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The CMS collaboration 231

1 Introduction

The CMS detector [1] is a large, multipurpose apparatus located at the CERN LHC. The detector was

designed for the study of a variety of physics phenomena, including the search for the Higgs boson,

which was discovered in 2012 [2ś4], and the measurement of its properties, the exploration of the elec-

troweak sector and vector boson scattering, precision measurements of standard model (SM) particles

and interactions, ŕavor physics, heavy-ion physics, and searches for new physics beyond the SM.

The LHC Run 1 started in 2009 and, until the end of 2012, proton-proton (pp) collision data

corresponding to a total integrated luminosity of about 30 fb−1 were delivered at center-of-mass

energies of 7 and 8 TeV . In addition, CMS successfully recorded data from high-energy lead-lead

collisions. After a őrst long shutdown, referred to as long shutdown 1 (LS1), the second data-taking

period, Run 2, followed in 2015ś2018 at an energy of 13 TeV, during which an integrated luminosity

of about 165 fb−1 was delivered with peak instantaneous luminosities up to 2 × 1034 cm−2 s−1, twice

ś 1 ś
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the original LHC design value. During LS1 and Run 2, the őrst generation of detector upgrades,

referred to as the Phase 1 upgrade program, was implemented.

After the second long shutdown (LS2, 2019ś2021), the LHC Run 3 was started in 2022 and is

expected to deliver about 250 fb−1 of integrated luminosity. In Run 3, the center-of-mass energy for

pp collisions is 13.6 TeV . During the third long shutdown (LS3), scheduled to start in 2026, CMS

will undergo a major upgrade program, referred to as the Phase 2 upgrade, in preparation for the

data taking at the High-Luminosity LHC (HL-LHC), designed to deliver instantaneous luminosities

up to 7.5 × 1034 cm−2 s−1 at a pp center-of-mass energy of 14 TeV . At the end of the HL-LHC, the

total integrated luminosity is expected to be 3000 fb−1. The Phase 2 upgrade includes a new inner

tracking system and a new endcap calorimeter, as well as substantial improvements for most other

subsystems of CMS. Upgrades are also in preparation in almost all other areas of CMS. In this paper,

we present the various upgrades of the CMS detector since Run 1 that are designed to optimize the

detector for sustained or improved performance at increased luminosity and energy.

The CMS detector has an overall length of 22 m, a diameter of 15 m, and weighs 14 000 tons. A

schematic view is shown in őgure 1. The detector is nearly hermetic, designed to trigger on [5, 6]

and identify electrons, muons, photons, and (charged and neutral) hadrons [7ś10]. The central

feature of the CMS experiment is a superconducting solenoid of 6 m internal diameter and 12.5 m

length that provides a magnetic őeld of 3.8 T with a stored energy of 2.2 GJ. Within the magnetic

volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter

(ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and

two endcap sections. Forward calorimeters extend the pseudorapidity (𝜂) coverage provided by the

barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel

ŕux-return yoke outside the solenoid.

Events of interest are selected using a two-tier trigger system. The őrst-level (L1) trigger is

composed of custom hardware processors and uses information from the calorimeters and muon

detectors to select events at a rate of about 100 kHz within a latency of about 4 𝜇s [5]. The second

level, known as the high-level trigger (HLT), consists of a cluster of commercial processors running

a version of the full event reconstruction software optimized for fast processing. It was originally

designed to reduce the event rate to around 1 kHz before data storage [6]. During Run 3, the L1

trigger and HLT operate at typical output rates of 110 kHz and 5 kHz, respectively.

A full description of the CMS detector, together with a deőnition of the coordinate system used

and the relevant kinematic variables, is reported in ref. [1]. In the remaining part of this section, the

CMS detector components are brieŕy introduced.

In section 2, the CMS solenoid magnet is described.

The inner tracking system (section 3) is used to measure the trajectories of charged particles

produced in the collisions at the LHC. It is located in the innermost part of the CMS detector, closest

to the interaction point. Prior to the Phase 1 upgrade, the pixel detector had three barrel layers and

two disks in each endcap. In its current form, the pixel detector is composed of four barrel layers and

three disks of silicon sensors on each side of the interaction point, with a total of 124 million readout

channels. During LS2, the innermost barrel layer was replaced to ensure optimal performance until

the end of Run 3. The strip tracker comprises ten layers of silicon strip sensors in the barrel, arranged

in a cylindrical shape, and nine disks in the endcaps on each side of the detector. The strip sensors

are segmented into long, thin strips, which are used to measure the trajectories of the particles and

ś 2 ś
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The hadron calorimeter (section 5) is designed to measure the energy of charged and neutral

hadrons. It contributes to the identiőcation of hadrons and the measurement of their properties. It also

aids in the reconstruction of jets and missing transverse momentum, and the identiőcation of electrons

and photons. The HCAL comprises four subdetectors: the hadron barrel (HB), hadron endcap (HE),

hadron outer (HO), and hadron forward (HF) calorimeters. The HB and HE are located inside the

solenoid magnet of the CMS detector and surround the ECAL. They cover the pseudorapidity ranges

|𝜂 | < 1.392 and 1.305 < |𝜂 | < 3.0, respectively, and are made of layers of brass plates interleaved

with layers of scintillating tiles. The HF, constructed from steel and quartz őbers, is located outside

the solenoid at ±11.5 m from the collision point, and covers the 3.0 < |𝜂 | < 5.2 range. Finally, the

HO, made of plastic scintillator and the őrst layer of the barrel ŕux return covers the |𝜂 | < 1.26

range. The HCAL is designed to have a good hermeticity, with the ability to detect hadrons in nearly

the full 4𝜋 solid angle. The Phase 1 upgrade of HCAL was installed in stages from 2016ś2019. In

HB and HE, the hybrid photodiode detectors were replaced with silicon photomultipliers, which

reduced anomalous signals, improved radiation tolerance, and allowed for őner longitudinal readout

segmentation. The HF photomultiplier tubes were also upgraded to reduce anomalous signals. The

readout electronics were upgraded to support the increased channel count, improve the precision,

and add signal timing information. When combining information from the entire CMS detector,

the jet energy resolution typically amounts to 15ś20% at 30 GeV, 10% at 100 GeV, and 5% at 1 TeV.

The muon detectors (section 6) are used in the identiőcation of muons and the measurement of

their momenta. The muon system comprises four subsystems: the drift tubes (DTs), the cathode

strip chambers (CSCs), the resistive-plate chambers (RPCs), and the recently added gas electron

multiplier (GEM) detector. Altogether, the CMS muon detectors comprise almost one million

electronic channels.

The DTs consist of chambers formed by multiple layers of long rectangular tubes that are őlled

with an Ar and CO2 gas mixture. An anode wire is located at the center of each tube, whereas

cathode and őeld-shaping strips are positioned on its borders. They create an electric őeld that

induces an almost uniform drift of ionization electrons produced by charged particles traversing the

gas. The charged-particle trajectory is determined from the arrival time of the currents generated on

the anode wires of the readout.

The CSCs are made of layers of proportional wire chambers with orthogonal cathode strips and

are operated with a gas mixture of Ar, CO2, and CF4. Signals are generated on both anode wires and

cathode strips. The őnely segmented cathode strips and fast readout electronics provide good timing

and spatial resolution to trigger on and identify muons.

The RPCs comprise two detecting layers of high-pressure laminate plates that are separated by

a thin gap őlled with a gas mixture of C2H2F4, i-C4H10, and SF6. The electronic readout strips are

located between the two layers, and the high voltage is applied to high-conductivity electrodes coated

on each plate. The detectors are operated in avalanche mode to cope with the high background rates.

Due to their excellent time resolution, they ensure a precise bunch-crossing assignment for muons

at the trigger level.

The key feature of the GEM is a foil consisting of a perforated insulating polymer surrounded

on the top and bottom by conductors. A voltage difference is applied on the foils producing a strong

electric őeld in the holes. The GEM is operated with a gas mixture of Ar and CO2. When the gas

volume is ionized, electrons are accelerated through the holes and read out on thinly separated strips.

ś 4 ś
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This structure allows for high ampliőcation factors with modest voltages that provide good timing

and spatial resolution, and can be operated at high rates.

The precision proton spectrometer (PPS) (section 7) is designed to detect protons scattered at

very small angles in interactions where the protons remain intact and only a small fraction of their

initial energy goes into the production of particles at small rapidity. In such events, the reconstruction

of the kinematic properties of the protons uses their energy loss to determine the invariant mass of

the system produced in the quasi-elastic collision. The PPS detector includes tracking and timing

stations, which are located inside the LHC tunnel on both ends of the CMS detector about 200 m from

the CMS interaction point. Precision tracking and timing is provided by silicon pixel and diamond

detectors, respectively. The detectors are enclosed in movable stations, referred to as łroman potsž,

within which the detectors can be positioned as close as a few millimeters from the proton beam.

The PPS őrst started in Run 2 as a joint project (CT-PPS) with the TOTEM Collaboration [12]. The

initial PPS system consisted of two tracking and one timing station on each side. For Run 3, the PPS

was upgraded for improved efficiency and precision with an additional timing station on each side.

The beam radiation instrumentation and luminosity (BRIL) system (section 8) comprises various

detectors that measure the instantaneous luminosity and monitor in real time the beam-induced

background, beam losses, and timing. Three luminosity detector systems provide robust bunch-by-

bunch luminosity measurements in real time. They are: (i) the fast beam condition monitor (BCM1F),

which counts hits in silicon pad diodes; (ii) the pixel luminosity telescope (PLT), which counts triple

coincidences; and (iii) the HF calorimeter. The HF is instrumented with a dedicated readout for the

real-time luminosity measurement and provides hit-tower counting (HFOC) and transverse-energy

sums (HFET). The beam condition monitor for losses (BCML), using diamond and sapphire sensors,

provides protection against catastrophic beam loss and is part of the LHC beam-abort system. The

beam pickup timing device (BPTX) provides logical beam signals to the L1 trigger system. The

BRIL system includes the measurement of radiation in the experimental cavern. The measurements

are complemented by detailed simulations using the CMS radiation simulation applications.

The data acquisition (DAQ) system (section 9) is responsible for: the readout of all detector

data for events accepted by the L1 trigger; the building of complete events from subdetector event

fragments; the operation of the őlter farm cluster running the HLT; and the transport of event data

selected by it to the permanent storage in the Tier 0 computing center. The DAQ consists of: custom-

built electronics reading out event fragments; a data-concentrator network transporting the fragments

to the surface; a cluster of readout and event-building servers interconnected via the event-building

network; the őlter-farm cluster of multicore servers connected by the data network running the HLT

software; a distributed storage system where event data selected by HLT őltering are buffered; and a

transfer system connected to the Tier 0 center via a high-speed network. The DAQ also includes the

trigger control and distribution system (TCDS), which distributes timing to the trigger and subdetector

electronics, and implements trigger control logic as well as the trigger throttling system (TTS).

The L1 trigger (section 10) consists of electronics responsible for making a fast selection of

events based on the presence of high-energy particles in the detector. The L1 trigger receives

energy and position information, so-called trigger primitives (TPs), from the calorimeters and the

muon detectors. The TPs are evaluated by a trigger processor, which is composed of custom-built

electronics and őeld programmable gate array (FPGA) devices that perform the trigger decision

based on a set of predeőned trigger algorithms. The L1 trigger operates at trigger rates of about

ś 5 ś



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
0
5
0
6
4

110 kHz. During LS2, the L1 trigger was upgraded to also process TPs that are designed to select

long-lived particles.

The HLT (section 11) is a software-based system in which the full event information is used

to select events of interest based on their physics content. The HLT is implemented as a parallel

computing system that processes the event data in real time. Since the start of Run 3, the HLT makes

use of graphical processing units (GPUs) in the trigger őlter farm. The GPUs facilitate the offloading

of speciőc parts of the reconstruction algorithms, e.g., tracking based on the pixel detector, as well

as parts of the calorimeter reconstruction. The use of GPUs has led to a substantial reduction of the

overall event processing time. With the performance improvements for Run 3, HLT-reconstructed

analysis data, referred to as HLT scouting data, are recorded at a rate of about 30 kHz. In parallel,

the storage rate of normal triggers was increased to about 2 kHz. Furthermore, the system also stores

extra data samples, the so-called parking data sets, at a rate of around 3 kHz. The parking events

will only be reconstructed by the offline computing infrastructure at a later time, when the resources

will not be needed for the core activities. Other HLT reconstruction improvements in the areas of

muon tracking, b jet tagging, and tau lepton reconstruction were also implemented for Run 3.

The offline computing system (section 12) has three key roles: to process the recorded data;

to generate sufficiently large Monte Carlo simulation samples based on theoretical models and

detector response modeling; and to facilitate physics data analysis performed at the CMS institutes

around the world. The CMS data and simulation samples are stored and processed in a globally

distributed network of centers, using an ever-growing array of heterogeneous resources. Continuous

improvements are made in software and computing performance. Most notably, multithreaded

processing and offloading to GPU resources have been introduced.

2 Solenoid magnet

The superconducting solenoid magnet provides a magnetic őeld of 3.8 T, and forms the center piece

of the CMS experiment. A picture of the open CMS detector with visible magnet cryostat is shown

in őgure 2.

The original plan for the magnet during LS2 had been to turn it off, but to keep it cooled at

4 K. The plan was changed substantially because of a water leak in the experimental cavern inside

a diffusion pump of the magnet cryostat discovered during a routine check. To intervene without

putting the magnet at risk, it was decided to warm the magnet up to room temperature.

The procedure took place during the Covid-19 lockdown at CERN in April and May 2020. After

an outgassing period, the vacuum volume was brought back to atmospheric pressure, and the diffusion

pumps were removed and replaced. The vacuum circuit was also fully cleaned, and modiőcations were

implemented for easier access and improved backup capabilities, with new valves and ŕanges allowing

the connection of backup vacuum pumps if needed, as illustrated in the picture in őgure 3 (left).

In parallel to this repair, the new free wheel thyristor (FWT) system [14] was installed on the

powering circuit of the magnet, visible in őgure 3 (right). The FWT bypasses the power converter in

a closed loop in case the converter is in a faulty state, e.g., in the event of a power failure or a lack

of cooling, thus avoiding a slow discharge to zero current. The FWT contributes to increasing the

magnet’s lifetime and the operational time at nominal őeld.

ś 6 ś
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Figure 4. The CMS magnet current ramp and discharge modes representing the various magnet operation
procedures and their duration. A current of 18164 A corresponds to a magnetic őeld of 3.8 T.

The control systems of the magnet and insulation vacuum were also fully upgraded during LS2.

New programmable logic controllers were installed, new control electronics for both the FWT and

the renewed vacuum pumping circuit were integrated, and the magnetic measurement system, using

Hall probes, ŕux-loops, and nuclear magnetic resonance devices, was consolidated. The cryogenics

system inside the cold box was improved by installation of a large őlter with a reduced mesh to limit

the recurrent clogging of the turbine őlters as much as possible.

The magnet was successfully commissioned in September 2021, just ahead of the LHC pilot

beam run, when it was operated at full magnetic őeld for two weeks with its upgraded powering

system and repaired vacuum system. In March 2022, the magnet was ramped up to its nominal őeld

of 3.8 T and declared ready for Run 3.

3 Inner tracking system

3.1 Pixel detector

The silicon pixel detector is the innermost part of the CMS inner tracking system. It provides

three-dimensional space points close to the LHC collision point, which allow for high precision

tracking and vertex reconstruction.

3.1.1 Detector design

The őrst CMS pixel detector [1], installed in 2008, consisted of three barrel layers at radii of 44, 73,

and 102 mm and two endcap disks on each end at distances of 345 and 465 mm from the detector

center. It provided three-point tracking for charged particles and performed very well during Run 1.

However, already in Run 1 the instantaneous luminosity delivered by the LHC exceeded the design

value of 1 × 10
34 cm−2 s−1, which resulted in a pixel detector readout inefficiency. In order to

maintain good tracking performance, this pixel detector was replaced with a more efficient and

robust four-point tracking system. In addition, the radius of the beam pipe was reduced in 2014 from

30 to 23 mm, which allowed the innermost pixel layer to be placed closer to the interaction point.

The improved pixel detector was installed at the beginning of 2017.
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Table 1. Summary of the average radius and 𝑧 position, as well as the number of modules for the four BPIX
layers and six FPIX rings for the Phase 1 pixel detector.

BPIX

Layer Radius [mm] 𝑧 position [mm] Number of modules

L1 29 −270 to +270 96

L2 68 −270 to +270 224

L3 109 −270 to +270 352

L4 160 −270 to +270 512

FPIX

Disk Radius [mm] 𝑧 position [mm] Number of modules

D1 inner ring 45ś110 ±338 88

D1 outer ring 96ś161 ±309 136

D2 inner ring 45ś110 ±413 88

D2 outer ring 96ś161 ±384 136

D3 inner ring 45ś110 ±508 88

D3 outer ring 96ś161 ±479 136

took place. Due to an unexpected failure (section 3.1.4), all 1216 DC-DC converters had to be

replaced in the LHC year-end technical stop 2017ś2018. The second intervention was done during

LS2 and involved the replacement of the layer-1 modules and, again, all the DC-DC converters.

The new layer-1 modules, in addition to the planned replacement of the radiation-damaged silicon

sensors, also included new versions of the readout ASICs, which őxed some of the shortcomings

observed in the earlier versions, described in section 3.1.2. The LS2 was also used to repair several

faulty optical őbers and bad power connections, upgrade the electronic boards in the FPIX system,

and őx broken FPIX cooling inlets.

With the innermost layer placed at a radius of 29 mm from the beam line, the modules in this

region are exposed to very high radiation doses and hit rates, as shown in table 2: the radiation

ŕuence for L1 with 300 fb−1 is 2.2 × 10
15 neq/cm2, corresponding to the operational limit of the

installed system [16]. To ensure that the inner layer remains fully operational throughout all of Run 3,

as planned from the beginning, the innermost BPIX layer was replaced during LS2 in 2019ś2021.

3.1.2 Silicon modules

Schematic drawings of the Phase 1 pixel detector modules are shown in őgure 6. A module consists

of a 18.6 × 66.6 mm2 silicon sensor that is bump-bonded to 2 × 8 ROCs. Each ROC has 80 × 52

rectangular pixels with a size of 100 × 150 𝜇m2, the same as in the original pixel detector. A

high-density interconnect (HDI) ŕex printed circuit is glued to the sensor and wire-bonded to the 16

ROCs. A token bit manager chip (TBM) is mounted on top of the HDI (two TBMs in the case of L1

modules). The TBM controls the readout of a group of ROCs.
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the end of Run 3. In order to maintain a high enough signal charge, the pixel detector power supplies

were upgraded to deliver a maximum voltage of 800 V during LS2, as described in section 3.1.4.

Readout chip. The upgraded ROCs, PSI46dig and PROC600 [16], are manufactured in the same

250 nm CMOS technology as the ROCs used in the original pixel detector (PSI46 [19]). Their

design requirements are summarized in table 3.

Table 3. Parameters and design requirements for the PSI46dig and PROC600.

PSI46dig PROC600

Detector layer BPIX L2śL4 and FPIX BPIX L1

ROC size 10.2 × 7.9 mm2
10.6 × 7.9 mm2

Pixel size 100 × 150 𝜇m2
100 × 150 𝜇m2

Number of pixels 80 × 52 80 × 52

In-time threshold <2000 e− <2000 e−

Pixel hit loss <2% at 150 MHz/cm2
<3% at 580 MHz/cm2

Readout speed 160 Mb/s 160 Mb/s

Maximum trigger latency 6.4 𝜇s 6.4 𝜇s

Radiation tolerance 120 Mrad 120 Mrad

The FPIX detector and layers 2ś4 of the BPIX use the PSI46dig. Its design follows very closely

the original ROC with the readout architecture based on the column-drain mechanism [20]. The pixel

cell remains essentially unchanged except for the implementation of an improved charge discriminator.

The improved discriminator reduces cross talk between pixels and the time walk of the signal [19]

and thus leads to lower threshold operation (below 2000 e−). The main modiőcations were made in

the chip periphery in order to overcome the limitations of the PSI46 at high rate. They included a size

increase of the data buffers (from 32 to 80 cells) and time-stamp buffers (from 12 to 24 cells) to store the

hit information during the trigger latency, the implementation of an additional readout buffer stage to

reduce dead time during the column readout, and the adoption of 160 Mb/s digital readout. In contrast

to the previous ROC, the data readout is digital, using an 8-bit analog-to-digital converter (ADC)

running at 80 MHz. Digitized data are stored in a 64×23 buffer, which is read out serially at 160 MHz.

The PROC600 is used for BPIX layer 1 and has to cope with hit rates of up to 600 MHz/cm2.

Therefore, the data transfer of pixel hits to the periphery must be much faster than the PSI46dig.

This was achieved by a complete redesign of the double column architecture. The pixels within a

double column are dynamically grouped into clusters of four and read out simultaneously, which

signiőcantly speeds up the readout process.

During operation in 2017 and 2018, the PROC600 delivered high-quality data. However, two

shortcomings of the PROC600 were identiőed, and are discussed in more detail in ref. [16]. The

őrst was cross talk between pixels, which was higher than expected and generated noise at high hit

rates. The second was a lower efficiency caused by a rare loss of data synchronization in double

columns. Therefore, it was decided to develop for Run 3 a new, revised version of the PROC600.

The main change in the new version addresses the rare cases of data synchronization loss. The

issue was tracked to a timing error in the time-stamp buffer of the double column, which leads to
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inefficiencies at low and high hit rates. It was corrected in the buffer logic of the revised PROC600.

The higher-than-expected noise was traced to inappropriate shielding of the circuitry for calibration

pulse injection and has been őxed in the revised version of the PROC600. In addition, the routing

and shielding of power and address lines were improved. Both changes led to lower noise and lower

cross talk between pixels. The revised PROC600 was used to construct the modules for the new L1,

which was installed during LS2 for use in Run 3.

Token bit manager chip. The TBM is a custom, mixed-mode, radiation-hard integrated circuit

that controls and reads out a group of 8 (L1) or 16 (L2śL4, FPIX) ROCs. To increase the data output

bandwidth from a module, two 160 Mb/s ROC signal paths, with one path inverted, are multiplexed

into a 320 Mb/s signal, and then encoded into a 400 Mb/s data stream that is optically transmitted to

the downstream DAQ system. The TBM has a single output (TBM08) version for L3, L4, and FPIX,

and dual output versions, which are used in L2 (TBM09) and L1 (TBM10). The TBM08 version

has two independent 160 Mb/s ROC readout paths, and the TBM09 and TBM10 versions have four

separate, semi-independent, 160 Mb/s ROC readout paths.

In addition to the increased output bandwidth, several critical features were added to the TBM

for Phase 1. As a result of adopting a faster digital readout, őner control over the timing of internal

TBM operations and external TBM inputs was needed: delay adjustments were added for the ROC

readouts, the token outputs, the data headers and the data trailers, and relative phase adjustments

were added between the 40 MHz incoming clock, the 160 MHz clock, and the 400 MHz clock. To

prevent very long readouts from blocking the DAQ system, an adjustable token timeout was added

that can reset the ROCs and drain buffered data.

Operation of the TBM during collision data taking revealed a vulnerability to a particular

single event upset (SEU) that halts the TBM and requires a power cycle of the TBM to recover. An

additional iteration of the TBM chips was designed in the spring of 2018 to address this TBM SEU

issue and to add an adjustable delay of up to 32 ns to the 40 MHz clock. The delay was added to

allow őner adjustment of the relative timing between modules. The new chips are used in the new

modules in BPIX L1, incorporated during the consolidation work in LS2.

BPIX module construction. The BPIX detector contains 1184 modules, all having a similar

design but coming in three different ŕavors depending on the requirements of the different layers.

The three module types are summarized in table 4.

Table 4. Overview of module types used in the Phase 1 pixel detector.

ROC
Number

TBM
Number Number of 400 Mb/s

of ROCs of TBMs readout links/module

BPIX L1 PROC600 16 TBM10 2 4

BPIX L2 PSI46dig 16 TBM09 1 2

BPIX L3, L4, & FPIX PSI46dig 16 TBM08 1 1

A drawing of the detector module cross section for BPIX L2ś4 is shown in őgure 7. During

the module production process, bare modules are made by bump bonding of the 16 ROCs to the

sensor. In the next step, the thin four-layer HDI is glued onto the sensor side of the bare module and
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3.1.4 Services

Readout architecture and data acquisition system. In order to be efficient, the CMS Phase 1

pixel detector readout architecture was copied from the original detector, with modiőcations made

to handle the 400 Mb/s readout and the increased number of channels. The entirety of the CMS

Phase 1 system readout is detailed in ref. [21], and a summary is provided below.

The auxiliary on-detector electronics were modiőed to include a crystal-driven phase-locked-

loop chip (QPLL) [22] that reduced the jitter on the clock signal, a higher bandwidth chip (DLT) [23]

to translate the module readout into a level suitable for the laser driver chip, and a new optical

transmitter (TOSA from Mitsubishi Electric Corp.) for the higher bandwidth digital signal.

The off-detector VME-based DAQ system used for the original detector was replaced by a

𝜇TCA-based system using a common carrier board (FC7) [24] with conventional 10 Gb/s optical

network links for the transfer of the data to the CMS central DAQ system. The DAQ system, used to

control and read out the full pixel detector, consists of 108 frontend driver modules (FEDs), which

receive and decode the pixel hit information; three (2017ś2018) to six (≥2021) frontend controller

modules (TkFECs), which serve the detector slow control; 16 pixel frontend controller modules

(PxFECs) used for module programming and clock and trigger distribution; and 12 AMC13 [25]

cards providing the clock and trigger signals. Application-speciőc mezzanine cards and őrmware

make an FC7 carrier board into a FED or FEC.

Power system. The Phase 1 pixel detector requires low voltages to supply the readout chips on

the pixel modules, a bias voltage to deplete the pixel sensors, and voltages to supply the control

electronics components on the supply tubes and service cylinders.

The nominal control voltage of 2.5 V is supplied by A4602 CAEN power supply modules.

Power supplies by CAEN of type A4603DH provide the low and high voltages to the pixel modules.

The maximum bias voltage that can be delivered was raised from 600 to 800 V during LS2. Each

bias voltage channel can provide up to 16 mA, and serves several pixel modules. While the auxiliary

and bias voltage supply systems have conceptually not been changed for Phase 1, the low voltage

supply system was changed from a direct parallel powering system to a DC-DC conversion powering

system. The number of ROCs, and thus the current consumption of the detector, has roughly doubled

as compared to the original pixel detector. Thanks to DC-DC conversion factors of 3ś4, the currents

on the typically 50 m-long supply lines between the detector and the power supplies are reduced

with respect to a direct powering scheme.

The DC-DC converter modules are built around the CERN radiation-tolerant FEAST buck

converter ASIC [26], and were optimized in terms of dimensions, mass, and performance for the

application in the pixel detector [27, 28]. The DC-DC converter modules are installed on the BPIX

supply tubes and in the FPIX service cylinders, at a distance of about 1 m from the pixel modules

and outside of the sensitive pixel volume. A total of 1216 DC-DC converter modules are used in the

pixel detector.

Two types of DC-DC converter modules are needed to supply the pixel modules: one delivering

2.4 V to the analog circuitry of the ROC, and one delivering 3.3 or 3.5 V (depending on the position

of the served pixel module in the detector) to the digital circuitry of the ROC and to the TBMs. Each

such pair of DC-DC converter modules serves between 1 and 4 pixel modules, depending on the

layer and ring of the pixel modules. The DC-DC converter output currents range from 0.4 to 1.7 A
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for the analog supply, and from 1.3 to 2.4 A for the digital supply. The power efficiency is 80ś84%,

depending on the output voltage and load. The DC-DC converters can be disabled and enabled from

an already existing chip (CCU) [29] used both in the original and in the Phase 1 pixel detector; when

disabled the DC-DC converters do not provide an output voltage. This feature was used during 2017

to power-cycle the TBM chips suffering from a SEU, which could not be recovered otherwise.

Up to seven DC-DC converters (of one variant) are connected to one low voltage power supply

channel. The low voltage part of the original A4603 power supplies has been adapted to the DC-DC

conversion powering scheme. The maximum output voltage was raised to 12.5 V and the fast remote

sensing was abandoned, while a slow-control loop to compensate for voltage drops along the supply

cables is still available.

In general, the DC-DC conversion powering system worked very well. However, starting in

October 2017, DC-DC converters started to fail, and at the end of the 2017 data-taking period, about

5% of the DC-DC converters were defective. This was traced back to a problem in the FEAST ASIC,

namely a radiation-induced leakage current in a transistor [30]. When the chip is disabled, a voltage

above the chip speciőcation can build up on a certain node, damaging the chip. For the 2018 data

taking, all DC-DC converters were replaced with (almost) identical ones. The input voltage was

reduced from about 11 to 9 V, and disabling of the chip was replaced by power-cycling of the power

supplies. Due to these operational changes, no DC-DC converter failed in 2018. During LS2, new

DC-DC converters were again produced, featuring a new version of the DC-DC ASIC (FEAST2.3).

In this new version, the problem is őxed and operational changes are no longer needed.

The use of DC-DC converters meant that the LV and HV modularity of the detector no longer

matched. The LV could be switched off by disabling a DC-DC converter, however, the HV stayed on

because of the limited number of HV wires. The failure of individual DC-DC converters affected

a small number of pixel modules that were kept under bias voltage in 2017 while their LV was

off. Having the sensor biased but the pixel readout ampliőers off damaged the ampliőers in the

affected pixel modules. Several of those damaged modules were replaced during LS2. In addition,

the LV/HV modularity was harmonized in FPIX; for BPIX this was not possible due to the limited

number of HV wires.

Cooling. To keep the silicon sensors below 0◦C and remove heat from the other detector elements,

CO2 evaporative cooling utilizing the two-phase accumulator controlled loop (2-PACL) approach [31]

is used in the Phase 1 pixel detector. Evaporative CO2 cooling provides low density, low viscosity,

and high heat transfer capacity while allowing the use of an all passive, small-diameter, thin-walled

stainless steel pipe network inside the detector volume. This results in a lower contribution of

cooling to the overall detector material budget. During normal operation (−22
◦C) the expected

power [15] from the BPIX (6 kW) and FPIX detectors (3 kW) is removed using two dedicated 15 kW

CO2 plants, one for each detector, located in the CMS detector cavern. There is enough ŕexibility

and capacity in the system so that the eight cooling loops in each detector can be connected to either

cooling plant with no loss of cooling capacity. The typical temperature at the pixel module surface

is about 12◦C higher than the coolant. A detailed description of the CMS Phase 1 pixel detector

cooling system can be found in ref. [16].

During the testing of the removed FPIX in 2019, one of the inlet cooling pipe connections at the

detector end ŕange was broken. It was therefore decided to replace all the FPIX inlet connectors
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with a more robust solution that required only a single wrench to make a connection. This sped up

the detector installation in 2021 and prevented another occurrence of a broken inlet connector.

3.1.5 Detector operation

Detector live fraction. The detector live fraction, deőned as the fraction of working ROCs, was

95.0 and 96.1% for the BPIX and FPIX detectors, respectively, during the őrst collisions in 2017.

The main causes of failures in the BPIX detector were the loss of power due to faulty connectors

and modules masked because of readout problems. For the FPIX detector the main problem was an

issue with the clock distribution in one sector. Towards the end of 2017, the fraction of nonworking

modules was dominated by the failure of the DC-DC converters described in section 3.1.4. The

DC-DC problems lowered the working fraction to 90.9 and 85.0% for the BPIX and FPIX detectors,

respectively.

During the 2017/2018 LHC year-end technical stop, faulty components were repaired and all

DC-DC converters were replaced. A few broken BPIX modules, which were accessible without

disassembling the detector layers, were also replaced. These repairs improved the working detector

fraction for the 2018 data-taking period. For the BPIX it varied from initially 98 to 93.5% at the

year end, with the main drop due to faulty power connectors. The FPIX detector working fraction

was stable throughout the entire year at 96.7%.

As already mentioned above, during LS2 a new L1 was installed in the BPIX. Other repairs,

in the BPIX and FPIX, involved faulty infrastructure components like bad connectors and broken

optical őbers. In addition, eight modules were replaced in BPIX L2. With these improvements, the

working fractions for BPIX and FPIX at the start of Run 3 were 99.1 and 98.5%, respectively.

Threshold adjustment. Pixel charge thresholds are an important performance parameter since

they directly inŕuence the position resolution. Lower thresholds increase the charge sharing between

pixels, resulting in a better resolution. However, too low thresholds result in noise saturating the

readout. Therefore, thresholds in all ROCs are adjusted to the lowest possible value, but well above

the noise level itself. More details about the threshold adjustment are given in ref. [16].

During the 2017-18 data-taking period, the BPIX L2ś4 thresholds were about 1400 e− and

similarly for the FPIX detector at about 1500 e−. Because of the higher noise in BPIX L1, the

thresholds had to be higher, about 2200 e− . With these pixel thresholds the number of noise hits was

very low, below 10 pixels per bunch crossing per layer, resulting in a per pixel noise hit probability of

less than 10−6. Individual pixels that showed a hit probability exceeding 0.1% were masked during

operation. The total fraction of masked pixels was less than 0.01%.

The revised PROC600 used in the new L1 installed in 2021 has signiőcantly lower cross-talk

noise (as discussed in section 3.1.2). The expected threshold, noise, and time-walk behavior of the

revised PROC600 version is similar to that of the PSI46dig. These improvements allow the BPIX L1

to be operated in Run 3 with signiőcantly lower thresholds, similar to the ones for the other layers.

3.1.6 Performance of the pixel tracker

The two most important performance parameters for a pixel detector are hit efficiency and position

resolution. Both strongly affect the ability to perform pattern recognition and b tagging, two main

roles for a well-functioning pixel detector.
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a diameter of 2.5 m. It has ten layers in the barrel region with four layers in the tracker inner barrel

(TIB) and six layers in the tracker outer barrel (TOB). The TIB is supplemented with three tracker

inner disks (TID) at each end. In the forward regions, the detector consists of tracker endcaps (TEC).

Each TID is composed of three rings of modules and each TEC is composed of up to seven rings.

In TIB, TID, and in rings 1ś4 of the TECs, sensors with a thickness of 320 𝜇m are used, while in

TOB and in rings 5ś7 of the TECs, 500 𝜇m thick sensors are used. The modules in the barrel layers

measure 𝑟 and 𝜙 coordinates, while the modules in the TECs and TIDs are oriented to measure the

coordinates in 𝜙 and 𝑧. In four layers in the barrel and three rings in the endcaps, stereo modules are

used (őgure 9). These modules have a second module mounted back-to-back with a stereo angle of

100 mrad. The stereo modules provide coarse measurements of an additional coordinate (𝑧 in the

barrel and 𝑟 in the endcaps).

The analog signals from 128 strips are processed by one APV25 chip. The chip has 128 readout

channels, each consisting of a low-noise and charge-sensitive preampliőer, a 50 ns CR-RC type shaper,

and a 192-element deep analog pipeline which samples the shaped signals at the LHC frequency of

40 MHz [33]. Signals from two APV25 chips are multiplexed, converted to optical signals by analog

opto-hybrids (AOH) [1], and transmitted via optical őbers to front-end drivers (FED), located in the ser-

vice cavern outside the radiation zone. Pedestal and common mode subtraction, as well as cluster őnd-

ing, are performed in the FEDs. Clock, trigger information, and control signal are trasmitted to the de-

tector by the frontend controllers (FEC), also located in the service cavern. Conőguration data for the

modules is distributed via the I2C protocol to communication-and-control units (CCU) [29], grouped

in token ring networks (control rings). The modules in the SST are grouped in power groups each of

which shares one power supply channel. There are 1944 power groups in total. Each power group has

two low-voltage channels with 2.5 and 1.25 V regulators and two high-voltage channels that can be

regulated up to 600 V [1]. The detector is cooled with C6F14 monophase coolant by two cooling plants.

The SST has been operated stably and successfully since 2009, and operation is scheduled to

continue until the end of Run 3. During Run 1, the SST was operated with its primary cooling at

+4
◦C, signiőcantly above the designed operating temperature, due to insufficient humidity control

in the service channels and in the bulkhead region, i.e., the interface region between the detector

volume and the outside seal. In 2009, the detector suffered from an over-pressure incident. Both

inlet and outlet lines of 90 cooling loops of circulating C6F14 were closed on of the two cooling

plants. After that the detector warmed up. As a result of the over-pressure, some of the cooling lines

developed leaks or were detached from modules. Due to this incident there are several regions in the

detector that have closed cooling loops or degraded cooling contacts.

During LS1 in 2013ś2014, a number of engineering changes were carried out on the detector

infrastructure that allowed to lower the operating temperature of the SST below 0◦C. Most

prominently, a dedicated plant was installed to produce dry air or oxygen-depleted air. The plant has

a ŕow of about 250 m3/h, and is able to meet the dew point requirement of the SST (around −60
◦C).

The plant is the primary source of dry gas injection to the detector and its services. In LS1, the

insulation of all service channels and the bulkhead of the detector was signiőcantly improved in

order to control the humidity conditions in the closed volume of the detector.

All these modiőcations to the detector infrastructure facilitated the SST operation at −15
◦C

since the beginning of Run 2. However, with increasing irradiation, the leakage currents began

to approach the power supply limits (12 mA) in the regions with no cooling or degraded cooling
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contacts. Thermal runaway was observed in several power groups of the TIB. As a consequence,

since 2018, the SST was operated at −20
◦C, which sufficiently reduced the leakage currents. By the

end of Run 3 it will be necessary to lower the operating temperature to −25
◦C. During LS2 a test at

a temperature of −25
◦C conőrmed that the detector can be operated at this temperature and that

there is no degradation of the humidity conditions inside the detector and the service channels.

3.2.2 Performance of the strip tracker

The performance of the SST will be discussed in the following. More details about the results in this

section can be found in ref. [34].

Throughout all the years of operation, no SST on-detector components were exchanged because

the detector has been inaccessible. The fraction of bad detector components has been largely stable

during Run 1 and Run 2. This includes the readout channels that are excluded from the data taking:

failing control rings, problems in LV or HV distribution, and individually switched-off modules,

single APV25 chips or groups of strips. As can be seen in őgure 10, the fraction of bad components

was stable throughout Run 2 and amounts to about 4%.
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Figure 10. Fraction of bad components for the CMS silicon strip detector as a function of the delivered
integrated luminosity. Reproduced with permission from [34].

One of the most important performance characteristics is the signal-to-noise ratio (S/N). The

evolution of S/N with accumulated integrated luminosity is shown in őgure 11 (left). As expected from

irradiation studies [1], the S/N degrades approximately linearly with the integrated luminosity [34].

The decrease observed during Run 2 indicates that the SST will continue to provide high-quality

data until its end of life, estimated to be at 500 fb−1, well beyond the expected end of Run 3.

Another important aspect of the SST is the hit efficiency, which is the detection efficiency for a

particle traversing a sensor. The measurement of the hit efficiency is performed using tracks that

pass the quality criteria as deőned in ref. [35]. In order to avoid inactive regions, trajectories that

are close to sensor edges or their readout electronics in the studied layer are not considered. The

efficiency is determined from the fraction of traversing tracks with a hit in a module anywhere within

a range of 15 strips from the expected position. The measured hit efficiency under typical conditions
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Figure 11. Left: signal-to-noise ratio as a function of integrated luminosity as accumulated in pp collisions
during Run 2, separately for the different detector partitions. Triangles and crosses indicate the results for
sensors in the TEC of thickness 320 and 500 𝜇m, respectively. Right: hit efficiency of the silicon strip detector
taken from a representative run recorded in 2018 [34] with an average hit efficiency under typical conditions
at an instantaneous luminosity of 1.11 × 1034 cm−2 s−1. The two gray bands represent regions where the hit
efficiency is not measured due to the selection criteria of the analysis [34].

during Run 2, at an average instantaneous luminosity of 1.11 × 1034 cm−2 s−1, corresponding to

about 31 pp interactions per bunch crossing, is shown in őgure 11 (right). The average hit efficiency

is about 99.5%, depending on the layer. Since the inefficiency mainly depends on the particle ŕux,

the inner layers have a somewhat lower efficiency than the outer ones. Moreover, the inefficiency

depends on the sensor thickness and on the pitch.

Radiation effects are also monitored during the operation of the detector, including the increase

of the leakage currents in the sensors, the evolution of the full depletion voltage due to the change of

the effective sensor doping concentration, and the evolution of the laser-driver performance in the

optical readout chain.

During Run 3, due to increasing luminosity, the leakage currents will continue to rise. It can

therefore be expected that some modules in regions with closed loops or degraded cooling contact

will experience thermal runaway, or that the corresponding HV power-supply channels will reach

their limit of 12 mA. Most of the modules are double-sided, and one way to reduce the self-heating

effect is to switch off one side of the module. A voltage reduction can also reduce the leakage currents

signiőcantly. However, this is possible only if the applied voltage remains above the full depletion

voltage. Towards the end of Run 3, it is expected that a lowering of the detector temperature to

−25◦C will become necessary. It is estimated that this measure will reduce the number of modules

experiencing thermal runaway after 500 fb−1 of integrated luminosity by roughly a factor of 2.

The sensors of the SST are operated at an applied voltage of 300 V in over-depletion mode,

because the sensors are p-on-n type and some of them have undergone type inversion of the bulk

material. The full depletion voltage is measured by performing bias voltage scans during pp collisions.

A scan of the full detector is done usually twice per year during data taking and once per month

ś 22 ś



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
0
5
0
6
4

on a selected set of modules. The evolution of the full depletion voltage with integrated luminosity

of one module in TIB layer 1 is shown in őgure 12. The measurements of the full depletion voltage

are also compared with simulations, which describe the change with integrated luminosity well.
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Figure 12. Evolution of the full depletion voltage for one TIB layer-1 sensor as a function of the integrated
luminosity and ŕuence until the end of Run 2. The full depletion voltage is measured from the cluster-width
variable, shown as black dots, and the predicted curve is based on a model that uses ŕuence and temperature
history as inputs [36]. The hashed area highlights the region at low values of the full depletion voltage where
the analysis loses sensitivity [34].

The installation of the pixel detector and the cooling plant maintenance work caused extended

periods of time when the silicon detector was not cooled as well as it would have been desirable

from the point of view of radiation damage. In őgure 12, small increases due to annealing are visible

in the simulation around integrated luminosities of 75 and 130 fb−1, corresponding to the winter

shutdown periods. As can be seen from measurements and simulation, at around 200 fb−1, the TIB

layer-1 sensors are close to the inversion point. The overall situation with the reduction of the full

depletion voltage in the SST is shown in őgure 13. For each subdetector a decrease of the full

depletion voltage is observed that depends on the distance from the interaction point. It is observed

that the regions of the detector that are closest to the interaction point, namely TIB layer 1, TID ring

1, and TEC ring 1, are affected the most, as expected.

In summary, the SST has been delivering high quality data for the reconstruction of charged

particle tracks since the start of the LHC operation. The performance of the system continues to be

excellent also after more than 200 fb−1 of integrated luminosity. Since the beginning of Run 3, the

detector has been operated at −20
◦C. It is expected that the operation temperature will be lowered

further to −25
◦C in order to reduce the leakage current. While radiation effects are visible in all parts

of the detector, the margins are large enough for the detector to be operated safely and efficiently,

and to provide high-quality data until the end of Run 3.
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Figure 13. Decrease of the full depletion voltage for each layer, computed as the difference between the values
measured at the time of the tracker construction and the values obtained by the analysis of a bias-voltage scan
performed in September 2017 on all the tracker modules. The white (gray) histograms represent modules
with 320 (500) 𝜇m thick sensors. The average ŕuence for each layer is shown by the red line.

