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Abstract. This article is concerned with the problem of determining an unknown source of non-potential,

external time-dependent perturbations of an incompressible fluid from large-scale observations on the flow
field. A relaxation-based approach is proposed for accomplishing this, which makes use of a nonlinear property

of the equations of motions to asymptotically enslave small scales to large scales. In particular, an algorithm

is introduced that systematically produces approximations of the flow field on the unobserved scales in order
to generate an approximation to the unknown force; the process is then repeated to generate an improved

approximation of the unobserved scales, and so on. A mathematical proof of convergence of this algorithm is
established in the context of the two-dimensional Navier-Stokes equations with periodic boundary conditions

under the assumption that the force belongs to the observational subspace of phase space; at each stage in

the algorithm, it is shown that the model error, represented as the difference between the approximating and
true force, asymptotically decreases to zero in a geometric fashion provided that sufficiently many scales are

observed and certain parameters of the algorithm are appropriately tuned.
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1. Introduction

In the derivation of any model, parameters arise that capture intrinsic properties of the phenomenon of
interest. In the case of modelling a turbulent, incompressible fluid flow via the Navier-Stokes equations
(NSE), assuming a constant density, the two relevant parameters are essentially the kinematic viscosity of
the fluid and the external force. For instance, in eddy diffusivity models, turbulent viscosity coefficients must
be specified [BIL06]. In practice, these parameters must be empirically determined. On the other hand, in
proposing any turbulent closure, one inevitably commits model errors. These errors may themselves then be
modeled as a body force, whose exact form in terms of the mean field is unknown.

In the current work, we propose an algorithm for determining all large-scale features of an external driving
force in the two-dimensional incompressible NSE (2D NSE) down to the observation scale. In practice, such
an algorithm can be used to filter model errors that are represented as external driving forces. In our idealized
set-up, the fluid occupies a periodic domain, Ω = [0, 2π]2, the density of the fluid is normalized to unity,
the kinematic viscosity of the fluid is known perfectly, but the external driving force is not. We point out
that the problem of determining the viscosity based on direct observation of the velocity field was recently
studied in [CGH11, CDLMB18, CHL20, Mar22, BH23], where estimators for the viscosity were proposed,
their consistency and asymptotic normality were established [CGH11], convergence analyses for viscosity-
recovery algorithms were carried out [Mar22], and numerical tests were performed [CDLMB18, CHL20].
The problem of multi-parameter recovery in chaotic dynamical systems was studied in [CHL+22, PWM21],
while the recent work [CL21] studies the sensitivity of the 2D NSE to changes in the viscosity, as well as its
implications for a certain downscaling algorithm for data assimilation.

Generally speaking, one of the objectives of this article is to study the extent to which external forces can
be determined based on error-free, but partial observations of flow field through a practically implementable
algorithm. In our ideal set-up, we will assume that we have access to a time series of the velocity field, but
only through sufficiently small, but nevertheless finitely many, length scales. Ultimately, we introduce an
algorithm for reconstructing large-scale features of the unknown force and establish its convergence under

1



2 VINCENT R. MARTINEZ

the assumption that the force acts only on length scales that are directly observed, that is to say, that the
force belongs to the span of the observational field.

To be more precise, we recall that the 2D NSE on Ω = [0, 2π]2 is given by

∂tu+ (u· ∇)u = ν∆u−∇p+ f, ∇·u = 0, (1.1)

where the kinematic viscosity, ν > 0, is given and fixed, and the time-series, {PNu(t)}t∈[0,T ], is known, up

to some time T > 0, where PN is the L2-orthogonal projection onto Fourier wave-numbers corresponding
to |k| ≤ N , and u· ∇ = uj∂j , where repeated indices indicates summation over those indices. However,
the external force, f , is time-independent, but unknown. The scalar pressure field is denoted by p; upon
taking the divergence of (1.1), one sees that p is determined entirely by u, f via the Poisson equation
−∆p = ∂i∂j(u

iuj) + ∂jf
j . We will assume that u, p, and f are both mean-free and periodic over Ω, and

that f is divergence-free. The main result is that for forces satisfying PNf = f , where N is sufficiently large,
there exists a sequence of times {tn}n and sequence of approximating forces, {fn}n, depending only on the
observations {PNu(t)}t≥0 such that fn converges to f . We will in fact address the more general case of
time-dependent forces.

The motivating idea for the algorithm we propose is based on the notion of “asymptotic completeness” for
nonlinear dissipative systems. For systems that possess this property, it asserts that having direct (observa-
tional) access to a sufficiently rich, but nevertheless finite-dimensional, set of scales, is enough to asymptot-
ically determine the unobserved scales. This property was rigorously shown to hold for (1.1) by Foias and
Prodi [FP67] in the case when access to sufficiently many Fourier modes of the velocity field is available;
for the case of three-dimensions, the reader is referred to the works [CD19, BP21]. Specifically, given two
solutions u1, u2 of (1.1) corresponding to external forces f1, f2, it was shown that there exists N ≥ 1, de-
pending on ν and f1, f2, but only through their size, such that PN (u1(t)− u2(t))→ 0 and f1(t)− f2(t)→ 0
as t → ∞ together imply u1(t) − u2(t) → 0 as t → ∞. In this case, it is then said that the Fourier modes
corresponding to wavenumbers |k| ≤ N are determining for the system (1.1); the smallest such number, N , is
referred to as the number of determining modes. In light of this result, one sees that the problem of inferring
an unknown force may be possible to solve provided that sufficiently many modes are observed and that one
identifies an algorithm that asymptotically reconstructs higher-modes that can subsequently be made use of
to approximate the force.

To see the main difficulty that must be overcome in doing so, suppose that one is given access to PNu(t),
for t ≥ t0. Then a näıve, but reasonable first approximation to the low-modes of the force may be given by
simply evaluating the nonlinear differential operator determined by (1.1) along PNu. This yields

∂tPNu− ν∆PNu+ PN ((PNu· ∇)PNu) +∇pN =: f0, (1.2)

where pN is found by enforcing f0 to be divergence-free. On the other hand, by applying the low-pass filter
PN to (1.1), one also obtains

∂tPNu− ν∆PNu+ PN ((PNu· ∇)PNu) +∇pN = PNf +RN , (1.3)

where RN denotes the Reynolds stress, defined as

RN := PN ((PNu· ∇)PNu)− PN ((u· ∇)u) +∇pN −∇PNp. (1.4)

One therefore has the following relation

RN = f0 − PNf. (1.5)

