msp



ANALYSIS AND PDE
Vol. 16 (2023), No. 7, pp. 1651-1699

DOI: 10.2140/apde.2023.16.1651

DIRECTIONAL SQUARE FUNCTIONS

NATALIA ACCOMAZZ0O, FRANCESCO D1 PLINTO,
PAUL HAGELSTEIN, IOANNIS PARISSIS AND LUZ RONCAL

Quantitative formulations of Fefferman’s counterexample for the ball multiplier are naturally linked
to square function estimates for conical and directional multipliers. We develop a novel framework
for these square function estimates, based on a directional embedding theorem for Carleson sequences
and multiparameter time-frequency analysis techniques. As applications we prove sharp or quantified
bounds for Rubio-de Francia-type square functions of conical multipliers and of multipliers adapted
to rectangles pointing along N directions. A suitable combination of these estimates yields a new and
currently best-known logarithmic bound for the Fourier restriction to an N-gon, improving on previous
results of A. Cérdoba. Our directional Carleson embedding extends to the weighted setting, yielding
previously unknown weighted estimates for directional maximal functions and singular integrals.
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1. Motivation and main results

The celebrated theorem of Charles Fefferman [1971] shows that the ball multiplier is an unbounded
operator on L?(R") for all p # 2 whenever n > 2. A well-known argument, originally due to Yves Meyer
[de Guzman 1981], exhibits the intimate relationship of the ball multiplier with vector-valued estimates
for directional singular integrals along all possible directions. Fefferman [1971] proved the impossibility
of such estimates by testing these vector-valued inequalities on a Kakeya set.

Besicovitch or Kakeya sets are compact sets in the Euclidean space that contain a line segment of
unit length in every direction. Sets of this type with zero Lebesgue measure do exist. However, in two
dimensions, Kakeya sets are necessarily of full Hausdorff dimension. The question of the Hausdorff
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dimension of Kakeya sets can be then formulated as a question of quantitative boundedness of the Kakeya
maximal function, which is a maximal directional average along rectangles of fixed eccentricity and
pointing along arbitrary directions.

The importance of the ball multiplier for the summation of higher dimensional Fourier series, as well as
its intimate connection to Kakeya sets, have motivated a host of problems in harmonic analysis which have
been driving relevant research since the 1970s. Finitary or smooth models of the ball multiplier such as the
polygon multiplier and the Bochner—Riesz means quantify the failure of boundedness of the ball multiplier
and formalize the close relation of these operators with directional maximal and singular averages.

This paper is dedicated to the study of a variety of operators in the plane that are all connected in one
way or another with the ball multiplier. Our point of view is through the analysis of directional operators
mapping into L? (R?; £9)-spaces where the inner £4-norm is taken with respect to the set of directions.
Different values of g are relevant in our analysis but the cases ¢ = 2 and ¢ = oo are of particular interest.
On one hand, the case g = oo arises when considering maximal directional averages and the corresponding
differentiation theory along directions; see [Bateman 2013; Christ et al. 1986; Di Plinio and Parissis 2021;
Katz 1999] for classical and recent work on the subject. On the other hand, the case ¢ = 2 is especially
relevant for Meyer’s argument that bounds the norm of a vector-valued directional Hilbert transform by
the norm of the ball multiplier. It also arises when dealing with square functions associated to conical or
directional Fourier multipliers of the type

f{Cif:j=1,....N},

where each C; is adapted to a different coordinate pair and the C; have disjoint or well-separated Fourier
support. These estimates are directional analogues of the celebrated square function estimate for Fourier
restriction to families of disjoint cubes, due to Rubio de Francia [1985], and they appear naturally when
seeking quantitative estimates on the N-gon Fourier multiplier.

While such square function estimates have been considered previously in the literature, and usually
approached directly via weighted norm inequalities, our treatment is novel and leads to improved and
in certain cases sharp estimates in terms of the cardinality of the set of directions. It rests on a new
directional Carleson measure condition and corresponding embedding theorem, which is subsequently
applied to intrinsic directional square functions of time-frequency nature. The link between the abstract
Carleson embedding theorem and the applications is provided by directional, one- and two-parameter
time-frequency analysis models. The latter allow us to reduce estimates for directional operators to those
of the corresponding intrinsic square functions involving directional wave packet coefficients. We note
that in the fixed coordinate system case, related square functions have appeared in [Lacey 2007], while a
single-scale directional square function similar to those of Section 4 is present in [Di Plinio et al. 2018]
by Guo, Thiele, Zorin-Kranich and the second author.