4 Electromagnetic calorimeter

The electromagnetic calorimeter (ECAL) is placed outside the inner tracking system of CMS. It

provides a measurement of the energy of electrons and photons, as well as their impact position and

arrival time at the crystals.

4.1 Experimental challenges

The increase in the instantaneous and integrated luminosity, experienced during Run 1 and Run 2 of

the LHC and expected to continue in the future, poses operational challenges for the ECAL. The

radiation dose deposited in the detector reduces the average light transmission of the PbWO4 crystals,

lowering the signal-to-noise ratio of the electronics readout. The radiation also induces an increase

in leakage currents in the barrel photodetectors, which are avalanche photodiodes (APDs), with

a corresponding increase in the electronic noise [37, 38]. The instantaneous luminosity reached

2.1×10
34 cm−2 s−1 during Run 2, compared to 0.75×10

34 cm−2 s−1 achieved in 2012. The increase

in luminosity also poses challenges to the level-1 (L1) trigger system. Speciőcally, signals from

direct energy deposition by particles in the APDs, termed łspikesž, must be rejected. Such spikes

occur at a rate that is proportional to the luminosity. The higher radiation has also caused the silicon

sensors of the preshower detector to have increased bulk currents, which require regular updates of

the HV bias and correspondingly of the calibration of their response.

Additionally, the number of multiple pp interactions in a single bunch crossing (BX), termed

pileup, has increased on average from 21 (up to 40) during Run 1 to 34 (up to 80) during Run 2. The

bunch spacing in the machine reached its nominal value of 25 ns at the beginning of Run 2, half of what
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it was in Run 1. Since the typical signals from the calorimeter, after shaping by the electronics, fall to

10% of their peak value in about 250 ns, the changes in the LHC operation have resulted in an increased

number of overlapping signals from neighboring BXs, referred to as out-of-time (OOT) pileup.

These effects will be discussed in more detail in the following sections, along with the

improvements in the calibration of the calorimeter and the őnal performance achieved during Run 2.

4.2 Response monitoring

The PbWO4 crystals of the ECAL, when subjected to irradiation, undergo transparency changes.

This is discussed in greater detail in ref. [39] and can be ascribed to the formation of color centers,

which cause absorption bands in the crystal that reduce the light attenuation length. The creation

of color centers is a dynamic process depending on the dose rate absorbed by the crystals. Its

annealing process spontaneously takes place at room temperature and results in partial recovery of

the transmittance. Since the scintillation process remains unaltered, a reference light signal can be

used to measure and monitor the transparency and response changes, and corrections can be applied

to equalize the crystal-to-crystal response.

To monitor and correct the response of the ECAL, a dedicated laser monitoring system is used

that operates primarily at a wavelength of 447 nm, near the peak of the scintillating light spectrum.

Additional monitoring wavelengths have been used, in particular a near-infrared one at 796 nm and a

green one at 527 nm. These probe the transparency in regions that are much less sensitive to radiation

damage (infrared) and more sensitive to the permanent component of the radiation damage (green).

The laser is operated at 100 Hz. To avoid interference with signals from beam collisions, the light

is injected into the crystals during the LHC abort gap where there are no bunches in either beam, in

intervals of at least 3 𝜇s. The abort gap is necessary to accommodate the beam abort kicker rise time

and is available in all LHC őlling schemes. The power of commercial lasers operating at a suitable

repetition rate allows the injection of light into a few hundred crystals simultaneously. This is achieved

using a system of optical őbers and diffusing spheres acting as homogeneous splitters. Light from a

group of 200 őbers is measured by two p-n diodes. The variation in response is obtained by comparing

the signal acquired by the APDs with the reference p-n diode. The time-dependent correction factor

𝐿𝐶𝑖 (𝑡), derived from the monitoring system for each crystal 𝑖, is deőned as: 𝐿𝐶𝑖 (𝑡) = [𝑅𝑖 (0)/𝑅𝑖 (𝑡)]𝛼,

where 𝑅𝑖 (𝑡) is the measured response to laser light at time 𝑡, and 𝛼 is a parameter that takes into

account the difference in path between the laser and scintillation light. Figure 14 summarizes the

long-term evolution of the ECAL response to laser light during Run 1 and Run 2.

4.3 Noise evolution

The electronic noise in the endcaps (EE) is approximately constant. In the barrel (EB), radiation

induces damage to the structure of the APD silicon lattice, causing an increase in the leakage current.

The evolution of the leakage current is shown in őgure 15 (left) as a function of the integrated

luminosity for the central rapidity region and the most forward region of the barrel. It is well in line

with the expectation from irradiation studies shown in őgure 15 (right). The studies were performed

using a pair of APDs, equivalent to ones on each of the ECAL barrel crystals. Measurements were

done in CMS in situ for the points below 10 µA, while the points at higher currents are based on

laboratory measurements of irradiation with neutrons at different ŕuences, as indicated in the őgure.
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when found to differ signiőcantly from those in use. This happens typically a few times per year,

depending on the luminosity proőle of the LHC.

The performance of the multiőt algorithm has been measured using events from π
0 → γγ and

Z → ee decays. The energy resolution is excellent, as is the stability as a function of the OOT pileup.

The improvement with respect to a nonoptimized digital-őltering technique is more signiőcant for

low-amplitude pulses, where the relative contribution of OOT pileup pulses is larger. The algorithm

is sufficiently fast to be used in the HLT, and was adapted for execution on GPUs in the new processor

farm used in Run 3.

The arrival time of the signal relative to the digitization window is measured by a digital-őltering

technique based on the ratio of consecutive samples [43]. The timing information is subsequently

corrected for its dependency on the pulse amplitude, as derived from simulations.

4.5 Trigger

The ECAL provides crystal energy sums, termed trigger primitives (TPs) [44], to the CMS L1

trigger for every BX. The trigger primitives are computed from energy sums of groups of 5 × 1

crystals, referred to as łstripsž [45]. Each strip is served by an individual FENIX chip that performs

energy intercalibration, 𝐸-to-𝐸T conversion, amplitude estimation, and BX assignment functions. In

the EB, a sixth FENIX chip sums őve strip-sums to compute the 5 × 5 łtrigger towerž transverse

energy, calculates the łőne-grainž electromagnetic bit based on the compatibility of the deposits

with those from an electromagnetic shower, and computes the strip őne-grain bit for the rejection

of signals from direct energy deposition in the APDs (łspike killingž) [46]. The strip őne-grain

electromagnetic bit is conőgured to return a 0 for a spike-like energy deposit (a single channel

above a conőgurable transverse energy threshold) or a 1 for a shower-like energy deposit (multiple

channels above threshold). In the EE, the őve strip sums are transmitted to the off-detector trigger

concentrator card (TCC) to complete the formation of the trigger towers.

The TCC is responsible for the transmission of the barrel and endcap TPs to the L1 calorimeter

trigger every BX via the optical synchronization and link board (oSLB) mezzanine cards. The

TCC also performs the classiőcation of each trigger tower, its transmission to the selective readout

processor at each L1 trigger accept signal, and the storage of the trigger primitives for subsequent

reading by the data concentrator card.

The ECAL L1 TPs are corrected for the effects of crystal and photodetector response changes

due to LHC irradiation. Correction factors are derived using measurements from the laser calibration

system, and the same corrections are also applied in the HLT. These corrections were őrst applied in

2012 only in the endcaps, for 22 individual rings of crystals of the same pseudorapidity, and were

updated once per week. During Run 2, because of the higher beam intensities and correspondingly

larger response losses, the TP corrections were applied per crystal and extended to the EB. From

2017 onwards, an automated validation procedure was developed to check the impact of the updated

conditions on the L1 and HLT trigger rates, and the frequency of the updates was increased to twice

per week to better track the response losses versus time.

Radiation-induced changes in the ECAL signal pulse shapes, in particular in the most forward

regions of the EE, caused a continually growing probability for the BX to be misassigned in the

ECAL TPs. This effect, termed trigger primitive pre-őring, resulted in an inefficiency for recording

potentially interesting events of about 0.1% in any given primary data set, and about 1% for events
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with two high-energy forward jets of invariant mass around 200 GeV [5]. Following the discovery of

this issue in early 2018, 𝜂-dependent timing offsets were applied to the ECAL frontend electronics,

and throughout 2018, periodic updates to these offsets were made during every LHC technical stop,

in order to minimize the level of pre-őring in both the EB and EE.

The ECAL spike-killer algorithm has been retuned for the more challenging beam and detector

conditions of Run 2. Spike-like energy deposits are rejected in the formation of the ECAL TPs by

exploiting the additional functionality of the FENIX ASICs, the strip őne-grain electromagnetic bit.

If the deposit is considered spike-like, and the tower energy is above a second conőgurable threshold,

the tower energy is set to zero and does not contribute to the triggering of the corresponding event.

The spike-killer parameters were updated in 2016 to account for the higher LHC luminosity and

the larger single-channel noise observed in the EB during Run 2. These new thresholds reduced

the contamination of spikes in the ECAL TPs, corresponding to a transverse energy 𝐸T of more

than 30 GeV, by a factor of 2, with negligible impact on the triggering efficiency of electromagnetic

signals with 𝐸T > 20 GeV.

The spike-killing efficiency is sensitive to drifts in the ECAL signal baseline. Periodic updates

in 2018 of up to twice per year of the baseline measurements used in the TP formation were therefore

required in order to maintain a stable spike-killing efficiency. By periodically updating the baseline

values, the spike contamination for TPs with 𝐸T > 30 GeV was maintained below 20% during the

2018 run. These improvements in TP calibration and spike rejection, together with improvements in

the L1 trigger system itself, allowed the L1 electron/photon trigger to operate with high efficiency

and at the lowest possible 𝐸T thresholds throughout Run 2 [5].

4.6 Channel calibration and synchronization

While the principles and methods of the ECAL calibration have not changed and are described in

ref. [47], a brief summary and update is given here to help discuss the results.

The calibration of the calorimeter proceeds in several steps: (i) channels are corrected as

a function of time for response changes as measured by the laser monitoring system; (ii) the

response of channels at the same pseudorapidity, i.e., within the same 𝜙-ring, is intercalibrated using

speciőc physics channels as reference; (iii) 𝜙-rings are intercalibrated with each other; and (iv) the

absolute energy scale of the detector is őxed. In a separate and independent procedure, channels

are synchronized by using the average arrival time of particles in minimum-bias events. Energy

selections are applied to ensure an adequate signal-to-noise ratio, and additional criteria remove

outliers in the timing distributions and ensure that the pulses have a good shape.

To complete the aforementioned steps (iii) and (iv), Z → ee events are used. For step (ii)

the combination of a number of independent techniques is employed and is brieŕy summarized

in the following.

The position of the two-photon invariant mass peak from π
0 decays is a good physics standard

candle for intercalibration, even if at low energy. At the LHC, π
0 are produced in abundance, and

a dedicated trigger and data acquisition stream allow for an efficient collection of a large data set.

Events from this stream are saved in a reduced data format that contains only ECAL information in

the proximity of the selected photon pair, to optimize the bandwidth at the HLT. Starting from L1

electromagnetic candidates, the reconstruction applies a simpliőed clustering algorithm that collects

energy in a 3 × 3 crystal matrix centered around an energy deposit, called a łseedž, greater than 0.5
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(1.0) GeV in the barrel (endcaps). An offline analysis applies a correction derived from simulation to

take into account effects of the readout, e.g., channel zero-suppression, energy lost in the vicinity of

the detector boundaries, and dead channels. An iterative őt to the invariant mass of the diphoton pair

is performed, varying in each iteration the intercalibration coefficients and recomputing the clustered

energy and candidate selection, until the variation from one step to the following is negligible.

The 𝐸/𝑝 method exploits the distribution of the ratio between the reconstructed calorimeter

energy 𝐸 and the momentum 𝑝 measured in the tracker of high-energy electrons from W and Z

boson decays. In order to obtain a pure electron sample, electron candidates are selected using

kinematic, identiőcation, and isolation requirements. The algorithm evaluates the intercalibration

in an iterative way. In each iteration, the intercalibration coefficients are updated to constrain the

peak of the 𝐸/𝑝 distribution to equal unity, and the clustered energy is recalculated. A correction is

applied to take into account 𝜙-dependent biases in the momentum measurement due to the presence

of inhomogeneous tracker support structures. The correction is calculated from Z → ee events using

the tracker momentum measurement in a speciőc 𝜙 region for one of the electrons and the ECAL

energy measurement in any 𝜙 region for the other. The nonuniformity in 𝜙 is on the order of 1%.

Electrons in Z → ee events can also be used for the calibration of the detector. Low-bremsstrah-

lung electrons are selected to minimize the inŕuence of detector material upstream of the ECAL.

The deőnition of low-bremsstrahlung electrons is based on the narrowness of the electromagnetic

shower detected in the calorimeter. The well known invariant mass peak and distribution of the

dielectron decay provide an almost background-free reference channel. An unbinned likelihood is

built for the distribution observed in data, assuming the invariant mass is well described by a classical

Breit-Wigner function convolved with a Gaussian function that accounts for detector effects. The

resolution and scale of the Gaussian function peak value are the free parameters of the likelihood.

The granularity at which the parameters are allowed to vary permits the determination of the crystal

intercalibration within 𝜙 rings, the relative calibration between rings, and the absolute energy scale

of the detector. Compared to the other two, this method of intercalibration is particularly effective

at large pseudorapidities. The calibration between rings (𝜂-scale) is derived approximately every

5 fb−1, in order to correct for drifts in the detector response.

The azimuthal symmetry of the energy ŕow in minimum-bias events, which was successfully

used during Run 1, became more challenging during Run 2 because of the increased effective noise.

While not competitive in precision for intercalibration purposes, it has been used to monitor the

single-crystal response over time and provide useful insights into identifying and correcting residual

imperfections in the light corrections. An example of such imperfections are the slow regional

drifts of approximately 1% over one year of data taking, depending on the integrated luminosity and

currently attributed to response changes in the p-n reference diode.

4.6.1 Intercalibration precision

Each of the intercalibration methods described above produces a set of constants with a corresponding

statistical and systematic uncertainty. The statistical precision can be evaluated by comparing sets of

constants derived from disjoint event samples. In the case of the Z → ee method, the precision can

be obtained from the őtting procedure.

The π
0 method can be used to provide intercalibration constants for the barrel with a statistical

precision that ranges from 0.1 to about 0.3%, slowly increasing with pseudorapidity, for 10 fb−1
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of integrated luminosity. In the endcaps the precision is around 1%, due to the larger particle

multiplicity, which requires a tighter event selection, and larger detector noise.

The 𝐸/𝑝 method requires around 50 fb−1 (about a calendar year in Run 2) to derive a set of

intercalibration constants. The corresponding statistical precision varies from 0.2% for electrons

in the inner barrel region to 0.4% for electrons in the outer barrel. The nonuniformity in 𝜙 of the

material in front of the ECAL introduces a systematic uncertainty.

The Z → ee method also requires about 50 fb−1 to provide a set of constants of precision

comparable to the 𝐸/𝑝 ones in the barrel, while in the endcap it provides a precision far better than the

other methods. In Run 2, thanks to a sufficient integrated luminosity, it was possible to intercalibrate

crystals in regions of |𝜂 | > 2.5 in the endcaps, where the other methods cannot be used either

because of very high pileup contaminations or because the region is outside the tracker coverage.

The calibration constants determined using the three methods are combined using a weight that

is proportional to the inverse square of the estimated precision. For the π
0 and 𝐸/𝑝 methods, the

systematic uncertainties are evaluated by studying the impact of the intercalibration constants on the

Z boson lineshape, and found to be dominant for π
0 and comparable to the statistical precision for

𝐸/𝑝. The intercalibration precision achieved in 2018 with the three methods combined is better

than 0.5% for the entire barrel, and between 0.5 and 1% for the endcaps.

4.7 Run 2 operations summary

The ECAL DAQ operated during Run 2 with a luminosity-weighted efficiency larger than 99.6% for

the EB and EE, and larger than 99.2% for the preshower detector. The ECAL trigger system also

operated with high efficiency and availability during Run 2. The luminosity-weighted efficiency of

the trigger system, accounting for trigger downtime and deadtime, i.e., automatic throttling of the

readout decisions due to too high input rates, was larger than 99.9%. The fraction of ECAL channels

that contributed to the DAQ was larger than 98.6% at the end of Run 2, with a loss of less than 0.2%

over the course of the four years of Run 2 operations. The fraction of channels that contributed to

the trigger was larger than 99%, and only a few problematic towers, strips, and individual channels

were permanently masked.

A number of improvements to the őrmware and software of the TCCs [48] were implemented

to achieve and maintain these high efficiencies in the more challenging beam conditions of Run 2.

These involved the automatic detection and masking of noisy or problematic signals from the frontend

readout via conőgurable thresholds, without the need for manual intervention. The algorithms allowed

the setting of individual thresholds per strip in the EE, such that they could be adapted to changing

LHC conditions, as well as to increased radiation-induced noise in the forward regions of the EE. As

a result of these improvements, which were fully implemented in both the EB and EE before the 2018

run, the number of incidents requiring manual intervention, as well as the deadtime and downtime

associated with the ECAL trigger system, were signiőcantly reduced in 2018 compared to 2017 [48].

Additional improvements were made to the data acquisition boards, őrmware, and software to

be more resilient against and make automatic the recovery from single-event upsets. Despite the

luminosity increase, these remained a negligible source of downtime throughout Run 2.

To increase the reliability and ease maintenance, the crates of the high voltage system for the

barrel and endcaps have been upgraded from the CAEN SY1525 to the CAEN SY4527, and the low

voltage system has been made more redundant.
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Figure 18. ECAL timing resolution as measured from Z → ee events by comparing the arrival time of the
two electrons. The performance has constantly improved over the years due to the frequency at which the
synchronization constants have been updated, and is shown for 2018, the last year of Run 2. Updates in the
constants are necessary to compensate for pulse shape changes induced by radiation. Vertical bars on the
points showing the statistical uncertainties are too small to be seen in the plot. The red line correspond to a őt
to the points with the parametrization of the resolution shown in the legend.

4.9 Preparation for Run 3

During LS2, the ECAL activities focused on improving the detector safety and control systems, on

the algorithm to determine the trigger primitives, and on the development of a system to automatically

compute, validate, and deliver updated calibrations.

4.9.1 Safety and control system

A signiőcant upgrade of the ECAL safety and detector control systems, DSS and DCS, was performed

during LS2. The sensor readout system for temperature, humidity, voltage, and current levels,

composed of custom readout units, was replaced by industrial analog input (AI) modules. The 12

readout units based on RS-485 interfaces were exchanged by 45 AI modules, which are standard

Siemens-certiőed peripherals (Simatic S7-300 analog input SM 331) connected through Proőbus com-

munication buses. This type of connection provides access to extensive diagnostic information and

enables the readout of a full sensor at sampling intervals as fast as 0.1 s. This is about one order of mag-

nitude faster than the previous system. Following the update of the readout method, the programmable

logic controller (PLC) of the safety system was reprogrammed with completely new software, and

is now part of the pool of PLC framework applications in CMS. The action matrix that deőnes the

behavior of the PLC in terms of input and output signals and raises interlocks to protect the detector in

case of alarm conditions, did not change, but beneőts from the improved hardware. The new system

was extensively validated during the regular cosmic ray data-taking campaigns in 2020 and 2021.

4.9.2 Trigger

Several improvements to the ECAL trigger-primitive formation and calibration were implemented

for Run 3. These include a further optimization of the spike-killer thresholds (section 4.5) for the
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expected Run 3 pileup and noise levels, optimization of the digital-őlter weights used to compute the

trigger-primitive energies accounting for radiation-induced changes in pulse shapes, and the possible

use of a second set of amplitude weights to further improve spike rejection and for the potential

tagging of out-of-time signals.

More frequent corrections to account for crystal and photodetector response changes were also

implemented for Run 3, and the frequency of the updates was increased from twice a week to once per

LHC őll. These corrections are important to maintain stable trigger rates and efficiencies, and improve

the energy resolution of the related L1 and HLT objects, particularly electron/photon candidates.

4.10 Calibration

With the aim of reducing, as much as possible, the need for multiple reconstruction of CMS data

sets with updated calibrations, a framework has been setup to provide automatic execution and

bookkeeping of the workŕows necessary to compute and validate updated and reőned detector

conditions as soon as enough data is available. Not only does this allow to follow closely the prompt

reconstruction of CMS data with the best foreseeable conditions, but it also permits to have the best

conditions available for the data (re)reconstruction as soon as the data taking is őnished. While the

techniques and physics standard candles used for calibrating the ECAL were well consolidated during

Run 2, novelty and optimization have been introduced at the technical level of the data analysis

needed to provide detector conditions. Additionally, with a layer to validate conditions before

deployment, key őgures of detector performance can be controlled, such as stability, resolution,

and projected rates in the HLT. The workŕows is synchronized with the online data taking and

orchestrated by a Jenkins instance, deployed through Red Hat OpenShift technologies, based on an

InŕuxDB backend and a Python server.

5 Hadron calorimeter

5.1 The hadron calorimeter in Run 1 and Run 2

The CMS hadron calorimeter [50] (HCAL), shown schematically in őgure 19, is composed of

four major subdetectors: the hadron barrel (HB) [51], hadron endcap (HE) [50], hadron forward

(HF) [52], and hadron outer (HO) calorimeters [53]. The HB and HE cover the pseudorapidity

regions |𝜂 | < 1.392 and 1.305 < |𝜂 | < 3.0, respectively. The HO provides a measurement of the

shower tails in the region |𝜂 | < 1.26, and the HF covers 3.0 < |𝜂 | < 5.2.

The HB and HE primarily use brass as the absorber, except for the inner and outer layers of HB,

which are constructed from steel. The HB absorber is shown in figure 20 (left). The signals are produced

in plastic scintillating tiles (figure 20, right), and the resulting blue light is shifted to green via embedded

wavelength-shifting fibers. The towers in HB (HE) have up to 17 (18) scintillator layers, as shown

in figure 19. Sequential layers are grouped into łdepthž segments: the light from the layers in a given

depth segment is optically summed and read out by a single photodetector. Clear plastic fibers send the

signal to the hybrid photodetectors (HPDs) in the original design or silicon photomultipliers (SiPMs)

after the upgrades. The segmentation is a tower structure in 𝜂-𝜙 space. The 𝜂 segmentation is indicated

by the black solid lines in figure 19. The towers are referenced using integer indices ieta and iphi, where

the ieta assignments are given in the figure and iphi runs from 0 to 71, corresponding to the 72 divisions
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The ODU is essentially a box containing the network of őbers described above. The őbers are

fabricated into cables with polished connectors at each end, which mate with the őber connectors

from the detector. The cables are cut in half to create łpigtailsž, which form the basic units for

assembly into the ODU. Each HB (HE) pigtail has up to 18 (12) őbers. The routing and connections

of the őbers are shown in őgure 30 (left). At the top of the picture, the pigtail connectors are attached

through open slots in a machined aluminum patch panel, where they connect one-to-one to the őbers

coming from the HCAL detector layers. At the left of the picture, the őbers are mapped to their

designated holes in the so-called łcookie,ž a precisely machined piece of plastic containing 64 (48)

holes for the HB (HE) which directs the light to individual SiPMs. The HE cookie is a solid piece of

polyether ether ketone plastic, while the HB cookie has two plastic layers with an insulating foam

layer in the middle to prevent heat from leaking to the SiPMs. The number of őbers in each hole

varies from one to seven, depending on the depth segment being read out. The őbers are glued in

place in the cookie, which is optically őnished with a diamond ŕycutter. All the precision-machined

parts were fabricated in local industry, while the ODU assembly, inspection, and testing were done

by CMS. A completely assembled production HE ODU is shown in őgure 30 (right).

Figure 30. Left: view of a spare HE optical decoder unit (ODU), showing its light box and őber mapping.
The őbers route from the patch panel at the top to the łcookiež at the left. The side panels are clear rather than
opaque for display purposes. Right: a production HE ODU. The clear őber pigtail connectors attached to the
patch panel are visible at the top. The plastic łcookiež is seen at the front of the ODU.

Extensive quality control testing of both the individual őbers and the fully assembled ODUs

was performed to ensure the integrity of the light transmission. Each cable was tested by connecting

it to a similar cable of wavelength-shifter őbers that were illuminated individually by LEDs. The

light throughput of each őber in the cable was measured with a photodiode. To make sure there were

no problems with the connectors at either end, the cable was reversed, reconnected, and measured

again. To test the fully assembled ODUs, light was injected into the ODU through the connectors in
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the patch panel, őber by őber, and measured by a large photodiode at the face of the cookie. A total

of 144 fully qualiőed ODUs were installed into both the HB and HE.

5.2.6 Frontend readout card

The signals from the SiPMs are integrated and digitized by the QIE11 ASICs [56ś59]. The QIE11

integrates negative input charge pulses in 25 ns buckets and digitizes the result with approximately

constant resolution over a large dynamic range. The QIE11 achieves an effective 17-bit dynamic

range with approximately 1% resolution with only 8 bits through the use of a custom ŕoating point

analog-to-digital converter (ADC) with pseudo-logarithmic response. The ADC has a programmable

gain via user-conőgurable input current shunts and a low input impedance (< 15 W) that is suitable

for use with SiPMs. A 6-bit time-to-digital converter (TDC) is also included on the QIE11 chip,

consisting of a programmable-threshold discriminator which detects arrival time of the input pulse

in 0.5 ns bins. The phasing of the charge integration window relative to the input clock can be

adjusted by the user in 0.5 ns steps over the whole 25 ns window. The nominal sensitivity of QIE11

is 3.1 fC per count at the low end (with no programmable input shunt selected). The gain of any

particular chip can vary from this nominal value due to process variations, so all chips are calibrated

with better than 1% precision. The nominal maximum charge that can be digitized is approximately

350 pC, yielding the nearly 17-bit dynamic range.

Each readout card in the HE (HB) supports 12 (16) SiPM channels and contains a corresponding

number of QIE11 ASICs. In addition, each card contains one Microsemi ProASIC3L FPGA that

acts as an I2C bridge between the slow-control unit (ngCCM) and the frontend chips, one or two

Microsemi IGLOO2 FPGAs that serialize and format the data, and one VTTx [68] module providing

two 4.8 Gb/s optical links. The necessary power for operating the frontend readout card is supplied

by the CERN FEASTMP DC-DC converters, which are radiation and magnetic őeld tolerant.

Digital data from the QIE chips are serialized and formatted by two (one) Microsemi IGLOO2

FPGAs in the HB (HE). The ŕash-based IGLOO2 FPGA achieves sufficient radiation tolerance for the

HCAL frontend, better than typical SRAM-based FPGA technologies. In the HE, there is sufficient

bandwidth to transmit all 8 bits of ADC and 6 bits of TDC data per channel per bunch crossing;

however, in the HB, bandwidth constraints require the reduction of TDC information to two bits, which

are used to encode four arrival time scenarios: prompt, slightly delayed, and signiőcantly delayed

times of arrival, plus the case where no valid pulse is present. After formatting by the IGLOO2, data

from each QIE card are transmitted to off-detector backend electronics via 5 Gb/s VTTx optical links.

5.2.7 Slow and fast-control systems

The control systems for the HB, HE, and HF were updated to support the upgraded frontend

electronics. For the Phase 1 upgrade of the frontend, the fast-control system, synchronized with the

LHC clock, and the slow-control system (also referred to as the DCS), which runs at a much slower

frequency than the LHC clock, are handled together within the same hardware. The fast-control

system delivers the LHC clock with a maximum jitter of 1 ns, sends the orbit synchronization signal,

delivers the so-called łwarning test enablež (WTE) signal for the recording of calibration data,

provides reset capabilities, and provides fast monitoring.

These requirements are similar for the HB, HE, and HF with a few exceptions: the HF has PMTs

instead of SiPMs, and these do not need to receive conőguration commands; the HB and HE have a
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secondary, redundant control link that can replace the primary control link; and each subsystem

has a different number of channels and cards. As a result, a similar architecture is used for the HB,

HE, and HF control systems, although the physical realization of the hardware is different. The

redundant-link scheme has changed from what was described in the CMS HCAL Phase 1 Upgrade

TDR [60]. The redundant link was removed from the HF because it is relatively accessible. In HB

and HE, the hardware conőguration has been simpliőed thanks to the installation of more optical

őbers. The redundant HE control link was successfully used during the last year of Run 2, when a

primary control link failed due to a malfunction of its optical transmitter [69]. For Run 3, the control

link with the highest optical power between primary and secondary is used.

The hardware includes the ngCCM modules in the frontend, the ngFEC modules in the backend,

and pairs of optical őbers linking the modules (each pair supports bidirectional serial communication),

as shown in őgure 31. The ngFEC module is a 𝜇TCA baseboard with mezzanine cards and pluggable

optical transceivers (SFP+), and is based on the FC7 Kintex 7 FPGA AMC board [24]. Its main

functions are to receive TCDS signals from the 𝜇TCA backplane, provide an interface to the DCS

computers, merge fast control and slow control over the same bidirectional link used to communicate

with the ngCCM, maintain a őxed latency for the fast-control signals across power cycles and ngFEC

optical ports, make use of the ngCCM redundant scheme, and support up to twelve bidirectional links.

Figure 31. Block diagram of the HB controls. The ngFEC and ngCCM modules are needed to run and
monitor the frontend electronics. All control links connecting the service rooms to the experimental cavern are
optical. A secondary link connecting the ngFEC and the ngCCM is available in case of a primary link failure.

The ngCCM is connected electrically to the rest of the frontend over backplanes. The optical

links run a modiőed scheme of the CERN-developed 4.8 Gb/s GBT communication protocol [68, 70].

The GBT protocol was tailored for the GBTx frontend ASIC; however, the GBTx was not available

in time for the original HCAL Phase 1 schedule. In the ngCCM, the Microsemi IGLOO2 FPGA

was used as a replacement for the GBTx. The performance of the dynamic characteristics of the

IGLOO2 FPGA are marginal at 4.8 Gb/s; for CMS purposes, to allow an ample safety factor, it was

decided to modify the protocol and run it at half speed. The reduced bandwidth is still sufficient for
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all control requirements of the HCAL frontend. The Phase 1 upgrade of the HCAL frontend and

backend was successfully completed in October 2019.

5.2.8 Backend electronics: readout

During Run 2, the HCAL backend electronics were upgraded from VME-based to components

based on the 𝜇TCA architecture. This replacement was the őrst step in the Phase 1 upgrade, and

the 𝜇TCA-based electronics have operated with a mixture of the original and upgraded frontend

throughout Run 2. The design of the backend is described in detail in ref. [60].

In Run 3, the backend and frontend host a much-increased channel count and data volume. With

the completion of the Phase 1 upgrade, the number of HB (HE) channels is increased by roughly a

factor of 3.5 (2.6), and each channel has a larger number of bits from the upgraded QIE10/11 ADC

and TDC. This increase required efficient algorithmic development to calculate the trigger primitives

within latency constraints and with the available resources of the 𝜇HTR FPGA. This őrmware was

achieved, along with the enhancements to the trigger primitive calculations discussed in section 5.3.

The HCAL data acquisition system is managed by an online software suite that controls,

conőgures, and monitors the HCAL electronics. Development of the HCAL online software began in

2005, and it continues to evolve signiőcantly; for example, new components were recently developed

to support the upgraded frontend and backend electronics. The software has two main layers that

provide complementary functionality. The őrst layer is composed of custom software written in

C++ using the XDAQ [71] framework for distributed data acquisition. For communication with the

𝜇TCA electronics, the IPBus architecture [72] is used within XDAQ. Conőguration parameters are

provided in human-readable format by a version-controlled system, and larger hardware parameter

sets (e.g., SiPM bias voltages, phase delays, etc.) are read from databases. The second software

layer allows for coordination between different parts of the HCAL, and with other CMS subsystems.

It is written in Java, and based on the RCMS framework [73]. The XDAQ and RCMS frameworks

are described in detail in section 9.10.

The frontend electronics are controlled and conőgured by the ngCCM server, a separate program

based on the C++ actor framework [74]. It detects and corrects for single-event upsets automatically,

and stabilizes the SiPM temperatures by controlling the Peltier voltages. The ngCCM server

communicates via IPBus with special command processors implemented in the ngFEC őrmware for

each I2C and JTAG channel in the frontend backplanes. The XDAQ-based software communicates

with the ngCCM server via JSONRPC over WebSocket [75, 76] to control, conőgure, and monitor

the frontend electronics. The HCAL DCS WinCC-OA communicates with the ngCCM server via a

raw socket protocol to obtain voltage, current, temperature, and humidity readings and set the Peltier

target temperature. A command-line interface to the ngCCM server additionally allows updates to

be uploaded to the frontend FPGAs.

5.2.9 Voltage source upgrades

The Run 1 HCAL frontend electronics power system was based on the CAEN Easy infrastructure.

The RBX electronics were fed with two power lines, nominally at 6.5 and 5 V, requiring a total

power of around 90 W per RBX. The HPD high voltage (HV) and bias voltage (BV) and the HF

PMT HV were provided using power supplies custom made in Bulgaria. The HB, HE, and HO

RBXs were powered using CAEN A3016 power supplies, each module having six power channels
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capable of powering three RBXs. The HF readout crates were powered using four CAEN A3100

modules for each HF module (positive and negative 𝜂). Successive photodetector, frontend, and

backend upgrades required some changes to the powering system.

The HO photodetector upgrade, with the replacement of HPD the sensors with SiPMs, required

new power supplies, since the new frontend generates the BV internally from the low voltages (LV).

No change was required for the LV system, since the A3016 modules were able to provide the extra

power demanded by the SiPMs.

The HF LV system for the new frontend electronics also required some changes. Unlike the old

electronics, the new electronics only use one supply voltage, in the range 8ś10 V, but with more

power. During Run 2, the power was provided by eight A3100 units operating at 8 V, four each of

the two HF detectors. Each of the sets was in an CAEN EASY crate fed with an individual A3486

power converter. However, a problem was observed during operation, correlated with instantaneous

luminosity. The power supplies, located in the HF racks near the detector, were subject to high levels

of radiation, causing occasional single-event upsets (SEUs), i.e., incidents in which the control of

the modules was lost, leading to the loss of power in the frontend electronics. This resulted in the

loss of about 150 pb−1 of data in 2017. For 2018, a mitigation protocol was developed, consisting of

a fast software detection, reset, and recovery of the power supplies, followed by a reconőguration of

the frontend electronics. The protocol reduced the time of data loss to typically 1ś2 minutes, and

reduced the total data loss to about 50 pb−1. The rate of SEUs scaled linearly with instantaneous

luminosity, with about 20 SEU events in 2018; further, the power cycling was expected to shorten

the lifetime of the power supplies, and the high level of irradiation made maintenance prohibitively

difficult. Hence a more robust solution was implemented in LS2: the power supplies were moved to

an area under CMS where radiation is minimal. Long cables from this location lead the power to

the frontends. To compensate for the voltage drop on the cables, the A3100 power supplies have

been replaced by A3100HBP units, described below, which can provide a high enough voltage to

ensure the frontends receive the nominal operational voltage of 8 V. Following these changes, no

SEU incidents were observed during the őrst year of Run 3.

The HE and HB upgrades, with the increase in the number of SiPM readout channels, led to

more changes to the powering system. The HB and HE custom made power supplies were replaced

by Keysight N6700C mainframes with N6736B modules. Twenty N6700C units currently provide

the BV for the HB and HE SiPMs. The HE A3016 modules were replaced by A3100HBP units.

The CAEN A3100HBP model provides one channel with 8ś14 V, 50 A, and 600 W output and can

power up to two HE RBXs in parallel. These units are also used in the HF, with ten units operating

at 10 V used in each half of the HF. A transient voltage spike in one of the HE power supplies,

caused by a power cut in June 2018, damaged the inputs of two RBXs. This affected HEM15 and

HEM16, which cover 2% of the total HCAL acceptance and 3% of the HB+HE. After identifying

the cause of the problem, CAEN introduced a modiőcation to the power supplies to prevent such

transients from occurring again. Independently, the HCAL Collaboration also developed an external

circuit to suppress such transients. Currently, all the HE RBXs are protected with both the CAEN

modiőcation and the external overvoltage protection circuit.

The extra readout channels of the HB SiPMs required more power than what was practical with

the A3100HBP units, and Wiener Marathons (PL 508 with őve channels 5ś15 V/40 A) were chosen

as replacements. Eight Marathons are used to power the entire HB frontend electronics. To prevent
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damage due to transients, overvoltage protection circuits similar to the ones for the HE are installed

on each of the Marathon output channels. New LV cables between the supplies and the RBXs were

also installed to keep the voltage drop coming from the additional power within the safe operating

range of the frontend electronics.

5.2.10 Photodetector and system calibration instrumentation

Changes in the light yield are expected due to aging of the scintillators, radiation damage, and

variations in the photodetector response. The HCAL calibration and monitoring systems are

designed to determine the absolute energy scale, to monitor the calorimeter system for changes

during the lifetime of the detector, and to derive the energy scale correction factors. In particular, two

complementary methods are used for monitoring. The őrst method consists of a movable radioactive

wire source, with source tubes installed in every megatile in such a way that the tubes cross all

of its tiles. Measurements for all tiles can be made during long LHC shutdowns to validate the

readout-channel mapping. This system was used during the Phase 1 upgrade to provide a relative

calibration when the SiPMs replaced the HPDs. The second method is based on light injection

from two sources, a UV laser and an LED system. The UV laser light is injected into two layers of

each wedge to monitor radiation damage to the scintillator, and both the UV laser and LED light is

injected into the optical decoder box that has the photodetectors, to monitor damage to the SiPMs. A

calibration module (CM) inside the frontend RBX is responsible for delivering the UV laser and

LED light to the photodetectors. The CM was redesigned as part of the Phase 1 upgrade.

Each RBX contains one CM, which includes an LED pulser for the SiPMs, as well as a laser

light distribution system. Fibers from the CM are connected to each of the interstitial microőbers in

the light mixers, allowing for the LED or laser signals to be delivered to the SiPMs. The CMs also

contain pin diodes which directly measure the amplitude of the LED or laser signals, providing a

reference value for the calibration. The design of the LED pulser board is the same as that of the

original HB/HE calibration module. The controls for the pulser, however, are signiőcantly enhanced.

In particular, the CMS global WTE signal is used by the CM to generate LED pulses during the LHC

orbit gap. The LED pulse can be positioned between 2 and 65 535 triggering clock synchronization

counts (MCLK) from a resetting WTE signal. This pulse can be delayed relative to the MCLK signal

from 0 to 25 ns in 0.5 ns increments. The pulse amplitude and width are programmable from about

85 mV to 4.75 V and 0.5 ns to 25 ns, respectively. The pulser board contains six TE Connectivity

AMP 147323-1 connectors providing a total current of 0.75 A at 5.5 V DC and a ground for powering

the PIN diodes. The pulser board receives communication and MCLK from the ngCCM through the

backplane header.

5.2.11 HF upgrade

When shower particles pass through the HF quartz őbers, Cherenkov radiation is produced. However,

anomalous signals can also be produced by muons from pp collisions or beam halo interactions

whose trajectories pass in the vicinity of the RBXs. Relativistic muons generate Cherenkov radiation

when they pass through the glass window of the PMTs. Since the sampling correction for the HF

calorimeter is large, these łwindow eventsž result in very large signals. Signals produced by muons

can be distinguished from shower light through timing: the shower signal is delayed relative to

the muon signal due to the longer path length and the lower speed of light in quartz. The PMTs
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used in the original HF detector were Hamamatsu Corporation R7525s, with a glass window that is

1.2 mm thick at the center, increasing to 6 mm at the edge. The HF PMT upgrade replaced these

with Hamamatsu R7600-M4s. The new PMTs have thinner windows (1 mm of UV glass) and four

anodes arranged in a 2 × 2 grid. The light from the őbers of a given ieta-iphi tower is spread out

over the face of the PMT and generates signals on all four anodes; the diagonal anodes in the 2 × 2

grid are grouped together and read out by a single QIE10 chip. The resulting dual-anode readout

allows for the discrimination of signals from muons interacting directly with the PMT, which will

typically produce a signal concentrated on a single anode closest to the impact point. The amplitude

of signals from muon window events between the old and new PMTs is compared in őgure 32.
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Figure 32. Cherenkov signals generated in the PMT windows from a muon test beam. Thin windows in the
Phase 1 upgrade four-anode PMTs produce smaller signals (red) than those produced in the original PMTs
with thick windows (black).

The new PMTs were extensively tested in several beam tests [77, 78] and in CMS during data

taking. Algorithms utilizing the signal imbalance between the anodes were proposed and tested

during the beam tests. However, a new readout system was needed to take advantage of the additional

channels. To be cost-effective, frontend readout cards were redesigned for two-channel readout of

the four-anode PMTs (where each readout channel sums two anodes). The backend was also changed

from the old VME-based to the new 𝜇TCA-based system.

The new frontend cards included the upgraded QIE10 ASIC, which is similar to the QIE11,

except for having a constant 20Ω input impedance and no programmable current shunting. As

described earlier, the QIE10 chips also have a TDC to measure the arrival time of the signals.

Each frontend readout card for HF contains 24 QIE10 ASICs, each digitizing a single dual-anode

PMT channel, as well as two Microsemi IGLOO2 FPGAs and three VTTx modules providing six

4.8 Gb/s optical links. Similar to the upgraded electronics in HB and HE, the power is supplied by

CERN FEASTMP DC-DC converters. In addition to the replacement of the PMTs and the readout

electronics, improvement in data transfer was planned to handle the increased load due to the TDC

and two-channel readout.

The HF calorimeter is in a high-radiation area, leading to doses of 1000 Gy in őbers near the

beam pipe. To monitor radiation damage, some of the quartz őbers are equipped with a special laser

ś 50 ś





2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
0
5
0
6
4

subtracts out-of-time pileup. These sums deőne the various trigger channels, and a corresponding

TP is produced by the 𝜇HTR. Finally, the trigger tower transverse energies are compressed to the

range 0 to 128 GeV with a least signiőcant bit (LSB) of 0.5 GeV, and transmitted to the L1 trigger.

The TP amplitude is reconstructed by taking the sample-of-interest (SOI) bunch crossing as the

main contribution to the total signal amplitude. The measurement from the SOI alone works well for

HF, where the pulses are shorter than the 25 ns bunch spacing, but for HB and HE, a signiőcant

fraction of the pulse leaks into the subsequent bunch crossing. In Run 2, the sum of energies in the

SOI and SOI+1 was used to reconstruct the TP energy; this method accounts for the signal leakage

into SOI+1, but also incorporates the energy from out-of-time pileup interactions in SOI+1. For

Run 3, a new algorithm was developed that instead uses the SOI and SOI-1, i.e., the preceding bunch

crossing. The scheme subtracts a weighted amount of the measurement from SOI-1, mitigating

the inherent leakage of the out-of-time pileup from SOI-1 in the SOI. To account for the signal

leakage into SOI+1, a correction factor is derived from the known pulse shapes rather than using the

measurement from SOI+1, thereby avoiding incorporating contributions from out-of-time pileup.