In particular, determination of PNf is equivalent to determination of RN . The fundamental difficulty of the
problem arises from the elementary fact that RN depends on both PNu and (I −PN )u, which is tantamount
to the closure problem of turbulence. In comparison, if (1.1) were replaced by the linear heat equation,
then observation of PNu along a trajectory of u provides an exact reconstruction for PNf along that same
trajectory. Thus, any resolution of this difficulty must address a way to reconstruct high-mode information
from low-mode data. In Section 3, we introduce an algorithm that, under suitable conditions, accomplishes
this and systematically decrements the “Reynolds stress” at each stage in a geometric fashion, yielding a
convergent scheme for approximating the force on the low-modes. From this point of view, the proposed
scheme may be viewed as a “nonlinear filtering” of large-scale error.
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For systems that possess an inertial manifold, reconstruction of small scales from large scales would be
possible. Indeed, the existence of an inertial manifold implies a strong form of enslavement of scales as it
asserts the existence of a map Φ such that PNu|t=t0 7→ (I−PN )u|t≥t0 , that is, u(t) = PNu(t)+Φ(PNu(t0))(t),
for all t ≥ t0. In other words, knowledge of low-modes at a single time is sufficient to determine the high-
mode behavior at all future times. The inertial manifold would then be determined by the graph of Φ (see
[FT87, FST88]). However, the existence of such a map for (1.1) remains an outstanding open problem. One of
the main points of this article is that one need only rely on the weaker property of asymptotic completeness
to reconstruct sufficiently high-mode components of the state variables in order to eventually recover the
low-modes of the forcing.

There are at least two ways available in the literature for doing, one due to Foias, Jolly, Kravchenko, and
Titi in [FJKT12] and another by Azouani, Olson, and Titi in [AOT14]. The first construction [FJKT12] allows
one to encode projections of solutions on the global attractor of (1.1) as traveling wave solutions to some
infinite-dimensional ordinary differential equation. However, it effectively requires one to solve the evolution
equation of (1.1) corresponding to the high-modes [FJLT17]. The second method introduces downscaling
algorithm for data assimilation [AOT14], in which large-scale observations are exogenously inserted into
(1.1) as a feedback-control term that serves to drive the corresponding solution of this modified system
towards the reference solution, but only on large scales. By virtue of the Foias-Prodi property of determining
modes, it was then shown that by tuning the strength of the feedback-control system appropriately, the
generated approximating signal asymptotically synchronizes to the reference signal to which the large-scale
observations correspond. It is the latter approach that we will make use of to systematically reconstruct
high-mode information on the reference field.

The remainder of the manuscript is organized as follows. In Section 2, we establish the notation and
functional setting in which the result will be proved, as well as classical well-posednesss results that we will
make use of. A derivation of the algorithm that reconstructs the external force is presented in Section 3.
We provide formal statements of the convergence results in Section 4, then outline their proof in Section 5.
The main step is to reduce the analysis of the convergence to establishing suitable “sensitivity estimates”.
These estimates are proved in Section 6. We finally supply rigorous proofs of the main results in Section 7.
Technical auxiliary results are relegated to Appendix A.

2. Notation and Functional Setting

Let Ω = [0, 2π]2 and Lpσ = Lpσ(Ω), for p ∈ [1,∞], denote the space of p-integrable (in the sense of Lebesgue),
mean-free, solenoidal vector fields over Ω, which are periodic in each direction; its norm is given by

‖u‖pLp :=

∫
Ω

|u(x)|pdx, for p ∈ [1,∞), ‖u‖L∞ := ess supx∈Ω |u(x)|, (2.1)

where ess sup denotes the essential supremum. We let Hk
σ = Hk

σ(Ω) denote the space of periodic, mean-free,
solenoidal vector fields over Ω whose weak derivatives (in the sense of Sobolev) up to order k belong to L2

σ;
its norm is given by

‖u‖2Hk :=
∑
|α|≤k

∫
Ω

|∂αu(x)|2dx, (2.2)

where α ∈ (N ∪ {0})2 is a multi-index. We will abuse notation and use L2
σ, H

k
σ to denote the corresponding

spaces for scalar functions as well; in this case, |u| is interpreted as absolute value, rather than Euclidean
norm.

We will make use of the functional form of the Navier-Stokes equations, which is given by

d

dt
u+ νAu+B(u, u) = Pf, (2.3)

where

Au = −P∆u and B(u, v) = P (u· ∇)v,
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and P denotes the Leray-Helmholtz projection, that is, the orthogonal projection onto divergence-free vector
fields; we refer to A as the Stokes operator. Note that by orthogonality, ‖P‖L2→L2 ≤ 1. Moreover

P̂ u(n) := û(n)− n· û(n)

|n|2
n, n ∈ Z2 \ {(0, 0)}, (2.4)

where û(n) denotes the Fourier coefficient of u corresponding to wavenumber n ∈ Z2. Also, powers of A can
be defined spectrally via

Âk/2u(n) := |n|kû(n). (2.5)

Hence, P commutes with ∆ in the setting of periodic boundary conditions. Recall that for u ∈ H1
σ the

Poincaré inequality states

‖u‖L2 ≤ ‖A1/2u‖L2 = ‖A1/2u‖L2 . (2.6)

It follows that for each integer k ≥ 1, there exists a constant ck > 0 such that

c−2
k ‖u‖

2
Hk ≤

∑
|α|=k

∫
Ω

|∂αu(x)|2dx ≤ c2k‖u‖2Hk , (2.7)

whenever u ∈ Hk
σ . In particular, by the Parseval identity, it follows that there also exist constants ck > 0

such that

c−1
k ‖u‖Hk ≤ ‖Ak/2u‖L2 ≤ ck‖u‖Hk , (2.8)

for all u ∈ Hk
σ .

Given t0 ≥ 0 and f ∈ L∞(t0,∞;L2
σ), we define the Grashof-type number by

G̃ :=
supt≥t0‖f(t)‖L2

κ2
0ν

2
, (2.9)

where κ0 = (2π)/L, where L is the linear length of the domain; since Ω = [0, 2π]2, we see that κ0 = 1.
We note that the Grashof number is traditionally denoted by G, that is, undecorated, when the force is
independent of time. Since we allow for time-dependence in the force, we will distinguish between the two
notations by making use of tilde. See, for instance [BFJ10], where this distinction is also maintained.

Observe that Pf = f , for any f ∈ L2
σ. One has the following classical results regarding the existence

theory for (2.3) ([CF88, Tem97, Tem01, FMRT01]).

