α�

α − 1

) β∗
αβ∗−1

(
αβ∗

αβ∗ − 1

)β∗

, (5.10)

where the minimum of f is achieved at

D =

(
α − (p − 2)

p − 2

) 1
p−2

v0 = (αβ∗ − 1)β∗v0. (5.11)

To make sure f (D) ≤ 0 has a solution in [0, x0], we need x0 to be large enough. A sufficient 
condition is

x0 ≥ (αβ∗ − 1)β∗v0. (5.12)

Define the supercritical region

T = {(x0, v0) ∈ R+ × R+ : (5.10) and (5.12) holds} .

We conclude that if the initial data (x0, v0) ∈ T , then we can find (D, V) in (5.11) and (5.7)
respectively such that (5.4) holds. �

5.3. Scenario 4: no alignment for generic data

Now we turn our attention to the scenario when p > 3. Observe that the Theorem 5.3 can be 

directly extended to any p − 2 < α. On the other hand, if p − 2 > α, we are able to obtain a 

stronger result.

Corollary 5.4. Let p > α+2 and φ satisfy (2.5) with α > 1. Suppose (D, V) satisfies (4.2). Then, 

for any initial data x0 > 0 and v0 > 0, there exist D > 0 and V > 0 such that (5.4) holds.

Proof. We follow the same proof in Theorem 5.3 and reach (5.9). Note that α − (p − 2) < 0. 
Therefore, we observe that f is continuous and increasing in (0, ∞), with

lim
D→0+

f (D) = −∞, and lim
D→∞

f (D) = ∞.

Hence, f has a unique root D∗ > 0, depending on v0 and the parameters α, p, �, such that 
f (D) ≤ 0 for any D ∈ (0, D∗]. Then (5.9) is satisfied if we choose

D = min{D∗, x0} > 0.

We further choose V according to (5.7). The same argument in Theorem 5.3 leads to (5.4). �

223



M. Black and C. Tan Journal of Differential Equations 380 (2024) 198–227

Corollary 5.4 indicates that the supercritical region T = R+ × R+. So there is no alignment

for generic data, no matter how small the initial data are.
A natural question is on the case where 3 < p ≤ α + 2: whether there is no alignment for 

all data, or there exists subcritical region that leads to alignment. The following theorem gives a 

comprehensive answer.

Theorem 5.5. Let p > 3 and φ satisfy (2.5) with α > 1. Suppose (D, V) satisfies (4.2). Then, for 

any initial data x0 > 0 and v0 > 0, there exist D > 0 and V > 0 such that (5.4) holds.

The proof of Theorem 5.5 requires an upgrade to Theorem 5.3. We use a similar idea as in the 

proof of Theorem 3.3: start with a sub-optimal scaling on D and show D(t) ≥ (t + 1)γ for some 

γ ∈ ( 1
α
, 1). This will lead to no alignment: V(t) ≥ V . Then we can obtain the optimal growth on 

D.

Proof of Theorem 5.5. Given any γ ∈ ( 1
α
, 1), we rescale D and define

D(t) = (t + 1)−γ
D(t).

We will construct an invariant region

B = [D,∞) × [V,∞),

and show (D, V) stays in B in all time.
To check (D, V) can not exit from below, we compute

V
′(t) ≥ −(t + 1)−γα�D−α

V(t)p−1,

and it implies

V(t) ≥

(
1

v
p−2
0

+
(p − 2)�D−α

γ α − 1

)− 1
p−2

=: V . (5.13)

Clearly, V can not drop below V (defined as the right hand side of the above inequality).
Next, we focus on the condition that ensures (D, V) can not exit to the left of B . Compute

D′(t) = −
γ

t + 1
D(t) +

1

(t + 1)γ
V(t) ≥ −

γ

t + 1

(
D(t) − (t + 1)1−γ

V
)
.

Fix any tc > 0. Define

Dtc
= (tc + 1)1−γ

V .

Then for any t ≥ tc, we have

−
γ

t + 1

(
Dtc

− (t + 1)1−γ
V

)
≥ 0.
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Therefore, D(t) can not exit [Dtc
, ∞) after time tc.

To control D(t) before time tc, we apply the rough bound D(t) ≥ x0. Then

D(t) ≥ (t + 1)−γ x0 ≥ (tc + 1)−γ x0.

We pick the optimal tc = t∗c where

t∗c + 1 =
x0

V
,

so that (tc + 1)−γ x0 = Dtc
. Then the argument above implies that (D, V) can not exit to the left 

of the invariant region B if we pick

D ≤ x
1−γ

0 V
−γ . (5.14)

We are left to find (D, V) that satisfies (5.13) and (5.14). Rewrite the conditions as

f (D) := v
−(p−2)

0 Dα − x
−

(1−γ )(p−2)
γ

0 D
α−

p−2
γ +

(p − 2)�

γα − 1
≤ 0. (5.15)

Note that (5.15) reduces to (5.9) if γ = 1. The major gain here is that we can choose γ ∈ ( 1
α
, 

p−2
α

)

such that the power of the second term

α −
p − 2

γ
< 0.

Then we use the same argument in Proposition 5.2 and pick D to be the root of f (D) = 0, which 

depends on x0, v0 and parameters p, α, �, γ . One can check that D > 0, for any choice of x0 > 0
and v0 > 0. Choosing V according to (5.13), we conclude that V(t) ≥ V .

Once we obtain the lower bound on V , we immediately have

D(t) = x0 +

t∫

0

V(s) ds ≥ x0 + V t.

This concludes the proof of (5.4), with D = min{x0, V}. �
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