In addition to the TP generation in the HB and HE, six feature bits of information are also

generated that can be transmitted to the L1 trigger. These bits facilitate encoding information about:

(i) the longitudinal shower proőle data for use in calibration, lepton isolation, and identiőcation of

minimum ionizing particles, and (ii) the shower time data constructed from the TDC information

available in each constituent channel of the trigger tower. Conőgurable look-up tables determine

which time windows within the bunch crossing of interest are represented by the available TDC

codes. These time window boundaries have a granularity of 0.5 ns. Starting in Run 3, a subset of the

feature bits is used to ŕag signals characteristic of exotic long-lived particle decays, using either the

TDC timing to mark hits with late arrival times or the shower proőle data to mark distinctive energy

deposits in the various layers of the HCAL. These bits are used by the L1 trigger to select hadronic

signatures from long-lived particles with decay lengths of 1ś2 m which decay prior to or within the

HCAL. The timing precision that can be achieved is estimated to be within 1ś2 ns. The resolution

is dominated by interchannel synchronization uncertainties and shower-by-shower ŕuctuations, as

determined from studies done using highly energetic hadronic showers in 2018 data.

5.4 System and beam tests

Beam tests were performed with the upgraded Phase 1 frontend at the H2 beam line of the SPS at

CERN. The upgrade electronics were installed in the 20◦-prototype HE wedge at H2, and were read

out by four RMs split between two RBXs. One RBX and two RMs were replaced with the upgraded

electronics, while the remaining ones were left unchanged as a reference. The system was tested

with 150 GeV muons and with pions having energies ranging from 30 to 300 GeV. Six time samples

were recorded for each event, with the beam timed to arrive in the fourth time sample. The total

charge for an event was taken as the sum of the last three time samples centered around the beam

arrival. The pedestal for each event was estimated from the sum of the őrst three time samples before

the beam trigger and was subtracted from the total charge.

The 2015 beam tests served as the őrst full test of the entire upgraded readout system and

proved the system was functional. The 2017 test beam with production frontend electronics served

to quantify the őnal performance of the upgraded detector. Representative results from this data are

shown in őgure 34. Using the muon data, the response of the detector instrumented with SiPMs was
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In Run 1 and Run 2, the HCAL calibration used 𝐸/𝑝 from isolated tracks for the energy scale

measurement versus 𝜂 and 𝜙-symmetry for equalizing the response along 𝜙 [54]. After the Phase 1

upgrade, new calibration techniques are needed because of the increased depth segmentation. The

scintillator and SiPM aging depends on 𝜂 and depth, which necessitates depth intercalibration. The

signals from isolated, minimum-ionizing muons traversing the HCAL provide an excellent probe

for interdepth calibration, corresponding to approximately őve photoelectrons per layer. As shown

in őgure 36 (left), a clear minimum ionizing peak from muons can be observed in collision events

when the muon traverses one and only one HCAL tower. The energy deposit per layer is shown in

őgure 36 (right). The HE detector is homogeneous in depths 2ś6, while depth 1 has a thicker and

brighter scintillator layer. Because of this, only depths 2ś6 are equalized.

5.5.2 HCAL performance in Run 2

For the combined ECAL and HCAL systems, including barrel and endcap, the relative charged pion

energy resolution obtained from the test beam can be described as

𝜎

𝐸
=

84.7%√
𝐸

⊕ 7.6%, (5.1)

where 𝐸 is in GeV. Corrections for the nonlinearity of the calorimetry system due to its noncompen-

sating response to hadronic and electromagnetic energy depositions have been made [79]. The time

resolution for energy deposits in the HB and HE, calculated by weighting the QIE digitization times

by the associated energies, is 1.2 ns [80]. The HF energy resolution from the test beam [52] is

𝜎

𝐸
=

280%√
𝐸

⊕ 11%. (5.2)

The absolute calibration constants derived from the test beam modules were transferred to the full

calorimeter system using an intercalibration from a radioactive 60Co source [64]. The calibration

was improved using 13 TeV collision data from 2016, as described in ref. [54]. From the 𝜙-symmetry

of energy ŕow in minimum-bias events, the HCAL was intercalibrated to within 3%. An absolute

calibration uncertainty of 2% was determined using isolated pions with track momenta between 40

and 60 GeV showering in the HCAL. The energy resolution was found to be 19.4, 18.8, and 23.6%

in the HB, HE, and transition region, respectively. Signal loss due to radiation damage is relevant in

the HE at high |𝜂 |. It is monitored using a laser calibration system and the response to a 60Co source,

and is cross-checked with hadrons and muons from pp collisions [64].

During Run 2, new algorithms for reducing the effect of out-of-time pileup on reconstructed

HCAL energies were developed. The HCAL response to incoming particles rises to its maximum

within 10 ns, followed by an exponential decay, with 90% of the pulse contained within two 25 ns

time samples (TSs). In Run 1, the bunch spacing was 50 ns, and the energy of hits was reconstructed

by a simple sum of charges in the SOI and SOI+1 after the contribution from leakage currents was

subtracted, with a correction factor applied to account for the tail extending beyond two TSs. In

Run 2, the bunch spacing changed to 25 ns, and hence this method was expected to yield a poor

energy resolution, since it incorporates contributions from pulses from preceding bunch crossings

that overlap with the pulse from the SOI. The new algorithms developed for Run 2 subtract the

energy of out-of-time pileup using pulse template őts.
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In 2016ś2017, two separate pulse-template őtting algorithms, referred to as Method 2 and

Method 3, were deployed for offline reconstruction and in the HLT, respectively. The most recent

algorithm, called łminimization at HCAL, iterativelyž (MAHI), was developed and deployed for

data taking in 2018 [81]. Notably, MAHI performs well enough to be executed within the HLT

latency requirements, and, for Run 3, has also been ported to run on GPUs for further reduction in

processing time. The MAHI algorithm was used for the legacy reprocessing of the CMS Run 2 data.

Detailed results are presented in ref. [82].

5.5.3 HF performance in Run 2

The performance of the HF upgrade was evaluated during Run 2. Figure 37 (left) shows the

distribution of the signal arrival time as a function of the collected charge [83]. Signals with

a time around 7 ns are from showers in the calorimeter, while those at earlier times are due to

Cherenkov radiation in the PMT window. The arrival time can thus be used to identify window

events. While most signals due to PMT Cherenkov radiation come early, there is a tail to later

times, due to imperfect synchronization. Elimination of such background events can be improved by

comparing the signals obtained in both channels of the PMT, as shown in őgure 37 (right). The

charge asymmetry between the PMT channels is calculated as the difference divided by the sum

of the signals in the two channels. For genuine events, this value should be close to zero. On the

other hand, background events are observed well away from the central peak at zero since they are

produced by stray muons hitting one quadrant or a side of the four-anode PMTs. The combination of

the arrival time and asymmetry methods improves the elimination of these background events.
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Figure 37. Left: HF signal arrival time, as measured in the TDC, versus the collected signal charge. All
signals arriving within less than 5 ns are łwindow eventsž. The color indicates the number of events using the
scale to the right of each plot. The data were taken in early 2017. Right: charge asymmetry between the two
channels of a PMT versus the total charge in both channels. The light from genuine collision events is well
mixed in the light guides before falling on the PMT, hence similar signals are expected in all four anodes,
which are grouped into two channels. The so-called łwindow eventsž due to Cherenkov radiation in the PMT
window most likely fall on one or two anodes, producing asymmetric signals.

Figure 38 shows the evolution of the missing transverse momentum with improvements to the

HF anomalous signal identiőcation based on the arrival time criteria (TDC őlters), topological őlters,

and combined criteria (TDC, charge asymmetry, and topological őlters). Topological őlters have
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been used since the beginning of Run 1 and are based on ratios of energies in the long and short

őbers. The new őlters, based on the timing and ratios of the PMT channel energies, are as effective

as this topological selection. The combination of all the anomalous signal reduction techniques

gives the best performance. Additional topological őlters based on the shape of jets versus 𝜂 and 𝜙

were developed to reject additional noise that escapes these őlters [84].
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Figure 38. Effect of őlters on the HF anomalous energy contributions to the missing transverse momentum
measurement. The methods developed based on hardware improvements installed as part of the Phase 1
upgrade are as effective as the topological selections used previously. Including both the new and old őlters
further reduces the anomalous missing transverse momentum.

6 Muon system

A central feature of the CMS experiment is a powerful system for triggering on and detecting muons.

In the previous runs of the LHC, muons have been crucial to many of the physics results of CMS and

have contributed to hundreds of published results, including the discovery of the Higgs boson. The

importance of muons in the CMS physics program continues to remain high in Run 3 and beyond.

The objectives of the CMS muon system are to identify muons, measure their momenta, and

provide signals for triggering on them. These goals are achieved with four complementary detector

systems arranged in the steel ŕux-return yoke of the CMS solenoid. These systems provide efficient

detection of muons over a large range of pseudorapidity. The location in the magnetized steel behind

the calorimeters and solenoid ensures a low probability of penetration to the muon detectors by

particles other than muons and neutrinos.

The physical arrangement of the muon detectors is shown in őgure 39. The central section is

conőgured in a barrel geometry with four roughly cylindrical stations at different radii from the

beam axis. The endcap section is arranged in four planar stations in 𝑧 in each endcap.

The drift tube (DT) system in the barrel covers |𝜂 | < 1.2 and is composed of drift chambers

with rectangular cells. The DTs provide precise spatial measurements, as well as trigger information.

This system is described in more detail in section 6.1.

The cathode strip chamber (CSC) system in the endcap comprises multiwire proportional

chambers having cathode strips with an 𝑅-𝜙 geometry and covering the region 0.9 < |𝜂 | < 2.4. The
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in the barrel (BMTF), endcap (EMTF), and overlap (OMTF) regions. The L1 muon trigger is

described in more detail in section 10.2.

The muon system is summarized in table 7, which gives the number of chambers for each

subsystem, the number of readout channels, and the spatial and time resolution.

Table 7. Properties of the CMS muon system at the beginning of Run 3. The resolutions are quoted for full
chambers, and the range indicates the variation over speciőc chamber types and sizes. The spatial resolution
corresponds the precision of the coordinate measurement in bending plane. The time resolution of the RPC of
1.5 ns is currently not fully exploited since the DAQ system records the hit time in steps of 25 ns.

Muon subsystem
Drift tube Cathode strip Resistive plate Gas electron

(DT) chamber (CSC) chamber (RPC) multiplier (GEM)

|𝜂 | range 0.0ś1.2 0.9ś2.4 0.0ś1.9 1.55ś2.18

Number of
250 540

480 (barrel)
72

chambers 576 (endcap)

Number of 8 (𝑅-𝜙)
6

1
2

layers/chamber 4 (𝑧, MB1ś3) 2 (RB1, RB2)

Surface area
18 000 m2 7000 m2 2300 m2 (barrel)

60 m2

of all layers 900 m2 (endcap)

Number of
172 000

266 112 (strips) 68 136 (barrel)
442 368

channels 210 816 (wire groups) 55 296 (endcap)

Spatial resolution 100 𝜇m 50ś140 𝜇m 0.8ś1.3 cm 100 𝜇m

Time resolution 2 ns 3 ns 1.5 ns <10 ns

The performance of the muon system in Run 1 and the őrst part of Run 2 is documented in

refs. [8, 85]. Much of the muon system is unchanged from that used in Run 1 and described in

2008 [1], but there have been additions and improvements. Notably, there were three major additions

to the endcap detector suite: the outer ring of CSC chambers in station four (łME4/2ž), the outer

rings of RPC chambers in station four (łRE4/2ž and łRE4/3ž, collectively łRE4ž), and the GEM

system in station one (łGE1/1ž). In addition, there were important upgrades to the electronics and

trigger in many subsystems, which are described in the corresponding sections.

6.1 Drift tubes

6.1.1 General description

Drift tubes (DTs) equip the barrel part of the CMS muon detector, serving as offline tracking devices

and providing standalone trigger capabilities. The basic DT detector unit is a rectangular drift cell with

a transverse size of 4.2 × 1.3 cm2, whose layout is shown in őgure 40 (left). A gold-plated stainless

steel anode wire, with a diameter of 50 𝜇m, is located at the center of the cell, and cathode strips are

placed on its side walls. Additionally, electrode strips are located at the top and the bottom of each

cell to shape the drift őeld. The cathodes and electrode strips are set at a voltage of −1200 and 1800 V,

respectively, whereas the anode wires operate at applied voltages that vary between 3500 and 3600 V,

depending on the individual chambers (more details are discussed in section 6.1.3). Cells are őlled
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The relocation project [89] consisted of moving the TSC and ROS boards to the service cavern

(USC). As a consequence, the length of the readout and trigger links from the minicrates was

increased by approximately 60 m. To cope with the increased length, a dedicated system that converts

electrical signals from the chambers into optical ones (CUOF) was installed in the racks previously

occupied by the SC. Data were then transmitted by means of optical őbers to the USC, where they

were converted back to electrical signals by a second set of dedicated boards (OFCU) before being

injected into the ROS and TSC.

The SC relocation brought an increase of operational reliability to the DT system. Moving

the TSC and ROS boards to the USC made them always accessible during LHC running periods,

allowing the prompt solution of possible problems without the need to wait for technical stops

when access to the UXC was possible. It also paved the way for further stages of the Phase 1 DT

upgrade, which led to an overall performance improvement. Firstly, the region in which the SC was

originally installed was characterized by high radiation levels (up to 0.2 Gy per year in nominal LHC

conditions). Without a relocation, these constraints would have led to a limitation in the choice of

the electronics components that could be used for the upgrade to radiation-hard units. Secondly,

a nonnegligible residual magnetic őeld (up to 40 mT) is also present on the detector balconies,

imposing further restrictions on the use of magnetic components such as inductors and ferrites. The

choice of cooling turbines used in the CMS balconies is also constrained by the need to operate in

the presence of a magnetic őeld. If the SC had remained in the UXC, this would have put stringent

limits on the power consumption of the upgraded system, since the power dissipation of the original

SC had already challenged the cooling capacity of the turbines operating on the balconies. Thanks to

the relocation, these constraints were relaxed, leading to more freedom in the design of the upgraded

trigger and readout electronics.

The readout and trigger links from the minicrates are based on DS92LV1021 serializers from

National Semiconductors, which have an embedded clock. Serial words of 12 bits (10 bits for

payload and overhead) are clocked at 20 (40) MHz for the readout (trigger), resulting in a bit rate of

240 (480) Mb/s. Unless an L1 accept trigger is issued, the readout transmits an idle payload that

was designed to maximize the DC balancing, resulting in a 40% duty cycle. Instead, in the trigger

payload, streams of zeros are preferentially transmitted unless trigger segments are built. This results

in a signiőcant DC imbalance in the trigger links, which can be tolerated by operating the CUOF

optical transmitters in a low-bias mode, among other improvements upstream, e.g., those to the

TwinMux concentrator described below.

A CUOF board consists of a 9U motherboard where four mezzanine cards are typically plugged

in. Each mezzanine card carries out the conversion of information received from up to eight links,

organized in two FTP cables from either the readout or trigger of one DT chamber. The electrical

signals enter the CUOF from RJ45 connectors located at the front of the crate. They are then routed

into a line equalizer, restoring levels and compensating for the distortions of the electrical transmission

line, and őnally are injected into a laser driver that controls the laser diodes. Vertical cavity surface

emitting laser (VCSEL) diodes are used. There are eight VCSEL diodes for each mezzanine card,

which are connected to a őber fan-out using LC-type connectors. Each CUOF motherboard also

hosts two A3P600L ProASIC3L FPGAs from Microsemi, which control the conőguration and the

monitoring of the laser drivers. Fine tuning of the drivers’ bias and modulation settings is of prime

importance to ensure correct transmission of the DC-unbalanced information from the trigger link.
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A total of ten CUOF crates (corresponding to two crates per wheel) is installed in the UXC

balconies. Each of them hosts thirteen CUOF boards, six (seven) of them dedicated to the transmission

of readout (trigger) information, and covering a total of six DT sectors. Two A3050 CAEN modules

provide power to the system in each crate. Each of them delivers two independent power supply

channels, thus, for a given wheel, four power partitions exist. The power consumption of the CUOF

system corresponds roughly to half of that of the previous SCs. A picture of the two CUOF crates

instrumented in the balconies surrounding W−1, is shown in őgure 42 (left).

Figure 42. Left: front view of two out of the ten DT CUOF crates located in the UXC balconies surrounding
the muon barrel (W−1). Center: front view of the őve 𝜇TCA crates of the TwinMux in the USC. Right: front
view of the three 𝜇TCA crates of the 𝜇ROS in the USC.

Optical communication occurs as 850 nm transmission over OM3 multimode őbers with a

50 (125) 𝜇m core (cladding) diameter. Individual őbers are organized in MTP cords, each containing

twelve őbers, which get further assembled in groups of eight to form trunk cables of 96 őbers.

Considering the arrangement of őbers into MTP cords, as well as the need for spares, a total of 60

trunk cables is used. This corresponds to a total of 5760 őbers and thus easily covers the minimal

need of the system of 3500 őbers. The installation of the UXC-to-USC optical őbers through the

trigger tunnels and cable chains to the wheels was labor- and access-intensive, but also leaves a

legacy infrastructure that will be exploited by the DT Phase 2 upgrade in LS3. A very important

requirement, made at the time of purchasing from the vendor, was that the relative length of different

őbers had to be carefully equalized. This was needed to preserve the phase relationship between the

signals coming from the different trigger links of a single chamber, which could not be compensated

for at the input of the TSC. The propagation delay along different őbers was measured, őnding an

excellent uniformity, with variations between őbers from the same MTP cord of under 1 ns [90].

The OFCU conversion was performed by dedicated boards that output LVDS signals into

RJ45 connectors. These, in turn, were used to transmit information for input to the ROS and

TSC boards. Due to different requirements for the readout and trigger electronics, different OFCU

boards were developed, but they were both based on commercial parallel optics receivers from

AVAGO (HFBR-782BEPZ). At later stages of the Phase 1 DT upgrade, such receivers were re-used

as components of the upgraded readout and trigger electronics. The upgrade also included the
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design of various slow-control electronics for both the CUOF and OFCUs, and a link to maintain the

injection of trigger data into the readout chain.

The entire relocation of the DT SCs took place during LS1, between February 2013 and August

2014. Commissioning with cosmic rays and calibration runs were performed shortly after its

completion. It was conőrmed that the performance of the upgraded system was consistent with the

original one, and the DT system operated very successfully throughout Run 2.

Upgrade of the muon barrel local trigger: the TwinMux concentrator. In the original CMS

level-1 (L1) muon trigger architecture, tracks were reconstructed using three different track őnders,

each one mostly exploiting information from a single muon detector: DT, CSC, or RPC. Candidates

from the different track őnders were only merged at the last stage of the muon trigger logic. For

the Phase 1 L1 trigger upgrade [91], described in detail in section 10, a different layout was chosen.

The overall muon trigger chain was designed to exploit information from all the detectors covering

the area crossed by a given muon as early as possible in the online reconstruction. This approach

was adopted to maximize overall performance and to better control the data acquisition rates. In

the case of the muon barrel, the DTs provide excellent position resolution, whereas the RPCs are

characterized by excellent time resolution. Hence, in the Phase 1 L1 trigger, information from both

detectors is combined by dedicated electronics that provide primitives of superior performance

(called super-primitives) already at the input of the barrel muon track őnder (BMTF).

To accomplish this, the DT TSC was replaced by a new component, called TwinMux [92],

which acts as a concentrator for the data coming from both the DT and barrel RPC chambers. The

TwinMux combines information from the two into superprimitives and transmits them to the BMTF

and the overlap muon track őnder (OMTF) using the 10 Gb/s link protocol exploited by the Phase 1

L1 trigger system.

For the TwinMux, a single slot double-width full-height 𝜇TCA board, called TM7, is used. A

TM7 can reach a maximum of 96 optical connections thanks to six front panel Avago optical receivers

(72 links limited to 2.7 Gb/s) and two Minipods for high-speed data transmission and reception

(up to 13 Gb/s). Figure 43 (left) shows a picture of a TM7 board, where its main components are

highlighted. The TM7 board is based on a Xilinx Virtex-7 FPGA that, in the case of the trigger,

achieves the merging of several 480 Mb/s links to higher speed serial links and compensates delays

to provide BX alignment of the trigger data coming from different inputs. Twelve of the 72 inputs are

optionally routable to GTH Gigabit Transceiver inputs [93] in order to handle the GOL-based [94]

1.6 Gb/s links that receive the RPC links. A small mezzanine PCB allows the desired path to be

chosen for lines routed to one of the front optical transceiver. Four additional GTHs are used to

transfer data on the 𝜇TCA backplane.

From each minicrate, DT trigger information is transmitted as described above. For the RPC

detector, őve link board masters (LBMs) compress the trigger hit data relative to one muon barrel

sector and serialize it through the GOL transmitters. The TwinMux is in charge of forwarding this

data to the BMTF and OMTF, by applying a scale-up in the transmission rate (and hence a reduction

in the number of links). It is also responsible for duplicating the data to be sent to different track

őnder processors (up to four times for the sectors of the outer wheels where DT data is shared

between the barrel and overlap track őnders). Such redundancy is included to reduce the connections

between the track őnder processors and hence to increase the reliability of the system (which proved
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The TwinMux was deployed in production, as part of the Phase 1 L1 trigger upgrade, starting from

2016, after having been tested in a slice of the detector that was sending signals both to the TSC OFCU

and TwinMux boards during the 2015 run. The development of the algorithms to build super-primitives,

which are used as input to the BMTF, occurred in stages. In 2016, no combination was performed,

hence only trigger primitives built by the DT on-board minicrate electronics were fed into the BMTF.

In 2017, an algorithm that combines information from the DT and RPC detectors was deployed

to improve the super-primitive BX identiőcation. Within such algorithm, the compatibility of the

DT trigger primitives and RPC clusters that are built in nearby chambers is checked by comparing

the difference in azimuthal angle (Δ𝜙) between them. If a match within a programmable window is

found between a DT trigger primitive and (at least) one RPC cluster, and if the difference in terms of

BXs between the DT trigger primitive and the RPC cluster is within ±1 BX, a super-primitive is built

using the DT trigger segment position and direction, but the RPC BX. We note that no time correction

is attempted if a DT trigger primitive is built exploiting hits from all layers of the 𝜙-SLs of a given DT

chamber. In any case, a dedicated quality ŕag, documenting the successful matching with the RPC, is

set. This combination better exploits the complementarity of the DT and RPC detectors, relying on the

spatial resolution of the former and the time resolution of the latter. The impact, in terms of BX identi-

őcation performance for trigger primitives caused by muons from pp collisions, is shown in őgure 43

(right). The asymmetry in the BX distribution of DT primitives (red open dots), mostly due to the oc-

casional presence of 𝛿 rays that can spoil the reconstruction of standalone DT trigger segments, is miti-

gated when the combination with the RPC is effective (black őlled dots). Because of the BX correction,

the muon barrel trigger primitive BX assignment efficiency is also increased, on average, by 1.4%.

In 2018, a further improvement was put into production. In the MB1 and MB2 stations, where

two RPC layers cover both surfaces of each DT chamber, as described in section 6.3.1, the generation

of RPC-only super-primitives is attempted if no DT trigger primitives are present in a given BX.

In that case, pseudosegments are built out of RPC cluster pairs that are reconstructed at the same

BX in the two different RPC layers. If more pseudosegments are generated at a given BX, only the

one whose direction is closest to that of a straight track coming from the CMS interaction point

(𝜙𝑏) is retained. Finally, only pseudosegments for which 𝜙𝑏 is below a programmable threshold are

accepted. Additionally, also in this case, the RPC-only primitive is marked with a dedicated quality

ŕag. Upon deployment of this algorithm in data taking, a further increase of the super-primitive

efficiency around 3% was observed in the MB1 and MB2 stations. Due to the redundancy of the muon

system, such local trigger efficiency improvement resulted in a marginal improvement of the BMTF

efficiency. Nevertheless, a rate reduction of a few percent was observed for the lowest unprescaled

L1 muon trigger. This is because, in a few cases, BMTF tracks now get built using a larger number

of points along the muon trajectory, improving the measurement of the track transverse momentum.

Given the fact that it uses a different track-building algorithm, no super-primitive generation

is attempted on primitives that are sent to the OMTF, since the OMTF receives a full list of DT

trigger segments and combines them with RPC information directly at the track-őnding step, as also

described in section 6.3.2. The super-primitive algorithm that operated throughout 2018 was also

deployed at the start of Run 3.

Upgrade of the DT readout: the 𝝁ROS system. Simulation studies have shown that the ROS was

the most severe bottleneck in the DT readout chain. The ROS combined information from a total of
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25 readout boards (ROB) providing the minicrates with data for a full DT sector. The time needed

by a ROS to perform event building from all the input links depended on how hits were distributed

within the ROBs. A high noise rate from sporadic small groups of channels could be easily sustained.

However, high overall background hit rates, which come with a rather uniform distribution within

each of the chambers of a sector, take much more time to be processed. In addition, muons crossing

the DT can produce up to 44 hits within a single ROS. When both the background and muon hit

rates are considered, taking as a proxy an LHC instantaneous luminosity of 2 × 10
34 cm−2 s−1, the

maximum acquisition rate that a ROS can sustain becomes close to the 100 kHz limit imposed by

the DAQ and L1 trigger.

For this reason, throughout Run 2, the ROS, as well as the downstream components of the DT

readout chain, called device-dependent units (DDU), were replaced with a new system, based on

the 𝜇TCA architecture, named 𝜇ROS. For the 𝜇ROS [96], the same TM7 boards designed for the

TwinMux are used, but a different őrmware is deployed to implement the functionalities needed by

the DT readout.

Each TM7 features six 12-őber MTP receivers, for a total of 72 input links. A total of 25 ROBs

provide the inputs from a given sector. The data from each wheel are thus processed by őve 𝜇ROS

boards, four of them receiving three sectors each (24 channels per sector, 72 links), and the őfth

receiving the 25th channel for each of the twelve sectors. The production system comprises three

𝜇TCA crates (central, positive, and negative wheels) and 25 𝜇ROS boards. Each crate is equipped

with an AMC13 that provides clock and slow-control distribution, as well as a connection to the

CMS DAQ. A picture of the 𝜇ROS system is presented in őgure 42 (right). With this architecture,

no further components of the DT readout system (DDU) are needed. Under the conditions reached

over Run 2, the maximum payload bandwidth varied, depending on the wheel, between 0.3 Gb/s in

W0 and 0.6 Gb/s in W+2 and −2, remaining well within the AMC13 limits.

In terms of őrmware, the components needed to handle the slow control and general board

functionality are inherited from the TwinMux. Special care was instead put into the design of the

block in charge of data deserialization. This őrmware can recover input data with high quality and

minimal data losses with respect to the input stream. Carrying data at 240 Mb/s, the receiver samples

data at 1.2 Gb/s (a factor of 5 oversampling). Majority őltering is performed on the three central

samples of each bit before reassembling the original input word. Bits where a weak majority is found

(two instead of three) are marked as transmission error candidates. If the data frame parity error

check fails and only one bit is marked as a transmission error candidate, the latter gets corrected. The

őrmware implements a full veriőcation of the ROB protocol and provides statistics for the different

ROB failure cases, which are used for monitoring. Finally, while the legacy ROS system masked

channels in case of transmission errors until a resync was issued, the event builder from the 𝜇ROS is

capable of recovering from all types of errors as soon as the condition disappears.

The transition to the 𝜇ROS occurred during the 2017/2018 year-end technical stop. Prior to

that, in 2017, signals from the ROBs for a slice of the detector were split and a 𝜇ROS slice-crate

was instrumented and integrated into the CMS DAQ as a separate unit. It was used to develop the

𝜇ROS prior to the deployment of the full system, which allowed a smooth transition. In LS2, the FE

signals of a sector in the external wheels (W+2 S12) were split to allow the continuation of the same

strategy for the Phase 2 upgrade, and another slice-test system will be operated in Run 3. The data

of such a Phase 2 slice-test are already read by the CMS DAQ.
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The impact, in terms of DT performance, of the transition to the 𝜇ROS is presented in őgure 44.

The two plots show a chamber-by-chamber map of the DT segment reconstruction efficiency, as

measured with a tag-and-probe method. In the measurement, no masking of chambers with hardware

or readout issues is applied. The left (right) side of the őgure refers to results computed using

2017 (2018) data, collected before (after) the transition to the 𝜇ROS. Bins where the efficiency is

signiőcantly lower than 99% are due to possibly sporadic problems that affected chambers or their

readout. A better performance was observed after the upgrade to the 𝜇ROS, mostly thanks to a

reduction of the number of chambers affected by readout problems.
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Figure 44. DT segment reconstruction efficiency measured with the tag-and-probe method using data
collected by CMS in 2017 (left) [97] and 2018 (right) [98], before and after the transition to the 𝜇ROS. The
efficiency is usually above 99% except for chambers affected by hardware problems, mostly coming from the
DT readout. After the deployment of the 𝜇ROS, the overall efficiency improves.

6.1.3 Detector longevity for Run 3 and beyond

The DT system was designed and validated to sustain ten years of LHC operation in nominal

conditions, corresponding to approximately 500 fb−1 of integrated luminosity [99]. Accelerated

aging studies, carried out prior to the installation of the chambers in CMS, indicated that no

degradation in the performance of the present detector (and its electronics) is to be expected under

those assumptions. Furthermore, at the boundaries of long data-taking periods, data are regularly

collected by varying the HV applied to the anode wires (HV scans) and measuring the detector

efficiency at each HV point to assess its stability and exclude potential effects due to early aging. Up

to the end of Run 2, no efficiency degradation was observed during the HV scans. Additionally, the

original longevity studies were complemented with more stringent ones, performed using the CERN

gamma irradiation facility (GIF++) [88], which are summarized in the following paragraph. Given the

results of all the above studies, and the current projections in terms of integrated luminosity expected

for Run 3, the DT performance is foreseen to remain almost constant over the coming run period.

Nonetheless, though several electronics components will be replaced as part of the CMS Phase 2

upgrade program, existing muon detectors will operate throughout the HL-LHC era. For this reason,
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further accelerated longevity studies are being performed at GIF++ on two spare DT chambers, as

mentioned above. Due to the complexity of the physics and chemistry phenomena driving the aging

processes, accelerated studies have large uncertainties, typically taken into account by irradiating

with a substantial excess with respect to the needed integrated values (safety factors). The reference

targets for instantaneous and integrated luminosities used in the aging studies to derive the DT

performance are evaluated assuming safety factors of two, which double both the nominal HL-LHC

luminosity (5 × 10
34 cm−2 s−1) and the total integrated luminosity (3000 fb−1). Considering these

safety factors, by the end of the HL-LHC, the DT hit detection efficiency can possibly drop from its

present value of around 96% to approximately 70% in the MB1 stations of W±2 (corresponding

roughly to 10% of the entire system). Moreover, in a further 20% of the detector (corresponding

to the MB4 stations of the DT sectors covering the top half of CMS and to the MB1 stations of

W±1), the efficiency is projected to range between 85 and 90%. Finally, in the rest of the system,

efficiencies above 90% are expected. Given the redundancy in terms of the number of DT layers per

chamber and of chamber stations in the muon system, the maximum inefficiency due to DT aging,

localized in a narrow region around |𝜂 | = 1.0, is expected to be within 2 (5)% for standalone offline

reconstruction (trigger). Though these expected losses are not very large, mitigation strategies, which

are described in the following sections, have been put in place during Run 2 and LS2, to maximize

the longevity of the DT detector and ensure the highest achievable performance in the long term.

Optimization of the operational working points. For gaseous detectors, deterioration due to

aging becomes more signiőcant as the integrated charge released in the gas volume increases. In

turn, the integrated charge depends on the rate and type of particles crossing the different regions of

the detector, the collected charge per particle, and the total integrated running time.

In the case of the DT detector, background dominates the hit rates and is largest in the MB1

stations of W±2 and the MB4 stations for the sectors covering the top half of CMS. The collected

charge per particle depends on both the particle type and the gas ampliőcation factor, which is driven

by the HV settings of the cell anode wires. Therefore, for a őxed integrated luminosity, reducing

the HV working points of the anode wires can result in a signiőcant reduction of the integrated

charge. Of course, such an optimization can be performed only within the limits where the impact

on detector performance is deemed acceptable.

During the 2017 and 2018 LHC runs, the HV of the DT anode wires was progressively lowered

with respect to the default 3600 V used until 2016, in the chambers most exposed to background. In

2017, the wires in MB1 of W±2, and the ones in MB4 of sectors 3, 4, and 5 for all wheels were

operated at 3550 V. In 2018, a further reduction was applied, reaching the HV values given in

table 8. The discrimination threshold values applied in the DT FE electronics were also lowered

from 30 to 20 mV for the entire detector.

For the MB1 of the external wheels, lowering the HV of the anode wires to 3500 (3550) V

resulted in a relative reduction of 58 (45)% in the drained current with respect to the original

3600 V setting.

The overall performance of the system under the updated operational conditions was thoroughly

studied using pp collision data. Firstly, the reduction of the FE thresholds to 20 mV resulted in

a marginal increase of overall detector noise, which was handled by masking a few speciőc noisy

wires. Reducing the gain and the FE threshold resulted in shifts of a few ns of the effective drift
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Gas system upgrade and open-loop operation. The DT gas system [1] includes a facility on the

surface that stores individual gas components (Ar and CO2) and combines them to obtain the gas

mixture of 85% Ar and 15% CO2 used by the DT. A second facility, located in the USC, is dedicated

to the predistribution of the őnal gas mixture to the őve wheels, as well as to the gas analysis system.

Finally, őve distribution racks located in the UXC provide the gas ŕows to the 250 DT chambers,

with a ŕux around 40 l/h to each chamber. The primary goal of the gas analysis system is ensuring

the stability of the gas mixture. It consists in the determination of the contamination of O2 and H2O,

and the drift velocity measurement.

The loss of efficiency caused by aging, described in section 6.1.3, is due to a decrease of gas

gain which, in turn, is caused by deposits that form around the anode wires of the DT cells. It is

believed that this effect is mostly due to out-gassing of components inside a DT chamber. For this

reason, the re-injection and spread from hot detector regions of pollutants contaminating the DT

gas should be avoided. Therefore, starting from the 2018 run, the DT gas system operates in the,

so-called, open-loop mode, where there is no re-circulation of used gas. Prior to that, the system was

operated in a closed-loop mode, where 85% of the used gas was recirculated and only 15% of fresh

gas was injected. The closed-loop mode can still safely be used during technical stops or longer

periods of inactivity, where no aging due to out-gassing is expected. In order to operate in open-loop

mode, an upgrade of the gas system was performed. It allows the intentional introduction of air from

a bottle on the surface, to maintain the desired level of O2, corresponding to 80 ppm. Furthermore, a

humidiőer with a bypass that ensures the H2O concentration is kept at 800 ppm was also installed.

The presence of small quantities of O2 and H2O helps prevent effects that induce chamber aging

(such as polymerization) [100], and the target values for such contaminants were derived based on

experience from the data taken in Run 1 and Run 2. Because of this upgrade, prompt monitoring of

the gas stability has become even more important than in the past.

The O2 and H2O measurements are performed using commercial sensors, which have to be

recalibrated every year by injecting gas with known components of oxygen and humidity. The drift

velocity measurement is done by a more complex system, called VDC [101], which aims to deliver,

every ten minutes, a drift velocity measurement. There is one O2 sensor, one H2O sensor, and one

VDC for each of the őve DT wheels, and a separate sampling line for each wheel. The gas sampling

permits the selection of the output of any individual chamber, as well as the global output (or the

global input) of an entire wheel. The direct measurement of the drift velocity performed by the VDC

system is sensitive to possible unknown components or contaminants in the gas. The drift velocity

depends on the Ar/CO2 ratio, as well as on the level of contaminants, such as O2 and N2. The drift

velocity is a key parameter for the DT local reconstruction, so that any deviation spotted by the VDC

system must be investigated and eventually requires immediate intervention on the operation of the

DT gas system. An example from the monitoring by the VDC system is presented in őgure 46. The

őrst transition from closed-loop to open-loop operation was correctly detected by the drift velocity

measurement. In this case, the gas analysis showed very quickly the impact of the injection of air

and humidity into the mixture for the case of the open-loop mode, which resulted in a sub-percent

variation of the drift velocity.

Other than direct monitoring of the gas mixture and drift velocity, the stability of the gas is

also evaluated indirectly with event data, by looking at the stability of the performance of the DT

local reconstruction. If a track-segment őt is performed using a sufficient number of hits from a DT
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Figure 46. Drift velocity measurement using the fresh gas analyzed by the VDC system. The variation on 8th

March 2018 corresponds to the transition between closed-loop and open-loop operation of the DT gas system.

chamber, additional parameters, other than the segment position and direction, can be extracted from

the őt itself. In this way, the need for residual corrections on top of the calibration parameters used

by the reconstruction, such as the drift velocity, can be evaluated on a segment-by-segment basis.

Overall biases in the distribution of such residual corrections are then measured run-by-run for each

DT chamber, and their stability across different runs is monitored.

Finally, the DT chambers are operated since Run 1 in a differential pressure mode. The gas

control system presently ensures that a positive differential pressure of +3 mbar is applied at the

bottom of the wheels. This value, which is well within the mechanical maximum limit (50 mbar),

protects against possible contamination. A dedicated system of differential pressure sensors monitors

continuously these values, which are transmitted to the DT online monitoring system.

Installation of shields over the outer MB. As mentioned earlier, besides the MB1 stations of

the external wheels (W±2), the parts of the MB characterized by the highest level of background

are the MB4 stations in the sectors covering the top half of CMS (sectors 1 to 7). Studies based on

pp collision data, as well as results from simulations, corroborate the hypothesis that background

in this region is mostly generated from interactions of low-energy neutrons permeating the cavern.

Therefore, a strategy was put in place to effectively protect the top DT chambers by installing proper

absorbing shields.

With the aim of designing such shields, absorbing layers were installed on top of the MB4

stations in sector 4 of W+2 and W−2 during Run 2. Different conőgurations in terms of material and

thickness of absorbers, suggested by simulations of the radiation őeld in the cavern, were tested each

year from 2015 through 2018, and the impact in terms of background reduction was studied. An

example of these studies is shown in őgure 47 (left), where the magnitude of the linear dependence

of the currents in each chamber with respect to the LHC instantaneous luminosity is presented for the

2018 run. The impact of the test shielding conőgurations installed over the MB4 stations in sector 4

of W±2 is clearly visible. Based on the results of these investigations and considering the outcome

of simulations of the mechanical stress that different shield setups would induce on the supporting

structures, a layout was proposed that is expected to reduce the background by about a factor 2.

The installation of the őnal DT MB4 shields was performed during LS2 and completed in

October 2020. A schematic view of the shielding layout is presented in őgure 47 (right). The őgure

shows the shield installed over W−2, −1, +1 and +2. In those wheels, shielding cassettes consisting
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an L1A, to the DMB. The DMB controls the CFEBs on a chamber and collects anode, cathode, and

trigger information to send to the detector-dependent unit (DDU), on the arrival of an L1A. The

DDU, situated in the frontend driver crates located in the underground service cavern, collects data

from 15 DMBs in the CSC system and sends the information through the global DAQ path.

The MPC, situated in the VME crate, collects LCTs from each of up to nine TMBs in a

trigger sector, and sends these trigger primitives to the muon track őnders described in section 10.2.

There is one MPC per peripheral VME crate. The operation of the VME crate is supported by

the clock-control board (CCB) and custom VME crate controller (VCC). The CCB serves as the

interface between the CSC system and the trigger control and distribution system (TCDS) of CMS.

The VCC receives VME commands from the control room and distributes them to the other boards

in the peripheral crate via the backplane.

6.2.2 Upgrade of the CSC system since Run 1

While the CSC system operated stably throughout Run 1 and Run 2, some CSC readout electronic

boards needed to be upgraded in order to handle the expected longer latency and more stringent

trigger requirements at the HL-LHC. Speciőcally, if the electronics were not altered, the longer

latency requirements would őll up and overŕow the pipelines of the frontend boards in certain CSC

stations, while the higher L1 trigger rates would overwhelm the output bandwidth of various on- and

off-chamber electronics boards. To reduce the installation load during LS3, the bulk of the CSC

electronics upgrades that required chamber access (dismounting and re-installation) was already

performed during LS2.

The CFEBs use switch capacitor arrays to store the charge induced on the cathode strips.

These capacitor arrays are capable of storing 96 charge measurements (corresponding to six events

worth of data) during the L1 trigger latency. As mentioned above, the digitization of the analog

signals and subsequent readout by the DMB only happens when a CFEB receives an L1A that is in

coincidence with a CLCT. As a consequence, for CSCs that are closest to the beam (ME1234/1)

where the background rate is high, frequent memory overŕows and large data losses are expected at

the HL-LHC trigger latency. Figure 51 shows the average event loss fraction for ME234/1 rings as

a function of the instantaneous luminosity. These curves are based on a statistical model that has

been veriőed by measuring the loss rates in bench tests that emulate the expected background and

L1 trigger rates. These results show that data loss would be a severe issue at the HL-LHC with the

original CFEBs. The outer CSC chambers will not suffer from these problems because the trigger

primitive rates in these rings are lower than those in the inner rings by factors of more than 3.

The CFEBs on ME1/1 have already been vulnerable to data loss at the highest instantaneous

luminosities (up to 2 × 10
34 cm−2 s−1) in Run 2. To mitigate such losses, the four CFEBs on the

ME1/1b section of the chambers were replaced by four digital cathode frontend boards (DCFEBs)

during LS1. The DCFEBs use fast ŕash 12-bit ADCs that continuously digitize the cathode signals

at 20 MHz, as well as having more powerful Virtex-6 FPGAs with large internal memory resources.

The resulting digital pipeline can hold up to 700 events, and thus there should be negligible dead

time at the HL-LHC. Two optical links running at 3.2 Gb/s are employed per DCFEB to transmit the

raw data for DAQ and the fast comparator data for building the L1 trigger to the new optical data

acquisition motherboard (ODMB) and optical trigger motherboard (OTMB), respectively, which

replaced the original DMB and TMB.

ś 77 ś





2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
0
5
0
6
4

performance of the two optical transceivers on the original DCFEBs has been occasionally unreliable,

particularly due to single-event upsets (SEUs). While mitigation measures in software and őrmware

have improved the reliability of these transceivers in the DCFEBv2s, they were replaced by the

VTTx, a radiation-hard twin optical transmitter designed by CERN. These new DCFEBv2s were

installed in the ME1/1 chambers during LS2, thus mitigating the risks associated with the longevity

of their PROMs.

The DCFEBs used in the ME1/1 ring during Run 2 were moved to the chambers in the ME2/1,

ME3/1, and ME4/1 rings, where radiation levels are lower. In Run 3, although the ME234/1

chambers are őtted with DCFEBs, the new ODMB is not scheduled to be installed before LS3, so

these DCFEBs still send data to the DAQ via the original DMBs.

The ALCTs store raw wire-hit information in a pipeline within the FPGA while waiting for

an L1A. The ALCTs installed before Run 1 would also suffer signiőcant data loss during HL-LHC

operation. This is because they do not have sufficient FPGA memory resources to hold all raw hit

information before sending them to the DMB during the HL-LHC L1 trigger latency. Moreover, the

output bandwidth for the boards in the inner rings (ME1234/1) would not be capable of handling the

expected HL-LHC data rates. Both of these problems were solved by replacing the mezzanine cards

in the affected chambers.