Theorem 2.1. Let t0 ≥ 0 and f ∈ L∞(t0,∞;L2
σ). For all u0 ∈ H1

σ, there exists a unique u ∈ C([t0, T ];H1
σ)∩

L2(t0, T ;H2) satisfying (2.3), for all T > 0, such that d
dtu ∈ L

2(t0, T ;L2
σ) and

‖A1/2u(t)‖2L2 ≤ ‖A1/2u(t0)‖2L2e−ν(t−t0) + ν2G̃2(1− e−ν(t−t0)), (2.10)

for all t ≥ t0 ≥ 0.

From (2.10), we see that for t0 = 0 and all t > 0 sufficiently large, depending on ‖A1/2u0‖L2 , one has

‖A1/2u(t)‖L2 ≤
√

2νG̃ =: c̃1R̃1, c̃1 =
√

2. (2.11)

Let B̃1 denote the ball of radius R̃1, centered at the origin in L2
σ. Observe that A1/2u0 ∈ B̃1 implies via

(2.10) that u(t;u0, f) ∈ B̃1, for all t ≥ 0, where u(t;u0, f) denotes the unique solution of (2.3) with initial
data u0 and external forcing f . Moreover, there exists a constant c̃2 > 0 such that if f ∈ L∞(0,∞;H1

σ) and

Au0 ∈ αB̃2, where α > 0 is arbitrary, B̃2 denotes the ball of radius R̃2 = c̃2ν(G̃ + σ̃1)G̃, centered at the

origin in L2
σ, and αB̃2 the same ball of radius αR̃2, then

‖Au(t)‖2L2 ≤ (1 + α2)c̃22ν
2(σ̃1 + G̃)2G̃2, (2.12)

for all t ≥ 0, where σ̃1 denotes a “shape factor” defined by

σ̃1 :=
supt≥t0‖A

1/2f(t)‖L2

supt≥t0‖f(t)‖L2

. (2.13)
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In other words, Au0 ∈ αB̃2 implies Au(t) ∈ (1 + α2)1/2B̃2, for all t ≥ 0. Observe that σ̃1 ≥ 1 by Poincaré’s

inequality. In particular, if Au0 ∈ B̃2, then

‖Au(t)‖L2 ≤
√

2c̃2ν(G̃+ σ̃1)G̃ =
√

2R̃2. (2.14)

Bounds sharper than (2.14) were established in [DFJ05] in the setting where f was time-independent. In
this particular case, one has that

‖Au(t)‖L2 ≤ c2ν(σ
1/2
1 +G)G =: R2, (2.15)

holds for all t ≥ 0, for some c2 > 0, provided that u0 ∈ B2, the ball of radius R2 in H2
σ. Here, G denotes the

Grashof number, which is simply given by (2.9) when f is time-independent. Similarly, σ1 is given by (2.13)
when f is time-independent. For the sake of completeness, we supply a short proof of (2.15) in Appendix A.

3. Description of the Algorithm

We consider the following feedback control system

d

dt
v + νAv +B(v, v) = h− µPN (v − u), (3.1)

where h, possibly time-dependent, is given. The well-posedness theory and synchronization properties of this
model was originally developed in [AOT14] for a more general class of observables, which includes projection
onto finitely many Fourier modes as a special case, in [BLSZ13, BOT15] in the setting of noisy observations,
while the issue of synchronization in higher-order topologies was studied in [BM17, BBM22]. In the idealized
setting considered in this article, the existence, uniqueness results in [AOT14] will suffice for our purposes.
This is stated in the following theorem.

Theorem 3.1. Let t0 ≥ 0 and h ∈ L∞(t0,∞;L2
σ). Let u denote the unique solution of (2.3) corresponding

to initial data u0 ∈ H1
σ guaranteed by Theorem 2.1. There exists a constant c̃ > 0 such if µ,N satisfy

µ ≤ c̃νN2 (3.2)

then given v0 ∈ H1
σ, there exists a unique solution, v, to the initial value problem corresponding to (3.1) such

that

v ∈ C([t0, T ];H1
σ) ∩ L2(t0, T ;H2

σ) and
d

dt
v ∈ L2(t0, T ;L2

σ), (3.3)

for any T > 0.

The feedback control system (3.1) was originally conceived as a way to assimilate observations on the
flow field into the equations of motion in order to reconstruct the unobserved scales of motion. There is a
considerable body of work studying the extent to which this is possible in various situations in hydrodynamics
such as Rayleigh-Bénard convection [FJT15, FLT16a, ATG+17, FLT17, FJJT18, FGHM+20, CJTW21],
turbulence [ANLT16, FET17, LP20, CDLMB20, CLL21, YGJP22, ZMML22], geophysical fluids [FLT16b,
JMT17, AB18, JMOT19, Pei19, DDL+19], dispersive equations [JST15, JST17], as well as various numerical
analytical and computational studies [GOT16, FMT16, BMO18, IMT19, LRZ19, COT19, GAN20, GANT20,
DR22].

Given h, we may thus obtain from (3.1) an approximate reconstruction of the high-modes of u via QNv =
(I − PN )v. We therefore propose the following algorithm: Let h = f0 denote the initial guess for the forcing
field, defined for all t ≥ t0, for some fixed initial time t0 ≥ 0, and let v0 to be an arbitrary initial state; f0 is
considered to be the approximation at stage n = 0 that is prescribed by the user and may, in fact, be chosen
arbitrarily. Suppose that PNf0 = f0. Then at stage n = 1, we consider

d

dt
v1 + νAv1 +B(v1, v1) = f0 − µPN (v1 − u), v1(t0) = v0

1 , t ∈ I0 := [t0,∞). (3.4)

We define the first approximation to the flow field by

u1 = PNu+QNv1, for t ∈ I0. (3.5)

By design, u1 will relax towards u after a transient period, ρ1 := t1− t0, that is proportional to the relaxation
time-scale, µ−1, where t1 � t0, but only up to an error of size O(g0), where g0 := f0 − f , which represents
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the “model error.” Only after this period has transpired will we extract the first approximation to f via the
formula

f1(t) :=
d

dt
PNu1 + νAPNu1 + PNB(u1, u1), for all t ∈ I1 := [t0 + ρ1,∞), for some ρ1 � 0. (3.6)

Observe that PNf1 = f1. To obtain new approximations in subsequent stages, we proceed recursively:
Suppose that at stage n− 1, a force, fn−1 = PNfn−1 over t ∈ In−1 := [tn−2 + ρn−1,∞), has been produced,
where the relaxation period satisfies ρn−1 � 0, and an arbitrary initial state, v0

n, has been given. Then
consider

d

dt
vn + νAvn +B(vn, vn) = fn−1 − µPN (vn − u), vn(tn−1) = v0

n, t ∈ In−1. (3.7)

Let un = PNu+QNvn, for t ∈ In−1, and define the approximation to the force at stage n by

fn(t) :=
d

dt
PNun + νAPNun + PNB(un, un), for all t ∈ In := [tn−1 + ρn,∞), for some ρn � 0. (3.8)

This procedure produces a sequence of forces f1|I1 , f2|I2 , f3|I3 , . . . that approximates f on time intervals
In whose left-hand endpoints are increasing with n. In particular, the sequence {fn|In}n asymptotically
approximates f .