Having clarified the context of our investigation, we turn to the detailed description of our main results
and techniques.

A new approach to directional square functions. While we address several types of square functions
associated to directional multipliers, our analysis of each relies on a common first step. This is an



DIRECTIONAL SQUARE FUNCTIONS 1653

L*-square function inequality for abstract Carleson measures associated with one- and two-parameter
collections of rectangles in R?, pointing along a finite set of N directions; this setup is presented in
Section 2 and the central result is Theorem C. Section 2 builds upon the proof technique first introduced in
[Katz 1999] and revisited in [Bateman 2013] in the study of sharp weak L2-bounds for maximal directional
operators. Our main novel contributions are the formulation of an abstract directional Carleson condition
which is flexible enough to be applied in the context of time-frequency square functions, and the realization
that square functions in L# can be treated in a 7 T *-like fashion. The advancements over [Bateman 2013;
Katz 1999] also include the possibility of handling two-parameter collections of rectangles.

In Section 4, we verify that the Carleson condition, which is a necessary assumption in the directional
embedding of Theorem C, is satisfied by the intrinsic directional wave packet coefficients associated with
certain time-frequency tile configurations, and Theorem C may be thus applied to obtain sharp estimates
for discrete time-frequency models of directional Rubio de Francia square functions (for instance).
Establishing the Carleson condition requires a precise control of spatial tails of the wave packets; this
control is obtained by a careful use of Journé’s product theory lemma.

The estimates obtained for the time-frequency model square functions are then applied to three main
families of operators described below. All of them are defined in terms of an underlying set of N directions.
As in Fefferman’s counterexample for the ball multiplier, the Kakeya set is the main obstruction for
obtaining uniform estimates. Depending on the type of operator, the usable estimates will be restricted
in the range 2 < p < 4 for square function estimates or in the range % < p < 4 for the self-adjoint case of
the polygon multiplier. The fact that the estimates should be logarithmic in N in the L?-ranges above is
directed by the Besicovitch construction of the Kakeya set. It is easy to see that for p outside this range
the only available estimates are essentially trivial polynomial estimates. Further obstructions deter any
estimates for Rubio-de-Francia-type square function in the range p < 2 already in the one-directional case.

Sharp Rubio de Francia square function estimates in the directional setting. Section 5 concerns
quantitative estimates of Rubio de Francia type for the square function associated with N finitely
overlapping cone multipliers, of both rough and smooth type. Beginning with the seminal article of Nagel,
Stein and Wainger [Nagel et al. 1978], square functions of this type are crucial in the theory of maximal
operators, in particular along lacunary directions; see for instance [Parcet and Rogers 2015; Sjogren and
Sjolin 1981]. In the case of N uniformly spaced cones, logarithmic estimates with unspecified dependence
were proved by A. Cérdoba [1982] using weighted theory.

In order to make the discussion above more precise, and to give a flavor of the results of this paper, we
introduce some basic notation. Let 7 C [0,27) be an interval and consider the corresponding smooth
restriction to the frequency cone subtended by 7, namely

° 27T OO A . .'eiﬁ
C2ryi= [ F (@B gdodd.  x e R,

where (. is a smooth indicator on t; namely it is supported in T and is identically 1 on the middle half of <.

One of the main results of this paper is a quantitative estimate for a square function associated with the
smooth conical multipliers of a finite collection of intervals with bounded overlap. In the statement of the
theorem below K% denotes the £Z-norm on the finite set of directions 7.
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Theorem A. Let T = {t} be a finite collection of intervals in [0, 27r) with bounded overlap, namely

>,

TET

<1

~

o0

We then have the square function estimate

o 1_1
I{Cz f}”LP(RZ;e%) Sp (log#7)27 7| fllp

for2 < p < 4, as well as the restricted-type analogue valid for all measurable sets E

o 1 1
IHC: (F1E) M L4 (mey2y < (log#T) | EN4 | f ]| oo
The dependence on #t in the estimates above is best possible.

The sharp estimate of Theorem A above can be suitably bootstrapped in order to provide an estimate
for rough conical frequency projections; the precise statement can be found in Theorem J of Section 5.
The sharpness of the estimates in Theorem A above is discussed in Section 8.6.