During LS1, the ME1/1 chambers were equipped with new ALCT mezzanine cards having more

powerful FPGAs (Spartan 6), with 9ś12 times more memory than those used previously (Virtex-E).

This, in turn, allows the pipeline to be deep enough to satisfy the HL-LHC latency requirements.

Similar ALCT mezzanine cards were also installed on the ME4/2 chambers during the same period.

During LS2, as a second phase of the ALCT upgrade, the ALCT mezzanine cards originally

installed in ME1/1 during LS1 were moved to ME1/3, and all other mezzanine cards, except for those

used in the ME4/2 rings, were replaced. The new ALCT mezzanine cards are largely based on the

ALCT design used for cards installed in ME1/1 during LS1, with a few exceptions discussed below.

The ALCT mezzanine cards servicing the ME234/1 rings use two new VTTx optical transmitters,

each running at 3.2 Gb/s, to increase the output bandwidth for the expected HL-LHC data rates. The

new ME1/1 ALCTs, in addition to a different FPGA from those used for the ME234/1 chambers,

have a VTRx transceiver instead of two VTTx transmitters on each mezzanine card. This allows for

the same remote FPGA programming option (based on the GBTx ASIC) that the DCFEBv2s have,

thus mitigating any risks associated with the aging of the PROMs in that ring. From Run 4, the

VTRx transceiver (as well as the VTTx transmitters from the ME234/1 ALCTs) will be connected to

an updated ODMB board that transmits data to the CMS DAQ over an optical link at 4.8 GB/s. The

new mezzanine cards serving the ME234/2 chambers have the same FPGA as those used for the

ME1/1 ALCTs, but they will send data to the DMB through copper links even in the future runs due

to the lower expected data rate. Since the new design maintains backwards compatibility, the anode

raw data sent to the DAQ from the ME1234/1 ALCTs can be transmitted to the DMBs via the copper

path during Run 3, and to the new ODMBs via the optical link(s) from Run 4 onwards.

The DCFEBs that were installed on the ME1/1 chambers in LS1 transmitted data to the CMS

DAQ and comparator data to the CMS trigger at 3.2 Gb/s via optical őbers. Since the previously

installed TMBs and DMBs were designed to work with the CFEBs and have no optical receivers, the

TMBs and DMBs for the ME1/1 chambers were upgraded to OTMBs and ODMBs during LS1 as

well. They receive optical data from the seven DCFEBs and use a more powerful FPGA. During
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into three or őve independent HV segments, which allows the independent regulation or turning off

the HV on any of the individual sections. To maximize the lifetime of a CSC it should be operated at

the lowest HV compatible with full efficiency. Until mid-2016, all CSCs operated at the same HV,

and the average gas gains in different HV segments varied by up to a factor of 2, as shown by the

wide blue distribution in őgure 55. In 2016, the gas gains of individual CSCs were modiőed by

tuning each HV channel to reduce the spread, as shown by the narrow red distribution in őgure 55.

This optimized the CSC gas gains for good efficiency without having unnecessarily high HV on any

chamber, thus maximizing chamber longevity. Later, in 2018, the overall HV of all rings except

ME234/1 was reduced by about 30 V, which decreased the gas gain by about 20%. The chambers

now operate just above the knee of the efficiency plateau in gas gain versus HV and hence remain

fully efficient, while the CSC system lifetime is expected to be extended by 20%.

0
Relative gas gain, G/G

0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
u

m
b

e
r 

o
f 

H
V

 c
h

a
n

n
e
ls

0

100

200

300

400

500

0

1000

2000

3000

4000

5000

Before HV adjustments

After HV adjustments

CSC ME 1/2  1/3  234/2

CMS

Figure 55. Relative gas gain distribution in CSCs before and after the gas gain equalization campaign in
2016 [100]. Each entry in the histogram presents the mean value of gas gain in each HV channel. The scale
of the blue histogram is on the left while the scale of the red histogram is on the right.

The CSC readout electronics can also degrade after exposure to large radiation doses. A

systematic program of irradiating the CSC electronic components was performed to identify any of

those unable to operate reliably in the HL-LHC radiation environment. All the components used in

both the old and upgraded readout boards were found to withstand more than 3 times the expected

HL-LHC doses, except for the PROMs used in the frontend boards installed in the ME1/1 chambers,

which can only withstand 1ś1.5 times the expected dose.

Before the production of the new electronics boards for the Phase 2 upgrade, radiation tests were

carried out at the Texas A&M cyclotron and nuclear reactor [108], and at the UC Davis cyclotron.

During the tests at the Texas A&M cyclotron, the digital components on the test boards were operated

with active data readout while being irradiated with 55 MeV protons. The components tested for

SEUs and single-event latch-ups (SELs) included the FPGAs, PROMs, level adapters, and optical

transmitters and receivers. In reactor tests, components were exposed to neutrons with energies

up to a few MeV, with exposures equivalent to a TID of 30 kRad. This corresponds to a level of

neutron radiation equivalent to about 50 years of that expected at the HL-LHC at the location where
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CSC electronics are exposed to the highest radiation ŕux (the inner portion of the ME1/1 chambers).

These tests targeted mostly nondigital components such as voltage regulators and power diodes. The

results showed that the components selected for the new electronics will operate reliably in the CMS

radiation environment at the HL-LHC.

During Run 2, a new campaign of radiation testing was initiated for the upgraded electronics

described above. Particular attention was paid to the PROMs, which are known to have some failures

after large radiation exposure [109]. The PROMs in the DCFEBs and ALCTs installed during LS1

were tested at the CHARM II mixed radiation facility at CERN, the Texas A&M reactor, and the

UC Davis cyclotron. The PROMs performed well up to an exposure of 10 kRad, but both types of

PROMs showed some failures at exposures of 15ś30 kRad. To mitigate such failures, the option to

perform promless programming of the frontend board FPGAs for the ME1/1 chambers, where the

radiation is most severe, has been provided. The optical receivers used on the OTMBs upgraded

during LS2 were also tested at the UC Davis cyclotron and proved able to sustain the expected

HL-LHC radiation dose.

The CSC system has been successfully operating during Run 3 after an enormous upgrade effort

in LS1 and LS2. Its longevity has been studied extensively, and it is expected to remain reliable

throughout the future running until the end of the HL-LHC era.

6.3 Resistive plate chambers

6.3.1 General description

The CMS resistive plate chambers (RPCs) are gaseous detectors equipped with two gas gaps each

having a width of 2 mm and a copper readout plane in between, as shown in őgure 56. High voltage

is applied to the graphite electrodes, which are coated on the surface of high-pressure (HPL) laminate

plates with bulk resistivity in the range of 2ś5 × 10
10
Ωcm. The chambers are operated in avalanche

mode with a gas mixture of 95.2% C2H2F4, 4.5% i-C4H10, and 0.3% SF6. This allows the chambers

to cope with high background rates and ensures an excellent time resolution, as summarized in

table 7, facilitating a precise bunch-crossing assignment.

Figure 56. Left: schematic of the double-layer layout of the RPC chambers. Reproduced with permission
from [110]. Right: illustration of the RPC technology. Reproduced with permission from [111].

The RPC barrel detector is divided in the direction along the beam axis into őve separate wheels

labelled W±2, W±1, and W0. The RPCs in each wheel consist of six layers. The őrst four layers,

called RB1in, RB1out, RB2in, and RB2out, are located on the inner and outer sides of the inner two

stations of the DT chambers. The other two layers, labelled RB3 and RB4, are located on the inner

side of the third and fourth stations of the DTs. There are four disks in each endcap, called RE±4,
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system, located in the CMS experimental cavern in the balconies next to the detector. In the link

boards, the low-voltage differential signaling (LVDS) signals from the FEBs are synchronized with

the LHC clock, converted to optical signals, and sent to the RPC trigger boards in the service cavern.

Since the beginning of Run 2, the RPC signals coming from the link boards are split and sent to the

muon processors TwinMux, as described in section 6.1.2, and to the concentration pre-processing

and fan-out (CPPF) [114]. Both TwinMux and CPPF do the hit clustering and cluster selection

and forward the produced clusters to the track őnders (TwinMux to the BMTF and CPPF to the

EMTF). The OMTF, described in section 10.2, reads the RPC data straight from the link boards,

then combines them with the full list of DT trigger segments directly at the track-őnding step and

performs the clustering and selection.

The contribution of the RPC system to the refactored L1 muon trigger architecture is different

for the three muon track őnders and can be summarized as follows:

• BMTF: RPC timing information is used to improve the DT trigger primitives’ bunch crossing

assignment. In the őrst two stations, where two RPC layers are present, a segment is built

from the coincidence of hits in the inner and outer chambers. The latter provides redundancy

in case of DT inefficiencies.

• OMTF: RPC hit position information is used standalone from the eight available chambers

(őve in the barrel and three in the endcap), per 𝜙 division (sector).

• EMTF: RPC hit position information is used in case there is no corresponding CSC trigger

primitive.

The combination of information from the barrel muon detectors at an early stage allows the

exploitation of the system redundancy already at the step of building the trigger primitives. As

shown in the left plot of őgure 58 [95], the combination of DT and RPC leads to an average increase

of the station-1 barrel trigger-primitive efficiency of about 1.4%, raising the plateau value from 95%

to about 96.5%. However, this is not the only gain from the new architecture. The trigger also

beneőts from detector complementarity since the use of RPC timing information reduces the number

of out-of-time DT trigger primitives, as shown in őgure 43.

For the OMTF, the use of the RPC complementarity is even more prominent. Figure 58 (right)

shows the efficiency as a function of the reconstructed muon 𝑝T in the 𝜂 region of the OMTF. If

RPC data are not present, the efficiency decreases by about 15%.

6.3.3 RPC system longevity

Detector stability studies. Continuous studies are performed throughout the data-taking periods

to ensure correct operation and performance stability of the RPC system.

RPC working point calibration. To ensure the most stable performance possible, the operational

high voltage 𝑉app of the RPCs is controlled such that the effective high voltage 𝑉eff is constant even

when environmental conditions change during the data taking [116]. The relation between 𝑉app and

𝑉eff is as follows [117]:

𝑉app = 𝑉eff

[

1 − 𝛼 + 𝛼

(

𝑃

𝑃0

) (

𝑇0

𝑇

)]

, (6.1)
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background rates as a function of the instantaneous luminosity, and including a safety factor of three,

the expected background rates and integrated charge at the HL-LHC will be about 600 Hz/cm2

and 840 mC/cm2, respectively [100]. In such operating conditions, irrecoverable aging effects can

appear, as the higher collision rates affect the detector properties and performance.

Therefore, since July 2016, a long-term irradiation test has been carried out at the CERN gamma

irradiation facility (GIF++) [126] to study whether the present RPC detectors can survive the difficult

background conditions during the HL-LHC running period [127].

Four spare RPC chambers have been irradiated, two each of type RE2/2 and RE4/2 [1, 100].

These are from the endcaps where the backgrounds are expected to be maximal [128]. Two different

RPC production types have been tested, reŕecting the fact that the RPC endcap production was

done in two different periods, 2005 for the RE2 detectors (both RE±2) and 2012ś2013 for the RE4

detectors (both RE±4). Two chambers, one from each period, are continuously being irradiated

while the other two of the same type are kept as reference and are switched on only from time to time.

The detector parameters, such as dark currents, noise rates, currents, and count rates for various

background conditions are monitored continuously and compared with the measurements from the

reference chambers.

The integrated charge is calculated as the average density current accumulated in time in the

three gaps that constitute the detector, since the gamma ŕux, provided by the 14 TBq 137Cs source at

the GIF++ [126] is uniformly distributed over the detector surface. The collected integrated charge

from the beginning of irradiation until September 2022 is about 813 and 478 mC/cm2 for the RE2

and RE4 chambers, respectively, which corresponds to approximately 97 and 57% of the expected

integrated charge at the HL-LHC.

Dark current and noise rate studies. Dark currents and noise rates are monitored periodically in

order to spot aging effects due to irradiation. The dark-current density, i.e., the currents normalized

to the surface area, for both the irradiated and reference RE2 chambers are shown in őgure 66 as a

function of the collected integrated charge. The dark currents were measured at 6.5 kV to determine

the ohmic contribution, and at 9.6 kV to include the contribution from gas ampliőcation.

Figure 67 (left) shows the dark-current density monitored as a function of the effective

high voltage, i.e., the voltage normalized to the standard temperature of 20◦C and pressure of

990 mbar [112] at different values of collected integrated charge. Since the beginning of irradiation,

the dark currents have been stable in time, with only small acceptable variations. Figure 67 (right)

displays the average noise rate for the irradiated and reference RE2 chambers as a function of the

collected integrated charge. The average noise rate is stable with time and less than 1 Hz/cm2.

Resistivity and current studies. Other important parameters that are measured periodically are

the current in the presence of background radiation and the resistivity of the electrodes. The latter

is measured several times per year, since it is a crucial performance parameter. The resistivity

is measured by őlling the detector with pure argon and operating it in a self-sustaining streamer

mode, which occurs when the gas-quenching components such as isobutane are removed. The

streamers propagate over the entire detector area, and by measuring the current at a given high

voltage, the resistance, and hence the resistivity, can be calculated. The measured resistivity values

are normalized to 20◦C to allow comparison of the values for different temperatures [130].
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Muons experience the largest bending in the muon spectrometer at the position of the őrst

muon station as the magnetic őeld lines bend around the endcap ŕux return. Due to the increasing

background rates at large 𝜂 and the reduction in the magnetic őeld in the őrst muon station, the

trigger rate in this region is large and difficult to mitigate. The insertion of the GE1/1 chambers

increases the lever arm traversed by muons by a factor of 2.4ś3.5, relative to ME1/1 alone, leading

to a signiőcant improvement in the muon trigger momentum resolution and a large reduction in the

L1 trigger rate. Figure 74 shows the expected trigger rates in the forward muon spectrometer with

and without the GE1/1 upgrade. This indicates that the upgrade will lower the trigger rates by a

factor of 3ś10 depending on the 𝑝T threshold. The muon trigger is described in detail in section 10.2.

Figure 74. L1 muon trigger rate with and without the GE1/1 upgrade, assuming an instantaneous luminosity
of 2 × 10

34 cm−2 s−1, where MS1/1 indicates the őrst muon station [100].

Each endcap GE1/1 detector consists of 36 double-layered triple GEM chambers located just

in front of the őrst CSC station, labeled ME1/1, each covering a 10◦ sector in azimuth. The

chambers provide full coverage in 𝜙 and were constructed in two sizes, the odd-numbered GE1/1

are slightly longer in order to maximize the pseudorapidity coverage while őtting in the available

space constrained by the support structure, as shown in őgure 75. The GEM detector technology can

withstand rates up to 1 MHz/cm2 and has excellent spatial and timing resolution of approximately

250ś500 𝜇m and <10 ns per layer, respectively. The combined GE1/1 station spatial resolution is on

the order of 100 𝜇m. The GE1/1 detector is placed, in global CMS coordinates, in 𝑧 between 566

and 574 cm, and at a radius between 145 and 230 cm.

6.4.2 Technical design

The CMS triple GEM detector is a micro-pattern gas detector that comprises four gas gaps separated

by three GEM foils, as shown in őgure 76. It has an active area of 990 × (220ś455) mm2 with a

3/1/2/1 mm wide drift/transfer-1/transfer-2/induction őeld gap conőguration [136]. The bottom of

the GEM assembly is a printed circuit board that holds the drift electrode and voltage divider, while

the top of the assembly is the readout board consisting of radially oriented readout strips along

the long side of the chamber. The strip pitch ranges from 0.6 to 1.2 mm, and the readout board is

segmented in up to 10 × 3 𝜂-𝜙 partitions, each with 128 strips. The triple GEM arrangement allows

for a charge ampliőcation factor of up to a factor of several 10
5, while limiting the probability of

electrical breakdown or discharge. The ampliőed charge induces a measurable signal on the readout
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Table 10. Dimensions and speciőcations of the GE1/1 short and long chambers, from ref. [136].

Speciőcation Short Long

Chamber length [cm] 113.5 128.5

Chamber width [cm] 28ś48.4 26.6ś51.2

Chamber thickness [cm] 1.42 1.42

Active readout area [cm2] 3787 4550

Active chamber volume [liters] 2.6 3

Geometric acceptance in 𝜂 1.61ś2.18 1.55ś2.18

Figure 77. GE1/1 drift board (left) and a magniőed view of the drift board (right) showing the HV pins and
the resistor and capacitor network connecting to the chamber HV supply. Reprinted from. [136], Copyright
(2019), with permission from Elsevier.

active gas volume, a 100 kΩ resistor and 330 pF capacitor are installed on pads on the PCB to limit

the current from the high-voltage (HV) power supply and decouple the signal from the HV. Twelve

pins that carry the HV to the GEM foils are mounted as shown in őgure 77.

Four internal frames composed of halogen-free glass epoxy with thicknesses of 3/1/2/1 mm are

coated with polyurethane varnish and are used to deőne the spacing between the drift board, the

three GEM foils, and the readout board. The GEM foils are attached to the frames by screws that

pass through the entire chamber assembly to hold it in place.

The GE1/1 detector uses three identical GEM foils shown in őgure 78, which are thin polyimide

foil clad with a thin copper layer containing micro-pattern holes etched in a periodic grid. A voltage

up to 400 V is applied across the copper-clad surface producing a strong electric őeld of between 60

and 100 kV/cm. The triplet structure allows for an ampliőcation of around 10
5 when moderately high

voltages are applied. The side of the foil facing the readout boards is a continuous conductor, while the

strips facing the drift board are segmented into sectors of approximately equal area of 100 cm2. The

segmentation ensures that, in the extreme case of a large discharge creating a short circuit between the

GEM electrodes of a single sector, the affected dead area is limited to the 100 cm2 of a single sector

instead of deactivating the entire detector. Each sector is connected separately to the HV supply

via a 10 MΩ resistor to limit currents from the HV supply and to quench any possible discharge.

The readout board is a printed circuit board with 3072 radially oriented readout strips on the

side facing the interior of the chamber. The strips are connected by metalized vias to the outer side

of the board, which are routed to readout pads on the exterior-facing side of the board. The board is

segmented into 8 × 3 𝜂-𝜙 partitions with three sets of 128 strips in 𝜙. Each set of 128 strips is read
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Figure 81. Picture of the VFAT3 ASIC (left) and a high-level schematic (right). Reproduced from [146]. ©

CERN 2016. CC BY 3.0.

charge pulses. Following the discriminator, the binary comparator results are synchronized with the

LHC clock in the synchronization unit. A programmable threshold allows a channel-by-channel

calibration to optimize the signal-to-noise ratio, and is set to obtain approximately 98% efficiency

per single hit so that the logical OR of two layers has a 99.9% efficiency.

The data are then split into two paths. A trigger signal, with őxed latency, is sent to the trigger unit,

while an asynchronous tracking signal is sent to a buffer for full granularity readout via the communi-

cations port. The signal is accompanied by a time stamp, the bunch crossing, for further processing.

The signal can last up to approximately 60 ns depending on the gas mixture, and the VFAT3 chip

allows the shaping time to be adjusted to fully integrate the charge and maximize the signal-to-noise.

The timing resolution is optimized by the use of a constant-fraction discriminator and a gain with a

programmable dynamic range. The buffer for the tracking data is implemented by a SRAM memory that

operates as a circular buffer 128 channels wide and 1024 bunch crossings deep. It continuously samples all

channels in every cycle of the LHC clock. After 1024 bunch crossings, the buffer overwrites the first entry.

Since the L1 trigger operates with őxed latency, there is a őxed time between the level-1-accept

(L1A) trigger signal and the data corresponding to the bunch crossing of interest. Upon receiving

an L1A, the appropriate data are transferred from the SRAM1 buffer to the SRAM2 buffer, which

is 512 bunch crossings deep and stores the data until they are transmitted off the chip. The chip

supports a latency of up to 12.5 𝜇s with an L1A rate of up to 1 MHz. The data can either be sent in a

lossless mode or zero suppressed.

The őxed latency, or trigger path, is used to provide fast hit information synchronous with the

LHC clock, which can be put in coincidence with other detectors to decide if the event will generate

an L1 trigger. The logical OR of two adjacent channels is sent to the trigger unit.

The slow-control signals are used to send calibration, bias, monitoring, and control information

via the communication port and to control and monitor the settings and status of the VFAT3 chip.

The output of each VFAT3 chip is routed along the GEM electronics board (GEB), which is

mounted directly on top of the readout board. The GEB is divided into two sections that cover the

entire chamber. The GEB routes the signals between the 24 VFAT3s on each chamber and the low

voltage from the external power supplies to the chamber and frontend electronics. CAEN power

supplies provide voltage to the FEAST boards mounted on the GEB. The FEAST boards perform

the DC-DC conversion to provide the proper low voltages for the readout electronics, as well as the

HV for the operation of the chamber.
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The opto-hybrid board serves as the chamber hub for data communication, transfer, and control.

It receives data from all the VFAT3 ASICs, formats it for the entire chamber, and sends the data

using the GBT protocol and optical links to the backend electronics for őnal readout and use in the

L1 muon trigger. Additionally, each opto-hybrid board contains three GBTx chipsets [147], one

Virtex-6 FPGA [148], three versatile link transceivers (VTRx), and two versatile link transmitters

(VTTx) [68]. Trigger data are sent over the VTTx via optical őbers to both the backend readout and

the CSC trigger motherboard, while the three VTRx transmit tracking data to the backend readout

(CTP7 card). Each GBT can handle up to ten frontend chips at a transfer rate of 320 MHz, and

the tracking data are transferred at 4.8 Gb/s through the VTX. The trigger data are transferred at

3.2 Gb/s using 10b/8b encoding. In operation, the trigger data are formatted within the Virtex-6

FPGA, while the tracking data ŕow directly from the frontend by the GBT VTRx links to the backend.

Calibration, and trigger, timing, and control (TTC) signals are sent to the opto-hybrid board and

distributed to the frontend via the GEB. Irradiation tests have shown that the single- and double-error

rates from single-event upsets (SEUs) are well within acceptable margins for the total ionizing dose

(TID) expected over the lifetime of the HL-LHC project. A photo of the opto-hybrid board and the

measured error rates are shown in őgures 82 and 83 .

Figure 82. Photo of the GE1/1 opto-hybrid board with the Xilinx Virtex-6 FPGA at the center.

The backend electronics are 𝜇TCA cards that were originally developed for a calorimeter trigger

Phase 1 upgrade project [143]. The CTP7 has 67 optical receivers, 48 optical transmitters, a Xilinx

Virtex-7 FPGA, and a Zync processor. The őrmware was adapted for the GEM detector with 36 GBT

cores servicing 12 triple GEM detectors with one link to a CMS 𝜇TCA AMC-13 card operating the

standard DAQ and trigger links. Using this hardware, all of the GE1/1 can be read out with one

𝜇TCA crate hosting six CTP7 cards and one AMC-13 card.

6.4.5 CSC/GEM trigger for Run 3

Figure 84 shows a view in the global CMS transverse (𝜙-𝑧) plane indicating the location of the GE1/1

and the őrst CSC station, ME1/1. The diagram indicates the relative position of GE1/1 and ME1/1
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• assembly and commissioning of the GE1/1 chambers at the production sites (QC3ś5),

• assembly and commissioning at CERN before installation in CMS (QC6ś10).

First, all components were cleaned using ultrasonic baths, baked, sand-blasted, and visually inspected

for faults. The components were then optically and electrically inspected including veriőcation

measurements, speciőcally measuring the 𝐼-𝑉 curves and checking for shorts between readout strips

on the drift board. The foils were optically inspected, and checked that the leakage currents were

less than 30 nA when 500 V was applied between the two sides of the GEM foils. Each chamber

was pressurized by dry nitrogen at 30 mbar and checked for gas leakage. The chambers were then

ŕushed for several hours with Ar+CO2 and monitored for output at moderate HV. The uniformity of

the gas gain was veriőed by placing an X-ray source 1 m away from a chamber enclosed in a copper

protective box, which simultaneously illuminated the full chamber.

Once shipped to CERN, the gas leakage and HV tests were repeated for every chamber, and the

frontend electronics and chambers were mounted into super-chambers with cooling plates. Electrical

conductivity tests, gas leak tests, and electronic noise measurements were repeated with the cooling

on. Finally, the super-chambers were mounted on a cosmic ray test stand where efficiency, noise,

and tracking studies were done to conőrm the correct and uniform operation of each chamber. While

in storage and before installation into CMS, the gas-leak and HV stability were tested again and

monitored over one month before each GEM was installed and declared ready for commissioning in

the CMS detector.

6.4.8 Preliminary commissioning results

Before installation in the CMS cavern, a GE1/1 chamber was tested at the CERN H4 beam, which

was extracted from the SPS [155]. A secondary beam of pions was produced when the proton beam

struck a beryllium target. Finally, that secondary beam was őltered by collimators to produce a beam

of 150 GeV muons from the decay of the pions in the secondary beam.

Several key performance parameters were measured in the test beam. Two are the single-

hit efficiency and the time resolution of the GEM chambers. A set of scintillators read out by

photomultiplier tubes (PMTs) were placed upstream of the chamber under test. Events were selected

requiring a triple coincidence in each of the three layers and the efficiency was estimated by counting

the number of hits in the GE1/1 tracking chamber in that region. Time resolution information was

obtained by measuring the standard deviation of the distribution of the measured time between the

trigger and GE1/1 detector signal. As can be seen in őgure 86, an efficiency greater than 98% and a

time resolution less than 10 ns were obtained. Other results, such as discharge rate and rate capacity

as a function of voltages and gas mixture are given in ref. [155].

During LS2, the GE1/1 chambers were installed in CMS, connected to all services (LV/HV, gas,

and optical őber connection for readout), and the chambers were commissioned in situ. Latency

scans were done for all GE1/1 chambers on both endcaps to account for the variable cable and

optical őber lengths, and HV values were optimized for signal-to-noise ratio using cosmic ray muons.

It should be noted that, unlike in LHC collisions, cosmic ray muons do not arrive at a őxed and

known time. Thus, the latency and other operational parameters cannot be fully optimized for LHC

operations until all chambers are exposed to both muons originating from the interaction point and

the LHC background conditions.
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The solid-state detectors equipping PPS need to operate at low temperatures (−20 to 5◦C,

depending on the detector) to mitigate the effects of radiation damage. This is accomplished by

means of a ŕuorocarbon evaporative system [159]: the cooling ŕuid is transported to the RPs,

where suitable evaporation circuits, thermally coupled to the detectors, supply the needed cooling

power [156, 157].

A more detailed description of the TOTEM and PPS roman pot system and its operations can

be found in refs. [156, 157] and references therein.

7.2 Tracking detectors

The energy loss of protons can be measured, through detailed knowledge of the LHC optics parameters

and dedicated calibrations [12], from the parameters of their reconstructed tracks. In order to obtain

the needed accuracy in 𝜉, a resolution of few tens of µm is required on the coordinates of the track

impact point. The hit rate distribution is highly nonuniform in the region covered by the tracking detec-

tors, with peak particle ŕux values of about 3×109 p/(cm2s) and a range spanning over three orders of

magnitude. This reŕects in the high radiation dose the detectors have to withstand, with reference ŕu-

ence values in the most irradiated areas of 1ś3×1015 neq/cm2 for an integrated luminosity of 100 fb−1.

7.2.1 Detector units

Proton tracks are reconstructed in PPS by two tracking stations per arm. During Run 2, the roman

pots hosting the trackers and the technology chosen for the detectors have changed over time.

In 2016, in order to advance data collection by one year with respect to the original plan, two of

the TOTEM tracking stations, equipped with silicon strip detectors [160, 161], were installed in

the horizontal RPs at the 210-N and 210-F locations. The TOTEM strip detectors were originally

designed to operate in special LHC runs at very low luminosity, up to about 1030 cm−2 s−1. Within

PPS, they have been operated successfully well beyond design speciőcations, providing excellent

position measurements. However, they suffered from severe limitations related to the high hit rate.

Firstly, since the hit position in the detector planes is determined by the coincidence of pairs of

perpendicular strips, the frequent presence of multiple proton tracks in the same bunch crossing leads

to ambiguities that cannot be resolved. Secondly, the radiation dose in the regions with the highest

hit rate induced damages that caused an early loss of efficiency: for those regions, the efficiency

dropped to zero after O(10 fb−1) of integrated luminosity.

In 2017, new silicon pixel detectors, based on the 3D technology [162], were installed in the

RPs at the 220-F locations, replacing the strip trackers at 210-N. These detectors were speciőcally

developed for PPS, with much improved radiation tolerance and rate capability with respect to the

strip detectors, allowing for the reconstruction of multiple tracks per bunch crossing. Finally, in

2018, both stations at 210-F and 220-F were equipped with pixel detectors.

Despite the improved resistance to radiation, the dose accumulated by the pixel sensors and

readout chips during Run 2 has been such to degrade signiőcantly the detector performance, as

brieŕy described in the following. This, and the lack of enough replacement parts, called for the

construction of new detector modules; with the aim of mitigating the adverse effects of radiation

damage, a new design for the support mechanics has been developed for Run 3, which in turn implied

a redesign of the frontend electronics. Here, the main differences of the Run 3 design from that used

in Run 2 are outlined. A more complete description of the Run 2 setup can be found in ref. [163].
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Figure 95. The pixel PortCard for Run 3; the small ŕange near the bottom acts as a feed-through for the board.
The section below is housed inside the secondary vacuum volume of the pot.

• route lines needed to read out environmental parameters in the detector housing and control

the internal movement system (described later).

The PortCard can also control, through a parallel port register, the selective powering of the

detector planes.

7.2.3 Support structure and internal motion system

The sensor modules and the ŕexible boards are glued, using a ŕowable silicon-based sealant, to

aluminum support plates, ensuring thermal connection to the cooling circuit on the sides of the

detector package (őgure 95). Precision holes in the plates are used to control the position of the

sensors with respect to the thin window of the detector housing. In Run 2, larger support plates were

employed, realized in thermal pyrolytic graphite (TPG) enclosed in thin aluminum sheets.

An aluminum support structure carries the six detector modules, ensuring their precise

positioning and coupling them to the evaporators of the cooling system. Six slits on the sides of

the support structure host the aluminum plates of the modules, and pins on both sides keep them

in place. Three adjustable transfer-ball feet provide contact with the ŕoor of the detector housing;

on the opposite side, two spring-loaded frames allow the correct sealing of the upper ŕange of the

RP and the transverse movement of the detector package, as described in the following. In Run 2,

planes were arranged in pairs in separate sections of the support structure, eventually assembled

together and to the rest of the package mechanics. Feet were static and no internal movement was

allowed. Figure 96 shows the assembled detector packages, as well as the connections to the readout

and services outside the secondary vacuum volume.

Both the sensors and the readout chips used in Run 2 were designed to withstand ŕuence

values up to 2ś3×1015 neq/cm2 [162, 168]. However, the highly nonuniform distribution of the hit

rate (őgure 97) implied localized radiation damage in the readout chip structures that could not

be compensated by changing global conőguration registers of the chip itself. In particular, the

position of the time window to accept hits (WBC register) could not be optimized for all pixels

simultaneously: after a data-taking period corresponding to about 20 fb−1 of integrated luminosity,

the regions with the highest rate could not be read out.
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placing the ŕexible board on top of the sensor) so as to exploit all the available space in front of

the RP thin window. The width of the thin window is 29 mm, while that of the sensor module is

just below 22 mm. A movement range of 5 mm for the detectors has been foreseen, including some

safety margin. This will allow to shift vertically the sensor modules, during the data-taking period,

in 11, 500 𝜇m-wide steps, thus distributing the radiation damage.

The task is accomplished by means of a miniaturized stepping-motor linear actuator (Zaber

LAC10A-T4A), mounted inside the detector package (őgure 98). The actuator has an excursion of

10 mm and a step size of about 23.8 nm. Its body is fastened to the lower frame of the spring-loaded

structure; the head of the actuator is screwed into one of the side support parts. These two parts

can slide on each other thanks to low-friction elements realized in polyether ether ketone (PEEK).

Their relative position is measured by a simple linear motion potentiometer (Bourns 3048L-5-

103), mounted in a similar fashion as the actuator, whose resistance can be read out externally.

Extensive tests have been performed on the fully assembled system, in particular performing repeated

movements inside an exact reproduction of the RP and in conditions similar to the working ones

(𝑇 ≈ −20
◦C, 𝑃 ≈ 15 mbar). Some results are shown in őgure 98. The tests have demonstrated that

the measured variation in resistance is consistent with the expected shift, showing the adequacy of

the position measurement, where only a moderate precision is required. Some hysteresis effect is

observed, most likely due to the mechanics of the potentiometer, when the shift direction is inverted;

however, this effect is reproducible over several movement cycles.
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Figure 98. The system for internal motion of the pixel detector package. Left: detail of a partially assembled
detector package: the stepper motor is the black object on top; the blue object below is the potentiometer used
to monitor the position; both of them have their body tied up to the sliding slit on top, while their mobile tip
is screwed to the support structure for the modules. Right: results of a motion test inside a RP at standard
working conditions (−20

◦C and about 5 mbar), with measured versus nominal position. Two sets of points
can be identiőed for forward and backward movements, revealing a hysteresis effect.

The linear actuators are controlled by dedicated two-channel controllers (Zaber X-MCC2). One

controller per arm is installed inside the RR53 and RR57 shielded areas (łalcovesž) along the tunnel.

They are connected to Raspberry PI microcomputers via USB link, which also reads out the detector

position through an external ADC board; the microcomputers can be accessed from outside via the

4G network in the tunnel. This kind of setup is adequate in view of the noncontinuous operation of

the motors. In fact, only a limited number of detector shifts is performed over the whole data-taking

time, in interőll periods.
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7.3 Timing detectors

In the presence of multiple proton-proton interactions in the same bunch crossing (pileup), the

separation of overlapping events in CMS relies on the reconstruction of multiple primary interaction

vertices. However, because the proton tracks reconstructed by PPS have scattering angles very

close to zero, the tracking system described in the previous section cannot associate them to CMS

primary vertices. For events with two protons detected on opposite sides, this limitation can be

overcome if a precise measurement of the arrival time of protons is available: from the difference

in time Δ𝑡 = 𝑡+ − 𝑡−, where 𝑡+ and 𝑡− are the time measurements in the positive and negative

arm of PPS, respectively, the position in 𝑧 of the pp vertex can be inferred from 𝑧pp = 𝑐Δ𝑡/2.

Dedicated studies [156] have shown that a time resolution of O(10 ps) is needed to achieve the

correct association of forward protons to the events reconstructed centrally by CMS. For pileup

conditions corresponding to 𝜇 = 50, a time measurement with 10 (30) ps resolution could reject the

combinatorial background from random combination of uncorrelated protons by about a factor 30

(20) while keeping about 60 (50)% of the signal. However, larger time resolution values, within

100 ps, can still help in reducing the background. As in the case of the tracking system, timing

detectors must be able to operate with large and highly nonuniform particle ŕuxes, to tolerate high

radiation doses and to work in a vacuum. Moreover, the material thickness must be limited.

During Run 2, one roman pot on each arm was used for timing, with four planes per RP. For

Run 3, instrumenting an additional station at the 220-N location will allow a second timing RP on

each arm, giving a total of eight planes per arm.

7.3.1 Detector modules

The PPS timing detectors [169ś171] are based on synthetic single crystal chemical vapor deposit

(scCVD) diamonds. The detectors combine good time resolution, extreme hardness against large

and nonuniform radiation, low material budget, and őne segmentation near the beam.

x

LHC beam

Crystal 0 Crystal 1 Crystal 2 Crystal 3

Figure 99. Left: details of the four-pad and two-pad segmentation of the diamond sensors used in the Run 3
modules. Right: arrangement of the four crystals in a Run 3 module, where the position of the beam is
indicated by the spot on the left. Reproduced with permission from [172].

At the conclusion of Run 2, half of the planes were based on an improved double-diamond

architecture, in which two diamonds are connected to the same ampliőcation channel. This nearly

doubles the signal, while keeping a similar noise level, resulting in a signiőcant improvement

of the timing resolution compared to a single-diamond design. In Run 3, all timing planes are

of the double-diamond design. The crystals have dimensions of 4.5 × 4.5 mm2, with a total

active surface area of approximately 20 × 4.5 mm2 per plane. The őnal segmentation is achieved
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during the metalization process, resulting in a total of 12 channels per plane. Due to the highly

nonuniform ŕux of particles, the segmentation varies with the distance from the beam in the 𝑥

direction. Several conőgurations of pad dimensions and sensor layout have been used in Run 2;

in Run 3, sensors with two-pad and four-pad segmentation are used, with dimensions as detailed

in őgure 99, where the layout of four of these sensors in a detector module is also shown. Pads

close to the beam position have smaller size (as small as 0.55 mm), while a coarser segmentation

is used farther from the beam. This results in a more uniform occupancy, with low inefficiency

due to multiple hits in the same channel. Because of the horizontal crossing of the LHC beams

at the IP, hits are more widely distributed along the 𝑥 axis. For this reason, the detectors are only

segmented horizontally.

The diamonds for Run 3 include newly produced crystals, and crystals that were previously

used in Run 2, cleaned and remetalized. Samples of the latter were őrst studied in beam tests after

dismounting, and found to maintain high efficiency and achieve single plane time resolutions of

∼ 80ś95 ps, after being exposed to ŕuences as large as 5×1015 p/cm2 [173]. Compared to the nominal

resolution of about 50 ps per plane for a new double-diamond detector, the decrease in resolution

was found to be largely consistent with radiation damage to the preampliőcation electronics.

Figure 100. Left: the hybrid board for the Run 3 timing detectors’ readout; the lower, wider section hosts the
sensors and is housed inside the secondary vacuum volume of the pot. Right: detail of the diamond sensors on
one side, connected via wire bonds to the frontend electronics.

The diamonds are glued to a hybrid board (őgure 100), containing both the sensors and a

multistage ampliőcation chain for each of the 12 channels. As mentioned above, radiation damage

to the ampliőcation chain was identiőed as a limiting factor for the timing performance in Run 2.

Therefore, a revision of the hybrid board was designed for Run 3, with a modiőed layout to mitigate

the exposure of the preampliőers to radiation. Additional modiőcations to the design were made to

improve the high-voltage isolation and the stability against RF noise pickup. Finally, remote control

of the ampliőer gains was implemented, giving the opportunity to better őne tune the settings and

compensate for any degradation during data taking.

ś 120 ś







2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
0
5
0
6
4

The system can be logically subdivided into four major blocks: the transmission unit, the

distribution unit, the measurement unit, and the receiving unit. Receiving units are installed in the

LHC tunnel, as close as possible to each timing detector, while the transmission, distribution, and

measurement units are located in the IP5 counting room. A block diagram of the entire system

is shown in őgure 103. The system leverages the use of a dense wavelength division multiplex

(DWDM) technique, exploiting the transmission of multiple signals of different wavelengths over a

common single-mode őber. This allows the use of standard telecommunication modules compliant

with ITU (International Telecommunications Union) standards.

The transmission unit optically modulates two reference clock signals using two different

DWDM wavelength carriers: 𝜆1 and 𝜆2. These optical signals are multiplexed into a single őber and

transmitted to the distribution unit, where they are split to be distributed to all receiving units located

in the tunnel on both sides. The multiplexed signal is then optically ampliőed via an erbium-doped

őber ampliőer (EDFA) to compensate for the attenuation due to the multiplexing and splitting steps.

These signals are further multiplexed with a third one, of wavelength 𝜆M, with the goal of

measuring the transmission delay over each őber. This is done in the measurement unit, where a

network analyzer drives the optical modulation of this third DWDM signal, which is then sent to and

reŕected back by the receiving unit. In this way, the signal delays can be determined and possible

drifts can be monitored.

In the tunnel, receiving units separate and convert the multiplexed optical signals generated

in the transmission unit back to electrical signals, and reŕect, via a őber Bragg grating reŕector,

the one generated in the measurement unit. The electric signals are then routed to frontend and

readout electronics.

Measurements performed with the installed system have shown an additional contribution to

jitter of slightly less than 1 ps, mainly due to the inherent jitter of the clock source signal, the noise

added by the optical components, and the bandwidth of the transmission system itself.

7.4 Data acquisition and detector control

The backend data acquisition systems for the various detectors used in PPS have been developed

independently and are based on different hardware. The strip trackers have maintained the original

structure developed for TOTEM, and are integrated into the CMS data acquisition (DAQ) system,

described in section 9. A similar architecture is used for the timing detectors. The pixel tracker

system is based on the DAQ scheme employed by the Phase 1 upgrade of the CMS pixel detector,

described in section 3.1.4.

7.4.1 Pixel detectors

The pixel DAQ is based on 𝜇TCA FC7 carrier boards, following the design illustrated in őgure 93,

and described in more detail in ref. [21]. The boards are employed as either FEDs or FECs, depending

on the type of attached mezzanine card and the őrmware deployed. Two FC7 boards are equipped

as FEDs, and receive data transmitted by POHs over optical őbers from the pixel detectors on the

two arms of the PPS spectrometer. The typical data volume in Run 2 was about 0.5 kB/event or

less, depending on the instantaneous luminosity and other LHC conditions, and is similar in Run 3.

Additional FC7s are equipped with FEC mezzanines, transmitting signals over őbers to the frontend

boards in the LHC tunnel. Depending on the őrmware, the FECs are used as either PxFECs, sending
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the clock and trigger, or TkFECs, responsible for sending slow-control commands. The entire system,

shown in őgure 104 (left), is housed in a single 𝜇TCA crate, containing one AMC13 for clock and

trigger distribution, and one MCH crate controller.

Figure 104. Left: the PPS pixel DAQ crate. On the left are two FC7 FECs, sending clock, trigger and slow-
control commands; in the center-right are two FC7 FEDs, receiving data from the two arms of the PPS spectrom-
eter; on the far left is the MCH crate controller, on the far right is the AMC13. Right: the timing and strips DAQ
crate. The SLinks are placed in the backplane of the OptoRx boards delivering data to upstream CMS DAQ.

7.4.2 Strip and timing detectors

The DAQ for the PPS timing detectors, and for the strip detectors used in special alignment őlls, was

developed by the TOTEM Collaboration, based on a scalable readout system (SRS) [180]. Optical

receiver mezzanines (OptoRx) are connected to a custom designed board, which further connects

to a frontend concentrator board. The OptoRx receives data transmitted over őbers from GOHs

on the timing digital readout units. A scalable readout unit (SRU) is responsible for receiving and

distributing the clock, trigger, and fast commands within the SRS crate (őgure 104 right). The

system was designed for full compatibility with the CMS DAQ. Data are transmitted via SLink to the

FRLs of the central CMS DAQ, where they are treated in the same way as those from other FEDs.

During Run 2, a total of two VME-based FEDs were used for the timing detectors in normal data

taking, while four additional such FEDs were used to read out the strip detectors in the vertical RPs

for special alignment runs. In Run 3, a total of six timing FEDs are used in standard runs, to support

the addition of a second timing detector station, and the readout of a limited amount of data with a

SAMPIC waveform digitizer.

The SRS őrmware was originally designed to read data from the VFAT chip [145] used by the

TOTEM strip detectors. In order to use this system with minimal changes, the timing data from the

HPTDCs are packed into a VFAT-like frame, with no zero-suppression. In Run 2, the data volume

from the full timing system was around 2 kB/event. In Run 3, this will more than double with the

addition of a second timing station and the SAMPIC readout option. The system is capable of

sustaining the CMS trigger rate of more than 100 kHz.