The key step to ensuring convergence of the generated sequence {fn}n≥1 to the true forcing, f , is to
control model errors, gn := fn − f , at each stage, in terms of the synchronization errors, wn, which, in
turn, are controlled by the model error from the previous stage; this will be guaranteed to be the case after
transient periods of length ρn := tn − tn−1, which allows relaxation in (3.4) to take place. However, it will
be shown that this convergence can only be guaranteed to occur on the “observational subspace” PNL

2
σ, for

N sufficiently large. Indeed, a crucial observation at this point is that if f = PNf , then fn = PNfn, for all
N ≥ 1. We refer the reader to Remark 4.6 and Remark 5.2 for additional remarks on the basic expectations
for recovering force from low-mode data and the underlying limitations of this algorithm. We refer the reader
to Remark 7.1 for a more detailed discussion on the size of the transient periods, ρn.

Remark 3.2. We remark that the first guess, f0, need not be arbitrary and can be chosen to be

f0 :=
d

dt
PNu+ νAPNu+ PNB(PNu, PNu), (3.9)

as suggested in (1.2), where t0 > 0 is chosen sufficiently large so that u(t0) is contained in an absorbing ball
for (2.3). Similarly, the initial states, v0

n, at each stage need not be arbitrary. Since {PNu(t)}t≥t0 is assumed
to be given, one can initialize the system governing vn at time t = tn−1 with v0

n = PNu(tn−1) at each stage.
These natural choices would presumably aid in the implementation of the proposed algorithm; we refer the
reader Remark 7.1 for additional remarks related to this point.

Before outlining the proofs, we rigorously state the main results of the article.

4. Statements of Main Results

Let A1/2u0 ∈ B̃1 and Au0 ∈ B̃2 and f ∈ C([t0,∞);L2
σ) ∩ L∞(t0,∞;L2

σ), for some t0 ≥ 0, where B̃1, B̃2

were defined as in Section 2. Let u denote the unique strong solution of (2.3) corresponding to forcing f and
initial data u0 guaranteed by Theorem 2.1 corresponding to initial velocity u0 and external forcing f . Given
t0 ≥ 0, let γ0 denote the initial relative error defined by

γ0 :=
supt≥t0‖f0(t)− f(t)‖L2

supt≥t0‖f(t)‖L2

, (4.1)

where f0 is a user-prescribed initial guess for the force which satisfies f0 ∈ C([t0,∞);L2
σ) ∩ L∞(t0,∞;L2

σ).

Recall that the assumptions on the initial data imply (via (2.10), (2.15)) that A1/2u(t) ∈ B̃1 and Au(t) ∈ 2B̃2,
for all t ≥ 0.

Theorem 4.1. Suppose that f = PNf , for some N ≥ 1, and that {PNu(t)}t≥t0 is given. There exists a
positive constant c, depending on γ0, such that for any β ∈ (0, 1), if N ≥ 1 satisfies

β2N2 > c(σ̃1 + G̃)G̃2, (4.2)
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then there exists a choice for the tuning parameter µ and increasing sequence of times tn−1 ≤ tn, for n ≥ 2,
such that

sup
t≥tn
‖fn(t)− f(t)‖L2 ≤ β

(
sup

t≥tn−1

‖fn−1(t)− f(t)‖L2

)
, (4.3)

for all n ≥ 1, where fn = PNfn, fn ∈ C([t0,∞);L2
σ) ∩ L∞(t0,∞;L2

σ), and each fn is given by (3.8).

Remark 4.2. It is worth pointing out that (4.2) depends on the the unknown forcing f . However, it must
be emphasized that this condition only depends on f through its size. From a practical perspective, one
must always approach the problem of parameter estimation with prior knowledge in hand. In this light, what
condition (4.2) indicates is that if one has access to the Grashof number of the flow, for instance through
measurement of the Reynolds number (see Remark 4.7), then the only prior knowledge on the force that
is needed to achieve exact recovery is knowledge of its shape factor σ̃1. It moreover indicates that having
such knowledge in one’s possession can quantitatively inform what balance is needed between the number of
observations and the algorithmic parameter, µ, to ensure a full reconstruction of the unknown force.

Remark 4.3. Regarding condition (4.2), we remind the reader that G̃ also depends on viscosity. Thus,
the intuition that the number of observations needed should increase as the viscosity decreases or that fewer
observations are needed when viscosity is large is reflected in the statement.

Note that when f is time-dependent, Theorem 4.1 only asserts recovery of the external force asymptotically
in time. However, when the force is time-periodic or time-independent, then Theorem 4.1 immediately implies
that the external force is eventually recovered; we provide a statement of the time-independent case in the
following corollary since the corresponding approximating forces are obtained by evaluating the sequence of
approximating forces asserted in Theorem 4.1 at certain times.

Corollary 4.4. Suppose that f = PNf , for some N ≥ 1, is time-independent, and that {PNu(t)}t≥t0 is
given. There exists a positive constant c0, depending on γ0, such that for any β ∈ (0, 1), if N ≥ 1 satisfies

β2N2 > c0(σ̃1 +G)G2, (4.4)

then there exists a choice for the tuning parameter µ and an increasing sequence of times tn−1 ≤ tn such that

‖fn − f‖L2 ≤ β‖fn−1 − f‖L2 , (4.5)

for all n ≥ 1, where fn = PNfn and each fn is given by (3.8) evaluated at t = tn.

In the setting of time-independent forcing, one can in fact “recycle” the data provided that a sufficiently
long time-series is available. By “recycle” we mean that once an approximation to the force is proposed by
the algorithm at a given stage, we may use this proposed forcing to re-run the algorithm over the same time
window to produce the subsequent approximation of the force in the following stage, and so on. In this way,
the same data set is used over and over in order to generate new approximations to the force.

Theorem 4.5. Let T > 0. Suppose that f = PNf , for some N ≥ 1, is time-independent, and that
{PNu(t)}t∈[0,T ) is given, for some t0 ≥ 0. There exists a positive constant c0, depending on γ0, such that for
any β ∈ (0, 1), if N ≥ 1 satisfies

β2N2 > c0(σ̃1 +G)G2, (4.6)

then for each n ≥ 1, there exists a choice for the tuning parameter µ and a sequence of times, tn > 0, such
that if T > t0 + tn, for all n ≥ 1, then

‖fn − f‖L2 ≤ β‖fn−1 − f‖L2 , (4.7)

for all n ≥ 1, where fn = PNfn, fn ∈ L2
σ, and each is determined by a procedure similar to that in Section 3,

except that vn, un, fn are always derived on the interval [0, T ).