A similar square function estimate associated with disjoint rectangular directional frequency projections
is presented in Section 6. This is a square function that is very close in spirit to the one originally considered
in [Rubio de Francia 1985], and especially to the two-parameter version from [Journé 1985] and revisited
in [Lacey 2007]. The novel element is the directional aspect which comes from the fact that the frequency
rectangles are allowed to point along a set of N different directions. Our method of proof can deal equally
well with one-parameter rectangular projections or collections of arbitrary eccentricities. As before we
prove a sharp —in terms of the number of directions — estimate for the smooth square function associated
with rectangular frequency projections along N directions; this is the content of Theorem K. The main term
in the upper bound of Theorem K matches the logarithmic lower bound associated with the Kakeya set.

The polygon multiplier. The square function estimates discussed above may be combined with suitable
vector-valued estimates in the directional setting in order to obtain a quantitative estimate for the operator
norm of the N-gon multiplier, namely the Fourier restriction to a regular N-gon Py,

Toy f(0):= [ F@ertde rer? (1)

In Section 7 we give the details and proof of the following quantitative estimate for the polygon multiplier.

Theorem B. Let Py be a regular N -gon in R? and Tp v be the corresponding Fourier restriction operator
defined in (1.1). We have the estimate
ITpy : L2 @) 5 Gog N3], 4 < p<a

We limit ourselves to treating the regular N -gon case; however, it will be clear from the proof that this
restriction may be significantly weakened by requiring instead a well-distribution-type assumption on the
arcs defining the polygon, similar to the one that is implicit in Theorem A.

Precise L?-bounds for the N-gon multiplier as a function of N quantify Fefferman’s counterexample
and so the failure of boundedness of the ball multiplier when p # 2. A logarithmic-type estimate for 7p,,
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was first obtained in [Cérdoba 1977]. While the exact dependence in that work is not explicitly tracked,
the upper bound on the operator norm obtained there must be necessarily larger than O(log N)3/4 for p
close to the endpoints of the relevant interval; see Remark 7.12 and Section 8.4 for details. While
the dependence obtained in Theorem B is a significant improvement over previous results, it does not
match the currently best-known lower bound, which is the same as that for the Meyer lemma constant in
Lemma 7.21 and Section 8.1.

Remark. Let § > 0 and 7; be a smooth frequency restriction to one of the O(§~!) tangential § x §2
boxes covering the §2 neighborhood of S'. Unlike the sharp forward square function estimate we prove
in this article, the reverse square function estimate

1 llp = CpsITj f 1 = j = O/} Lrge:e2) (1.2)

holds with C4 5 = O(1) at the endpoint p = 4. For the proof of this L*-decoupling estimate, see
[Cérdoba 1977; Fefferman 1973]. An extension to the range 2 < p < 4 is at the moment only possible
via vector-valued methods, which introduce the loss C, 5 = O(] log §|1/2=1/P) In fact (1.2) with the
loss C,, 5 claimed above follows easily from Lemma 7.18; the details are contained in Remark 7.22.

Reverse square function inequalities of the type (1.2) have been popularized by Wolff in his proof of
local smoothing estimates in the large p regime; see also [Garrigds and Seeger 2010; Laba and Pramanik
2006; Laba and Wolff 2002; Pramanik and Seeger 2007]. We refer to [Carbery 2015] for a proof that the
p =2n/(n—1) case of the S"~! reverse square function estimate implies the corresponding L" (R")
Kakeya maximal inequality, as well as the Bochner—Riesz conjecture. In [Carbery 2015], the author also
asks whether a §-free estimate holds in the range 2 < p <2n/(n —1). At the moment this is not known
in any dimension.

On a different but related note, weakening (1.2) by replacing the right-hand side with the larger
square function of || f; ||, yields a sample (weak) decoupling inequality: a full range of sharp decoupling
inequalities for hypersurfaces with curvature have been established starting from the recent, seminal paper
[Bourgain and Demeter 2015]. In the case of S!, the weak decoupling inequality holds in the wider range
2 < p <6, with C¢6~%-type bounds outside of [2, 4]; our methods do not seem to provide insights on the
quantitative character of weak decoupling in this wider range.