The distribution of (non-reference) clock, trigger, and slow-control commands for the timing

electronics is handled by a VME FEC, of the same type and conőguration as used in the electromag-

netic calorimeter preshower (section 4). The commands are transmitted over őbers to the frontend

boards of the timing system. One control loop is dedicated to the strip detectors, while another
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is dedicated to the timing detectors. In addition, őrmware for the FPGA of the timing digitizer

motherboard can be deployed over the slow-control loop, using a new software development that

takes advantage of the JTAG master of the CCU25 communication and control unit [29]. This allows

őrmware updates to be made remotely, without requiring access to the LHC tunnel.

7.4.3 Detector control system

The PPS detector control system (DCS) is a legacy from the TOTEM experiment built with the

industrial WinCC OA software (PVSS) used to control the low and high voltage of detector packages,

to monitor the radiation dose, pressure, and temperature sensors, as well as the roman pots movements

and the status of interlocks of the detector safety system (DSS). The TOTEM DCS system includes

the automatic matrix actions to manage the power-supply state of the roman pots according to the

LHC beam status. The system for Run 3 is integrated within the CMS DCS framework, and runs

with WinCC OA version 3.16.

7.5 Roman pot insertion and running scenarios

The position of the roman pots with respect to the LHC beam is controlled by the LHC operators

through standardized procedures. During the injection, acceleration and luminosity tuning stages,

the RPs are kept in a retracted (łgaragež) position, at about 40 mm from the proton beam. When

łStable Beamsž are declared, the RPs are moved closer to the protons, at a distance depending on the

beam width at that location, 𝜎𝑥,XRP. This distance, 𝑑XRP, was given in Run 2 by the following rule

from machine protection:

𝑑XRP = max[(𝑛TCT + 3)𝜎𝑥,XRP + 0.3 mm, 1.5 mm], (7.1)

where 𝑛TCT is the distance of the tertiary collimator (TCT) from the beam center in units of the

beam width 𝜎𝑥,TCT at its location. The 3𝜎 retraction ensures that the RPs stay in the shadow of the

TCT, while the additional 0.3 mm margin protects against accidental beam orbit deviations. From

arguments of mechanical rigidity of the RP thin window, which could bulge towards the beam in

case of a secondary vacuum loss, an absolute lower limit of 1.5 mm was imposed. In Run 2, with

𝑛TCT = 8.5, the resulting 𝑑XRP ranged between 2.2 mm (210-F) and 1.5 mm (220-F).

Operations in Run 3 are characterized by a far more complex luminosity-leveling scheme with

concurrent changes in the crossing angle, called 𝛼 in this section, and the beta function at the IP,

𝛽
∗. The most recent concept of the leveling scheme can be represented by the trajectories shown in

őgure 105 for the years 2022 and 2023.

Both 𝛼 and 𝛽
∗, as well as the collimation scheme, have a decisive impact on operation and

performance of the RP spectrometer.

7.5.1 TCT collimator and roman pot insertion scheme

The RP approach distance 𝑑XRP, as given in eq. (7.1), depends on 𝛽
∗ through the beam width, 𝜎𝑥,XRP,

and through the TCT distance, 𝑛TCT = 𝑑TCT/𝜎𝑥,TCT. The function 𝑑TCT(𝛽∗) characterizes the TCT

collimation scheme.

In the old standard collimation scheme, used until the end of 2022, the TCT did not move during

stable beams, i.e., 𝑑TCT(𝛽∗) = const, so the nominal distance 𝑑XRP was entirely determined by the
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8 Luminosity and beam conditions

The main deliverables of the beam radiation instrumentation and luminosity (BRIL) system are

the measurements of the online and offline luminosity, the beam-induced background, the beam

losses and timing, and the radiation products in the CMS experimental cavern. The latter are

used to compare with the values from corresponding simulations. The BRIL system delivers

luminosity and beam-condition data in real time to the LHC and CMS control rooms. In this section,

the instrumentation and technologies used to carry out these measurements are described. The

software, computing, and monitoring aspects of the BRIL systems are also discussed. The precision

measurement of the integrated luminosity for the different data-taking periods of Run 2 has been

described in refs. [181ś187]. For the 2016 data, an uncertainty of 1.2% was achieved [181]. For

2017, 2018, and Run 3, improved instrumentation and reőned analysis techniques are expected to

lead to further reduced uncertainties. Key ingredients of the precision are the availability of the

various independently calibrated luminometers with different instrumental systematics and the in situ

monitoring of their performance in terms of efficiency and linearity using short vdM-like transverse

beam separation scans in physics őlls.

For the online bunch-by-bunch luminosity measurement in Run 3, we rely on two fully dedicated

luminosity detectors (luminometers): the pixel luminosity telescope (PLT) and the fast beam

conditions monitor (BCM1F). In addition, the forward hadron calorimeter (HF) is used for the

online luminosity measurement. The HF has a separate trigger-level readout dedicated to the

luminosity measurement.

Both PLT and BCM1F were already operated successfully throughout Run 2. For operation

during Run 3, improved versions of these detectors were constructed and installed during LS2.

Other subsystems relevant to the luminosity measurement are the pixel detector and the muon drift

tube system. These various luminometers provide redundancy and complementarity for the precise

measurement of the online and offline luminosity and the online monitoring of the backgrounds.

The three independent online luminometers, PLT, BCM1F, and HF, are based on fundamentally

different technologies, and each provide precise bunch-by-bunch measurements of the instantaneous

luminosity and the beam-induced backgrounds (BIB). The BRIL online measurements are available

at all times, in particular whenever there is beam in the LHC, independently of the status of other

CMS subsystems and the central CMS DAQ system. The BRIL data-acquisition system (BRILDAQ)

delivers data in real time every 1.458 s, corresponding to four so-called łlumi nibblesž (NB). The

duration of one NB is 0.3645 s, corresponding to 2
12 orbits, and 64 NB make up one luminosity

section (LS) of about 23.3 s.

Data from the pixel detector and the muon systems contain important additional information that

is used to ensure a precise calibration and long-term monitoring of the stability and linearity of the

luminosity detectors. Tracker data are collected via the central CMS DAQ for offline analysis, and

provide pixel cluster and vertex information per event during calibration runs, and bunch-by-bunch

cluster counts per LS for data-taking periods with collisions. Muon data in Run 3 are collected via the

BRILDAQ from three sources: (i) orbit-integrated muon track stubs from the muon barrel track őnder;

(ii) trigger primitives from the DT chambers that are equipped with prototype Phase 2 readout; and (iii)

muon counts via the 40 MHz scouting system. The őrst source is the same as that used during Run 2,

while the last two are new and were introduced for Run 3 in preparation for the Phase 2 upgrade.
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To monitor the beam conditions, in addition to the dedicated luminometers, we also use the

beam-halo monitor (BHM) and beam-condition monitor for beam losses (BCML).

A simulation and monitoring strategy is in place for the radiation background to evaluate and, if

necessary, mitigate its effects.

8.1 Real-time bunch-by-bunch luminometers

8.1.1 Pixel luminosity telescope (PLT)

The PLT detector [188ś192] is an independent system for the luminosity measurement. It consists of

48 silicon pixel sensors arranged on 16 łtelescopesž, eight on each side at 1.75 m from the interaction

point (IP), close to the beam pipe, at a pseudorapidity |𝜂 | ≈ 4.2. Each telescope is 7.5 cm long and

contains three planes with individual silicon sensors. Their inner edges are as close as 4.7 cm from

the beam line. Figure 110 shows a sketch of the layout of one end of the PLT (left) and a photograph

of the actual detector showing the two half-frames that each side consists of (right).

Figure 110. Left: sketch of the general PLT geometry. The sensors are indicated by the purple squares.
Right: the actual PLT detector at one end of CMS, showing the arrangement of the eight telescopes around the
beam pipe. Reproduced from [193]. CC BY 4.0.

The silicon sensors [194, 195] are n-in-n (45 sensors) and n-in-p (3 sensors) type and consist

of 80 rows and 52 columns of pixels (or 26 double columns of 160 pixels each). The pixels are

150 𝜇m wide and 100 𝜇m high, and cover a total active area of 8 × 8 mm2 with an active thickness

of 285 and 150 𝜇m, respectively. During data taking, it is possible to set a smaller active area to

decrease the contribution from accidental hits, which are triple coincidences of signals that do not

actually come from a single particle track originating from the IP. The sensors are bump-bonded to a

PSI46v2 readout chip (ROC) [196, 197]. Both the n-in-n silicon sensors and the PSI46v2 ROCs are

inherited from the CMS Phase 0 pixel detector, while the telescope with n-in-p sensors of 150 𝜇m

thickness uses prototype CMS Phase 2 silicon sensors.

The PLT detector is usually operated in a łfast-orž mode in which the data are read out at the

full bunch-crossing frequency of 40 MHz. The fast-or mode does not contain full information on hit
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positions. In fast-or mode, if any pixels in a sensor register a hit over threshold, a single signal is

produced. The ROCs also have a separate data path to read out the full pixel data (hit location and

pulse height) at a lower rate (up to about 3.3 kHz) upon receipt of a level-1 accept (L1A) trigger

signal. The full pixel information, read out at a lower rate, is used to measure calibration constants,

corrections, and systematic uncertainties for the online and offline measurements.

The three ROCs for a single telescope are connected to a high-density interconnect (HDI)

card, which contains a token bit manager (TBM) chip [198]. The TBM chip coordinates the

readout of the three individual ROCs and produces a single readout for each telescope. Four

telescopes are connected to a port card, which manages the communication and control signals for

a single half-frame of the detector. The port card is in turn connected to the opto-motherboard

(OMB), which converts the electrical signals into optical signals that are then sent by őbers to the

CMS service cavern, where the backend readout electronics are located. Of the different kinds of

application-speciőc integrated circuits (ASICs) used in the PLT, all but two (SlowHub and PLTdriver)

were developed for the Phase 0 CMS pixel detector [1]. The SlowHub chip, on the OMB, uses

blocks from the pixel TBM chip to extract the slow I2C signals from the fast 40 MHz commands

needed for the pixel readout, thus signiőcantly reducing the total number of őbers needed. The

PLTdriver chip manages the fast-or signal outputs from the individual ROCs.

The backend readout electronics comprise a single frontend controller (FEC) card, which issues

commands to the ROCs, TBMs, and OMB, and three frontend driver (FED) cards. One FED is used

to read out and decode the full pixel data from the ROCs, and is identical to the FEDs used by the

Phase 0 pixel detector [199]. This data are then read out over an Slink [200] connection and saved to

a dedicated PC. The other two are the fast-or FEDs, one for each side of the PLT. These read out the

fast-or data from the ROCs and histogram the number of triple coincidences per channel and per bunch

crossing (BX). These data are read out via a CAEN VME optical bridge to a separate dedicated PC.

A dedicated trigger is used, in which events from colliding BXs are read out without a requirement

for speciőc activity in the event, this way equally sampling all colliding BXs in the LHC orbit.

The readout hardware counts the number of triple coincidences, events where all three planes

in a telescope register a signal, to determine the instantaneous luminosity. This fast-or readout

allows the PLT to provide online per-bunch luminosity with excellent statistical precision, with the

triple coincidence requirement providing a strong suppression of background from noise, residual

radioactivity of the detector material (afterglow), and BIB sources from beam-gas interactions and

beam halo. The luminosity measurement is obtained using a zero-counting technique, described,

e.g., in ref. [181], in which the actual rate is inferred from the measured rate of no hits, thereby

correcting for the overlap of signals.

8.1.2 Fast beam conditions monitor (BCM1F)

The BCM1F detector is a fast particle counter installed around the beam pipe, ±1.8 m away from

the IP, at a radius of about 6 cm, corresponding to |𝜂 | ≈ 4.1. The BCM1F provides a real-time

measurement of both luminosity and beam-induced backgrounds.

The experience gained from BCM1F operation in Run 2 [201, 202] led to an update of the

design for Run 3 [203]. For Run 3, the mix of silicon and poly-crystalline (pCVD) diamond sensors

used in Run 2 was changed to an all-silicon sensor conőguration with active cooling that has an
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improved stability with increasing integrated ŕuence and an improved linear response of the sensors

as a function of the instantaneous luminosity.

As in Run 2, the Run 3 detector consists of four łC-shapedž printed circuit boards (PCB),

referred to as C-shapes (őgure 111). A total of four C-shapes form two rings, one on each side of the

IP. Each C-shape has six double-diode silicon sensors that are used to measure particle hits. The

entire system comprises 48 identical channels. The C-shapes for Run 3 were designed for improved

robustness and with additional space for active cooling contacts.

Figure 111. Photographs of the BCM1F detector used in Run 3. Reproduced with permission from [204].
Left: one full BCM1F C-shape printed circuit board. Right: a closeup of the frontend module, which includes
the processing chip with two silicon double-diode sensors on each side.

Performance studies led to the choice of a sensor per-channel with an area of 1.7 × 1.7 mm2,

balancing the occupancy at high interaction rates with the statistical precision at low luminosity.

The sensors were designed as alternating current (AC)-coupled double-diodes and produced on the

CMS Phase 2 outer tracker strip wafers [32] with a full depletion thickness of 290 𝜇m.

Each sensor is directly connected via bond wires to one of the three fast JK16 [205] CMS ASIC

chips. This preampliőer chip was designed to have a fast rise time of 7 ns, narrow pulses with

10 ns full width at half maximum, and a return to the baseline within 25 ns. The connections are

established via AC coupling to prevent baseline drifts due to radiation-damage-induced leakage

currents that would not be compensated by the preampliőer. The coupling capacitance is part of the

sensor design, while a resistor on the PCB is used as the bias resistor.

Copper pads were added on the C-shapes for Run 3 to make the cooling contact with a new

titanium 3D-printed cooling pipe, which is placed in series with the PLT cooling loop. This improves

the thermal contact of the sensors to the cooling system and prevents thermal runaway induced by

radiation damage, thereby ensuring the expected lifetime of the BCM1F silicon sensors exceeds the

duration of Run 3.

Using analog opto-hybrids [206], the AC signals from the C-shapes are propagated to the backend

electronics that includes CAEN V895 discriminators, real-time histogramming units (RHU) [207],

and a CAEN V1721 ŕash ADC, all of which use a VME bus. Parallel 𝜇TCA electronics consist of an

8-bit ADC mezzanine card with a 1.25 GB/s sampling rate on a gigabit link interface board (GLIB)

carrier board [208, 209], using an FPGA-based derivative peak-őnder algorithm [210]. At the RHU,

which was already used for Run 2, the data are őlled into histograms with 6.25 ns granularity. This
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time interval corresponds to the time of ŕight for relativistic particles arriving from the IP that is a

quarter of the time between two collisions.

The BCM1F detector, situated in this location and delivering a fast response with zero dead time,

allows for the bunch-by-bunch separation of collision signals from backgrounds. The luminosity

is measured bunch-by-bunch using the zero-counting method mentioned above, followed by a

correction for out-of-time hits and the application of a calibration constant. The relative contribution

from background can be determined using the őrst bunch in the train or a noncolliding bunch in the

beginning of the orbit, where the background from out-of-time hits due to activation from previous

collisions is small. The background measurement is of crucial importance for the operation of the CMS

detector since it is used by the silicon strip and pixel detectors as an automatic switch-on semaphore.

8.1.3 The forward hadron calorimeter (HF)

A comprehensive description of the HF is provided in section 5. Here, we highlight the aspects that

are relevant for the luminosity measurement.

Like the PLT and BCM1F, the HF reports luminosity measurements at all times, independently

of whether the main CMS DAQ system is in operation. The outputs from the circuits used to

digitize the signals from the HF photomultipliers (PMTs) are routed to FPGAs that are part of the

HF readout [60]. The FPGAs tap into the primary readout path in a noninvasive way and collect

channel-occupancy (OC) and transverse-energy-sum data in histograms that have one bin for each of

the 3564 BX time windows of one beam orbit. The histograms are periodically transmitted to a

central BRILDAQ processor node. With this conőguration, the HF delivers a continuous and precise

measurement of the bunch-by-bunch luminosity at all times.

While all HF channels are available for use in the BRIL backend electronics, Monte Carlo

simulation studies indicate that the best linearity of the luminosity measurement is obtained when

using only the 𝜂 rings 31 and 32, corresponding to a pseudorapidity range 3.15 < |𝜂 | < 3.5, where

the long-term radiation damage is predicted to be the smallest.

The HF luminosity system allows the extraction of a real-time instantaneous luminosity relying

on two algorithms. The őrst (HFOC) is based on zero counting, in which the average fraction of

below threshold towers is used to infer the mean number of interactions per BX. The second (HFET)

exploits the linear relationship between the average transverse energy per tower and the luminosity.

Both the HFOC and HFET methods exhibit excellent linearity, based on the experience acquired

during Run 2 [181ś183, 183, 186] and in the beginning of Run 3 [211].

8.2 Additional luminometers

8.2.1 Tracker

The CMS silicon tracker, described in section 3, is characterized by a low occupancy in the silicon

pixel detector. This feature is exploited by the pixel cluster counting (PCC) method to measure

the luminosity offline with excellent precision. The most recent PCC luminosity measurement

during Run 2 [183] was based on data collected by zero-bias (colliding bunches only) and random

triggers at recording rates of approximately 2 kHz and 400 Hz, respectively. The zero-bias data were

used for the luminosity calculation, while random-triggered events served for the determination

and subtraction of the afterglow backgrounds present in the zero-bias data. The method achieved a
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statistical precision of about 0.2% per luminosity section during physics runs, with excellent stability

after removing problematic sensor modules.

We applied a similar strategy for Run 3, with improvements in the data processing and recording

to reduce and streamline the data. The cluster reconstruction and counting is implemented in the HLT

software, which reduces the data size by three orders of magnitude. Potentially unstable modules are

removed using an iterative method in which modules with large ŕuctuations relative to the average

cluster count are removed. The implementation of a new processing path is in progress during Run 3,

in preparation for the Phase 2 upgrade of the luminosity instrumentation for the HL-LHC [212]. In

this path, the data from the HLT are transferred directly to the BRILDAQ.

An alternative method using information from the silicon tracker involves counting the number

of primary-interaction vertices [181]. This method is used during van-der-Meer (vdM) calibration

őlls as a tool in the measurement of beam-dependent parameters. Vertices are also analyzed to derive

the bunch density distributions of the beams, and to calibrate the distance by which the steering

magnets displace the beams in the transverse direction.

8.2.2 Muon system

The BRIL system also makes use of level-1 trigger information from the muon barrel (MB) drift

tube (DT) detectors, which deliver counts of the number of orbit-integrated muon stubs. While

the rate of muons in the barrel is low, the stability and robustness of the muon system makes the

DT a valuable source for luminosity monitoring. The muon detectors and trigger are described in

sections 6 and 10.2, respectively. The muon information used by BRIL is aggregated by the barrel

muon track-őnder algorithm (BMTF) [213] of the level-1 muon trigger. The BRILDAQ system

receives the data from the BMTF via a dedicated readout system.

In addition to the orbit-integrated data, during Run 3 a new histogramming őrmware module

was added to the backend of the DT slice test that uses Phase 2 readout technology to test how

trigger primitives (muon segments per DT chamber) can be used for bunch-by-bunch luminosity

measurements. This system serves as a demonstration of how a luminosity measurement can be

made with per-bunch granularity for the CMS Phase 2 upgrade.

Figure 112 illustrates the readout diagram of the DT slice test. A detailed description is

provided in ref. [88]. The MB1 and MB2 chambers are read out using the upgraded electronics.

Data duplication was established for the MB3 and MB4 layers, thus allowing us to evaluate the

performance of the upgraded electronics with respect to the older system. The BRIL histogramming

module is placed on the so-called AB7 backend boards. Each AB7 board produces a single histogram.

Each of the MB1, MB2, and MB3 chambers are read out by a single AB7, whereas two AB7 boards

are needed to read out the MB4 chamber.

In addition, the 40 MHz scouting system in Run 3, described in detail in section 10.6, provides

an alternative means to use the bunch-by-bunch muon rate from the level-1 muon trigger for the

luminosity measurements. The concept of the 40 MHz scouting system is to capture part or all of

the trigger data streams from different trigger layers or their subsystems using spare optical outputs.

A demonstration of the scouting system was already tested in Run 2 based on the output from the

global muon trigger algorithm 𝜇GMT described in section 10.2. Due to the inclusion of the layer-2

calorimeter trigger and the BMTF data, the Run 3 scouting demonstration offers additional objects

with more sophisticated customizable selection possibilities. The histogramming for measuring
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providing both the signal rise time and charge integrated over one bunch crossing. It ensures

dead-timeless readout of the signal amplitude and edge time information with 500 ps resolution. As

a part of the readout from the backend electronics, the occupancy histograms are obtained in time

bins of a conőgurable duration. The histogram bins are typically 6.25 ns wide and are read out every

4 NB (about 1.458 s). In special running periods, detailed self-triggered data containing event-level

information about amplitude and time-of-arrival of each hit can be also collected.

A calibration and monitoring system was also installed for the BHMs [222] to evaluate possible

changes in performance of the PMTs and quartz radiator due to aging and radiation damage. The

system uses a light signal produced by UV-emitting pulsed LEDs, which is sent to each detector unit

through quartz optical őbers and optical splitters. The monitoring system can be set to send a laser

pulse periodically in an empty orbit or in periods when beams are not present.

8.3.2 Beam-condition monitor for beam losses (BCML)

The BCML detector [223ś225] is linked to the abort system of the LHC, and protects the CMS silicon

tracker from beam-loss events. The detectors simultaneously measure the integrated currents over

12 different time intervals and produce an unmaskable beam-abort trigger if one of them exceeds a

threshold, which is conőgured to be at least three orders of magnitude less than the amount estimated

to cause damage. The BCML system is situated in four different locations within the CMS detector and

includes the BCML1 detector located at 𝑧 = ±1.8 m and the BCML2 detector located at 𝑧 = ±14.4 m

from the interaction point. A total of 16 channels of the BCML detector are actively used in the

beam-abort system, with four channels in each location, providing CMS with monitoring redundancy.

The BCML system primarily uses pCVD diamond sensors, most of which were replaced in

LS2. In addition, BCML2 has sapphire sensors installed, as described below. Diamond detectors

are typically used as robust beam monitors in locations where the radiation levels are very high.

Diamond is radiation hard and does not require active cooling.

There are four pCVD diamond sensors installed at each end of both the BCML1 (őgure 114)

and the BCML2 (őgure 115) detectors, 16 sensors in total, each having an active volume of

10 × 10 × 0.4 mm3. The current created by ionization in the sensor is proportional to the ionizing

particle ŕux through the active detector material, and it thus provides a good observable to determine

the amount of radiation that a sensor receives. The BCML sensor signals are read out using the

LHC beam-loss monitor (BLM) electronics [226ś228].

If a beam loss signal, i.e., an integrated current over threshold, is detected in BCML1, the

beam can be dumped within two to three LHC turns. The threshold is deőned for two different

integration time intervals. A short-duration (40 𝜇s) threshold protects the silicon tracker from

potentially damaging amounts of energy deposition in the electronics, and a longer-term (≈83.3 s)

integration threshold protects against high beam background conditions that can result in problematic

conditions for data taking and reconstruction, as well as an increased dose rate to the inner detector

region. A machine beam interlock system [229] ensures that the BCML system is fully operational

before beam injection into the LHC can begin. The BCML systems are powered independently of

CMS from an uninterruptible power system, so that the LHC can run even if the local CMS power

distribution is not functional.

New optical grade single-crystal sapphire sensors were installed in BCML2 during LS2 in six

stacks. These are produced industrially via the Czochralski process at low cost [230]. Similar to
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diamond, sapphire, chemically aluminum oxide Al2O3, behaves as a wide-band-gap semiconductor,

with a band gap of 9.9 eV . First measurements indicated a very high tolerance against radiation

damage [225, 231], although the charge collection efficiency is low (≈1ś10%) [231]. The sapphire

Phase 2 prototype sensors used in BCML2 have an active volume of 25 × 25 × 0.5 mm3 and can be

installed in units ranging from a single sensor to a stack of up to őve sensors, as shown in őgure 115.

In the stack option, the sensors are electrically mounted in parallel such that the observed current is

the sum of the currents in each sensor.

To normalize the BCML2 readings and thereby monitor nonlinearities and instabilities in

the response from the diamond and sapphire sensors, in addition to the solid-state detectors, two

ionization chambers (one per end) of the LHC BLM type [226] were placed on top of the table

originally designed to support the Castor subdetector. This is located at about 𝑧 = 1450 cm, directly

behind BCML2, and the chambers are connected to the same readout electronics as the BCML2

system. These detectors provide a good dynamic range, demonstrate linearity with a deviation less

than 1% [232], and no radiation degradation is expected. The proximity to the BCML2 detectors,

and the fact that these ionization chambers are in the same readout system as BCML2, makes them

ideal for normalizing the BCML2 readings and thereby monitoring the nonlinearities and instabilities

in the response from the diamond and sapphire sensors. Since the response of these ionization

chambers is also well known for a mixed radiation őeld, the detectors can also be used to benchmark

the radiation simulations.

8.4 Radiation instrumentation and simulation

Radiation background can cause unwanted signals in detectors, activation of materials, damage to

electronics, and detector degradation. A radiation simulation and monitoring strategy is in place

such that background radiation can be estimated, detected, analyzed, and lowered where necessary.

8.4.1 Radiation monitoring

The radiation monitoring strategy for Run 3 includes the use of the following systems:

• The HF RadMons [233] are gas-őlled proportional counters situated inside the HF regions.

There are eight in use during Run 3, four on either end of the CMS detector. The detection

principle is based on neutron capture by boron with the emission of an 𝛼 particle in the argon-

őlled proportional counter. The incident neutrons are slowed by a surrounding polyethylene

moderator with a 3-inch radius. The HF RadMons provide information on the total neutron

ŕux for benchmarking the simulation estimates.

• As the part of a wider radiation and environment monitoring uniőed supervision (REMUS)

system under the responsibility of the CERN radiation protection group (HSE/RP), during

Run 3 there are 12 inducted activity monitors (IAM) in the CMS cavern, read out by the

radiation monitoring system for the environment and safety (RAMSES) [234, 235]. Ten

of these are in the same place as in Run 2, and two additional ones were installed in the

same location as the existing monitors on the HF, to support luminosity stability studies.

The primary function of the IAMs is to measure the ambient-dose equivalent rates, 𝐻∗(10),
associated with the residual radiation őeld when the LHC is not operational. However, their
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large dynamic range means that they can also provide reliable measurements of the prompt

radiation őeld during collisions. They are used to monitor any upgrades to shielding in the

rotating shield region and provide benchmark data for simulations. This system is also used

by BRIL for luminosity stability and linearity studies.

• The LHC RadMon system [236, 237], which is maintained by the CERN EN/STI group, is

designed to monitor the radiation that is related to electronics damage. There are currently 29

LHC RadMon units situated inside the experimental cavern, and it is foreseen to add ten more

during Run 3. Each unit, upgraded to łType v6ž, has 13 detectors, which includes two radiation-

sensitive őeld effect transistors (RadFETs) to measure the total ionizing dose, three Pin Diodes

(in series) to measure the 1 MeV-equivalent ŕuence in silicon, and eight static random access

memory (SRAM) modules. The latter measure the cumulative ŕuence of high-energy hadrons

via single-event effects and thermal neutrons using a different voltage setting. The BRIL

group also uses the LHC RadMon data for radiation simulation benchmarking studies.

In addition to the monitoring systems listed above, several established methods are used to provide

information about the radiation őeld. These include activation samples that are placed in the outer

cavern with subsequent measurements performed by the HSE/RP group; monitoring of CMS detector

degradation; and the two LHC beam-loss monitors that are used as part of the BCML setup, described

in the previous section. Radiation monitoring is complemented by dedicated simulation studies,

used to predict and understand in more detail the background radiation in CMS.

8.4.2 Radiation simulation

Monte Carlo simulations to predict radiation levels in the experimental cavern and the CMS

detector are typically performed with the CERN FLUKA radiation transport code [238, 238]. The

maintenance of the FLUKA geometry models is the responsibility of the BRIL radiation simulation

team, as well as the dissemination of the simulation results to the CMS subdetector teams via a

web-based tool. The baseline pp collision simulation using a geometry model that reŕects the current

CMS Run 3 conőguration is tagged v.5.0.0.0. Relative to the Run 2 FLUKA geometry, this includes

the implementation of the LS2 upgrades, the replacement of the central beam pipe from the IP to

𝑧 ≈ 16.7 m, modiőcations of material within the rotating shield regions including reinforcements

to őll existing gaps, as well as modiőcations to the installation of the LHC vacuum assembly for

experimental area (VAX) equipment in LS3. The radiation levels per integrated luminosity (or

collision) in the central detectors for Run 3 are expected to be higher than in Run 2 by up to a

factor of 1.5, depending on the location and type of particle, owing to changes in the shape of the

central beam pipe. Changes in the predicted radiation levels in the outer detectors for Run 3 are

inŕuenced by the increased showering in the central regions (resulting in a reduction downstream)

and modiőcations inside and outside the rotating shield region where a lot of the secondary radiation

is generated and leaks into the cavern. The lighter aluminum beam pipe results in signiőcantly

lower activation levels for a given irradiation pattern. The FLUKA predictions of the radiation

environment in Run 3 are illustrated in őgure 116 for the CMS cavern and detector. The effects of

an additional new forward shield, expected to be installed in 2024 around the existing rotating shield

and included in geometry model v.5.1.0.2, are shown in őgure 116 (lower).
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and services to exchange information in near real time. Messages are exchanged via the pub-

lisher/subscriber model (eventing) where the publishers send messages that can be received by any

number of subscribers. Communication between BRILDAQ and the LHC is based on the data

interchange protocol (DIP) [240], which also uses a publisher/subscriber model.

To fully exploit the redundant online luminosity and beam background monitoring systems,

the histogramming of the BRIL subsystem frontends is synchronized using common timing signals

distributed by the CMS TCDS system (section 9), deőning the hit count integration interval

boundaries. Long command counters are also distributed for additional intersystem synchronization.

Using such a technique facilitates uniform accounting of the delivered luminosity and the downstream

data handling by BRILDAQ.

Typically, a subsystem provides one or several source instances, which read the raw histograms

from the hardware, and one single processor instance for data aggregation and calibration. Both

kinds of applications are stateless to ensure the availability of the data, regardless of the status of the

LHC beams and the running state of CMS. In Run 3, the participating subsystems are PLT, including

the fast-or and the Slink data, BCM1F, with both RHU and 𝜇TCA readouts, HF, DT, and REMUS for

luminosity measurements, and other BRIL measurements from subsystems such as the beam-pickup

system for timing measurements (BPTX) [212], HF-RadMon gas-őlled proportional chambers,

BHM, and BCML. High-level components include the storage manager, the vdM monitor providing

the luminometer calibration constants in real time after a beam-separation scan, the luminosity

monitor, and the best-luminosity selector. The latter selects the value of the instantaneous luminosity

that is delivered to the LHC. The DIP-related components use the service provided centrally by the

CMS DAQ team. In addition, it is foreseen to process PCC data out of the HLT in near-real-time

fashion, as mentioned in section 3.

The run control system, responsible for controlling and tracking the conőgurations of the

BRIL applications, is based on the CMS run control framework (RCMS) [73] and its conőguration

database. Each BRIL process is controlled by a function manager (FM) that manages a simple

őnite-state machine.

The run control web frontend allows the operator to control the life cycle of BRILDAQ

applications and to manage the conőgurations, which are versioned and can be retrieved and stored

in the database via the web. A set of other web tools completes the system by providing useful

functionalities such as displaying logs of the processes and showing results of the data analysis.

The BRIL online web monitor is a single-page application built on the Angular framework [241]

where the website interacts with the user by dynamically rewriting the current web page with new data

instead of reloading the entire page. It displays real-time and historical charts of online quantities.

Monitoring data are published by BRILDAQ applications, then stored in the ElasticSearch [242]

backend database, which responds to requests from the web client. The monitoring system is

nonintrusive and ŕexible for easy integration of new data and charts.

The raw and calibrated data are stored on local disks, then transferred to an offline storage area,

and eventually moved to tape. Summary data are loaded into the BRIL database. All types of data

can be reprocessed, and multiple versions can coexist on disk and in the databases.

To provide high-quality luminosity measurements for use in physics analysis, an application

toolkit is provided to the physics community, centered around the so-called łbrilcalcž tool for

luminosity calculation. It provides delivered and recorded luminosity with different calibration sets,
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using a łnormtagž that deőnes the best detectors and calibrations to use for each time period. This

strategy has proven to be successful and remains unchanged in Run 3.

9 Data acquisition system

This section describes the scope, design choices, and implementation of the experiment’s central

data acquisition (DAQ) system. The present implementation for Run 3 is described in detail along

with a discussion of its performance. We also give an overview of the evolution of the system over

the lifetime of the CMS experiment.

9.1 Scope

The CMS online event selection is performed using two trigger levels: the level-one (L1) trigger,

described in section 10, implemented in custom electronics, which selects approximately 100 kHz

of events based on coarse information from the calorimeters and the muon detectors; and the

high-level trigger (HLT), described in section 11, which runs on a farm of commercial computer

nodes integrated with the DAQ data ŕow. The HLT processes fully assembled events, applying

algorithms similar to those used in offline reconstruction, and selects a few kHz of events for storage

on disk.

While this two-level approach with full event building after the őrst level greatly simpliőes the

overall system design compared to approaches with more trigger levels and/or partial event building,

the resulting requirements on the data acquisition system are demanding: the DAQ system needs

to read out approximately 700 detector backend boards at a rate of ≈100 kHz and perform event

building and distribution with a throughput of about 100 GB/sÐ a challenging task when the DAQ

system was őrst implemented [1] for Run 1 with the hardware available in the late 2000s.

The DAQ system is also responsible for collecting events selected by the HLT, buffering them at

the experiment site, and transferring them to the Tier 0 computing center at CERN. The general

structure of the DAQ system has remained fairly constant from its original implementation for Run 1

up to its current implementation (illustrated in őgure 117). Across implementations, the main

components of the system are:

• A trigger throttling system (TTS), consisting of custom electronics modules collecting fast

status information from all the backend boards in order to throttle the trigger to avoid buffer

overŕows.

• Since Run 2, the trigger control and distribution system (TCDS), implementing the trigger

control logic, reacting to fast status signals from the TTS or collected directly from upgraded

FEDs, and distributing timing and trigger signals to the entire experiment.

• Custom electronics modules, the frontend readout (optical) link boards that receive data over a

custom link from the detector backend boards (in CMS called frontend driver or FED boards),

and send data over a commercial link.

• A data concentrator network based on commercial network technology.
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9.2 Evolution

Since its őrst implementation for Run 1, the CMS DAQ system has undergone multiple upgrades to

keep pace with the evolving needs of the experiment. Towards the end of Run 1, it became clear that

during Run 2 the LHC would reach higher instantaneous luminosities than originally anticipated,

resulting in increased pileup and larger event sizes. In response, several subdetectors implemented

upgrades and replaced VME-based backend electronics with new systems based on the 𝜇TCA standard.

A new optical readout link with a higher bandwidth of up to 10 GB/s was developed for these new

backend systems. The custom electronics of the DAQ system were upgraded to support this optical

link and to support a new network technology for the data-concentrator network, from Run 2 onwards.

The bulk of the DAQ system downstream of the custom readout electronics consists of

commercial computing and networking equipment, for which a regular replacement cycle must

be observed. This circumstance provided the opportunity to reimplement large parts of the DAQ

system for Run 2, and again for Run 3, beneőting from advances in technology to achieve a much

more compact design while doubling the event building bandwidth from Run 2 onwards. The choice

of networking technology has been adapted following trends in the supercomputing industry. An

overview of the three generations of the CMS DAQ system is provided in table 12.

The HLT computing capacity was scaled up according to the experiment’s needs on a yearly

basis over Run 1 and Run 2. The Run 3 system includes general purpose graphics processing units

(GPUs), providing cost-effective computing acceleration. This has required a major effort in porting

the HLT code. Major changes in the software enabled better decoupling of the DAQ and HLT

processes since Run 2. Various automated features and automatic diagnostics have been added to

the control system to maximize the uptime of the DAQ system. Driven by the need for more detector

partitions than the original system could support, and to host 𝜇TCA backends, a new trigger control

and distribution system (TCDS) was developed for Run 2, absorbing the functionality of the original

trigger control system (TCS), and TTC system, and providing optical inputs for the TTS signals from

the upgraded backends. In the following sections, the upgrades to the DAQ system are described in

more detail with an emphasis on the implementation for Run 3.

9.3 Subdetector readout interface

During Run 1, the CMS subdetectors were read out exclusively through the S-LINK64 [200] DAQ

readout link, an LVDS-based copper link capable of transferring up to 400 MB/s. One or two such

links are received by the frontend readout link (FRL) [246], a custom Compact-PCI card. The FRL

forwarded the data to a commercial Myrinet network interface card (NIC) via an internal PCI-64 bus at

66 MHz. Super-fragments were built on the Myrinet NICs using custom őrmware [246]. Assembled

super-fragments were then transferred into the memory of a readout unit (RU) server via DMA.

At the start of Run 2, the Myrinet NIC on the FRL was replaced by a custom-developed PCI-X

card, the frontend readout optical link (FEROL) [247]. The FEROL acts as a 10 Gb/s Ethernet NIC,

sending data to the event builder. It receives data either via the PCI-X interface from the FRL (from

the bulk of the subsystems that continue to use S-LINK64) or via optical SlinkExpress inputs from

new or upgraded subsystems. Up to two SlinkExpress inputs at 6 Gb/s or one input at 10 Gb/s are

supported. While S-LINK64 senders are mezzanine cards plugged onto the backend boards of the

subdetectors, requiring a signiőcant footprint, the SlinkExpress sender is a őrmware IP-core that
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Table 12. Key parameters of the CMS DAQ system in Run 1 [1, 243], Run 2 [244, 245], and Run 3.

Run 1 Run 2 Run 3

Event building rate ppa 100 kHz 100 kHz 100 kHz

Event size ppa 1 MB 2 MB 2 MB

Read-out links S-LINK64 (copper) 400 MB/sb 636c 575cś532d 528c

Read-out links opticale 6 Gb/sb Ð 55d,f 55c,f

Read-out links opticale 10 Gb/s Ð 60cś167d 176c

FED builder network technology Myrinet Ethernet Ethernet

FED builder network speed 2 rails of 2.5 Gb/s 10 & 40 Gb/s 10 & 100 Gb/s

Event builder # of readout units 640 108d 57g

Event builder network technology Ethernet Inőniband Ethernet RoCE v2h

Event builder link speed 1ś3 rails of 1 Gb/s 56 Gb/s 100 Gb/s

Event builder parallel slices 8 1 1

Event builder network throughput 1.0 Tb/s 1.6 Tb/s 1.6 Tb/s

Event builder # of builder units 1260i 73d 57g

BU RAM disk buffer none 16 TB 10 TB

HLT # of őlter units 720c,iś1260d,i 900cś1084d 200

HLT # of cores 5.8kcś13kd 16kcś31kd 26kj

HLT computing power (MHS06) 0.05cś0.20d 0.34cś0.72d 0.65j

HLT # of NVIDIA T4 GPUs Ð Ð 400

Storage system technology 16 SANk systems 1 cluster őle system 1 cluster őle system

Storage system bandwidth write + read 2 GB/s 9 GB/s 30 GB/s

Storage system capacity 300 TB 500 TB 1.2 PB

Transfer system to Tier 0 speed 2 × 10 Gb/s 4 × 40 Gb/s 4 × 100 Gb/s

aDesign value. bMain data-taking conőguration, excluding links from partition managers used for partitioned running. cAt

the beginning of the run. dAt the end of the run. eSlinkExpress. f54 links from mezzanine cards with optical SlinkExpress.
gReadout and builder unit running on the same server (łfolded event builderž). hRemote DMA over Converged Ethernet.
iFilter and builder units running on the same server. jNot including the GPU computing power. kStorage-area network.

can be included in the FPGAs of the backend boards. Only the footprint of an optical transceiver

cage is needed, facilitating the move to smaller form factors such as 𝜇TCA. The SlinkExpress works

with 8b/10b encoding at up to 6.3 Gb/s or 64b/66b encoding at 10.3 Gb/s, resulting in an effective

bandwidth of up to 5.0 or 10.0 Gb/s, respectively. The data format (deőnition of headers and trailers)

is identical to that of S-LINK64. The SlinkExpress is packet-based and supports re-transmission at

the packet level. Packets have a variable size of at most 4096 bytes. Fragments up to 4096 bytes are

transferred into individual packets, while larger fragments are split across multiple packets.

At the output side, the FEROL sends data via TCP/IP, employing a custom TCP/IP engine

implemented in the FPGA logic. This was achieved through a simpliőcation of the TCP/IP protocol

for unidirectional use, which reduced the number of states from 11 to 3 [248]. The TCP/IP streams

(one per input) are sent via an Ethernet network to a standard Ethernet NIC in the readout unit (RU)

server where they can be received with the standard Linux TCP/IP stack. Using performance tuning

as described in ref. [247], a sustained point-to-point throughput of 9.7 Gb/s has been achieved for

fragments larger than 1 kB.
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For subdetectors that were potentially limited by the copper S-LINK64’s bandwidth, but did

not upgrade their backend electronics, a new type of mezzanine card with optical transmission was

developed. It plugs onto the subdetector readout electronics in place of the original mezzanine

cardand transmits data using the 6 Gb/s SlinkExpress, increasing the bandwidth to 625 MB/s. A

version using 10 Gb/s SlinkExpress is also available. This mezzanine card has been deployed for the

ECAL subdetector with 6 Gb/s SlinkExpress links.

In 2017, a new pixel detector was installed with new backend electronics requiring readout

through 108 links at 10 Gb/s. Instead of producing more FEROL boards that are powered and

controlled through PCI-X because of the legacy interface to the FRL, a new readout board was

implemented, based on the 𝜇TCA standard, incorporating the features of four FEROL boards. The

new FEROL-40 board [249] receives up to four channels at 10 Gb/s using the SlinkExpress and

sends the data on four links of 10 Gb/s Ethernet using TCP/IP.

Table 13 shows the readout parameters of the CMS experiment at the end of Run 1 and Run 2,

and at the start of Run 3. Starting in Run 3, the HCAL barrel partitions are read out with higher

segmentation, as described in section 5.2.8, resulting in a signiőcant increase in data size. Nine

additional readout links were added for the HCAL. The dependence of the data size on the pileup

(PU) and the resulting number of vertices has been studied for each data source. Data sizes observed

at peak PU in Run 2 resulted in a total event size of 1.4 MB. The event size in Run 3 at the planned

peak luminosity of L = 2 × 10
34 cm−2 s−1 (⟨PU⟩ = 56) is 1.6 MB. An extrapolation, using a

polynomial őt, to L = 3 × 10
34 cm−2 s−1, ⟨PU⟩ = 85, results in an estimated event size of 2.0 MB.

This is still within the design value of the DAQ system, which is therefore considered capable of

handling the readout bandwidth at conditions beyond the planned peak luminosity in Run 3.

For heavy ion runs, where the L1 trigger rate will be 50 kHz, the expected event size based on

the latest heavy ion run in 2018, taking into account the upgrade of the HCAL readout, is 3.3 MB.