The proof of Theorem 4.5 follows along the same lines as that of Theorem 4.1, except that one requires
a few technical modifications of the setup described in Section 3; we supply the relevant details of these
modifications in Section 7.
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Remark 4.6. A well-known example given by Marchioro [Mar86] exhibits a scenario where observation of
low-modes below the spectrum of the forcing are sufficient to determine the forcing. In particular, the work
[Mar86] identifies a class of low-mode body forces for which the asymptotic behavior of solutions to (2.3)
are characterized by a one-point global attractor for (2.3) whose unique stationary point is supported on a
frequency shell strictly smaller than that of the force. Of course, this phenomenon is made possible due to
presence of nonlinearity in (2.3).

The extent to which it is possible to determine features of the forcing beyond the scales which are observed
is, in general, not known and in particular, not addressed by Theorem 4.5. Indeed, condition (4.6) identifies
an upper bound on the number of modes that one should observe in order to uniquely determine the forcing
provided that scales beyond those that are directly observed are not forced to begin with. In particular, it would
be interesting to 1) study the sharpness of condition (4.6), and 2) whether one may identify classes of forces,
beyond the Marchioro class, which inject energy into scales larger than those which are directly observed,
preferably much larger, but can nevertheless be reconstructed by these observations. These issues are left to
be investigated in a future work.

Remark 4.7. There are at least three natural directions that warrant further investigation. First and fore-
most, a systematic computational study that probes the efficacy and limitations of this method for recovering
the force should be carried out, especially in the context of noisy observations. For instance, each of theorems
above suggest that a large number of modes are required to achieve convergence. In the context of a turbulent
flow, G ∼ Re2, where Re denotes the Reynolds number of the flow [DFJ08, DFJ09], which may be intractably
large in practice. On the other hand, the analysis performed here inherently takes into account “worst-case”
scenarios that may saturate various inequalities that were used, but which may occur rarely in reality. This
direction will be explored in future work.

Secondly, the choice of Fourier modes as the form of observations is chosen due to its conceptual and
analytical convenience. In principle, other observations on the velocity, such as nodal values or local spatial
averages can also be used. However, the choice of Fourier modes allows one to commute the “observation
operator,” PN with derivatives, which greatly facilitates the analysis. The failure of this commutation intro-
duces further analytical difficulties. Indeed, the original feedback control system was introduced with a general
interpolant observable operator, Ih, replacing PN in (3.1). In connection to this, the reader is referred to the
classical works [FT84, JT92b, JT92a, CJT95, CJT97], where the notion of “finite determining parameters,”
properly generalizing “determining modes,” was developed.

Thirdly, although the existence of an inertial manifold for the 2D NSE is an open problem, there are several
systems, which do posesses inertial manifolds [FST88, Tem97], such as the Kuramoto-Sivashinsky equation
[FNST88]; it would be interesting to explore what can be gained in this particular context. In a similar vein,
it would also be interesting to explore the usage of Approximate Inertial Manifolds for the 2D NSE, as it is
used, for instance, in post-processing Galerkin methods. Indeed, these ideas have been successfully used in the
context of downscaling data assimilation algorithms in [MT18].

5. Outline of the Convergence Argument

To prove Theorem 4.1, the object of interest will be the error in the forcing, which we also refer to as
“model error.” This is denoted by

gn := fn − f, (5.1)

where fn is generated from the scheme described in Section 3. We claim the following: there exists a sequence
of times tn ≥ tn−1, for all n ≥ 1, such that

sup
t≥tn
‖A1/2gn(t)‖L2 ≤ β sup

t≥tn−1

‖A1/2gn−1(t)‖L2 , (5.2)

for some β ∈ (0, 1). The lengths of the relaxation periods, ρn := tn − tn−1, between the moments, tn−1, tn,
at which we choose to reconstitute new forces, fn−1, fn, respectively, are prescribed to be sufficiently large
in order to allow time for the system (3.7) to relax. As we will see, the length of these relaxation periods,
ρn, will essentially be determined by the relaxation parameter µ; the reader is referred to Remark 7.1 for a
precise relation.
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Let us denote the synchronization error by

wn := vn − u.

Observe that the evolution of wn over the time interval [tn−1,∞) is governed by

d

dt
wn + νAwn +B(wn, wn) +DB(u)wn = gn−1 − µPNwn, wn(tn−1) = v0

n − u(tn−1), (5.3)

where DB(u)v := B(u, v) + B(v, u). Let BN = PNB and DBN = PNDB. Then, using (2.3), the facts that
PNf = f and un = PNu+QNvN , and (3.8), we obtain

gn =

(
d

dt
PNun + νAPNun +BN (un, un)

)
−
(
d

dt
PNu+ νAPNu+BN (u, u)

)
= BN (PNu+QNvn, PNu+QNvn)−BN (PNu+QNu, PNu+QNu)

= BN (QNwn, QNwN ) +DBN (u)QNwn, (5.4)

which holds over [tn−1,∞). In analogy to (1.5), we define the “Reynolds stress” at stage n by

R(n)
N := BN (QNwn, QNwn) +DBN (u)QNwn = gn. (5.5)

Ultimately, (5.5) enables us to envision a recursion in the model error at each stage through the dependence

of R(n)
N on R(n−1)

N via the synchronization error wn. Hence, in order to prove that R(n)
N vanishes in the limit

as n → ∞, we require sensitivity-type estimates, that is, estimates on wn. The estimates will take on the
following form:

‖A1/2wn(t)‖L2 ≤ ν
(
ν

µ

)1/2

O

(
supt≥tn‖gn−1(t)‖L2

ν2

)
, (5.6)

for all t ≥ tn, for some sufficiently large tn ≥ tn−1. Before we go on to develop estimates of the form (5.6) in
Section 6, let us first determine the precise manner in which their application will arise.

Remark 5.1. In what follows and for the remainder of the manuscript, we make use of the convention that
C denotes a generic dimensionless constant, which may change line-to-line and possibly be large, but will
always be independent of N, ν, γ0.