Weighted estimates for the maximal directional function. The simplest example of an application of
the directional Carleson embedding theorem is the adjoint of the directional maximal function; this was
already noticed by Bateman [2013], re-elaborating on the approach of [Katz 1999]. By duality, the
L?-directional Carleson embedding theorem of Section 2 yields the sharp bound for the weak-(2, 2)-norm
of the maximal Hardy-Littlewood maximal function My along N arbitrary directions

My : L2(R?) — L>®R?)|| ~ Iog N;

this result first appeared in the quoted article [Katz 1999].

Theorem C may be extended to the directional weighted setting. We describe this extension in Section 3,
see Theorem D, and derive several novel weighted estimates for directional maximal and singular integrals
as an application.
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More specifically, our weighted Carleson embedding Theorem D yields a Fefferman—Stein-type
inequality for the operator My with sharp dependence on the number of directions; this result is
the content of Theorem E. Specializing to Aj-weights in the directional setting yields the first sharp
weighted result for the maximal function along arbitrary directions. Furthermore, Theorem F contains
an L2 (w)-estimate for the maximal directional singular integrals along N directions, for suitable
directional weights w, with a quantified logarithmic dependence in N. This is a weighted counterpart of
the results of [Demeter 2010; Demeter and Di Plinio 2014].

2. An L2-inequality for directional Carleson sequences

In this section we prove an abstract L2-inequality for certain Carleson sequences adapted to sets of
directions: the main result is Theorem C below. The Carleson sequences we will consider are indexed by
parallelograms with long side pointing in a given set of directions in R?, and possessing certain natural
properties. The definitions below are motivated by the applications we have in mind, all of them lying in
the realm of directional singular and averaging operators.

2.1. Parallelograms and sheared grids. Fix a coordinate system and the associated horizontal and
vertical projections of 4 C R2:

m1(A):={xeR: {x} xRNA£3T}, m(A):={yeR:Rx{y}nNA#£ga}

Fix a finite set of slopes S C [—1, 1]. Throughout, we indicate by N = #S the number of elements of S.
In general we will deal with sets of directions

Vi={(1,s):s€S}, V%i:={(-s1):seS}.

We will conflate the descriptions of directions in terms of slopes in S and in terms of vectors in V' with

i

be the corresponding shearing matrix. A parallelogram along s is the image P = Ag(I x J) of the

no particular mention.
For each s € S let

rectangular box I x J in the fixed coordinate system with |/| > |J|. We denote the collection of

73§ = U P2,

seS

parallelograms along s by PSZ and

In order to describe the setup for our general result we introduce a collection of directional dyadic grids
of parallelograms. In order to define these grids we consider the two-parameter product dyadic grid

Di:={R=1I1xJ:1,J €eDR), |I|>|]]}

obtained by taking the cartesian product of the standard dyadic grid D(R) with itself; we note that we
only consider the rectangles in D x D whose horizontal side is longer than their vertical one. Define the
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AsR e D?
R=1x[0,1]€D?
0 0 tanf = s
1 I

Figure 1. The axis-parallel rectangle R € D(z) is mapped to the slanted parallelogram AR € D2.

sheared grids
D2 :={A;R:ReDj}, seS. Di:=|(])D:
sES
We will also use the notation

Dy ={AsR:R=1xJ €D}, |[I|=27% |J|=27%} seS. kikaeZ ki <k.

Note that D? is a special subcollection of P2. In particular, R € D? is a parallelogram oriented along
v = (1, s) with vertical sides parallel to the y-axis and such that 71 (R) is a standard dyadic interval.
Furthermore our assumptions on S and the definition of Dg imply that the parallelograms in D% have
long side with slope |s| < 1 and a vertical short side. See Figure 1. With a slight abuse of language we
will continue referring to the rectangles in Dg as dyadic.

Several results in this paper will involve collections of parallelograms R C Dg. Writing R :=RN Df
we have the natural decomposition of R into #S = N subcollections

R=|JRs.

In general for any collection R of parallelograms we will use the notation

sh(R):= | J R

ReR
for the shadow of the collection. Finally, for any collection of parallelograms R we define the correspond-

ing maximal operator
Mz f(x) := sup (| f)r1R(x), f €Ll .(R*), x € R?. (2.2)
ReR

We will also use the following notation for directional maximal functions:
L[ .
M, £ (x) = sup 5 - / [fG+r)lde, M f(x) =M, f(x), je{l.2} xeR:.  (23)
r>0 —r

If V C R? is a compact set of directions with 0 ¢ V, we write

My f := sup M, f. 2.4)

vev
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TeT

Figure 2. A collection £ subordinate to a collection 7 C Pg.