The overall throughput at the input to the DAQ system will thus be similar to that in pp runs. The

FED sizes (FED can indicate both the subdetector electronic interface and, in this context, the data

payload that is read out from that interface) is, however, distributed in a different way. In many cases,

a special optimization of zero-suppression and/or selective readout algorithms at the level of the

FEDs is applied in order not to be limited by the bandwidth of individual FEDs.

9.4 Event builder

The CMS experiment uses a two-stage event builder (EVB) system responsible for assembling

event fragments retrieved from around 760 detector backend boards into a single event payload and

delivering the built events to the HLT. The őrst stage, called the FED builder, reads fragments from

the underground FEROL and FEROL-40 boards and, using the switched network, aggregates them in

the RU/BU nodes. In the second stage, the core EVB, all the RU/BU nodes transfer fragments from

each event into one destination node, assigned on a per-event basis. With the Run 3 DAQ system,

each node in this way handles around 2 kHz of fully-built events. On each node, events are written

into a large 200 GB RAM buffer and made available to the HLT via a dedicated data network.

Network interconnect technologies are a main driver for the EVB design and scaling. The

Run 1 FED builder system [243] was based on the Myrinet 2.5 Gb/s network, comprising 640

RU nodes and split into 8 parallel slices for performance. Prior to Run 2, Inőniband and 40 Gb/s

Ethernet became established mainstream standards in high-performance computing (HPC). They
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Table 13. Subdetector readout conőguration.

End of Run 1 End of Run 2 (start of Run 3) Data size [kB]

Subdetector # # # # FRL/FEROL # Run 2b Run 3c

FED FRL FED copper 6 Gb/s 10 Gb/s F40a ⟨PU⟩ = 56 ⟨PU⟩ = 56

Tracker pixel 40 40 108 Ð Ð Ð 32 259

Tracker strips 440 250 440 250 Ð Ð Ð 731

Preshower 40 28 40 26 Ð Ð Ð 54

ECAL 54 54 54 Ð 54d Ð Ð 74

HCAL 32 32 32 (41) Ð Ð 32 (41) Ð 170 +221

Muons CSC 8 8 36 18 Ð Ð Ð 40

Muons RPC 3 3 3 3 Ð Ð Ð 0.3

Muons DT 10 10 9 Ð Ð 9 Ð 22

Trigger 5 5 14 Ð Ð 14 Ð 41

CASTOR 4 4 4 (0) 4 (0) Ð Ð Ð Ð

TCDS Ð Ð 1 Ð 1 Ð Ð 1.0

CTPPS Ð Ð 11 9 Ð 2 Ð 2.2

Muons GEM Ð Ð 2 Ð Ð 2 Ð Ðe +22

Total 636 434
754 310

55
59

32 1.39 MB 1.63 MB
(759) (306) (68)

aFEROL-40 (4× 10 Gb/s). bObserved at Run 2 peak luminosity. cOnly the increment in data size with respect to Run 2 at

the same peak luminosity is shown. dMezzanine card with optical SlinkExpress. eNot included for regular data taking.

were evaluated [244, 250] and ultimately adopted [245, 251] as technologies of choice for the Run 2

DAQ upgrade. This allowed the system to be scaled down by an order of magnitude and implemented

in a single slice, while increasing the overall EVB throughput [252].

For Run 3, the Run 2 equipment, which had reached the end of its vendor support, had to be

retired. The design choice was taken to implement the EVB with 100 Gb/s Ethernet for the Run 3

system. This system, described in the following sections, satisőes nearly identical performance

requirements as the Run 2 DAQ, and, owing to hardware evolution, is reduced in scale by more than

a factor of two. Some design details of the preceding Run 2 system are also outlined.

9.4.1 FED builder

The FED builder transports data fragments over 10 Gb/s links from the underground cavern, over a

distance of around 200 m, to data concentration network Ethernet switches located on the surface. A

total of 557 links from the FEROL and FEROL-40 boards are used in a typical Run 3 data-taking

conőguration, as detailed in table 13.

The data concentration network is implemented using a Juniper QFX10016 [253] chassis-based

100 Gb/s Ethernet switch, providing a ŕat network, which allows full ŕexibility in routing the fragment

traffic between readout nodes. For inbound traffic from the FEROLs, seven QFX10000-36Q line-

cards are installed, capable of supporting a total of 672 10 Gb/s links, split from 24 × 40 Gb/s ports

per line-card. Three QFX10000-30C cards installed in the switch provide a capacity of up to ninety
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100 Gb/s ports for connections to the RU/BU nodes. A pause frame [254] ŕow control mechanism is

used to achieve a lossless low-latency network and ensure optimal buffer occupancy on the FEROLs.

The system is conőgured to support Ethernet jumbo frames of up to 9 kB to improve performance.

9.4.2 Core event builder

The core EVB has three distinct functional units, the RU, BU, and event manager (EVM). They are

implemented as software applications and run on a single set of RU/BU computers, interconnected

using a dedicated event-building data network. These applications are implemented within the

XDAQ framework described in section 9.10.

The RUs unpack and merge fragments received via TCP streams from the FEROLs over the

data concentration network. Each fragment checksum is veriőed before being merged with others

into a super-fragment, i.e., a collection of fragments from the same event aggregated by a particular

RU, and buffered in memory. The EVM, which runs on a single EVB node, orchestrates the event

building process by performing a destination assignment, i.e., allocating a given event to a speciőc

BU and sending a message to the RUs to send super-fragments to that destination. When the BUs

receive a super-fragment from each RU the event is completely built. Completed events are written

into ramdisk, a memory buffer structured as a őle system, as described in section 9.5. This őle

system is exported through the event backbone network to the FUs. An FU group of typically three

or four FUs is assigned to read the event data from each RU/BU node.

Starting in Run 2, EVB senders and receivers were implemented using the Inőniband Verbs-

API, described in section 9.10, for communication over the network using remote direct memory

access (RDMA) capabilities of network-interface cards and switches. This technology facilitates

the bypass of the operating system networking stack and delivers the payloads directly into the

application-accessible memory, avoiding CPU and memory overheads associated with the handling

of high bandwidth and packet rate networking in software.

For the Run 3 EVB, the cost-effective 100 Gb/s Ethernet technology was chosen over the native

Inőniband used in Run 2. A second Juniper QFX10016 chassis-based switch is used as the core EVB

network backbone (equipped with nine QFX10000-30C line-cards having a total of 270 100 Gb/s

ports). The switch supports a lossless Ethernet network, a prerequisite for RDMA over Converged

Ethernet (RoCE) v2 protocol, providing encapsulated Inőniband protocol over Ethernet hardware.

Importantly, like native Inőniband, it facilitates direct memory access between communicating nodes

using offloading by NICs. A beneőt of using RoCE v2 is that the Verbs-API-based EVB applications

developed in Run 2 can be reused with minor adaptations.

In addition to the core EVB network, the switch runs the event backbone network, which handles

the traffic between the EVB and HLT farm. The same chassis switch supports also the storage

and transfer system (including transfers to Tier 0), traffic from the DAQ to the online data quality

monitoring system, and running the online cloud on some of the legacy Run 2 HLT nodes. The 62

RU/BU nodes are connected to the EVB network over 100 Gb/s optical links, including 57 nodes as

part of the nominal data-taking conőguration and őve as hot spares. In addition, there are seven cold

spare nodes without network interface cards.

As pointed out above, the Run 3 system also introduced a folded core EVB setup, where the

RU/BU nodes serve as both RU and BU functional units (RU/BU). This allows the bidirectional

utilization of the network links, nearly halving the number of needed RU/BU nodes and the network
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bandwidth compared to a nonfolded setup, thus reducing the overall size and cost of the system

for the same throughput requirement. On the other hand, this design is demanding on the I/O and

memory performance of the nodes, which in such a system need to receive and merge fragments,

exchange super-fragments with other RU/BU nodes, build and serve full events, and pass-through

the HLT output to the STS, all over multiple 100 Gb/s interfaces. Therefore, a modern server

architecture was required for the task. Dell R7515 servers, with the 32-core AMD EPYC Rome

7502P CPU running at 2.5 GHz, equipped with 512 GB of DDR4 RAM, were selected, with all

memory channels populated for the maximum memory performance. Each server is equipped with

two Mellanox ConnectX6 dual-100 Gb/s PCIe Gen4 NICs. One card has both links used for the

respective connections to the FED builder and event backbone networks, while the second card uses

one link for connection to the core EVB network.

9.4.3 Performance

Detailed studies were done comparing the EVB performance of both the Intel Xeon Skylake dual-

socket servers [144] and comparable AMD EPYC Rome single-socket platforms. The AMD platform

was ultimately chosen for RU/BU nodes for Run 3 due to better performance and a simpliőed memory

architecture. The AMD 7502P CPU is internally assembled from multiple 4-core silicon dies (CCDs),

each having a separate L3 CPU cache and an interconnect fabric providing eight memory controllers,

as well as multiple PCIe Gen4 interfaces. Due to these characteristics, the CPU internally resembles,

to an extent, the nonuniform memory access (NUMA) memory architecture. It can be conőgured in

a 4-, 2-, and single-node NUMA mode with respect to the CPU die and memory controller topology.

The single-node NUMA mode uses interleaved access to the RAM controllers with improved

maximum bandwidth, with the drawback of potentially higher memory and I/O latency. In evaluations,

this mode was found to be a well-balanced setup for folded EVB requirements, avoiding the delicate

tuning of thread affinities to CPU cores, which would have been needed to optimize performance. The

setup maintains CPU affinity settings for groups of threads running similar tasks to the same or adjacent

CPU cores and placing them closer to the corresponding NIC PCIe lines in the interconnect topology.

A memory-based őle system based on Linux tmpfs [255] is used as the EVB event output

ramdisk. To achieve high read/write performance, 2 MB huge-page support for tmpfs is used,

available in recent Linux kernel versions. It signiőcantly improves the ramdisk throughput since it

avoids bottlenecks when the CPU is handling a large number of 4 kB memory pages.

Measurement of the DAQ event building performance with emulated data generated by the RUs

and discarded after event building, is shown in őgure 118. This demonstrates that the EVB system

is capable of handling the nominal 100 kHz event rate from the L1 trigger with event sizes up to

≈2.5 MB. A throughput of approximately 10 GB/s is achieved per RU/BU node at the plateau, which

is 80% of the available network bandwidth.

The performance for input generated in the FEROLs and either discarded after the EVB or

passed through the full-chain DAQ system (including the HLT and STS) is shown in őgure 119. Two

setups of a smaller scale than the data-taking setup were used for this measurement, comprising

either four or 19 RU/BU servers in a folded setup, with an additional machine running an EVM

application. Each RU application was concentrating 20 fragments from the FEROLs (two fragment

streams per 10 Gb/s FEROL link, or a total of 100 Gb/s of the input network bandwidth per RU). A

total of either 16 or 76 FUs, four assigned to each RU/BU, were used. These servers were Run 2
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Figure 118. Core event building throughput (left) and event rate (right) of the full-scale RU/BU EVB setup
shown for a range of built event sizes. Emulated input data are generated in the RU/BUs and discarded after
the event building stage.

FU nodes equipped with 10 Gb/s Ethernet NICs. Thus, the total available bandwidth was 40 Gb/s

over the event backbone network to the FU group. With each system, a plateau throughput of about

9 GB/s was achieved per RU (BU), with discarding the data after the EVB, amounting to over 70%

of the available network bandwidth from the FEROLs. About 4 GB/s per server was achieved with

the full-chain DAQ, which is about 80% of the available network bandwidth to the FUs.
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Figure 119. The DAQ throughput (left) and event rate (right) per RU/BU node for a range of uniform fragment
sizes using a mode with the data discarded after the EVB and with the traffic ŕow through the HLT and STS.
Emulated input data are generated at the FEROLs with 20 fragments concentrated per RU/BU.

This result demonstrates that the system is capable of handling traffic for fragment sizes larger

than 2000 bytes at rates above 100 kHz. When extrapolated to the larger system of 50 RU/BUs

(nearly the scale of the system used in Run 3), a fragment range around 2000 bytes corresponds to

the total event size of over 2 MB, which is above the size expected in Run 3. With the őxed number

of FUs per RU/BU, the achieved bandwidth approximately scales from the small- to the medium-size
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system and gives conődence that the system comprising over 50 RU/BU nodes can robustly scale and

handle the Run 3 requirements. Furthermore, while tests were performed using a 10 Gb/s network

bandwidth per FU, the Run 3 FUs have more bandwidth available from the 25 Gb/s Ethernet links,

as mentioned in section 9.5.5, and, therefore, higher full-chain throughput capacity.

9.4.4 Event builder load balancing

The EVB protocol implements a global dynamic re-balancing mechanism of the event building

throughput on the RU/BU nodes. The assignment algorithm, running on the EVM, periodically

determines the load status of each node, depending on factors such as the local output buffer

occupancy, as well as the number and type of HLT computers attached to a particular RU/BU. From

these, it determines the rate at which each node can build events to fairly distribute the load and

equalize the processing latency at the EVB and HLT across the cluster. A local throttling mechanisms

on the RU/BUs can also get triggered, based on occupancy thresholds and latency information

reported by the HLT infrastructure software. This results in the BU application temporarily blocking

or throttling the event building at the corresponding RU/BU.

9.5 Event őlter

The HLT performs the second stage of event őltering, analyzing at a rate of approximately 100 kHz,

the events selected by the L1 trigger, and accepting events at a rate on the order of a few kHz. It runs

on a large cluster of multicore servers (FUs) that perform the reconstruction and őltering in software,

implemented within the CMS software framework (CMSSW) [256].

By using the same framework and code base for the online and offline reconstruction, most of the

algorithms developed in CMSSW for the offline reconstruction can also be employed in the HLT. This

enables the reuse of the same data structures, supports a uniőed approach to the use of detector condi-

tion data, and allows for rapid deployment of both newly developed and established offline algorithms.

Starting from the őrst year of Run 2, the CMSSW and HLT implemented task-based multithreaded

event processing. This feature was instrumental in reducing the memory requirements of the HLT: by

running a smaller number of processes on the FUs, each using multiple threads, common data such

as detector conditions and calibrations can be shared among threads, decreasing the overall memory

footprint on the servers. As a result, this made it possible to fully exploit all the logical cores of

the CPUs, leading to increased overall computing efficiency. At the beginning of Run 3, support

for offloading to accelerators, such as GPUs, was also added. In addition, reducing the number of

running processes per server was found to be beneőcial in reducing the memory footprint on the GPU.

The framework architecture is described in more detail in section 12. The HLT algorithms

and offloading are detailed in section 11. A dedicated software infrastructure couples the CMSSW

workŕow with the EVB and the storage and transfer system. It handles the data input and output for

all these processes, as well as the bookkeeping of event processing and monitoring.

9.5.1 File-based őlter farm

The HLT interface to the DAQ, running in the same process as the HLT algorithms, is implemented

in ordinary CMSSW modules and services, which facilitate the communication and reading of input

data from the RU/BU nodes. The data transfer into the HLT starts from a ramdisk őle system serving
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as a data buffer on the RU/BU [257]. An NFS (network őle system) v4 server provides access to the

őle system over the network. The ramdisk is sized to buffer the data during the HLT startup time of

60ś90 s, dominated by the loading of the software libraries, calibrations, and conditions, as well as

to absorb ŕuctuations in the HLT event processing time.

The BU application writes fully built events into the ramdisk, using a custom binary őle format

with a header prepended to each event describing its total length and providing information such as

an identiőcation number and a checksum. The őles created by the BU application, each containing

around 100 events, are distributed among CMSSW processes running on several FUs assigned to

the RU/BU node. A dedicated application running on the RU/BU nodes, called the őle broker, is

responsible for the unique assignment of őles to the processes. The requests for őles are placed with

the őle broker using an HTTP-based protocol, while the standard őle system access API is used

to read őles from the NFS. All input-related communication and őle access is implemented in the

CMSSW input source module written in C++. This module operates several dedicated threads for

pre-buffering of the input data to minimize stalling the CPU cores while waiting for input. The input

source parses the assigned input őles, extracts and veriőes the event payload against stored fragment

checksums, and hands it over to the framework, which schedules the HLT modules performing the

event reconstruction, analysis, and őltering.

9.5.2 The HLT software infrastructure

The HLT daemon is a system service orchestrating the HLT operation in the RU/BUs and FUs.

Implemented as a Python application, it relies on a őle notiőcation API of the Linux kernel,

inotify [258], which provides low-overhead monitoring of őle system events. The start of a run is

triggered by the appearance of raw event data őles in the ramdisk. Similarly, a run completes when

all őles have been processed by the HLT. The service runs on all RU/BUs, where it is responsible

for contacting the attached FU nodes to process a run, as well as the FUs, where it is responsible

for managing the life-cycle of the locally running CMSSW processes. The HLT daemon starts the

CMSSW applications as forked child processes, monitors their status, and can restart them in case of

unexpected process termination. Each child CMSSW process is allocated a number of CPU cores

or hyperthreads (in the case of using simultaneous multithreading (SMT), a technique allowing

separate tasks to run on the same CPU core), also taking into account the number of parallel threads

conőgured in the CMSSW processes, as also described in section 11. By using such an allocation

strategy, servers can be used at their maximum computing capacity.

9.5.3 The HLT menu and output data streams

The HLT conőguration, also referred to as the łHLT menuž and described in section 11, deőnes a set

of paths in which physics objects are reconstructed and events are őltered based on speciőc physics

requirements. Events that are accepted through HLT paths for similar physics processes are stored

in primary data sets, deőned also in the HLT menu. The primary data sets are deőned such that

the total event rate of each data set is kept within the limits imposed by the offline data processing,

while minimizing the overlap among different data sets. In turn, the primary data sets are grouped

into streams, corresponding to the actual őles that are output by the HLT processes and transferred

to the Tier 0 for offline processing. In addition to those used to collect events for physics analyses,

the HLT deőnes dedicated paths and streams to collect data for detector calibrations and for online
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data quality monitoring (DQM). Finally, special paths and streams are used to collect statistical

information about the HLT processes themselves, such as the individual trigger rates and CPU usage.

Events selected by the HLT are serialized using ROOT [259], compressed using gzip [260],

LZMA [261], or Zstandard [262], and written to őles on the local partition. Lossless compression

used for the HLT output, applied to the entire serialized event payload, reduces the total event size to

about 70% of the input event size for proton runs (speciőed in table 13), as observed in Run 2 and the

őrst year of Run 3. For proton runs, it is preferable to minimize the CPU usage of the compression

in order to preserve resources for the HLT reconstruction. The gzip tool, which was used in Run 2

and in 2022, typically used up to on the order of 1% of the CPU in the HLT during Run 2 and 2022.

The application of Zstandard was evaluated after the őrst year of Run 3 and shown to have

improved performance for a compression factor comparable to gzip, with an estimated use of less

than 0.5% of the CPU. The HLT began using this algorithm for compression in 2023 for proton

runs. For the heavy ion run, the compressed size is estimated at about 3 MB for centrally colliding

collision events and 1.2 MB for minimum-bias events, based on the 2018 heavy ion run. The LZMA

algorithm, which can typically improve the compression factor by an additional 10ś15%, but is an

order of magnitude more CPU demanding than gzip or Zstandard, is being considered in order to

maximize the HLT output rate within the DAQ bandwidth limits. The approaches to size reduction

of heavy-ion events are discussed in section 11.6.

Each output stream is written into a separate őle and includes the event raw data, a selection

or a summary of the HLT objects, and the trigger decision for each path speciőc to a stream. The

streamer őle format used for output allows őles belonging to the same stream, but produced by

different processes and nodes, to be trivially concatenated. This step, which is performed separately

for each stream, is called merging. In the őrst merging stage, streams are merged from local CMSSW

processes and copied to the NFS-mounted output partition on the RU/BU. Subsequent merging

stages are handled by the storage and transfer system (STS), as described in section 9.6.

The CMSSW input, output, and merging operate on sets of data and metadata őles created

separately for each stream at a regular time interval called the luminosity section (LS), spanning 2
18

LHC orbits, which takes approximately 23.3 s as explained in section 8. Metadata, written by the

BU, by the CMSSW processes, and by the HLT output merging at LS intervals, specify information

such as event counts, checksums, and total output size. Bookkeeping (completion) and integrity

checks are performed at the granularity of an LS by comparing input and output metadata. In the

case of a failed integrity check, alerts are raised to notify the shift crew, and the affected data are

discarded and marked as missing in the bookkeeping.

The HLT daemon services handle all the local output collection and merging tasks on the FUs.

They also report the latency in event processing and merging to the BU application. The BU uses

this feedback to throttle event building in case of high delays and can activate throttling in case of

high ramdisk occupancy.

9.5.4 Monitoring

The őle-based őlter farm (F3) monitoring system was designed from the ground up in Run 2 [242]

around the Elasticsearch NoSQL database [263]. Structured JSON-formatted [264] monitoring data

are injected into an Elasticsearch cluster from the HLT daemon service, STS, and other sources.

This includes bookkeeping such as input and output event counts, event őle size, bandwidth, CPU
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usage, HLT information, and the hardware state at the granularity of each FU node. Textual logs and

error reporting from the HLT processes are also handled. Information is stored for an extended time

of up to several years, allowing real-time as well as follow-up analysis of performance and faults in

the system. Several web-based tools have been developed as frontends to the system, visualizing the

information for experts and the shift crew. Monitoring of the HLT performance is also collected

using non-event streams, such as histograms, which are merged and shipped to the DQM system,

and trigger statistics, which are merged and stored in a database.

9.5.5 Evolution of the HLT farm

The F3 was gradually expanded almost every year during Run 2, as the HLT processing requirements

increased due to evolving LHC and detector conditions. The FU nodes are typically replaced with a

new generation of hardware after the end of their 5-year warranty periods, with the old nodes being

assigned to the online cloud, as described in section 9.9.2. Table 14 summarizes the composition of

the HLT farm at the end of Run 2 and at the beginning of Run 3, along with the computing power

estimates based on the HEPSPEC 2006 [265] (HS06) benchmark measurements. Prior to the start of

Run 3 data taking, the entire farm was replaced with new AMD CPU nodes, each equipped with two

NVIDIA T4 GPUs [266]. In this conőguration the average processing time of the HLT can be up to

500 ms per event, at the nominal L1 rate of 100 kHz.

Table 14. Summary of the HLT őlter farm unit speciőcations, thermal design power, and performance based
on HS06 in the őnal year of Run 2 and őrst year of Run 3.

Run Run 2 (2018) Run 3 (2022)

Architecture Intel Haswell Intel Broadwell Intel Skylake AMD Milan

CPU model dual E5-2680v3 dual E5-2680v4 dual Gold 6130 dual 7763

CPU cores 2 × 12 2 × 14 2 × 16 2 × 64

Nominal freq. [GHz] 2.5 2.4 2.1 2.45

Turbo freq. [GHz] 3.3 3.3 3.7 3.5

TDP [W] 120 120 125 280

Memory [GB] 64 64 96 256

Nodes 360 324 400 200

CPU cores (total) 8640 9072 12800 25600

HSa/node 538 659 773 3224

TDP [W]/kHSa 223 182 162 87

kHSa 194 214 309 645

GPU card Ð Ð Ð 2×NVIDIA T4

aHS06 measurements only take into account the CPU performance. The precision is around 1%.

Speciőc HLT reconstruction algorithms, such as those used in data scouting, described in

section 11.4, can be offloaded to these GPUs, reducing the average HLT event processing time by

over 40%, as shown in őgure 134 and discussed in section 11. In comparison to an HLT farm
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equipped only with CPUs, this corresponds to a reduction in the farm’s overall cost by approximately

15% and its power consumption by 30%.

On F3 nodes, CMSSW jobs are divided into two groups, and, for each group, the CPU and

memory affinity is pinned to a single CPU socket NUMA domain on dual-socket AMD nodes. Each

GPU is attached to PCIe lanes on an individual CPU socket and assigned to the group of processes

running on the same socket. The NVIDIA multiprocess daemon is used to schedule GPU access

between processes, providing a small performance enhancement over direct access. A total of eight

jobs with 32 threads and 24 streams each (i.e., parallel event processing pipelines in CMSSW) is used

per node, since this conőguration was found to őt within the memory capacity of the nodes and GPUs.

It was determined that increasing the number of threads per process in CMSSW adds a small additional

overhead, and thus it was not further increased to keep the optimal processing capacity of the F3.

To support NFS data transfers in Run 3, a Juniper QFX5120 top-of-the-rack (ToR) switch is

employed, which uses 8 × 100 Gb/s up-links to the event backbone network from each rack. The

network contains approximately 40 FU nodes with 25 Gb/s Ethernet connections to the ToR switch.

A ŕat interconnect network is provided, enabling any FU to communicate with any RU/BU node.

9.6 Storage and transfer system

The storage and transfer system is the last stage of the DAQ data ŕow. It collects the HLT output

from each RU/BU and associated FU group and writes it to a cluster őle system. It later transfers

the data to Tier 0 for repacking from the streamer format into the ROOT format and to permanent

storage on disk and tape servers.

The HLT daemon services on the FUs within the FU group concatenate output streamer őles,

analyze metadata, and copy the corresponding őles into a dedicated RU/BU output partition. This

was a spinning disk RAID array in Run 2, and is a 200 GB ramdisk partition in Run 3 to support

higher throughput. The merger service running on the RU/BU nodes periodically polls the streamer

and JSON metadata őles in this area, written by each FU for a particular stream and luminosity

section. The JSON metadata őles are used to verify the completion of per-LS output. Once all FUs

have copied a complete set of őles, the service distributes tasks to several worker threads to read the

output of all streamer őles and append them into a single őle location in the distributed őle system.

For most streams and a majority of the output bandwidth, this step is done by simultaneously writing

into a single őle at a different offset. This technique is used to efficiently merge data into the őnal

őle object, one per stream and LS. This őle can be transferred by a single copy operation to Tier 0,

instead of requiring an additional read and write operation to perform such a concatenation.

The őnal stage of merging is performed on a set of dedicated STS nodes, with each handling

a subset of streams. For most streams this amounts to veriőcation of the metadata and checking

the completion of őles written by the merger service from each RU/BU. Fully merged streamer

őles, residing in a cluster őle system, are handled and transferred to their destination by the transfer

service, also running on the same nodes as the merger service. For data destined for the Tier 0, a pool

of threads starts the őle copy jobs to transfer data to the EOS disk system [267] using a high-speed

link to the central data recording (CDR). The transferred őle size is kept below 16 GB for optimal

transfer throughput performance. The network infrastructure used to transfer to the Tier 0 is detailed

in section 9.9. Streams are also delivered to several other destinations, such as the DQM and the
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calibration cluster, or are parsed to extract the HLT and L1 trigger rate monitoring information and

inject it into the relational database.

Extensive bookkeeping is required to track all the őles passing through the system. This

information is injected and visualized in the F3 monitoring system. Metadata relevant for the

transfers are also written to an SQL database for bookkeeping and to provide transfer metadata to

the Tier 0.

For Run 2, Lustre [268] was selected as the cluster őle system, after initial evaluation in the

DAQ integration system. The production system consisted of two disk servers (OSS) and a metadata

server (MDS), providing on the order of 9 GB/s of total read and write throughput, with around

500 TB of storage space provided by a redundant hard drive setup.

In Run 3, the storage system requirements are driven mainly by the heavy ion running, which,

apart from centrally colliding lead ion events, aims to collect a large amount of minimum-bias events.

An estimated throughput of 17 GB/s is required in a scenario that includes a trigger selection of

around 1 kHz of centrally colliding heavy ion events and a minimum-bias rate of 10 kHz at the HLT

output, as described in section 9.5.3.

To cover these requirements, a hardware refresh was pursued in Run 3, retaining the same őle

system technology while signiőcantly improving the bandwidth capability compared to Run 2. A new

system comprising two DDN EXAScaler [269] SFA7990X data servers and a single SFA400NVX

metadata server was acquired for the task. Each data server consists of 124 SAS 8 TB 7.2k RPM hard

disks, organized in a RAID6 array. The metadata server comprises 23 SSDs, each of 1.8 TB capacity,

in a RAID6 array. The system is connected via the chassis-based Ethernet switch also used for the

EVB and HLT. Seven STS nodes were additionally installed and are connected to the chassis-based

Ethernet switch. Together with the RU/BU nodes, these nodes are set up as Lustre clients and the

őle system made accessible through mount points. The Run 3 Lustre system storage space was

scaled to provide several days of storage space for proton LHC runs or up to a day for heavy ion

runs should the Tier 0 connection fail. The usable disk capacity is 1.2 PB, and the system is capable

of simultaneously writing 24 GB/s and reading 11 GB/s using standard őle system benchmarking

tools. The TCP/IP protocol was used for communication in these tests. The system is capable of

temporarily prioritizing the write bandwidth at the expense of the read bandwidth, up to the limit of

the available disk space. This is particularly useful for runs with high peak bandwidth, such as heavy

ion runs, where the read rate recovers and allows draining the accumulated őles towards the end of

the LHC őll and in interőll periods.

9.7 Trigger throttling system

The trigger throttling system (TTS) collects fast readiness signals from all FEDs, merges them per

TTC partition with a priority logic, and makes them available to the trigger control logic to avoid

buffer overŕows by inhibiting triggers or drive recovery actions. While in Run 1 this trigger control

logic was implemented in the trigger control system (TCS), since Run 2 it is part of the trigger

control and distribution system (TCDS), described in section 9.8. A FED may signal the following

main TTS states: Ready (to accept triggers), Warning/Busy (buffer őll level above high-water

mark), Out-Of-Sync (synchronization loss), and Error (other error situation), in ascending order

of priority. The TCDS reacts to the highest-priority TTS state by inhibiting triggers, executing a

re-synchronization sequence, or executing a reset-sequence.
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For the legacy FEDs, TTS signals are sent using four LVDS pairs, which are merged using

compact-PCI based fast merging modules (FMMs) [246] that combine the TTS states of up to 20

FEDs using a priority logic. For partitions with more than 20 FEDs, the FMMs are arranged in a

tree structure. For upgraded FEDs, TTS signals, transmitted over optical őber, are merged with a

similar logic by 𝜇TCA-based TCDS partition interface (PI) modules, as described in section 9.8.

9.8 Trigger control and distribution system

At the start of Run 2, a new TCDS [270] was introduced, replacing the Run 1 trigger control

system that was integrated into the L1 trigger system, and the Run 1 TTC system. The TCDS

provides support for an enlarged range of detector partitions and for detector backends sending their

trigger throttling signals over optical őber. These were both needed to integrate the additional and

upgraded subdetectors with 𝜇TCA backends during Run 2. The TCDS distributes timing and control

(synchronization) data that are ŕowing to the detector backends and frontends and receives back

status information related to the readiness of the detector systems to handle more triggers. The clock

reference that is distributed along with the fast control information is synchronous with the beams in

the LHC, which is required to keep the data taking in step across the various detector systems. The

TCDS is implemented in the 𝜇TCA architecture.

As illustrated in őgure 120, a central crate contains a central partition manager (CPM) board

and up to twelve local partition manager (LPM) boards. The CPM receives the LHC clock from the

TTC machine interface and the L1 accept signal from the global trigger, as described in section 10.3).

Each of the LPM boards contains eight independent integrated CMS interface (iCI) logic blocks

that are able to control a detector partition for local running. The iCI blocks translate the generic

TCDS synchronization commands to subdetector speciőc commands. The iCI block also contains

a partition-speciőc emulator of the APV25 tracker readout chip buffer levels that inhibits triggers

that would lead to overŕows of these buffers. Each LPM board also contains two partition manager

(PM) blocks that can orchestrate combined runs with sets of partitions in the same LPM. The CPM

contains one PM block orchestrating global runs with all partitions. The PM blocks provide the

following functionality:

• Trigger throttling, taking into account:

ś the TTS state of partitions;

ś trigger rules, suppressing bursts of triggers by limiting the number of triggers in certain

windows of bunch crossings, as required by the subdetector frontend electronics;

ś protection against overŕows in the pre-shower frontend ASIC (in a similar way to the

protection against overŕows in the APV25);

ś resonant trigger protection, i.e., protection against triggers arriving at regular intervals

over prolonged periods, which could give rise to resonant vibrations that might damage

systems (such as wire bonds),

ś the DAQ back pressure to the PM’s readout link.

• Bunch mask trigger veto that can be used to inhibit triggers (such as preőring triggers) in LHC

bunch crossings that are not őlled.
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10 backend boards via bidirectional optical links. In the reverse direction, it receives TTS signals

from the backends and merges these signals with a priority logic similar to the FMM.

9.9 Networking and computing infrastructure

The operation of the CMS experiment is supported by the CMS service network, a high-performance

distributed network connecting all the computers directly related to the operation of the experiment.

While isolated from the CERN general purpose network (GPN), connections to the CDR and LHC

technical network (LHC-TN), as well as the GPN, are allowed for use in speciőc cases. The network

follows a redundant design established in the early years of the experiment. Currently, routers

provide 1 Gb/s Ethernet connections to the servers. Available bandwidth is commonly used for user

access, control, and monitoring. The majority of the DAQ computers are located in racks, to which

the service network is provided using ToR switches.

The DAQ data networks have been signiőcantly redesigned and upgraded throughout the lifetime

of the experiment, as described previously in this section. To facilitate sending data taken by the

experiment in Run 3 to the Tier 0, four 100 Gb/s links from the event backbone network to the CDR

are employed. This facility is also used by the online cloud for accessing external data stores and

services, as described in section 9.9.2.

A network-attached storage (NAS) system is used by CMS for core storage needs. This includes

home directories and subsystem storage, exposed via standard remote őle system protocols to nodes

in the CMS network. The system acquired for Run 3 provides 1.3 PB of storage space. The CMS

online computing system runs the CERN-supported version of Linux, CERN CentOS 7 (CC7) [271],

as well as Red Hat Enterprise Linux 8 (RHEL8) [272]. Both of these operating systems are also

used for the DAQ operation. Machines are initially installed (or reinstalled) using a network preboot

execution environment (PXE) boot installation service. After Run 1, the Quattor [273] system was

replaced with the Puppet [274] software conőguration management tool, which handles the OS

installation, conőguration, and deployment of the online software in distributed and reproducible

fashion on thousands of DAQ and subsystem computers.

9.9.1 Virtualization

Virtualization allows the reuse of physical computers by sharing them for multiple services that are

running in virtual-machine (VM) instances, while simultaneously providing an isolated execution

environment for each service. A virtual-machine infrastructure has been set up and used to run the

CMS online services based on the oVirt [275] open-source virtualization management platform

on the CentOS 7 OS. The VMs running on this infrastructure are installed from OS boot images

provided on the network and using the Puppet conőguration management system described above.

The VMs are accessible on the service network via dedicated network names assigned by the DNS.

9.9.2 Online cloud

The HLT farm consists of a large number of multicore nodes, representing signiőcant computing

power. During interőll periods, week-long technical stops, and longer LHC and detector upgrade

periods, this capacity is mostly unused for the HLT tasks. Thus, starting in Run 2, infrastructure

was developed [276] to run an Openstack-based cloud overlay to use the computing resources for
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offline production jobs. In order to not overlap with the HLT-based workŕows, the FUs are able to

run virtual machines (VM) that provide the necessary software environment for the worldwide LHC

computing grid (WLCG) CMS jobs. These jobs run tasks such as simulation and reconstruction in

full isolation from the HLT. In section 12, more details on the WLCG and workŕows are provided.

An API is implemented in the HLT daemon to facilitate the automatic suspension and startup of the

cloud mode or resumption of the HLT. The cloud images can be suspended to disk and later resumed,

allowing the quick save of unőnished jobs when, for example, the cloud needs to be suspended based

on the LHC status. The system can also perform the switch automatically, reacting to the LHC state

or, in another mode, monitoring the HLT CPU usage and dynamically re-allocating unused fractions

of the HLT to the cloud. About 5% of the farm remains in HLT mode at all times to provide an

operable HLT for cosmic ray data taking, commissioning, and tests.

Openstack VMs use a virtual local area network (VLAN) for access to the CERN services

such as EOS, where the job input data, as well as the destination of job results, are located. The

VLAN is implemented in the event backbone network and routed through CDR links to the CERN

IT infrastructure.

The overlay cloud has been extensively used since Run 2 and successfully expands the CMS

computing resources through opportunistic re-purposing of the hardware. Furthermore, it consists

not only of the active HLT cluster, but also computing nodes that were retired from the HLT. They

are kept in cloud operation as long as the computing infrastructure support is possible. Overall, the

online cloud, which is classiőed as a Tier 2 CMS site, as described in section 12, is one of the major

contributors to CMS offline computing, comparable to the largest Tier 1 sites in the amount of CMS

production workload.

9.10 Software, control, and monitoring of the DAQ

Two software frameworks have been developed within CMS to implement the bulk of the experiment’s

online software: the C++ based XDAQ framework [239], used to implement hardware access and

data transport, and the Java based run control and monitoring system (RCMS) [73, 277], used to

implement the hierarchical control structure and main user interface. These two frameworks, which

have been adopted by the central DAQ system and by all subdetectors, are maintained and enhanced

according to the evolving requirements of the experiment and continue to be used in Run 3.

The XDAQ software is a platform designed speciőcally for the implementation of distributed

DAQ systems. It has a layered middleware structure, providing support for communication, a web user

interface, high-speed networking, hardware access, multithreading, performance tuning, monitoring,

error reporting, and logging. The XDAQ system builds upon industry standards, open protocols, and

libraries, e.g., TCP, HTTP, XML, and Apache Xerces. Notable enhancements to XDAQ include the

development of new łpeer transportž plug-ins to support new network technologies, such as RDMA

using Inőniband Verbs [278, 279], and a new service-based approach to the conőguration of the

built-in monitoring and alarming infrastructure [280]. New XDAQ-based applications have been

added to control new types of custom hardware and existing applications, such as the event builder

enhanced with features such as load balancing and fault tolerance.

The RCMS is a framework based on web applications running inside container instances

(Apache Tomcat), which provides the building blocks to compose a distributed hierarchy of nodes to

control and monitor the state of XDAQ applications and other online applications used during data
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taking. Control nodes are based on state machines, with system-speciőc control logic implemented

in Java. They are steered and monitored through web user interfaces. The RCMS includes database

schemas to hold the conőguration of all software components, deőne hardware conőgurations, and

manage the complex interconnects required for the two-stage event builder. Extensive tools for

conőguration management are available. In the area of the RCMS, the development of guidance

systems for operators and automation have helped to make the operation of the experiment less

error-prone and less reliant on the knowledge of experts. The overall conőguration of the experiment

can be automatically selected based on the state of the LHC, actions needed in response to certain

LHC state changes, and actions like high-voltage ramping in the detectors that are performed

automatically [277]. Recovery from regular single-event upsets and from other typical data-taking

problems is fully automated [281, 282]. Conőguration management tools have been enhanced

according to new requirements in Run 2 and Run 3 supporting, for example, őne-grained data-ŕow

optimization according to the network topology.

The őlter farm and the storage and transfer system are controlled and monitored by online

software based on Python and Elasticsearch, as described in sections 9.5.2 and 9.5.4.

A number of monitoring clients transform the raw monitoring data from both the XDAQ

monitoring system and the Elasticsearch-based monitoring system into web-based graphical and

textual monitoring displays used by the shift crew. The monitoring clients typically display instant

data with a latency of a few seconds and can also be used to browse historic data to facilitate

post-mortem analysis. The Java-based DAQ expert tool [283ś285] detects all common data-taking

problems by evaluating rules encapsulated in logic modules using snapshots of monitoring data.

This helps the shift-crew with the sometimes difficult task of pin-pointing the cause of data-ŕow

problems. With problems for which a recovery is known, the tool can drive completely automatic

recovery actions. It consists of several micro-services responsible for reasoning, notiőcation, and

control of the recovery.

A switch monitoring system with a web-based graphical representation was developed to

monitor the link status and performance metrics of the DAQ data networks and assist experts in

diagnosing network-related failures.

In addition to speciőc aggregation and presentation tools for the DAQ and HLT, a general

service is provided to the subsystems and collaboration at large to aggregate and present online

monitoring data stored in the different databases. The online monitoring service (OMS) is a new

Run 3 software tool replacing a set of web-based monitoring tools (WBM [286]) used in Run 1 and

Run 2 to provide uniőed remote access to the monitoring data. The OMS uses a generic relational

database model (Data Warehouse) and interface, and a web-based presentation framework by which

information across heterogeneous data sources and formats is aggregated and presented. The

presentation is organized in a structure of folders and pages that contain portlets typically displaying

information in the form of tables and graphs, showing, for example, run and őll details, trigger rates,

or subdetector monitoring.

9.11 MiniDAQ

In addition to the global DAQ system, self-service DAQ systems, called MiniDAQs, are provided

for most of the CMS subdetectors. These setups can be used at any time by the subdetector groups

for calibration runs, tests, and debugging using detector partitions that are not participating in the
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global data taking. These setups have proven extremely useful since they allow independent testing

under almost the same conditions as in global data taking. Trigger control for MiniDAQ systems

is provided by one of the PM blocks in a TCDS LPM. During Run 1 and Run 2, these MiniDAQ

systems ran on dedicated RU, BU, and FU servers and provided limited bandwidth with respect to

the global DAQ system. In Run 3, MiniDAQ systems share the RU/BU and FU servers with the

global system and provide a full bandwidth to each subdetector. The conőguration of the MiniDAQ

systems is dynamically updated to follow any changes in the global system.

10 Level-1 trigger

The level-1 (L1) trigger is implemented in custom hardware processors. It comprises calorimeter and

muon trigger systems that provide jets, e/γ , hadronic τ, and muon candidates, along with calculations

of energy sums, to the global trigger (GT). At the GT, the trigger decision is generated, based on

the multiplicity and kinematic information of the various candidate trigger objects. The trigger

conőguration is implemented in a trigger łmenuž comprised of several hundred łseedž algorithms.

Upon a positive GT decision, the full detector data are read out for further őltering in the higher-level

trigger (HLT). During LS1, in 2013ś2014, the L1 trigger hardware was entirely upgraded, and has

subsequently been operated successfully since 2016. A detailed report on this Phase 1 L1 trigger

upgrade and performance with Run 2 data is given in ref. [5].

For Run 3, although no major trigger hardware upgrade was performed, new capabilities have

become available already through new algorithmic approaches, some of which are based on machine

learning (ML) techniques. Software such as hls4ml [287] facilitates the use of ML techniques in

FPGAs. Developments for Run 3 within the L1 trigger mostly focus on broadening the physics

reach of CMS through the addition of dedicated triggers for long-lived particle (LLP) signatures,

improving object measurement and calibration, utilizing the upgraded calorimeter trigger primitives

(TPs) and additional muon TPs from the new GEM muon detector, and implementing additional

calculations in the global trigger to provide greater ŕexibility in the design of L1 trigger algorithms.

The addition of a 40 MHz scouting system, commissioned in the early stages of Run 3, that

receives data from both the calorimeter and muon L1 trigger subsystems, has the potential to further

broaden the physics reach of CMS. It enables the readout of unőltered data, reconstructed in situ at

limited precision but at full bunch-crossing rate, and provides unprecedented monitoring capabilities.

The following sections describe the Run 3 developments speciőc to each of the L1 trigger subsystems.