To estimate (5.5), we will invoke the following inequalities for B(u, v), which follows from a direct appli-
cation of Hölder’s inequality:

‖B(u, v)‖L2 ≤ min{‖u‖L∞‖A1/2v‖L2 , ‖u‖L4‖A1/2v‖L4} (5.7)

We will also make use of the fact that PN , QN commute with Am/2, for all integers m, and that the following
inequalities hold for all N > 0, ` > 0, and m ∈ Z:

‖Am/2PNv‖L2 ≤ Nm‖PNv‖L2 , ‖Am/2QNv‖L2 ≤ N−`‖A(m+`)/2QNv‖L2 . (5.8)

Lastly, we make the following elementary, but important observation for treating the first term appearing in
(5.5): for vector fields u = (u1, u2) and v = (v1, v2), we have

B(u, v)i =

2∑
j=1

P (u· ∇vi) = P∇· (uvi), i = 1, 2,

where B(u, v)i denotes the i-th component of the vector field B(u, v). Thus, upon applying (5.8) and Hölder’s
inequality, we obtain

‖BN (u, v)‖2L2 ≤ 2

2∑
i=1

‖PNA1/2(uvi)‖2L2 ≤ 2N2
2∑
i=1

‖uvi‖2L2 ≤ 2N2‖u‖2L4‖v‖2L4 . (5.9)
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From (5.5), we now apply (5.9), (5.7), (5.8), and interpolation to obtain

‖R(n)
N ‖L2 ≤ ‖PNA1/2(QNwn ⊗QNwn)‖L2 + ‖DBN (u)QNwn‖L2

≤ CN‖QNwn‖2L4 + ‖u‖L∞‖A1/2QNwn‖L2 + ‖QNwn‖L4‖A1/2u‖L4

≤ CN‖A1/2QNwn‖L2‖QNwn‖L2 + C‖Au‖1/2L2 ‖u‖1/2L2 ‖A1/2QNwn‖L2

+ ‖A1/2QNwn‖1/2L2 ‖QNwn‖1/2L2 ‖Au‖1/2L2 ‖A1/2u‖1/2L2

≤ C‖A1/2QNwn‖2L2 + C‖Au‖1/2L2 ‖u‖1/2L2 ‖A1/2QNwn‖L2 +
C

N1/2
‖A1/2QNwn‖L2‖Au‖1/2L2 ‖A1/2u‖1/2L2

≤ C0ν(σ̃1 + G̃)1/2G̃

(
1 +
‖A1/2QNwn‖L2

ν

)
‖A1/2QNwn‖L2 , (5.10)

for some universal constant C0 > 0, independent of n, for all t ≥ tn−1. Note that we also invoked the
assumption that u belongs to the absorbing ball in H1

σ and H2
σ (see (2.11), (2.14), respectively) in obtaining

the final inequality. It is at this point that one applies (5.6) in order to properly close the recursive estimate.
In order to rigorously carry out this argument, let us therefore prove that (5.6) indeed holds.

Remark 5.2. In the case when the force contains modes beyond those that are observed, one can identify an
obstruction that precludes a proof in the manner described above. Suppose that f 6= PNf . Then modify the
ansatz (3.8) for the force at each stage by removing the projection onto low modes. In particular, re-define
fn so that

fn =
d

dt
un + νAun +B(un, un).

Then the model error becomes

gn =
d

dt
QNwn + νAQNwn +B(QNwn, QNwn) +DB(u)QNwn. (5.11)

Upon applying the complementary projection, QN , to (5.3), and combining the result with (5.11), we see that

QNgn = −BN (PNwn, PNwn)−BN (PNwn, QNwn)−BN (QNwn, PNwn)−DBN (u)PNwn +QNgn−1,

where BN = QNB and DBN = QNDB. Due to the presence of QNgn−1 on the right-hand side, one cannot
expect to obtain a convergent recursive relation of the form ‖QNgn‖L2 ≤ β‖QNgn−1‖L2 , for some β ∈ (0, 1).
Although one can establish an estimate of QNgn from this relation that is of the form ‖QNgn−QNgn−1‖L2 ≤
ON (‖A1/2QNwn‖L2), where the suppressed constant has a favorable dependence on N , a subsequent analysis
will nevertheless be unable to establish a suitable recursion relation since we will only ever have access to an
estimate of the form (5.6).

6. Sensitivity Analysis

We establish a more precise form of the crucial estimates (5.6), which form the bridge to the desired
recursion for the model error at each stage of the approximation. For this, we recall the notation introduced
in Section 5. In particular, we prove the following.

Proposition 6.1. There exist universal constants c0, c0 ≥ 1 such that if µ,N satisfy

c0

(
σ̃1 + G̃

)
G̃2 ≤ µ

ν
≤ c0N2, (6.1)

then for each n ≥ 1, there exist relaxation periods, ρn = tn − tn−1, for some tn > tn−1, such that

sup
t∈In

(
‖A1/2wn(t)‖L2

ν

)
≤
(

2C1ν

µ

)1/2
(

supt∈In−1
‖gn−1(t)‖L2

ν2

)
, (6.2)

where In := [tn−1 + ρn,∞), for some universal constant C1 ≥ 1, independent of n. Moreover, ρn satisfies
(6.5).
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Proof. Fix n ≥ 1. The enstrophy-balance for wn is obtained by taking the L2–inner product of (5.3) by Awn,
which yields

1

2

d

dt
‖A1/2wn‖2L2 + ν‖Awn‖2L2 = −〈B(u,wn), Awn〉 − 〈B(wn, u), Awn〉+ 〈gn−1, Awn〉 − µ‖A1/2PNwn‖2L2

= I + II + III + IV. (6.3)

Observe that by interpolation, the Cauchy-Schwarz inequality, Poincaré’s inequality, and (2.11), (2.14), we
may estimate

|I| ≤ C‖u‖L∞‖A1/2wn‖L2‖Awn‖L2

≤ C‖Au‖1/2L2 ‖u‖1/2L2 ‖A1/2wn‖L2‖Awn‖L2

≤ Cµ
(
ν

µ

)(
σ̃1 + G̃

)
G̃2‖A1/2wn‖2L2 +

ν

100
‖Awn‖2L2 .

Similarly, we obtain

|II| ≤ C‖A1/2wn‖1/2L2 ‖wn‖1/2L2 ‖Au‖1/2L2 ‖A1/2u‖1/2L2 ‖Awn‖L2

≤ Cµ
(
ν

µ

)(
σ̃1 + G̃

)
G̃2‖A1/2wn‖2L2 +

ν

100
‖Awn‖2L2 .

On the other hand, by the Cauchy-Schwarz inequality, we have

|III| ≤ C
‖gn−1‖2L2

ν
+

ν

100
‖Awn‖2L2 .

Lastly, we have

IV = −µ‖A1/2wn‖2L2 + µ‖A1/2QNwn‖2L2

≤ −µ‖A1/2wn‖2L2 +
µ

N2
‖Awn‖2L2 .