10.1 Calorimeter trigger

10.1.1 Calorimeter layer 1 trigger

The calorimeter layer 1 trigger receives TPs from ECAL, HCAL, and HF, calibrates them, combines

the ECAL and HCAL TPs into single trigger towers (TTs), and transmits the TTs to layer 2 for

further processing. Calorimeter TPs for triggered events are readout to DAQ, and used in the data

quality monitoring (DQM) system, where they provide the input to the software emulator, such that

online and emulated data can be compared in real time for monitoring purposes. For Run 3, layer 1

receives updated HCAL TPs (section 5.3), which improves the mitigation of out-of-time pileup, and

updated ECAL TPs (section 4.5) with improved rejection of spikes caused by particles striking the

avalanche photodiodes.
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The TT energies are calibrated to account for energy losses due to inactive material in front

of the calorimeters. The calibration is performed separately for each calorimeter. Since the

inactive-material map is symmetric in 𝜙, the calibration is performed as a function of 𝜂 and transverse

energy, 𝐸T, only. Whereas for the ECAL TP calibrations, the scale factors vary by less than 20%

across the 𝐸T range, the HCAL and HF calibration scale factors are much more 𝐸T dependent,

varying by about 50%. Both ECAL and HCAL scale factors vary by about 20% across the 𝜂 range.

Due to the large volume of data produced by the TPs and limited DAQ bandwidth, only TPs for

triggered events are read out by the DAQ system. To study possible trigger bias, for approximately

every 100th event that passes the full L1 trigger selection, validation data are read out, that also

contain the TT information. In Run 3, validation events contain the ECAL TP data for őve bunch

crossings, including the two bunch crossings before and after the triggered bunch crossing. This

information is useful for studying unexpected detector effects, and can be used to study ECAL

preőring (section 4.5), both using the DQM and offline analysis. This additional ECAL TP data

can also be used for various optimization studies, such as monitoring the timing of the ECAL TPs

through the L1 trigger path during commissioning phases.

10.1.2 Calorimeter layer 2 trigger

Calorimeter layer 2 receives calibrated TTs from layer 1, reconstructs jet, e/γ , and τ candidates, and

computes energy sums. The energies of jet, e/γ , and τ candidates are calibrated as a function of 𝑝T

and 𝜂, and isolation and ID criteria are applied to e/γ and τ candidates. Pileup mitigation is applied

to all objects to reduce the rates while maintaining high efficiencies. The layer 2 hardware remains

the same as for Run 2. Ten main processor cards each process data from the entire calorimeter for a

single bunch crossing in a time-multiplexed conőguration. A single demultiplexer processor receives

data from the main processors, performs the őnal calculation of the energy sums, and forwards the

object collections to the global trigger. More details can be found in ref. [5].

A range of improvements to the layer 2 algorithms are being investigated for Run 3, most of

which involve utilizing the updated ECAL and HCAL calorimeter TPs as discussed in sections 4.5

and 5.3, respectively. In particular, the ability to trigger on LLP signatures by identifying displaced

jets using the additional HCAL timing and depth information available for Run 3 is being pursued to

help broaden the LLP physics program of CMS.

Jets are reconstructed by summing the energies of a 9 × 9 window of TTs centered on a jet seed

that must have an energy greater than 4 GeV, which corresponds to approximately the same jet size

as jets reconstructed offline with Δ𝑅 = 0.4 within the barrel calorimeter. The energy contribution

due to pileup is estimated by summing the three lowest energy out of the four 3 × 9 regions on the

boundaries of the jet and subtracting this pileup estimate from the jet energy, which is then calibrated.

For Run 3, an LLP jet identiőcation algorithm is implemented that uses the HCAL timing and

depth information. Each TT has an HCAL feature bit set in layer 1, which compresses six feature

bits received from the HCAL backend, containing timing and depth information, into one feature bit.

When the jets are reconstructed from TTs at layer 2, an LLP jet ID bit is set if the jet contains more

than a conőgurable number of TTs with the HCAL feature bit set. Additional LLP jet algorithms have

been added to the GT menu that require the LLP jet ID bit to be true. In addition to tagging LLPs, the

ability to tag boosted jets with substructure using a pattern-matching technique, and the use of ML

techniques to calibrate the jet energy and perform pileup subtraction are being investigated for Run 3.
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presence of merged clusters, in addition to the 𝑝T and 𝜂. While no signiőcant changes to either the

e/γ or τ algorithms have been implemented for Run 3, the existing calibrations and isolation working

points have been and will be rederived throughout Run 3 to reŕect updated detector conditions and

calorimeter TP algorithms. Methods to improve the isolation working points of e/γ and τ candidates

utilizing ML techniques are being implemented.

10.2 Muon trigger

The L1 muon trigger for Run 3 receives TPs from four partially overlapping muon subdetectors: DT,

CSC, RPC, and GEM. As described in detail in section 6, three of these subdetectors, DT, CSC,

and RPC, were operated during Run 2, while the GEM detector was added as part of the Phase 1

upgrade and is used for the őrst time in Run 3. The L1 muon trigger system reconstructs muon

tracks and provides measurements of muon track parameters using TPs which provide position,

timing, and quality information from detector hits. In the barrel, accurate directional information is

also provided. The geometrical arrangement of the muon subdetectors, including the new GE1/1

detector in front of ME1/1, is shown in őgure 39. In this section, the changes to the muon track

őnders are discussed in detail.

The L1 muon trigger system in Run 3 comprises the same overall design as in Run 2. Three muon

track őnders (TFs) reconstruct muon tracks in three distinct pseudorapidity regions using TPs from

muon detectors. The barrel muon track őnder (BMTF) receives inputs from DT and RPC in the barrel

(|𝜂 | < 0.83), the overlap muon track őnder (OMTF) uses DT, CSC, and RPC in the overlap between

barrel and endcap (0.83 < |𝜂 | < 1.2), while the endcap muon track őnder (EMTF) takes inputs from

CSC, RPC, and GEM in the endcap (1.2 < |𝜂 | < 2.4). All three muon track őnders transmit up to

36 muons each per bunch crossing to the global muon trigger (𝜇GMT), which resolves duplicates

and transmits a maximum of eight muon tracks per bunch crossing to the GT, similar to Run 2.

In Run 3, all three muon track őnders additionally provide measurements of parameters for

muon tracks that are displaced from the primary interaction point. The beamspot constraint requiring

the track to originate from the interaction point is removed. The newly available track parameters

are used in the GT to provide L1 muon trigger seeds targeting displaced-muon signatures that could

originate from LLPs. Additionally, in Run 3, the EMTF receives TPs also from the GEM detectors,

and this information can be used to improve both prompt and displaced muon triggering.

The new displaced-muon algorithms provide a 𝑝T, measured without the beamspot constraint,

and a transverse displacement, 𝑑𝑥𝑦 , from the beam line, for muon tracks obtained from propagating

back to just the őrst muon station. Algorithms optimized for prompt muons typically underestimate

the 𝑝T of highly displaced muons, as the displacement is mistaken as increased track curvature due to

the beamspot constraint. The new displaced-muon algorithms improve the 𝑝T estimation for displaced

muons, hence improving the efficiencies for these triggers. The displaced TF algorithms in general do

not affect the muon track building, but provide additional measurements of unconstrained quantities.

Due to this approach, the trigger efficiency is increased signiőcantly for muon 𝑝T > 10 GeV when

the displacements are larger than 20 cm, while in the case of lower 𝑝T muons, the displaced muon

algorithms perform similarly to the prompt algorithms. This is due to the fact that all the prompt

TF algorithms have a minimum 𝑝T assignment value (2ś4 GeV depending on the TF), and the

underestimation of 𝑝T for displaced muons becomes less important at low 𝑝T values.
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well as the 𝑝T estimation stage to improve the performance of the EMTF algorithm. Additionally,

the EMTF uses a neural network (NN), implemented in FPGA logic, to estimate the 𝑝T and 𝑑𝑥𝑦 of

displaced-muon tracks, and forwards data to a hadronic shower trigger that uses the multiplicity of

hits in the endcap CSCs to trigger on LLPs producing showers as they enter the endcap muon systems.

The őrst of the GEM detectors (GE1/1) is included in the EMTF algorithm in station 1 of

the CMS endcap muon system. The Run 3 EMTF algorithm can use GE1/1 hits in conjunction

with ME1/1 hits to improve prompt and displaced trigger efficiencies and reduce rates caused by

mismeasured muons. Due to the placement of the GE1/1 and ME1/1 chambers in the CMS endcaps,

the strong magnetic őeld in this region causes a larger bending of the muon track. This bending

information between GE1/1 and ME1/1 is foreseen to be used to improve the 𝑝T assignment for both

prompt and displaced-muon tracks.

Similar to the other track őnders, the EMTF also includes a new algorithm to improve displaced-

muon triggering. The EMTF for Run 3 includes a NN-based 𝑝T and 𝑑𝑥𝑦 assignment algorithm,

which runs in parallel to the prompt algorithm. The NN has been directly incorporated into the

EMTF őrmware and estimates the 𝑝T and 𝑑𝑥𝑦 of muon tracks that are built by the EMTF track

building algorithm. The EMTF performance for prompt muons originating from the primary vertex

remains identical. As shown in őgure 124, the displaced-EMTF algorithm (NN-EMTF) shows an

improved efficiency up to a 𝑑𝑥𝑦 of about 100 cm, while the prompt EMTF algorithm retains a high

efficiency for prompt muon tracks up to about 25 cm. The expected performance for Run 3 was

evaluated using a displaced-muon gun simulation sample with zero pileup. Zero-pileup samples

were used since they are more useful in optimizing the NN and comparing ideal efficiencies. For

L1 𝑝T > 10 GeV, the NN-EMTF algorithm shows efficiencies above 80% for 1.2 < |𝜂 | < 1.6 and

up to 100 cm displacements, while efficiencies for 1.6 < |𝜂 | < 2.1 and 2.1 < |𝜂 | < 2.5 at 60 cm

displacement are around 20 and 5%, respectively (őgure 124).

Finally, the EMTF for Run 3 forwards CSC hit information to provide a standalone method

for triggering on hadronic showers occurring in the CSC detectors. An LLP decaying to hadronic

particles within or slightly before the endcap muon systems can cause a shower of charged particles

hitting the muon detectors, which are then recognized through a high hit multiplicity. In Run 3, the

CSC detector sends information on whether a high multiplicity is found in any given chamber by

comparing the measured multiplicity to a set of predetermined thresholds, individually for each CSC

station and ring combination. The EMTF processes this information to decide whether there was a

hadronic shower of a given quality in at least one of the CSC chambers in any given sector. The

expected performance of this algorithm for Run 3 was evaluated using multiple physics simulation

samples containing LLPs and found to provide efficiencies around 30%.

10.3 Global trigger

The hardware for the present global trigger system, the 𝜇GT, was installed as part of the Phase 1

upgrade, and was used for most of LHC Run 2 and is used for Run 3. The ŕexibility of the L1 trigger

system has allowed for the addition of a 𝜇GT test crate containing the same hardware to be added

to further extend the global trigger capabilities. It is used for testing and development purposes,

for example, to test new or experimental trigger menus, or to test Phase 2 algorithms using ML or

autoencoding, as described in ref. [88]. It receives the same optical inputs as the production crate

from a passive optical splitter panel. For Run 3, this crate has been included as an optional component
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Figure 125. Production (upper) and the new test crate (lower) of the 𝜇GT.

tral Prometheus monitoring database, described in section 10.5, together with those from the produc-

tion crate for online monitoring and prompt offline studies. Data are also expected to be sent to offline

computing systems for long-term storage. Alerting services are conőgured to warn shifters and experts

with relaxed severity compared to the production system, as the system is not critical for data taking.

10.4 Trigger menu

Expanding the CMS physics reach signiőcantly beyond that explored already during Run 2 [5]

requires important changes to the Run 3 trigger menu, and relies mostly on improvements to the

L1 trigger algorithms. The LHC beam conditions and őlling scheme, as well as other aspects like

luminosity leveling, described in more detail in section 7.5, should be taken into account in order for

the menu to be efficient and robust within the L1 bandwidth limit of about 100 kHz.

The updates to the calorimeter and muon trigger systems discussed earlier aim to retain the

Run 2 physics coverage described in ref. [5], while providing additional access to signatures that do

not originate at the primary vertex, such as displaced muons or displaced jets. Furthermore, the

GT is able to perform two new kinematic computations that can be utilized to increase the physics

coverage: the three-body invariant mass and the di-object ratio between invariant mass and the

Δ𝑅 =

√︁

(Δ𝜂)2 + (Δ𝜙)2 between the objects. Special L1 trigger menus are available in addition to
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the standard menus to account for various data-taking scenarios, as was done during Run 2, e.g.,

targeting signatures related to the physics of bottom quarks using the so-called łB parkingž [288],

recording additional data for B physics and other studies, as further described in section 11.5.

10.4.1 Trigger seeds for displaced muons

Physics signatures involving LLPs were not well represented within the L1 trigger menu during

Run 2, since speciőc algorithms capable of triggering on displaced objects within the detector were

not yet implemented. The changes for Run 3 provide the ability to trigger on displaced muons with

higher efficiency compared to Run 2. Updates to the muon algorithms in all three muon track őnders

provide unconstrained 𝑝T and 𝑑𝑥𝑦 measurements for displaced muons, as discussed in section 10.2.

To beneőt from the displaced muon algorithms, the L1 trigger menu of Run 3 extends that of

Run 2 by offering seeds that use the unconstrained 𝑝T and 𝑑𝑥𝑦 measurements. These new seed

features are available for muon objects with 𝑝T > 10 GeV, and possible additional selections are

deőned according to the planned physics program. The chosen 𝑝T threshold is based on the expected

gain in the trigger efficiency described in section 10.2, concerning only muons with 𝑝T > 10 GeV

and displacements larger than approximately 20 cm. Since the displaced muon algorithms do not

perform better compared to the prompt algorithms in the case of low 𝑝T muons, no new seed is

created if the leading muon in the considered seed has a 𝑝T below 10 GeV.

10.4.2 Trigger seeds using new kinematic variables

Low-mass resonance searches, for example those used to study the physics of bottom quarks, are

based on targeting a őnal state with low 𝑝T objects. While the őnal states targeted in B-physics

searches are often expected in the barrel region, many other interesting physics scenarios predict

a wide pseudorapidity distribution for the őnal state objects. Ideal seeds with a minimum object

selection with low object thresholds would result in a high trigger rate that is unsustainable, exceeding

the available trigger bandwidth under any LHC data taking conditions, and provide low purity.

During Run 2, the most used unprescaled seeds relying on a single object had relatively high

𝑝T selections to keep trigger rates manageable, e.g., the single-muon trigger with 𝑝T > 22 GeV.

Special B parking triggers, used for events that are written to disk storage without full online

event reconstruction at HLT, were developed to lower the L1 trigger thresholds while keeping

within the HLT trigger bandwidth. To provide reasonable rates, typical B parking seeds in general

restrict pseudorapidity to the barrel and overlap regions, e.g., the double-muon trigger with no 𝑝T

selection but with |𝜂 | < 1.5 and Δ𝑅µµ < 1.4. However, the HLT thresholds used for the B parking

seeds, generally above 5 GeV, would often signiőcantly reduce the total acceptance of interesting

physics signals.

The substantial L1 trigger rates related to low 𝑝T trigger thresholds can alternatively be managed

by using kinematic variables that are optimized to increase the acceptance of predicted signal events.

During Run 3, the GT is able to perform two new kinematic variable computations: the three-body

invariant mass, and the di-object ratio between invariant mass and the Δ𝑅. These allow the rate

of seeds with low 𝑝T thresholds to be reduced. For example, the three-body invariant mass can be

harnessed to target the decays of a τ into three muons, a őnal state with low-𝑝T őnal objects with

wide pseudorapidity distributions. Alternatively, the di-object ratio between invariant mass and the

Δ𝑅 could beneőt a low-mass dimuon resonance search providing a dark photon interpretation.
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The signiőcantly improved L1 online software and monitoring enables users to spot problems

much more efficiently, and react more quickly compared to Run 2. It also facilitates more efficient

diagnosis of problems after they have occurred, since more historical information is available and is

easy to access.

10.6 The L1 scouting system

For Run 3, the L1 trigger project added dedicated hardware for the triggerless recording of objects

reconstructed in the level-1 trigger, at a rate of 40 MHz without trigger or őltering. The data are

received by dedicated FPGA-based processing cards, either housed in powerful servers (I/O nodes)

or operating standalone in custom enclosures. Once received and pre-processed, the information

is provided to a computing farm via Ethernet. Triggerless data recording, referred to in CMS as

ł40 MHz scoutingž or łL1 scoutingž, facilitates improved precision of measurements such as the

luminosity, as well as unprecedented levels of trigger monitoring. The term łscoutingž is also used in

the context of HLT, described in section 11.4, where it refers to the selection and high-rate recording

of small-size analysis data sets.

The L1 scouting system deployed for Run 3 is meant as the őrst large-scale demonstration

of a larger system planned for the Phase 2 L1 trigger upgrade [88]. Besides providing a testing

ground for the technical implementation of the readout, it provides the opportunity to study solutions

for large-scale distributed processing of high-rate data, the correlation of multi-bunch-crossing

signals, as well as őrst studies of possible physics applications using limited resolution trigger data.

The measurement of a range of physics processes, such as LLPs with displaced muons and ŕavor

anomalies in τ physics, could potentially beneőt from L1 scouting.

10.6.1 Architecture of the L1 scouting system

The L1 scouting system receives data from the level-1 trigger via spare output links and processes

them quasi-online in a dedicated computing farm. The system operates largely independently from

the standard CMS trigger and data acquisition chain. In the őrst test system in Run 2, the data sent

from the 𝜇GMT to the 𝜇GT was duplicated, and őnal muon objects, as well as intermediate muon

candidates derived from the BMTF inputs, were transmitted over eight 10 Gb/s optical links to the

L1 scouting system.

For Run 3, an additional set of duplicated 𝜇GMT outputs supply a L1 scouting processor

dedicated to luminosity monitoring, as described in section 10.6.2. Each of the twelve BMTF

processors dedicates two 10 Gb/s links to L1 scouting information. L1 scouting data from the

calorimeter layer 2 system also mirrors the trigger objects provided to the 𝜇GT. Each 𝜇GT processor

transmits 512 bits per bunch crossing over three 10 Gb/s links, indicating which of the trigger

algorithms has őred in a given bunch crossing.

The architecture of the initial Run 3 L1 scouting system is a scaled up version of the Run 2

system, and consists of I/O nodes housing FPGA-based input boards that receive up to eight 10 Gb/s

links using the L1 trigger link protocol. Data are transmitted unidirectionally with no back-pressure

to the trigger. The L1 scouting system therefore does not interfere with the standard trigger system

in any way. The FPGA logic performs both zero suppression and preprocessing of the data such as

reformatting or recalibration. The use of fast NN algorithms, implemented within FPGA resources to

improve recalibration performance has been demonstrated (see section 10.6.2). Data are transferred
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by direct memory access (DMA) via a Gen-3 PCIe x16 bus into the memory of the I/O nodes, from

where they are sent to dedicated processing units in the surface data center via 100 Gb/s Ethernet

over coarse wavelength division multiplexing CWDM4 single mode optical infrastructure. Even

after full zero-suppression, the long-term storage of the huge amount of raw data produced by the

trigger processors, in view of a subsequent łclassicž multitiered offline analysis and reduction, does

not represent a viable approach. Data taken in the early months of LHC Run 3 are being used to

investigate various methods for a real-time analysis.

In the Run 2 demonstrator system, a KCU1500 Xilinx development kit, equipped with a KU15P

FPGA, was used to capture the 𝜇GMT inputs. Additional I/O nodes for Run 3 are equipped with

more powerful boards, such as the Micron SB-852, using a large Xilinx Ultrascale+ VU9P FPGA

and also providing access to the Micron Deep Learning Accelerator (MDLA) [293], which is a

proprietary compiler that translates pre-trained ML networks into instructions for an FPGA-based

hardware implementation. Monitoring of the readout board is being developed using the AXI-lite

interface provided by the Xilinx xDMA core. Custom software exposes access to monitoring and

control registers via a RESTful interface and monitoring and diagnostic data are exported to the

Prometheus server described in section 10.5.

In addition to the I/O nodes with dedicated receiver boards, Xilinx VCU128 development

kits [294] are used as standalone receivers for L1 scouting data. These boards, which are housed

in a custom enclosure with PCIe extender buses for control and monitoring, are equipped with a

VU37P FPGA with 8 GB of high bandwidth memory. The VU35P, with a very similar architecture,

is planned for use on the DAQ-800 board currently being designed for the CMS Phase 2 data

acquisition [295], and is the anticipated readout board for the L1 scouting system of the Phase 2

upgrade. The VCU128 boards in Run 3 thus allow a realistic test of the Phase 2 design, albeit with

reduced input bandwidth. Equipped with an additional FMC mezzanine to provide up to 32 10 Gb/s

input links, they transmit L1 scouting data directly over TCP/IP to the surface computing farm,

providing more efficient utilization of the bandwidth available on the 100 Gb/s Ethernet links. The

Run 3 scouting architecture is illustrated in őgure 128.

10.6.2 Applications of the L1 scouting system

The use of ML algorithms to improve the physics potential of L1 trigger objects captured by the

triggerless recording of trigger data at 40 MHz has been investigated. An example of this is the

use of deep NNs, optimized for a throughput of around 1 MHz, to recalibrate L1 muon objects in

real time, such that the accuracy of the 𝑝T, 𝜂, and 𝜙 parameters of the muons can be improved

over the standard L1 trigger reconstruction, which is optimized for efficiency at threshold, not for

a full physics analysis. Neural networks have been trained on zero-bias triggered data from LHC

Run 2, to predict the offline fully reconstructed muon parameters of matched L1 muon objects. This

recalibration has been shown to improve the accuracy of the L1 muon parameters when compared

to the standard L1 reconstruction, both for 𝜇GMT and BMTF L1 muon parameters [296, 297].

Additionally, neural networks that are trained to reject pairs of L1 muon candidates that do not

correspond to matched fully reconstructed muons, and networks for anomaly detection have also

been implemented in the Xilinx VU9P FPGA with a throughput of about 1 MHz, using the MDLA.

A copy of the 𝜇GMT scouting system will be used to provide direct per-bunch measurements

of the L1 muon multiplicity to the CMS BRIL system described in section 8. FPGA őrmware
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11 High-level trigger

11.1 Overview

To select events of potential physics interest, the CMS trigger system divides the processing into two

levels: the level-1 (L1) trigger, implemented in custom hardware as described earlier in section 10,

and the high-level trigger (HLT), implemented in software, running on a farm of commercial

computers. The HLT reőnes the purity of the physics objects selected by the L1 trigger, with a

maximum input rate increased to 110 kHz in 2023 from 100 kHz earlier. In 2022, for standard pp

collisions at an average instantaneous luminosity of 1.5 × 1034 cm−2 s−1, the average rate to offline

storage for promptly reconstructed physics events was approximately 1.7 kHz. In 2023, for a peak

luminosity of 2.0 × 1034 cm−2 s−1, the rate of promptly reconstructed physics events was about

2.6 kHz. Additional data streams for calibration purposes or łHLT data scoutingž are stored at higher

rates with a smaller event content. The HLT data scouting differs from the L1 scouting (described

in section 10.6) in that events must still satisfy a subset of L1 triggers before being written to disk

at a high rate.

The HLT runs on a cluster of 200 nodes, each equipped with two AMD EPYC łMilanž 7763

CPUs, two NVIDIA T4 GPUs, and 256 GB of memory, running Red Hat Enterprise Linux 8. The

HLT farm is described in section 9.5, with the details speciőc to Run 3 highlighted in section 9.5.5.

The HLT data processing uses the concept of łpathsž to structure its workŕow. These paths

are sequences of algorithmic steps designed to reconstruct physics objects and make selections

based on speciőc physics requirements. Steps within a path are typically organized in ascending

order of complexity, reconstruction reőnement, and physics sophistication. For example, the

resource-intensive track reconstruction process is usually carried out after completing a series of

initial reconstruction and selection steps involving the data from the calorimeters and muon detectors.

The reconstruction modules and selection őlters of the HLT use the same software framework

that is also used for offline simulation, reconstruction, and analysis (CMSSW [256]). As noted in

section 9.5.3, HLT paths selecting similar physics object topologies are grouped into primary data

sets for subsequent offline processing, and collections of primary data sets are organized into streams

for efficient handling.

In preparation for Run 3, the HLT software was adapted to make use of heterogeneous computing

architectures, and several reconstruction modules were developed to take advantage of that to meet

the challenges of processing data at ever increasing luminosity and pileup. Algorithms implemented

to run on both CPUs and GPUs, are automatically directed to run on a GPU if a GPU is available;

otherwise, the CPU-based version of the algorithm is executed. The Patatrack project [299] has

created parallelized versions of pixel track and vertex reconstruction algorithms that can run on

an NVIDIA GPU and were written using the NVIDIA CUDA language. The data structures are

optimized for GPU, and the entire reconstruction chain is executed on the GPU to minimize time-

consuming data transformations and transfers. A subset of ECAL and HCAL local reconstruction

algorithms have also been ported to GPU, also using CUDA. Based on these efforts a reduction

in overall event processing time of about 40% has been achieved. More details can be found in

section 11.3. To make full use of the gain, CMS deployed and commissioned a őlter farm composed

of nodes comprising two GPUs in addition to two CPUs, as noted in section 9.5. More information

about multithreaded processing and GPU offloading is given in section 12.5.
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The HLT selects data for storage through the application of a trigger łmenuž, in which the

collection of individual HLT paths is conőgured. The trigger path deőnitions, physics object

thresholds, and rate allocations are set to meet the physics objectives of the experiment. In 2022,

the HLT menus for pp data taking typically contained around 600 paths. This includes the primary

HLT paths for analysis as well as paths for calibration and efficiency measurements that are typically

looser than the primary paths. These latter HLT paths are often łprescaledž, i.e., only a fraction of

the events that pass the requirements are actually accepted, to limit processing time and storage rate.

Different trigger menus are used for the recording of heavy-ion collision data. The rates, physics

breakdown, and CPU timing of the pp menu are described further in section 11.3.

11.2 HLT reconstruction

The HLT paths in the menu depend on the modules that produce the physics objects from the all-

silicon inner tracker and from the crystal electromagnetic and brass-scintillator hadron calorimeters,

operating inside a 3.8 T superconducting solenoid, together with data from the gas-ionization muon

detectors embedded in the ŕux-return yoke outside the solenoid. A foundation to many of the speciőc

object reconstructions is the particle-ŕow algorithm [300], which uses information from these

systems to identify candidates for charged and neutral hadrons, electrons, photons, and muons. The

main features of the HLT physics object reconstruction and improvements for Run 3 are described in

the following subsections.

11.2.1 Tracking

Tracking using the hits recorded by the pixel and strip trackers is generally performed iteratively

using a combinatorial Kalman őlter, starting with tight requirements for the track seeds that become

looser for each subsequent iteration. Hits in the tracking detectors that have already been used in a

track are removed at the beginning of the next iteration. For Run 2, initially, the track reconstruction

in the HLT consisted of three iterations. The őrst two iterations required four consecutive hits in the

pixel detector to seed the tracking. These iterations target őrst higher 𝑝T tracks and then lower 𝑝T

ones, and use the full volume of the pixel detector. The third iteration relaxes the requirement on

the number of hits in the pixel detector to three, and is restricted to the vicinity of jet candidates

identiőed from calorimeter information and the tracks reconstructed in the two previous iterations.

The track reconstruction is limited to tracks that are consistent with the leading vertices reconstructed

with the pixel detector (those vertices with the largest summed 𝑝
2
T of pixel tracks).

In 2017, several issues with the Phase 1 pixel detector were identiőed that led to a nonnegligible

fraction of inactive pixel modules (section 3.1.1). During the 2017ś2018 year-end technical stop,

the performance of the pixel detector was restored. Nevertheless, an additional recovery iteration

was added to the tracking, to safeguard against a recurrence of this or possible other detector failures.

In particular, track seeds consisting of just two pixel hits were allowed to be reconstructed in regions

of the detector where two inactive modules overlap.

For Run 3 the seeding and tracking were signiőcantly revised. Tracking is now performed using

only a single global iteration, and is seeded by a loose selection of the pixel tracks reconstructed

by the Patatrack algorithm, which offers improved performance over the four-hit pixel tracking

used for data taking in 2018 [299]. To be used as track seeds, Patatrack pixel tracks must satisfy a

loose selection requiring three or more pixel hits, 𝑝T > 0.3 GeV, and be compatible with a primary
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vertex candidate. Despite fewer iterations and less CPU time required, the Run 3 tracking has

improved performance over that used for Run 2. The tracking efficiency and fake rate are measured

in simulated tt events with an average pileup of 63. Figure 131 shows the Run 3 tracking efficiency

and fake rate as determined from Monte Carlo (MC) simulation. The tracking efficiency is deőned as

the fraction of simulated particles from the signal interaction within the considered 𝑝T and 𝜂 regions,

and longitudinal (transverse) impact parameters <35 (70) cm that are matched to a reconstructed

track. The fake rate is deőned as the fraction of reconstructed tracks that could not be matched to

a simulated particle. The Run 3 tracking efficiency is higher than that of Run 2 for 𝑝T > 0.7 GeV,

mostly in the central tracking region and the overall fake rate is lower, particularly around the

transition region between the barrel and the endcap pixel detectors (0.9 < |𝜂 | < 2.1).

11.2.2 Muons

Tracking algorithms are also deployed to identify and reconstruct muons measured in the muon

detectors and in combination with the pixel and strip trackers. While the algorithms used during

Run 2 are described in more detail in ref. [301], a brief summary is given here along with the changes

implemented for Run 3.

Muon track reconstruction at the HLT takes place in two steps: őrst using hits only in the muon

system (L2 reconstruction), followed by a combination with hits in the inner tracking system (L3

reconstruction). The L2 reconstruction is equivalent to the offline standalone muon reconstruction.

The L3 reconstruction is seeded by an L2 muon and follows an iterative track reconstruction

similar to that described in the previous section in a region around the seed starting from the outer

tracking layers and working inward (łoutside-inž) or from the inner tracking layers working out

(łinside-outž). The inside-out approach can also be seeded directly by L1 trigger muons. The L3

reconstruction is essentially 100% efficient with respect to that in the L1 trigger, while consuming

only about 30% of the overall HLT CPU time. After the muon track reconstruction, identiőcation

criteria are applied, as well as isolation criteria for the isolated muon category. The isolation is

based on the sum of 𝑝T from additional tracks associated with the primary vertex and calorimeter

energy deposits that are clustered using a particle-ŕow algorithm in a cone of radius Δ𝑅 = 0.3

around the muon. The estimated contribution from pileup to the energy deposits in the calorimeter

is subtracted.

For Run 3, several modiőcations to the muon reconstruction were made to improve the HLT

performance, in particular with respect to CPU timing. The L2 muon reconstruction was extended

to include hits from the GEM detectors, described in section 6.4. At L3, the tracking was adapted

to make use of the Patatrack pixel track seeds, followed by a single iteration with the full tracker.

The efficiency for low 𝑝T muons was improved by optimizing the search regions around seeds

in which muon tracks are reconstructed in the tracker, achieving an efficiency above 80% for

𝑝T > 2 GeV. Additionally, machine-learning algorithms were incorporated: a boosted decision tree

(BDT) classiőer for the search algorithm and a neural network (NN) algorithm for seeding strategy.

The inside-out algorithm uses the BDT classiőer to consider only the seeds with high quality. The

NN algorithm was developed to choose the best seeding strategy for the outside-in reconstruction

from the L2 muon and thus limit the total number of seeds considered. With these changes, the L3

efficiency remains unchanged, while the CPU time was reduced by 15%.
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For electrons, the ECAL supercluster is associated to a reconstructed track with a direction

compatible with its location. The őrst step is a match with pixel detector hits. Since 2017, the pixel

matching algorithm requires three pixel hits, to maximize early background rejection, while a hit

doublet is accepted only if the trajectory passes through a maximum of three active modules. If

the supercluster is successfully matched with the pixel hit seeds, the electron track is reconstructed

using a Gaussian sum őlter (GSF) tracking algorithm [302].

Variables to enhance the identiőcation of true electrons and photons are applied based on the

shower shape in the ECAL, the energy deposition in the HCAL, and, in the case of electrons, the

matching between the track and the ECAL supercluster, as well as the quality of the GSF track. As

with the other leptons, isolation criteria are generally applied, except for some speciőc paths, to

electrons and photons based on the calorimeter energy deposits in a cone of radius Δ𝑅 = 0.3 around

the electron or photon and the sum of 𝑝T from additional tracks associated with the primary vertex.

Several HLT paths with different isolation criteria and 𝑝T thresholds are deőned to provide a range

of efficiencies and rates for speciőc physics analyses.

11.2.4 Tau leptons

The reconstruction of hadronic tau-lepton decays (τh) at the HLT is also of crucial importance for the

physics program. During Run 2, it was performed in three steps. The őrst step, the L2 reconstruction,

is seeded by L1 τh candidates. The energy depositions in the calorimeter towers around the candidates

within a cone of radius 0.8 are clustered, and L2 τh candidates are reconstructed by using the anti-𝑘T

algorithm [303, 304] with a distance parameter of 0.2.

In the second step, known as L2.5, a charged particle isolation criterion, based on pixel detector in-

formation, is implemented. Pixel tracks are reconstructed around L2 τh candidates with 𝑝T > 20 GeV

and |𝜂 | < 2.5 in a region of Δ𝜂 × Δ𝜙 = 0.5 × 0.5. Tracks originating from the primary vertex with a

transverse impact parameter 𝑑𝑥𝑦 < 0.2 cm, at least three hits, and a trajectory in an isolation cone of

0.15 < Δ𝑅 < 0.4 around an L2 τh candidate, are considered for the isolation sum. An L2 τh candidate

is considered isolated if the scalar sum of the 𝑝T of the associated pixel tracks is less than 4.5 GeV.

The őnal step, the L3 reconstruction, includes track reconstruction using the full tracker. For

Run 2, tracking used a reduced number of iterations to őt into CPU time budget. Moreover, the

track reconstruction was performed regionally around the L2 τh candidates. Until mid 2018, the

L3 reconstruction was performed using a cone-based algorithm. It was then upgraded to the

hadrons-plus-strips (HPS) algorithm [305] that is also used in offline reconstruction. Both algorithms

start with jets reconstructed by the anti-𝑘T algorithm with a distance parameter of 0.4.

In Run 3, the L2 and L2.5 sequences were replaced by a convolutional neural network, in which

the pixel tracks from the Patatrack algorithm and the calorimeter candidates are used as input. This im-

proved the rejection rate at L2 by about a factor of 2 for similar efficiency. Additionally, the efficiency

of the L3 reconstruction was increased by introducing a neural network, DeepTau [306], adapted

from the offline reconstruction such that it matched HLT requirements for speed and performance.

11.2.5 Jets and global energy sums

Jets are reconstructed at the HLT using the anti-𝑘T clustering algorithm [303, 304] with a nominal

distance parameter of 0.4, or of 0.8 in the case of wide jets used in boosted topologies and multĳet

triggers. Inputs to the jet algorithm are usually particle-ŕow candidates, or alternatively calorimeter
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towers. Depending on detector and beam conditions, corrections are applied to the jet energy scale,

as well as the measured particle-ŕow hadron and average pileup energies.

Triggers using jets and global energy sums are used in CMS across a wide spectrum of physics

analyses. Multĳet trigger paths, for example, are key to select vector boson fusion event candidates

which contain two very forward jets in opposite endcaps, with a large angular separation and a

large dĳet invariant mass. Final states with boosted multĳet signatures can also be identiőed using

dedicated jet substructure techniques such as the soft drop approach [307]. Signatures with many

jets in the őnal state can also be triggered using 𝐻T, the transverse energy sum of all jets, or 𝑆T that

combines jets with leptons.

Paths based on missing transverse momentum ®𝑝miss
T , deőned as the negative vector sum of

the 𝑝T of input objects, also exist. For these paths, the accounting for noise and beam-induced

backgrounds is especially important in order to keep rates and resolutions under control. Trigger

paths based on 𝑝
miss
T alone, or in combination with jets, leptons, or photons in the event, are also

used, e.g., to search for weakly interacting particles.

11.2.6 b jet tagging

The identiőcation of b jets at the HLT is essential in order to enhance the fraction of events containing

heavy ŕavor jets from processes like vector-boson associated Higgs boson production where the

Higgs boson decays into a pair of b quarks. Such processes would otherwise be unlikely to pass the

standard thresholds for leptons, jets, or missing transverse momentum.

Since b tagging relies on the measurement of tracks that are displaced with respect to the

primary vertex, both the pixel and the silicon strip trackers are used to improve the spatial and

momentum resolutions of such tracks. In 2016, the combined secondary vertex algorithm CSVv2

was used. Subsequently, in 2017 and 2018, the multiclassiőer neural network DeepCSV was

implemented [308]. With DeepCSV, the b jet tagging efficiency was improved by 5ś15% at constant

gluon or light-quark misidentiőcation rates.

For Run 3, two new neural network taggers, DeepJet [309] and ParticleNet [310], were deployed

in 2022, with further improved performance. In addition to tracks, the DeepJet algorithm also

uses information from neutral and charged particle-ŕow jet constituents. The ParticleNet algorithm

provides multiclass jet-ŕavor classiőcation for categories of b, c, and light quarks, gluons, and

hadronically decaying tau leptons. For use in HLT, the Run 3 tagging algorithms were trained on

dedicated HLT-reconstructed simulation samples.

Figure 132 shows the light-ŕavor jet misidentiőcation rate versus the b jet efficiency for the

different tagging algorithms, evaluated on simulated top-quark pair production events with an

HLT jet selection of 𝑝T > 30 GeV and |𝜂 | < 2.5. Compared to the performance of the DeepCSV

algorithm used during Run 2, the DeepJet algorithm trained using HLT quantities has a light-ŕavor

jet misidentiőcation rate that is lower by about a factor of 3 (up to efficiencies of about 75%). The

ParticleNet algorithm reduces the misidentiőcation rate by another factor of 2.5.

11.2.7 New HLT paths for long-lived particles

In addition to the improved reconstruction algorithms discussed in section 11.2, the Run 3 HLT menu

has been signiőcantly expanded to explore new and unconventional physics signatures. The Run 3

HLT menu includes new dedicated triggers targeting long-lived particle (LLP) signatures, such as
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In addition to delayed jet paths that use HCAL timing, there are also new HLT paths that exploit

the ECAL timing. For LLPs that produce jets with delays of about 1 ns or more, the signal efficiency

is improved by an order of magnitude, with respect to the MET triggers that were available for this

analysis in Run 2. In particular, there are two different kinds of delayed jet triggers that use ECAL

timing at the HLT; there are paths that are seeded by 𝐻T, and there are paths that are seeded by

L1 τ objects. For both seeds, different requirements are made at the HLT, namely one or two jets,

independently of whether those jets are trackless or not, and the amount of timing delay. The paths

seeded by 𝐻T improve the sensitivity to low-mass LLPs with respect to the MET paths, and the paths

that are seeded by L1 τ objects increase the efficiency to trigger on Higgs boson decays to long-lived

scalars that decay to four b jets as well as to four τ leptons.

Neutral LLPs with particularly long lifetimes could decay hadronically beyond the calorimeters,

creating a high-multiplicity shower in the muon system. Such showers are expected to consist of

hundreds of hits, but no tracks or jets reconstructed in the inner detectors. Essentially, the CMS

muon system would act as a sampling calorimeter. As mentioned in section 10.2.3, new L1 seeds

have been developed to collect these high-multiplicity events in the CSCs. The high-multiplicity

triggers (HMTs) at L1 are used to seed several HLT paths. At the HLT, a clustering of hits in the

muon system is performed using the Cambridge-Aachen algorithm [311, 312]. The őrst HMT HLT

path reconstructs a single CSC cluster, with stricter cluster requirements than at L1 in order to control

the rate. The second HMT HLT path reconstructs a CSC cluster as at L1, and then additionally

requires a cluster in the DTs with at least 50 hits. The last available HMT HLT path reconstructs

a single DT cluster with 50 hits, makes no requirements on CSC clusters, and is seeded by MET

triggers at the L1 trigger. As compared with the MET triggers that were available in Run 2, the

trigger efficiency for these unique signals is improved by factors of 3 to 20 depending on the path.

Paths for displaced muons at the HLT have also been improved in Run 3. Displaced dimuon

paths are seeded by two L1 muons with low 𝑝T thresholds and by new displaced kBMTF double

muon seeds with unconstrained 𝑝T and 𝑑𝑥𝑦 , as described in section 10.2.1. These seeds feed

into several types of displaced dimuon paths at the HLT. There are L2 double-muon paths that

require an in-time collision based on the beam pickup timing device with a veto on prompt muons,

complemented by paths that make use of a seed developed for cosmic ray muons. These two

paths require displacements of at least 1 cm. Lastly, there are L3 double-muon paths that require

displacements of at least 100 𝜇m. This suite of HLT paths covers a wide range of displacements

and improves the signal efficiency over that of Run 2. The efficiency, measured in a cosmic ray

muon sample recorded in 2022, was measured to be 100% for displacements 𝑑𝑥𝑦 < 100 cm for the

L2 pp seed + prompt-veto path, and 90% for 𝑑𝑥𝑦 < 350 cm for the L2 cosmic seed + prompt veto

path. The efficiency of the L3 displaced dimuon path is measured to be 85% in the data sample of

non-prompt J/ψ events. At the same time, the background efficiency is small: it is measured to be

<1% in Drell-Yan data events for all three displaced dimuon HLT paths.

11.3 Run 3 HLT menu composition, rates, and timing

While the complete list of HLT paths in the Run 3 HLT menu is too long to be listed here, a

representative sample of some standard triggers with their HLT thresholds and rates is provided

in table 15.
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Figure 133 shows the łstandard physicsž HLT rates consumed by each CMS physics group,

estimated from a fraction of events recorded by CMS from a őll taken in November 2022. łStandard

physicsž refers to the collection of triggers included in the primary data sets whose reconstruction

starts within 48 hours after the data were recorded. This does not include data scouting at the HLT or

parking triggers, as detailed in sections 11.4ś11.5. The average delivered instantaneous luminosity

during this őll was 1.8 × 10
34 cm−2 s−1, but the measured rates have been scaled to correspond to

a luminosity of 2.0 × 10
34 cm−2 s−1. For the rate measurement, events are assigned to a physics

group if the group uses at least one of the HLT algorithms that triggered the event. The group

categories correspond to the physics analysis working groups: Higgs boson physics (HIG), searches

for new physics in boosted signatures (B2G), searches for new physics in őnal states with imbalanced

transverse momentum (SUS), top quark physics (TOP), standard model physics (SMP), B physics

(BPH), and searches for exotica (EXO). The calibration category corresponds to all HLT algorithms

used for subdetector alignment and calibration purposes. The łobjectsž category corresponds to

HLT algorithms used for monitoring and calibration by the so-called physics object groups.

What can be seen from őgure 133 is that roughly one third of the menu rate has been devoted to

standard model physics processes (HIG, SMP, TOP), one third to searches for physics processes

beyond the standard model (EXO, SUS, B2G), and the remaining one third to B physics processes,

physics objects (for monitoring and calibration purposes for example), and subdetector calibration.

The trigger selection for B physics and LLP (included in EXO) are largely unique to those groups.