Upon combining the estimates for I–IV and invoking (6.1), where c0, c0 ≥ 1 are chosen appropriately relative
to the constants C appearing above, we arrive at

d

dt
‖A1/2wn‖2L2 +

3

2
ν‖Awn‖2L2 +

3

2
µ‖A1/2wn‖2L2 ≤ Cν3

(
‖gn−1‖L2

ν2

)2

.

An application of Gronwall’s inequality yields(
‖A1/2wn(t)‖L2

ν

)2

≤ e−µ(t−tn)e−µρn

(
‖A1/2wn(tn−1)‖L2

ν

)2

+ C1

(
ν

µ

)(
supt≥tn−1

‖gn−1(t)‖L2

ν2

)2

, (6.4)

for all t ≥ tn, for some C1 ≥ 1 independent of n. Now recall that wn(tn−1) = v0
n−u(tn−1). We choose ρn > 0

such that

ρn ≥
1

µ
ln

( µ

C1ν

)(
ν‖A1/2wn(tn−1)‖L2

supt∈In−1
‖gn−1(t)‖L2

)2
 . (6.5)

Returning to (6.4), it follows that

sup
t∈In

(
‖A1/2wn(t)‖L2

ν

)
≤
(

2C1ν

µ

)1/2
(

supt∈In−1
‖gn−1(t)‖L2

ν2

)
,

as desired.
�
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7. Proofs of Convergence

Let us assume that f = PNf . At the initializing stage, n = 0, we consider any f0 ∈ C([0,∞);L2
σ) ∩

L∞([0,∞; );L2
σ). Recall that in each subsequent stage, we will produce a new approximation, fn, for the

force via the ansatz (3.8). We proceed by induction.

Proof of Theorem 4.1. Fix β ∈ (0, 1). We choose c0 to satisfy

c0 ≥ max

c0, 2C1

(
C0

β

)2
1 +

(
2C1

c0(σ̃1 + G̃)

)1/2

γ0

2
 ,

where C0, C1, c0 are the universal constants appearing in (5.10), (6.1), (6.2), respectively, and γ0 denotes the
initial relative error defined by (4.1). Fix any c1 ≤ c̃, where c̃ is the constant appearing in (3.2). AThen
assume that µ,N satisfies (4.2) with c = c0c

−1
1 . Then choose µ such thaty

c0(σ̃1 + G̃)G̃2 < β2µ

ν
≤ c1β2N2, (7.1)

Observe that N satisfies (4.2) with c = c0c
−1
1 . Since c0 ≥ c0 by choice, it immediately follows that (6.1) also

holds.
Let n = 1. Denote R(0)

N := g0 = f0 − f . Observe that from (2.9), (4.1), we have

sup
t≥t0
‖R(0)

N (t)‖L2 = γ0ν
2G̃. (7.2)

Combining Proposition 6.1, (5.10) for n = 1, and (7.2) ensures that there exists a relaxation period ρ1 > 0,
for some t1 ≥ t0, such that

sup
t≥I1
‖R(1)

N (t)‖L2 ≤ (2C1)1/2C0(σ̃1 + G̃)1/2G̃

(
1 +

(
2C1ν

µ

)1/2

γ0G̃

)(
ν

µ

)1/2

sup
t≥I0
‖R(0)

N (t)‖L2 , (7.3)

where I1 = [t0 + ρ1,∞).
Further assume that µ satisifes

β2µ

ν
≥ 2C1C

2
0

(
(σ̃1 + G̃)1/2 +

(
2C1

c0

)1/2

γ0

)2

G̃, (7.4)

where C1 is the same constant appearing in (7.3). Then (7.3), (6.1), and (7.4) imply

sup
t≥I1
‖R(1)

N (t)‖L2 ≤ β

(
sup
t≥I0
‖R(0)

N (t)‖L2

)
. (7.5)

This establishes the base case.
Now suppose that for all k = 1, . . . , n, there exist relaxation periods ρk, such that

sup
t≥Ik
‖R(k)

N (t)‖L2 ≤ β sup
t≥Ik−1

‖R(k−1)
N (t)‖L2 . (7.6)

With (7.2), it follows that

sup
t≥Ik
‖R(k)

N (t)‖L2 ≤ βkγ0G̃ ≤ γ0G̃, (7.7)

for all k = 1, . . . , n. We may thus deduce from Proposition 6.1, (5.10), and (7.7) that

sup
t≥In+1

‖R(n+1)
N (t)‖L2 ≤ (2C1)1/2C0(σ̃1 + G̃)1/2G̃

(
1 +

(
2C1ν

µ

)1/2

γ0G̃

)(
ν

µ

)1/2

sup
t≥In
‖R(n)

N (t)‖L2 . (7.8)

An application of (7.4) and (6.1) then implies

sup
t≥In+1

‖R(n+1)
N (t)‖L2 ≤ β

(
sup
t≥In
‖R(n)

N (t)‖L2

)
,

as desired. This completes the induction. �



ON RECONSTRUCTION OF UNKNOWN EXTERNAL FORCES VIA LOW-MODE OBSERVATIONS IN 2D NSE 13

Remark 7.1. From the proof of Theorem 4.1, we can obtain more informative estimates on the relaxation
periods, ρn. Indeed, by (6.5) and (7.2), we see that the first relaxation period satisfies

ρ1 ≥
1

µ
ln

( µ

C1ν

)
1

γ2
0G̃

2

(
‖A1/2(v0

1 − u(t0))‖L2

ν

)2
 . (7.9)

In subsequent stages, n ≥ 1, by (6.5) and (6.2) applied at the preceding stage, we may deduce that the
relaxation periods satisfy

ρn ≥
1

µ
ln

 supt∈In−2
‖R(n−2)

N (t)‖L2

supt∈In−1
‖R(n−1)

N (t)‖L2

 ≥ − 1

µ
lnβ. (7.10)

One may then observe that (7.9) and (7.10) follow a consistent pattern if we allow ourselves to make special,
but nevertheless natural choices for initial force ansatz, f0, and the initial data, v0

1, of the first nudged system.
Indeed, suppose that the solution, u, of (2.3) possesses additional regularity, for instance, Au(t0) ∈ L2

σ. Now
initialize the nudged system (3.4) with v0

1 = PNu(t0) and let the initial guess f0 be given by (1.2). Then the
first relaxation period satisfies

ρ1 ≥
1

µ
ln

( c1
C1

) ν2

supt∈I0‖R
(0)
N (t)‖L2

2
 , (7.11)

where we applied the Poincaré inequality, the upper bound in (7.1), and (2.9).

Now we prove a variation on the time-independent case, which allows one to recycle the existing data.

Proof sketch of Theorem 4.5. We modify the algorithm in Section 3 as follows: Let J0 = I0 = [t0,∞). For
convenience, we assume that t0 = 0. Suppose that {PNu(t)}t∈J0 is known. At stage n = 1, we suppose
initial data v0

1 is given and solve (3.4) to produce the solution v1 over J0. We then define (3.5) over J0 and
immediately generate f1(t) via (3.6) over J0. To define the stage 1 approximation to f , we evaluate f1(t)
after a transient period of length ρ1 > 0 to obtain f1 := f1(ρ1).

In subsequent stages n ≥ 1, we generate vn over J0 via (3.7), where fn−1 := fn−1(ρn−1) was generated
from the preceding stage, n − 1. We then define the stage-n approximation to the true state over J0 by
un = PNu+QNvn. We generate a new force, fn(t), via the ansatz (3.8). The stage-n approximation of f is
then given by fn(ρn), for some ρn > 0.

To assess the error, we once again form the synchronization error, wn = vn − u, and the model error,
gn(t) = fn(t) − f . For each n ≥ 1, the identity (5.5) still holds. Consequently, (5.10) holds as well. The
remaining ingredient to establish convergence is a time-independent force analog of Proposition 6.1.

Supposing that (6.1) holds with G̃ 7→ G, the proof of Proposition 6.1 proceeds the same way, except that
the analysis is carried out entirely over the interval J0, to arrive at the analog of (6.4):(

‖A1/2wn(ρn)‖L2

ν

)2

≤ e−µρn
(
‖A1/2wn(0)‖L2

ν

)2

+ C1

(
ν

µ

)(
‖gn−1‖L2

ν2

)2

. (7.12)

One chooses ρn > 0 according to

ρn ≥
1

µ

 µ

C1ν

(
ν‖A1/2wn(0)‖L2

‖gn−1‖L2

)2
 ,

so that (7.12) yields (
‖A1/2wn(ρn)‖L2

ν

)2

≤ 2C1

(
ν

µ

)(
‖gn−1‖L2

ν2

)2

.

It is at this time t = ρn, that we evaluate (3.8).
After these adjustments, it is now clear that the proof of Theorem 4.5 follows in analogous manner to the

the proof Theorem 4.1, mutatis mutandis. �
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Appendix A. Uniform-in-time Estimates for Palenstrophy

We now provide uniform-in-time estimates in H2 for the reference flow field when the external force field
is time-dependent. We begin by establishing an alternative form of the standard enstrophy balance of (2.3)
as it is presented in Theorem 2.1. Indeed, upon taking the L2-inner product of (2.3) with Au, we obtain

1

2

d

dt
‖A1/2u‖2L2 + ν‖Au‖2L2 = 〈f,Au〉.

By the Cauchy-Schwarz inequality and (2.9), we see that

|〈f,Au〉| ≤ ν3G̃2 +
ν

4
‖Au‖2L2 .

By the Poincaré inequality, it follows that

d

dt

(
eνt‖A1/2u‖2L2

)
+
ν

2
‖Au‖2L2 ≤ 2ν3G̃2eνt.

Integrating over t ≥ t0 yields

‖A1/2u(t)‖2L2 +
ν

2

∫ t

t0

e−ν(t−s)‖Au(s)‖2L2 ≤ ‖A1/2u(t0)‖2L2e−ν(t−t0) + 2ν2G̃2(1− e−ν(t−t0)),

which is (2.10), as desired. Thus, for u0 ∈ B̃1, we may deduce

‖A1/2u(t)‖2L2 +
ν

2

∫ t

t0

e−ν(t−s)‖Au(s)‖2L2 ≤ 2ν2G̃2, (A.1)

for all t ≥ t0 ≥ 0.

Proof of (2.12). Upon taking the L2-inner product of (2.3) with A2u, we obtain

1

2

d

dt
‖Au‖2L2 + ν‖A3/2u‖2L2 = −〈B(u, u), A2u〉+ 〈f,A2u〉 = I + II.

Observe that integration by parts multiple times yields

I = −〈B(Au, u), Au〉 − 2
∑
`=1,2

〈B(∂`u, ∂`u), Au〉,

where we applied the identity 〈B(u, v), v〉 = 0. It then follows from Hölder’s inequality, interpolation, Young’s
inequality, and (2.10) that

|I| ≤ 3‖A1/2u‖L2‖Au‖2L4 ≤ 3cL‖A1/2u‖L2‖Au‖L2‖A3/2u‖L2 ≤ ν

8
‖A3/2u‖2L2 + 36c2LνG̃

2‖Au‖2L2 ,

where cL ≥ 1 is the associated constant of interpolation, i.e., ‖Au‖2L4 ≤ cL‖Au‖L2‖A3/2u‖L2 On the other
hand, we treat II with integration by parts and the Cauchy-Schwarz inequality to obtain

|II| ≤ |〈A1/2f,A3/2u〉| ≤ 2ν3

(
‖A1/2f‖L∞t L2

x

ν2

)2

+
ν

8
‖A3/2u‖2L2 ≤ 2ν3σ̃2

1G̃
2 +

ν

8
‖A3/2u‖2L2 .

We now combine the estimates I, II and apply Poincaré’s inequality to arrive at

d

dt
‖Au‖2L2 + ν‖Au‖2L2 +

ν

2
‖A3/2u‖2L2 ≤ 36c2LνG̃

2‖Au‖2L2 + 2ν3σ̃2
1G̃

2.
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An application of Gronwall’s inequality yields

‖Au(t)‖2L2+
ν

2

∫ t

t0

e−ν(t−s)‖A3/2u(s)‖2L2ds

≤ ‖Au(t0)‖2L2e−ν(t−t0) + 36c2LνG̃
2

∫ t

t0

e−ν(t−s)‖Au(s)‖2L2ds+ 2ν2σ̃2
1G̃

2(1− e−ν(t−t0)),

for all t ≥ t0 ≥ 0. We now apply (A.1) to bound

‖Au(t)‖2L2 +
ν

2

∫ t

t0

e−ν(t−s)‖A3/2u(s)‖2L2ds ≤ ‖Au(t0)‖2L2e−ν(t−t0) + c̃22ν
2(σ̃1 + G̃)2G̃2,

where c̃2 = 12cL, which holds for all t ≥ t0 ≥ 0.
Therefore, if ‖Au0‖L2 ≤ αc̃2ν(σ̃1 + G̃)G̃, for any α > 0, then

‖Au(t)‖2L2 ≤ c̃22(1 + α2)ν2(σ̃1 + G̃)2G̃2,

for all t ≥ 0. This completes the proof. �
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