The distribution of HLT time spent processing the data is shown in őgure 134. The processing

time running only on CPUs (left) is compared to that when part of the reconstruction is offloaded

to GPUs (right). These results were obtained for an HLT conőguration representative of the 2022

conditions, running over a sample of 64 000 pp collision events with an average pileup of 56

collisions. The measurements were performed on a machine identical to those used in the HLT farm,

as described in section 9.4, equipped with 2× AMD EPYC Milan 7763 CPUs and 2× NVIDIA T4

GPUs. The node was conőgured identically to the HLT farm, with simultaneous multithreading

(SMT) enabled, NVIDIA multiprocess server (MPS) enabled, and running eight jobs in parallel

with 32 CPU threads and 24 concurrent events each. The average processing time per event is

690 ms when running only on CPUs and 384 ms when offloading part of the reconstruction to GPUs,

corresponding to a speedup of over 40%. The maximum processing time per event for the initial

Run 3 event őlter farm conőguration is 500 ms, as noted in section 9.5.5.

11.4 Data scouting at the HLT

A limiting factor for the data-acquisition rate is the bandwidth of the data to record on disk (a few

GB/s), not the event rate per se. Thus, if the size of the data per event is reduced, a higher rate

of events can be recorded, i.e., using signiőcantly lower trigger thresholds. In the so-called łHLT

data scoutingž, only the most relevant physics information is stored, as reconstructed by the HLT,

and not the complete set of raw data. Scouting was őrst implemented in Run 1 [313], and was

developed further during Run 2, for selected physics objects, such as jets [314] and dimuons [315].

For instance, the 𝐻T threshold in the HLT scouting data was reduced from 800 to 410 GeV, and this

data was used for a search for three-jet resonances [316].

A further beneőt of HLT data scouting is that events are reconstructed only once, using the

resources of the HLT, and thus do not require further computing resources to perform the offline
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stored. In the case of charged particle-ŕow candidates, this includes parameters of associated tracks

to facilitate, e.g., the training of jet tagging using machine-learning algorithms. Muons are stored

not only with track parameters but also with information about the hits in the tracker, allowing the

possibility to reőt the dimuon vertices.

Since HLT scouting is able to access low-momentum objects with higher rates than conventional

HLT trigger paths, it is well suited for analyses targeting low momenta and low-mass particles.

Current studies include, for example, analyses of low-mass dimuons, diphotons, and dielectrons as

well as a H → bb analysis that beneőts from the decreased threshold on 𝐻T.

11.5 Data parking

One limiting factor for the HLT output rate is the bandwidth of the prompt event reconstruction at

Tier 0. An alternative approach to increase the amount of data available for physics analysis is to

increase the storage rate on disk, while delaying the reconstruction of the data until a later time,

when the necessary computing resources are available. The reconstruction can be scheduled during a

year-end technical stop or a long shutdown, for instance. This concept, known as łdata parkingž, was

already implemented in Run 1 [6] and Run 2 to record additional data for B physics and other studies.

During an LHC őll, as the luminosity decreases, the bandwidth to trigger additional events increases,

and the trigger thresholds for data-parking events are gradually relaxed to record parking data.

In 2018, for example, the collection of bb events was enhanced by tagging and storing events

containing at least one displaced muon, e.g., from a semileptonic B decay. The 𝑝T threshold at the

HLT for a single isolated muon was 24 GeV for the standard physics menu. For the parked B data the

𝑝T threshold was as low as 7 GeV and the HLT output rate reached 5 kHz at the end of őlls, enabling

CMS to accumulate about 1010 b hadrons [288]. In Run 3, data parking still targets B physics,

but it also includes a rich set of other physics data. As of the end of 2022, the parking streams

record events with at least one muon candidate with 𝑝T > 12 GeV and a transverse impact parameter

signiőcance larger than 6; events with two muons with 𝑝T > 4 and 3 GeV with an invariant mass

less than 8.5 GeV; and events with two electrons with |𝜂 | < 1.22, 𝑝T < 4 GeV, and an invariant

mass less than 6 GeV. With the addition of the parking streams, the total HLT reaches peak output

rates of 6 kHz. This can be seen in őgure 135, which shows (separately) the HLT output rates for

promptly reconstructed events and for parked data for an LHC őll recorded in 2023 with a peak

levelled luminosity of about 2 × 1034 cm−2 s−1.

In 2023 the parking strategy was extended to improve the signal acceptance for critical Higgs

boson measurements and searches. By dropping the single-muon parking approach, which was

limited to instantaneous luminosities lower than 1.7 × 1034 cm−2 s−1, and by improving the purity

of the dielectron triggers, CMS is now able to dedicate bandwidth for events targeting őnal states

with two b-tagged jets, the VBF production mechanism, and LLP signatures. The two b-tagged

jet criterion, mainly designed for the production and decay of HH into four b quarks, relies on the

presence of four jets with 𝑝T > 30 GeV, two loose b-tagged jets using the ParticleNet tagger, and

an aggressive threshold 𝐻T > 280 GeV. Figure 136 (left) shows the trigger efficiencies for prompt

and parking data. A clear improvement of more than 20% is observed with respect to the trigger

efficiency of Run 2. The measured efficiency in a single-muon dataset recorded in 2023 conőrms a

plateau efficiency of more than 90% (őgure 136, right).
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Figure 135. The HLT rates for promptly reconstructed data streams (blue) and parked data (black) as a
function of time during an LHC őll in 2023.
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Figure 136. Left: comparison of the trigger efficiency of the HH → bb trigger among the three different
strategies used in Run 2 (black), 2022 (blue), and 2023 (orange) using the signal MC sample. Right: trigger
efficiency of the HH → bb trigger using events collected by the single muon trigger in 2023.

For VBF event candidates a twofold strategy, one inclusive and one exclusive, is pursued. The

inclusive approach relies only on the invariant mass of two forward jets and applies a tight selection

of 𝑚jj > 1000 GeV, while in the exclusive approach a looser threshold on the invariant mass is

affordable because there are additional requirements on the central objects in the events. Table 16

summarizes the details of the two complementary approaches.

11.6 Heavy ion physics

Heavy-ion collisions impose unique challenges on the DAQ and HLT systems, as also noted in

section 9. A completely custom HLT menu was developed with almost no overlap in content
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Table 16. HLT thresholds and rates of the VBF triggers, as obtained from measurements during an LHC őll
in June 2023 at an average instantaneous luminosity of 2.0 × 10

34 cm−2 s−1, corresponding to a pileup of 61.

HLT algorithm Rate [Hz]

2 jets with 𝑝T > 105/40 GeV, 𝑚jj > 1000 GeV, Δ𝜂jj > 3.5 720

2 jets with 𝑝T > 70/40 GeV, 𝑚jj > 600 GeV, Δ𝜂jj > 2.5, 2 central jets 𝑝T > 60 GeV 430

2 jets with 𝑝T > 105/40 GeV, 𝑚jj > 1000 GeV, Δ𝜂jj > 3.5, 3 central jets 120

2 jets with 𝑝T > 90/40 GeV, 𝑚jj > 600 GeV, Δ𝜂jj > 2.5, isolated muon 𝑝T > 3 GeV 110

2 jets with 𝑝T > 75/40 GeV, 𝑚jj > 500 GeV, Δ𝜂jj > 2.5, 𝑝
miss
T > 85 GeV 110

2 jets with 𝑝T > 45 GeV, 𝑚jj > 500 GeV, Δ𝜂jj > 2.5, tau 𝑝T > 45 GeV 40

2 jets with 𝑝T > 90/40 GeV, 𝑚jj > 600 GeV, Δ𝜂jj > 2.5, isol. µ 𝑝T > 3 GeV, 3 jets 12

2 jets with 𝑝T > 45 GeV, 𝑚jj > 500 GeV, Δ𝜂jj > 2.5, electron 𝑝T > 12 GeV 5

2 jets with 𝑝T > 75/40 GeV, 𝑚jj > 500 GeV, Δ𝜂jj > 2.5, 𝑝
miss
T > 85 GeV, 3 jets 5

2 jets with 𝑝T > 70/40 GeV, 𝑚jj > 600 GeV, Δ𝜂jj > 2.5, 2 jets 𝑝T > 60 GeV 3

and paths with the pp menu. Additionally, because of the dense environment, the physics object

reconstruction algorithms used by the HLT are generally customized for heavy-ion running. For

example, while jet reconstruction remains based on the anti-𝑘T algorithm, the underlying event

energy subtraction differs from that used to handle pileup in pp running.

In preparation for heavy-ion data taking in Run 3, signiőcant effort is devoted to increasing the

available L1 bandwidth. In 2018 up to 30 kHz was achieved, whereas we plan up to 50 kHz in Run 3

conditions. The most critical components to study include the ECAL, pixel, and tracker detectors.

During a heavy ion test run in 2022, a scan of different ECAL readout settings was performed to

study the readout size and potential impact on physics objects. A size reduction is crucial to achieve

the target L1 rate. In order to fully utilize the L1 bandwidth, fractional prescale factors will be used

to operate the trigger at the optimal point between rate and dead time.

The target for the PbPb collision run in 2023 is to record about 5 × 109 events. The HLT will be

operated at an output rate above 10 kHz. About 10 kHz are łminimum biasž events, collision events

with only a minimal L1 selection. The budget also contains 1ś2 kHz of triggers of selected physics

objects, such as muons, electrons, photons, jets, and track multiplicity conditions in central collisions.

A signiőcant fraction of the latter events will also be contained in the minimum bias data set.

To use the bandwidth between the HLT and the Tier 0 center in an optimal way, all triggers are

collected into a single łHIPhysicsž data set. Only later, during the offline processing step, which is

described in section 12, will they be split into secondary data sets. Tools have been developed to

automatically conőgure the splitting of large data sets into multiple outputs.

In addition to hadronic collision events, a suite of ultra-peripheral collision triggers will also be

deployed. These target, for example, processes where the two ultrarelativistic nuclei do not collide

directly, but their electromagnetic őelds interact with each other. Such events are typically very

clean, with only a few physics objects in the detector and no other visible activity. The size of the

event data is minimal and contributes little to the bandwidth.

With the aging of the detector, the efficiency to trigger on some of the more peripheral collisions

drops. Therefore a task force was formed to understand how the decrease in efficiency can be
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avoided, including, for example, combining information with other detector parts like the Zero

Degree Calorimeter. The heavy ion event size for hadronic collisions is comparable to that for pp

collisions, and a sustained throughput of 17 GB/s is anticipated. Even though the bandwidth is much

higher than that in Run 2, given the event size, the target number of recorded minimum bias events

will be hard to achieve. To increase the event rate further, a new approach has been developed

in which one of the most signiőcant components of the event record, the tracker information, is

removed. Instead, for each strip cluster, only summary information is written out. This approach

is expected to reduce the event size by about 30%. The algorithm was commissioned during the

2022 heavy-ion test run, where both event format contents (the reduced format, łRawPrimež, and

the complete information) were written out.

12 Offline software and computing

12.1 Overview

CMS offline computing has evolved over the past 15 years to support the ever-growing needs to

trigger, őlter, store, transfer, calibrate, reconstruct, and analyze the recorded and simulated data of

the experiment. The offline system receives a subset of the real-time detector information from the

data acquisition system, once it is őltered by the high-level trigger at the experimental site, ensures

safe curation of the raw data, and produces data for physics analysis. Major activities are also the

production and distribution of Monte Carlo (MC) simulation data, as well as the processing of

conditions and calibration information, and other nonevent data. The data input and output layer of

the CMS data processing software is provided by the ROOT framework [259].

Key components of the offline computing system, described in the sections that follow, include

an event data model and corresponding application framework, the processing chain and data tiers,

computing centers, referred to as Tier 1, Tier 2, and Tier 3, which provide storage and processing

resources all connected through a distributed world-wide computing grid, and a set of computing

services that provide tools to transfer, locate, and process the data.

A timeline of the major data processing and computing software improvements put into produc-

tion over the past decade or so is shown in őgure 137. CMS developed a highly ŕexible computing

model, with the goal of using efficiently all of the resources available to the experiment while

minimizing both hardware and personnel needs and maximizing overall throughput. The innovations

led to an increase in efficiency in the use of computing resources, and enabled the experiment to

use additional new and diverse types of computing resources that were not available a decade ago.

12.2 Detector simulation

The CMS detector simulation is based on the Geant4 [317] toolkit. It is augmented with

computationally efficient techniques, such as shower libraries for the forward calorimeters, and

speciőc identiőcation criteria per particle type and detector region for neutrons [318], which

guarantee high ődelity of the simulation. The łFull MCž simulation chain includes execution of the

standard reconstruction chain. A subset of physics analyses, such as scans of new-physics signatures

over large parameter space, use the łFast MCž chain or łFast Simulationž application. This does not

rely on Geant4, but rather a parameterized approach [319] with a simpliőed CMS geometry. The
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2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

Rucio and CTA in production

Particle-flow adopted for reconstruction

First algorithm vectorised: vertexing

AAA and xRootD federation in production

Forward shower libraries for simulation

MiniAOD used for most analyses in production

Russian roulette in production

Unified (e.g. automatic tape handling, block-by-block 

processing) in production

First HLT algorithm running on GPU

Framework support for offload on accelerators

CMSSW offload to cloud accelerators demonstrated

DD4hep integratedGeant4 10.7 integrated

64-bit binaries in production

Invention and adoption of the VDT math library

Framework support for multithreading

HTCondor pools and GlideinWMS full adoption

Dynamo DDM in production

Premixing for PU simulation in production

VecGeom in  production

Beginning of NanoAOD adoption

20% of the HLT ported to CUDA

First CMSSW portability library evaluation

Multicore GlideinWMS pilots 

Figure 137. Timeline of the major data processing and computing software improvements put in production
since 2010.

Fast MC chain also uses a faster version of the reconstruction step. The performance of the CMS

simulation is detailed in ref. [320].

12.3 Event reconstruction

Event reconstruction is the processing step that transforms the event information contained in the

raw data, i.e., packed detector readout data, into high-level physics objects, such as electrons, muons,

photons, or jets, which are used in physics data analysis. In CMS, the event reconstruction is

logically partitioned into several steps, starting from the local reconstruction in which the data

are processed individually by a single detector component, and ending with global particle-ŕow

reconstruction [300] and object identiőcation. The particle-ŕow algorithm aims to reconstruct and

identify each individual particle in an event, with an optimized combination of information from the

various elements of the CMS detector.

A great deal of attention is dedicated to the computing performance of the event reconstruction,

both for pp and heavy-ion collision data. The run-time optimization is a priority for CMS, and is

achieved through algorithmic and technical improvements. Examples of technical improvements

are the adoption of a more recent compiler version, utilization of special compilation ŕags and

other code optimizations, without impact on physics performance. The timing is benchmarked

continuously and in great detail in order to identify and remove performance degrading patterns as

early as possible in the release integration process [321].

Run-time performance improvements must be paired with precise physics validation of the

software, delivered swiftly to the code authors. Physics validation happens at multiple levels during

the software integration process, mainly through automatic comparison of data quality monitoring

(DQM) histograms of relevant distributions and physics quantities. Before new reconstruction code

is merged into the central software repository, a limited number of events are processed and the
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quality of the reconstruction is assessed. During twice-daily integration builds of the CMS software,

a growing level of detail is added to the automatic validation, and a larger number of events are

processed to obtain the DQM histograms.

Every major release, which may be intended for data processing or mass production of MC

simulation samples, is preceded by weekly or biweekly pre-releases. The validation of pre-releases

involves conőrmation by detector and physics object experts who assess the quality of the results

obtained with the software compared to actual Monte Carlo and data processing campaigns of a few

million events. Final validation, referred to as release validation [322], is required before new CMS

software releases are put into production.

12.4 Computer architectures and platforms

CMS strives to use efficiently all of the computing resources at the experiment’s disposal. To this

end, the data processing software supports a generic mechanism, described in section 12.5, to offload

work onto accelerators such as GPUs, described in section 12.5.2.

Our builds support three different CPU architectures, x86_64, ARM, and IBM Power, driven

by the opportunities to obtain allocations at HPC centers where these architectures are available

(section 12.7.1). We perform integration and unit testing of the CMS code, and create regular

releases of the whole CMS software suite CMSSW [256] for these architectures [323]. ARM support

began in 2012 and Power in 2016. Installations of non-x86_64 releases are performed since 2014

on the őle system used as a vector for CMS software, CVMFS, an aggressively cached distributed

read-only őle system [324, 325].

CMS not only builds, tests, and runs code regularly on different CPU architectures, but also em-

ploys two different compilers, GCC and Clang, as well as different operating systems. The combination

of a CPU architecture, a compiler, and an operating system is commonly referred to as a łplatformž.

The ability to build, test, and run CMSSW and perform integration tests on several platforms signiő-

cantly contributes to achieving top code quality, a capability which CMS plans to preserve for the entire

Run 3 and beyond. There is an increased risk of bugs and unstable algorithms silently altering the

results of computations without being noticed if the code is tested and executed only on one platform.

12.5 Application framework

12.5.1 Multithreading

For LHC Run 2, the application memory usage was foreseen to increase beyond the 2 GB-per-CPU

core limit of the computing grid worker nodes, due to increased pileup compared with Run 1. In order

to reduce memory usage per CPU core, the CMS application framework was enhanced to support

parallelism through a multithreading paradigm [256, 326]. The multithreaded framework follows a

task-parallel paradigm implemented with Intel’s oneTBB [327] library, which expresses concurrent

units of work as tasks and passes them to oneTBB’s task scheduler to run. The multithreaded

framework was introduced for production jobs in 2015 for Tier 1 computing resources, and during

2016 for the majority of other resources. Currently, production jobs use eight threads by default,

which is a good compromise between application memory usage and CPU efficiency. In addition,

8-core slots have been agreed as a standard job size on the shared worldwide LHC computing grid

(WLCG) [328] resources.
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The initial version of the multithreaded framework processed only separate events concurrently.

The framework had to synchronize between the worker threads at speciőc stages of the data

processing, and combined with large variability between the processing times of different collision

events, this led to noticeable inefficiencies in the CPU utilization. The threading efficiency has been

gradually improved [329], and currently many levels of concurrency are exploited. Within one event,

independent modules are run simultaneously whenever possible according to their data dependencies.

Modules can use oneTBB’s parallel constructs in their internal work including so-called event

setup modules that process conditions data. Events from multiple luminosity sections (section 9)

and interval-of-validity ranges of the conditions data can be processed in parallel. The framework

supports physics modules with different levels of thread-safety guarantee, which are also associated

with their threading efficiency or memory usage.

12.5.2 Offloading to accelerators

The framework has generic support for offloading computations from the CPU worker threads, which

allows those worker threads to continue to work on other computations [330]. A module that offloads

computations has its event processing function split into two stages, where the őrst function is to

offload the computations, and the second function is called when the offloaded computations have

been completed.

Support for speciőc offloading technologies is implemented on top of the framework’s generic

mechanisms. The Nvidia GPUs on the same computing node are supported with the CUDA

API [330]. Utility classes help with asynchronous execution, sharing resources between modules

via the event, and minimizing data movements. At the time of writing, pixel local reconstruction,

pixel track and vertex reconstruction [299], ECAL unpacking and local reconstruction, and HCAL

local reconstruction have GPU implementations. Offloading them to a GPU reduces the HLT CPU

usage by about 40% [295].

Historically, the accelerator vendors have provided their own APIs. However, developing

and maintaining separate versions of algorithms for each platform is unsustainable and, therefore,

CMS investigated ways to achieve performance portability with a single code base. A performance

portability framework makes it possible to have one single code base and to build libraries for

different classes of hardware, such as CPUs or different vendors of GPUs and accelerators. The

suitability of Alpaka [331] and Kokkos [332] libraries for the CMS data processing model and

software were explored in detail [333, 334], with the conclusion that Alpaka was better suited for

CMS for LHC Run 3.

The ability to use accelerators on a remote computing node, or in separate processes on the same

node, could allow more ŕexible use of accelerators. Using remote accelerators for machine learning

(ML) inference has already been demonstrated from the CMS application framework [335ś337]

using inference servers such as Nvidia Triton [338]. In general, ML algorithms are expected to be

easily portable between various accelerators.

12.5.3 Geometry

Geometry information is fundamental for several CMS applications, such as simulation, reconstruc-

tion, and event visualization. For the start of Run 3, the in-house developed geometry description tool

used during Run 1 and Run 2, DDD [339], was replaced with the community tool, DD4Hep [340],
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Table 17. Description of the data tiers regularly produced by centrally managed workŕows. The ROOT
framework is used to write and read the data.

Name Description

GEN Intermediate and outgoing stable (𝑐𝜏 ≳ 1 cm) particles from the collision simula-

tion. May include Les Houches accord event (LHE) data from the matrix-element

generator, if applicable.

SIM Detailed description of energy deposits left by stable outgoing particles in the

detector material. Two options are available: a highly-accurate Geant4-based

application (Full MC); and a parametric fast simulation application (Fast MC),

which trades accuracy for a 100-fold decrease in detector simulation time or 10-fold

decrease in total CPU time per simulated event. The level of inaccuracy introduced

by Fast MC is typically a difference of less than 10% in őnal analysis observables.

DIGI Digitized detector readout or simulation thereof. In simulation, the effect of

additional collision events (pileup) is folded into the event description in this step.

In Run 2, a łpremixingž technique was introduced, where the additional events are

summed in a separate processing step and then applied to the simulated primary event.

RAW Packed detector readout data.

RECO Detailed description of calibrated detector hits and low-level physics objects.

AOD Reduced description of calibrated detector hits and low-level physics objects,

uncalibrated high-level physics objects.

MiniAOD Reduced low-level physics objects and calibrated high-level physics objects. A

truncated ŕoating-point representation is used for most object attributes. Introduced

for Run 2 to reduce the number of analyses requiring AOD inputs.

NanoAOD Compact data format containing only high-level physics object attributes stored as

(arrays of) primitive data types. Introduced during Run 2 to reduce the number of

analyses requiring MiniAOD inputs.

which is also used by the LHCb experiment and others. The selection of DD4Hep was made

because its library is well behaved in multithreaded environments and because the replacement of an

in-house solution with a community-supported tool improves the sustainability of our software stack.

The migration of the geometry for Run 3 took place during LS2 and was an opportunity to review

the entire description of the CMS detector, even improving it in some respects. The migration to

DD4Hep of the Phase 2 geometry was completed during 2022.

12.6 Data formats and processing

Data and simulation processing workŕows are broken into several steps, each deőned by the output

data structures per event it produces, referred to as a łdata tierž. The data tiers in use for centrally

produced simulation and reconstruction workŕows are listed in table 17. No changes in the data

formats were made between Run 2 and Run 3. A single executable process may produce multiple

outputs corresponding to different data tiers, which reduces I/O operations when the necessary data

structures are already in process memory.
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The smaller-size analysis formats are key to reducing both the overall amount of data stored by

CMS and analysis processing time per event. In Run 2, approximate event sizes in each format are

400 kB for AOD (Analysis Object Data), 40 kB for MiniAOD, and 1ś2 kB for NanoAOD. The goal is for

50% of CMS analyses to use only NanoAOD data sets as input before the end of Run 3. Although this

format is not suitable for every analysis, the increase in usability and speed should appeal to many users.

Nonevent data are used to interpret and reconstruct events [1]. Four types of nonevent data

remain in use: construction data, generated during the construction of the detector; equipment

management data; conőguration data, comprising programmable parameters related to detector

operation; and conditions data, including calibrations, alignments, and detector status information.

A procedure for deriving a selection of online calibration constants has been in place since Run 1.

This has since been consolidated and the ability to create calibration constants from data collected

across multiple runs was developed along with new calibration workŕows.

A typical Run 3 simulation workŕow will be a so-called łstep-chainž job composing GEN-

SIM-DIGI/PU MIX-RAW-RECO-AOD steps and the reduction to MiniAOD and NanoAOD formats.

For detector data, only the RECO-AOD step is performed, followed by the reduction to Mini and

NanoAOD. For a given data-taking period, AOD is produced 1ś3 times in large-scale processing

campaigns, while MiniAOD [341] and NanoAOD [342] data tiers are reproduced more frequently as

high-level physics object calibrations are updated.

In the CMS workŕow management system, a processing step applied to a given set of inputs (or

requested number of events in the case of GEN) forms a task. Tasks are chained together to form a

complete workŕow, with intermediate tasks writing their output to site-local storage, and optionally

registering the output in the data management system, as discussed in section 12.8.1. To reduce

data transfer, task chains are converted to step-chains when possible, with intermediate output kept

only on job-local scratch disk and all subsequent steps executed in a single job. As discussed in

section 12.5, the steps are typically executed multithreaded, using up to eight cores per executable,

which reduces the workŕow management overhead. The GEN step uses software tools from the

HEP theory community, and although some tools may force a step to be executed single-threaded,

work is ongoing to improve per-executable parallelism in this context.

12.6.1 Premixing

In Run 2 the increase in pileup events resulted in a more I/O and computing-intensive pileup

simulation. A number of individual minimum-bias events comparable to the pileup level had to

be read from local or remote disk pools and superimposed to the hard scatter event. For this

reason, a łpremixingž simulation method [318, 343] was introduced to drastically reduce the I/O by

summarising all the parasitic pileup collisions in one single łpileup-onlyž event. Hard-scatter events

are generated and simulated without pileup; separately, a sample of MC pileup-only events is also

produced, using the pileup distribution for a certain running period and considering in-time and

out-of-time interactions in all subdetectors. A selected premixed set of pileup events is then overlaid

on the hard scatter events. This approach reduces I/O operations by 90% compared with the previous

method of overlaying individual minimum-bias events. On average, digitization and reconstruction

of simulated events with pileup is twice as fast [343]. The size of the premix library is proportional

to the number of simulated events and contained about 200 million events in Run 2. For Run 3, the

integrated luminosity is expected to be higher, and larger premixed samples will be generated.
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12.7 Computing centers

The organization of the distributed computing infrastructure used by CMS was initially based on a

model described by MONARC [344], where the sites were organized in łTiersž, pledging CPU, disk

storage, and tape resources, proportional to the commitment of each funding agency within the CMS

Collaboration. The roles of the various Tiers were established as follows:

• A Tier 0 center close to the experiment (CERN) to execute a őrst calibration and reconstruction

pass, the so-called łprompt reconstructionž, as well as to maintain a custodial copy of all

RAW data on tape; 24h/7 support is guaranteed;

• Tier 1 regional centers (six in use by CMS), which maintain a second distributed custodial

copy of the RAW data on tape, and provide CPU for re-reconstruction and MC simulation;

24h/7 support is guaranteed;

• Tier 2 local centers (about 50 used by CMS), providing support for analysis activity and MC

simulation; guaranteed support only during working hours.

The Tier 0 is the largest of the CMS sites. It provides computing capacity, disk and tape storage

and is hosted by CERN. At the Tier 0, prompt reconstruction starts 48 hours after the data are

acquired. This delay is necessary for an initial set of detector calibrations to be bootstrapped, starting

from the execution of alignment and calibration processing sequences on the newly acquired data

Ð the so-called łexpressž reconstruction. One such workŕow is described in ref. [345]. Once

the calibrations are derived, they are consolidated in a payload written to a database that is then

read by prompt reconstruction at a later stage. The ŕexibility of the CMS central job submission

infrastructure makes it possible to produce substantial amounts of simulated samples at the Tier 0.

France, Germany, Italy, the US, the U.K., and Spain provide the six Tier 1 sites of CMS. These

sites have a primary role in the computing model, offering the precious combination of computing

capacity, disk storage and tape archival space, all together with high bandwidth connectivity to

CERN and Tier 1 s through the LHCOPN private IP network, as well as to other sites through the

LHCOne network. Tier 1 s are used to store the active copy of the RAW data on tape, to perform

re-reconstruction passes when data processing algorithms and calibrations improve so much to

require it. The Tier 1 centers have been adapted to support the Tier 0 in the task of prompt data

processing, whenever needed. In the current computing model a job can now run, in principle,

wherever free CPU is available while accessing input data through the WAN (őgure 138). The total

amount of computing resources pledged by the largest and smallest of the Tier 1 centers of CMS

differs by an order of magnitude, still these special sites are equally critical for the support of the

CMS physics program.

The computing model used in Run 2 and Run 3 is a signiőcant evolution of the MONARC

hierarchical model. The roles of the Tier 1/2s have become more similar in order to optimize the usage

of the resources with high efficiency, and following collaboration-wide priorities. The presence of

high-speed wide-area network (WAN) connections, the development of advanced data federation [346,

347] and caching [348] technologies and the creation of optimized data tiers such as MiniAOD and

NanoAOD, allow distribution of the tasks among the Tier 1’s and Tier 2’s following CMS priorities,

with minimal net distinction between analysis, MC production, and data (re-)processing. However,

Tier 1 sites still tend to be assigned a larger proportion of central production jobs.
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Integration of HPCs that are transparent to central computing operations have been performed

in several countries in Europe, e.g., Italy, Switzerland, Germany, and Spain, for example expanding

existing Tier 1 or Tier 2 sites elastically into these machines [350ś352], or by deploying so-called

overlay batch systems [353]. It is also through this model that a validation of the physics performance

of CMS software on the PowerPC architecture could be performed [354].

The HPC resources located in the US are integrated into the CMS systems via HEPCloud [355],

a portal to an ecosystem of diverse computing resources, commercial or academic, hosted at FNAL.

Since 2020, HEPCloud has provisioned resources from seven different HPC centers located for

example at the NERSC, PSC, TACC, or SDSC computing centers.

12.7.2 Data archive at CERN

CMS migrated to the CERN tape archive (CTA) [356] system in December 2020. The CTA system

provides the tape backend to the CERN EOS disk system [267], and together EOS and CTA replace

CASTOR. This upgrade was necessary to prepare for the higher data rates of Run 3 and beyond, as

well as to provide a uniform API for disk and tape operations, with support for newer protocols and

authentication methods. It is difficult to achieve high throughput using a traditional buffer made up

of spinning disks, due to contention on the drives from multiple simultaneous streams. Therefore a

new approach was taken, with a small, fast SSD buffer in front of the physical tapes. This allows the

tape drives to operate close to their nominal speed of 400 MB/s.

12.8 Computing services

12.8.1 Data management

During Run 1 and Run 2, CMS used PhEDEx [357] and Dynamo [358] as data management tools.

However, for Run 3 and beyond it was necessary to adopt a more scalable, ŕexible, and powerful

system to increasingly automate the data management, and include the possibility to scale up

transfers to around 100 petabytes per day by the late 2020s for the start of the High-Luminosity

LHC (HL-LHC) [359]. The new software should also support future technologies such as token

authorization and non-FTS (File Transfer Service) [360] transfers. The Rucio system [361], a data

management project for scientiőc communities, was adopted by CMS at the end of 2020. It can

perform all of the functions of PhEDEx and Dynamo, and also make higher-level decisions about

data placement. Rucio is run centrally, without an agent at every grid site as required by PhEDEx.

The CMS Rucio infrastructure is based on Helm [362], Kubernetes [363], and Docker [364],

which are industry standards. All of the Rucio services are built into a single Kubernetes cluster

which can be brought up from scratch in under an hour. Rucio removes data as additional space is

needed at a site. Only data that is not held in place by one or more rules is eligible to be removed.

To make this decision, Rucio uses the last access time of the data. This information is taken from job

reports, CMSSW őle reads, and monitoring of the AAA (Any data, Anywhere, Any time) system,

which is described in the following subsection.

CMS developed a mechanism to check the consistency of the Rucio database with the actual

state of őles on disk. Remote disks are scanned using XRootD tools, comparing the results with the

state of the database, and generating lists of missing and unneeded őles. These lists are passed to

additional Rucio components for őle removal or re-transfer.
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12.8.2 Data transfer protocols

During Run 1 and Run 2, CMS transferred data among sites via protocols based on the grid security

infrastructure (GSI) [365, 366], with GSIFTP the most common protocol used and GridFTP its most

common implementation. When the end of support for GSI was announced, the LHC community

started looking for a replacement both for the protocol and an authentication mechanism. The

WebDAV protocol [367], an extension of HTTP which supports third party copy (TPC) transfers and

tokens for authentication, was selected. The adoption of the WebDAV protocol started early in 2020

and was completed in 2022.

The łAny Data, Anywhere, Anytimež (AAA) data federation [346] was introduced in 2014ś2015

during LS1. This is a model for effective federation of distributed storage resources via an XRootD

cluster at each computing center, allowing for remote access to any őle within the CMS namespace.

The XRootD framework supports partial reads of őles and is commonly used by analysis jobs. The

combination of AAA and caching [348] technologies allows nonlocality between data and CPU,

and is expected to lead to entirely storage-free computing centers in Run 3. These are the őrst

steps towards a łData Lakesž architecture [368], a centralized data repository, as envisioned for the

HL-LHC era.

12.8.3 Central processing and production

Large-scale MC sample production and data event reconstruction activities are performed in a

distributed computing infrastructure, coupled to a specialized workload management system (WMS),

described in section 12.8.4. A global batch queue manages the distribution of production and analysis

jobs to the CMS distributed computing system in an optimized and ŕexible way. The submission

infrastructure (SI) employs GlideinWMS [369] and HTCondor [370] software suites in order to

build and manage a łGlobal Poolž [371] of computing resources where the majority of the CMS

tasks are executed.

The SI comprises multiple interconnected HTCondor pools [372], as shown in őgure 139,

redundantly deployed at CERN and FNAL in order to ensure a high-availability service. The main

component of the SI, the Global Pool, obtains the majority of its resources via the submission of pilot

jobs to WLCG [328] and open science grid (OSG) sites. However, locally instantiated processing

nodes via, for example, DODAS [373] or BOINC [374], as well as opportunistic resources, such

as the HLT őlter farm [276] when not in use for data taking, can also be employed. As described

in section 12.7.1, the SI computing capacity has recently expanded into HPC facilities which are

integrated as part of the Global or HEPCloud pools. CERN on-site CMS resources, along with

opportunistic local (BEER [375]) and cloud [376, 377] computing slots, are organized into a third

HTCondor pool, built on a dedicated set of hosts to isolate it from potential issues in the main Global

Pool, given its critical role in supporting Tier 0 tasks during data-taking periods. Specialized nodes

known as łscheddsž control workload submission. While being primarily attached to one łpoolž,

these schedds can interact with other federated pools, requesting additional resources when demands

are not covered in the primary pool, as indicated in őgure 139.

The SI can leverage any grid, cloud, HPC, or opportunistic resource available to CMS, which in

total have tripled in size over the last őve years, currently amounting to around 400k CPU cores.

The Global Pool matches diverse CMS workloads, which include single-core as well as multicore
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12.8.5 Distributed analysis

For CMS scientists, a dedicated tool known as CMS remote analysis builder (CRAB) has been

available since the start of Run 1, to manage the submission on the grid of data analysis applications

or small-scale productions of data samples that are not centrally managed. CRAB offers the same

functionalities as originally planned [1]. Users interact with a thin client running inside the CMSSW

environment, which packs the user analysis environment into a sandbox and uploads it together with

a conőguration őle to a central, database-centric service hosted in the CMSWeb services framework

described in section 12.8.7. Centralized components run either as Docker containers, or under the

control of HTCondor [370] or DAGMan [381]. These components handle preparation, execution,

bookkeeping, error recovery, monitoring, and output delivery for the user application. CRAB has

been continuously improved to provide increased automation and scaling, leaner operations, better

error recovery, access to data archived on tape and integration with the Rucio data management

system, while keeping the same basic interface for the user. For users needing a simpler, more

interactive service to access resources from the Global Pool to make histograms, for example, the

CMS Connect [382] service is available as an alternative to CRAB.

12.8.6 DBS database

The data bookkeeping service (DBS) is a catalog holding event metadata for all simulated and

experimental data processed and stored by the CMS experiment. DBS contains all necessary

information for tracking the data sets, including provenance information, processing history and

parentage relationships between őles and data sets. DBS is used by all computing jobs in CMS. The

current version (version 3) was completely redesigned and reimplemented following a project review

in 2009, in order to better őt the evolved CMS data processing model, to better integrate with the

evolved CMS data management and workŕow management (DMWM) projects, and to ensure a higher

scalability. DBS3 is implemented as a Python-based web service using a standardized architecture

provided by the CMS DMWM project. Client-server communication in combination with thin client

APIs using the JSON format as a lightweight replacement of XML-RPC led to better scalability. In

addition, the database schema has been streamlined and őne-tuned in order to avoid both excessive

table joins, reduce query latency, and improve server stability, which enhance data accessibility.

The data aggregation system (DAS) [383] provides access to distributed CMS metadata via a

common query language (QL). Users may access DBS, Rucio and other metadata sources by placing

simple QL queries without prior knowledge of service APIs, database schemas, and implementation

or location of the services.

12.8.7 Web services and security

In order to guarantee successful data taking, CMS uses a series of web applications, which perform

various tasks related to job submission, job monitoring and bookkeeping, and the location of the

data sets. These services are provided and maintained by several teams and centrally deployed under

the umbrella CMSWeb.

To achieve optimal resource utilization and high availability, the services have been containerized

and are now being deployed in a Kubernetes cluster [384]. Detailed monitoring, for all the services

and the nodes they run on, has been built on top, using the central CMS computing monitoring
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tools. Authorization and authentication (A&A) is also being offered as a service in the CMSWeb

cluster. Currently, A&A is using X509 certiőcates, but is rapidly migrating to authentication tokens,

following the shift to the OAuth standard initiated by the WLCG. This migration should take place

by 2024, according to current plans [385].

Security is a very important aspect of web services. A great effort is required to stay up-to-date

with the latest security recommendations. The web services and security teams work closely with

the CERN IT security team, following up vulnerabilities. In a joint effort, proactive penetration tests

are organized several times a year to discover potential issues ahead of time and to ensure that the

infrastructure remains safe. As part of improving security, the logs of all the CMSWeb services are now

pushed to the security operations center (SOC), which analyses them and identiőes possible threats.

12.8.8 Monitoring and analytics

A scalable and reliable monitoring system is required to ensure efficient operation of the CMS

distributed computing services, and to provide comprehensive measurements of the system perfor-

mance. Metrics such as wall-time consumption of computing resources, memory, CPU, storage

usage, and data access patterns are monitored to study the evolution of the performance over time

and allow for in-depth analyses of the main system parameters.

The main components of the CMS monitoring infrastructure are presented in ref. [386]. CMS

relies on central CERN [387] and dedicated CMS monitoring infrastructures. The former, supported

by the CERN IT department, is used extensively to store data from CMS computing subsystems,

such as HTCondor, submission infrastructure, CMSWeb user activities, analysis and production

workŕows coming from the WMAgent and CRAB job submission tools, and data-transfer and

storage information from Rucio. The status of all CMS computing systems is monitored in real time

using predeőned views and dashboards.

The dedicated CMS monitoring infrastructure is composed of several Kubernetes clusters. It is

mostly used to monitor computing nodes and services, and to provide additional features such as a

sophisticated alert and notiőcation system, data aggregation, annotations, and automation of several

workŕows. Several hundred nodes and services are monitored, and a fault-tolerant infrastructure is

provided with minimal operational and maintenance effort.

13 Summary

Since the beginning of the LHC operation in 2009, the CMS detector has undergone a number of

changes and upgrades, adapting the experiment to operating conditions at luminosities well beyond

the original design. In 2022, the LHC Run 3 began and CMS successfully recorded its őrst 40 fb−1

of proton-proton data at a center-of-mass energy of 13.6 TeV with an operation efficiency of 92%.

This paper describes the modiőcations, as installed and commissioned for LHC Run 3.

The upgraded pixel tracking detector was installed in early 2017. In the new detector, the

number of barrel layers was increased from three to four, and the number of disks in each endcap

from two to three, whereas the material budget was reduced, leading to a better tracking performance

up to an absolute pseudorapidity of 3.0 for pixel tracks. The upgrade also involved a new readout

chip enabling increased hit detection efficiencies at higher occupancy.
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In the electromagnetic calorimeter, measures were taken to improve the monitoring and

calibration of effects caused by irradiation, leading to a loss in the PbWO4 crystal transparency

and an increase of the leakage current in the avalanche photodiodes. In the second long shutdown

(LS2) the calibration algorithms were reőned to identify and remove spurious spike signals and to

determine time-dependent correction factors for the laser monitoring system.

The upgrade of the hadron calorimeter included new readout electronics with őner granularity,

leading to an increase in the number of channels and longitudinal segmentation. The previous

generation of photosensors was replaced by silicon photomultipliers, which measure the scintillator

light output with a better signal-to-noise ratio.

In the muon system, a gas electron multiplier (GEM) detector, consisting of four gas gaps

separated by three GEM foils, was added in the endcaps. The other subsystems, drift tubes (DT),

cathode strip chambers (CSC), and resistive-plate chambers (RPC), underwent several upgrades. In

the DT, the muon trigger logic was replaced by a new data concentrator based on 𝜇TCA architecture.

The top of CMS was covered with a neutron shield to reduce the background in the top external DT

chambers. An outer ring of CSCs (ME4/2) was added in LS1, and in view of the High-Luminosity

LHC, the bulk of the CSC electronics upgrades that required chamber access were performed already

during LS2. An outer rings of the RPC chambers in station four (RE4/2 and RE4/3) were added as

well. The endcap muon track őnder of the L1 trigger was upgraded to utilize GEM-CSC joint track

segments to optimize the őnal track reconstruction and resolution at the trigger level.

The precision proton spectrometer was upgraded signiőcantly. Its tracker radiation-damaged

sensors and chips were replaced. The mechanics of the detector, as well as the front-end electronics,

were completely redesigned to add a novel internal motion system designed to mitigate the effects

of radiation damage. In the timing system a second station was installed in each arm. All detector

modules were replaced by new double-diamond modules with the aim of further improving the

timing resolution.

In the beam radiation instrumentation and luminosity system, new versions of the pixel

luminosity telescope (PLT), the fast beam conditions monitor (BCM1F), and the beam conditions

monitor for losses (BCML) were installed for Run 3.

To cope with increasing instantaneous luminosities, the CMS data acquisition (DAQ) system

underwent multiple upgrades. The backend technology was gradually moved to the more powerful

𝜇TCA standard. A new optical readout link with a higher bandwidth of 10 Gb/s was developed. The

bulk of the DAQ system downstream from the custom readout beneőted from advances in technology

to achieve a much more compact design, while doubling the event building bandwidth.

The őrst level (L1) trigger, composed of custom hardware processors, uses information from the

calorimeters and muon detectors to select events at a rate of up to 110 kHz within a őxed latency of

about 4 𝜇s. The developments in the L1 trigger mostly focused on the addition of dedicated triggers

that became possible due to enhanced capabilities of the global trigger logic and increased trigger

information delivered by the calorimeters and muon systems. Among other applications, new triggers

for long-lived particle signatures were implemented. The addition of a 40 MHz scouting system that

receives data from both the calorimeter and muon systems, further broadens the physics reach of CMS.

The high-level trigger (HLT) performs the second stage of event őltering and accepts events at a

sustained rate of the order of 5 kHz. Since Run 3 began, an additional 30 kHz of HLT scouting data

is recorded. Since 2016, the HLT has been operated using multithreaded event processing software,
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minimizing memory requirements through reduction of the number of processes concurrently

running. For Run 3, GPUs were successfully deployed in the HLT.

Substantial improvements were achieved in the physics performance and speed of the software,

as well as in the computing infrastructure. Some of the major changes are: support for multithreaded

processes and utilization of GPUs; direct remote data access; and usage of high-performance

computing centers. New tools such as Rucio for data management were adopted with future data

rates in mind. Considerable effort was put into the automation of the workŕows and the validation

of the software. Physics analyses have been moved to smaller and smaller formats for centrally

produced and experiment-wide shared data samples, the most recent of which is the NanoAOD.

The development of the CMS detector, as described in this paper, constitutes a solid basis for

future data taking.
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