In the definitions above and throughout the paper we use the notation

(8)E ZJ[EgZZﬁ/Eg(x)dx

whenever g is a locally integrable function in R? and E C R? has finite measure.

2.5. An embedding theorem for directional Carleson sequences. In this section we will be dealing with
Carleson-type sequences @ = {ar} ReD2> indexed by dyadic parallelograms. In order to define them
precisely we need a preliminary notion.

Definition 2.6. Let £ C P§ be a collection of parallelograms and let s € S. We will say that £ is
subordinate to a collection 7~ C P2 if for each L € £ there exists T € T such that L C T; see Figure 2.

It is important to stress that collections £ are subordinate to rectangles 7 C PSZ having a fixed slope s.
The Carleson sequences a = {ag}rer we will be considering will fall under the scope of the following
definition.

Definition 2.7. Let a = {ag} ReD% be a sequence of nonnegative numbers. Then a will be called an
L°°-normalized Carleson sequence 1f for every £ C D2 which is subordinate to some collection 7~ C P2
for some fixed 7 € S, we have

Y ar <|sh(T))|
and the quantity Lec
massg 1= Z agr
ReD?

is finite. Given a Carleson sequence a={apg:R eD%} and a collection R C D§ we define the corresponding
balayage )

|R| € R2. (2.8)

Tr(a)(x):= ) a ar>
ReR
We write T (a) for Tr(a) when R = Dé. For 1 < p <2 we then define the balayage norms

massq,p(R) := | Tr(a)|Lr-
Note that masss, 1(R) = D grer @R < Mass,.
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Remark 2.9 (elementary properties of mass). Let R C D? for some fixed 7 € S. Then R is subordinate
to itself and if ¢ is an L°°-normalized Carleson sequence we have

massg,1(R) = Z ar <|sh(R)|, RC D% for some fixed 7 € S.
ReR

Also, the very definition of mass and the log-convexity of the LZ-norm imply

2
7

2
massg, p(R) < massasl(R)l_P’ massg,2(R) » (2.10)

forall 1 < p <2, with p’ its dual exponent.

We are now ready to state the main result of this section. The result below should be interpreted as a
reverse Holder-type bound for the balayages of directional Carleson sequences.

Theorem C. Let S C [—1, 1] be a finite set of N slopes and R C D%. Suppose that the maximal operators
Mg, s € S} satisfy

sup [Mg, : L? — LP®| < (p')’, p—17,

SES

for some y > 0. Then for every L°°-normalized Carleson sequence a = {agr}p en?

massg,2(R) < (log N)%((l + y)loglog N)% massaﬁl(R)%.

The proof of Theorem C occupies the next subsection. The argument relies on several lemmas, whose
proof is postponed to Section 2.23.

Remark 2.11. There are essentially two cases in the assumption of Theorem C above. If for each s € S
the family R happens to be a one-parameter family, then the corresponding maximal operator Mg is of
weak-type-(1, 1), whence the assumption holds with y = 0. In the generic case that R = D%, for each s
the operator Mz, = Mp. is a skewed copy of the strong maximal operator and the assumption holds
with y = 1.

2.12. Main line of proof of Theorem C. Throughout the proof, we use the following partial order
between parallelograms Q, R € Dg.:

0<R & QNR#D. m(Q)Cm(R) 2.13)

Notice that, since Q, R € D%, we have that 7 (R), 71(Q) belong to the standard dyadic grid D on R.
It is convenient to encode the main inequality of Theorem C by means of the following dimensionless
quantity associated with a collection R C Dg and a Carleson sequence a = {agr}p ep?'

n L
Up(R):= sup —assa,p( )1 ,
LCR m
a={aRr} assa,1(£) 7

where the supremum is taken over all finite subcollections £ C R and all L°°-normalized Carleson
sequences @ = {dR}p ep? There is an easy, albeit lossy, a priori estimate for U, (R) for general R C Dg.
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Lemma 2.14. Let S C [—1, 1] be a finite set of N slopes and a = {aRr}rer be a normalized Carleson
sequence as above. For every R C D% we have the estimate
1 ’ ’
Up(R) SN7? sup |[Mg, : L? — LP>°|, 1< p<oo.
seS
Theorem C is then an easy consequence of the following bootstrap-type estimate. For an arbitrary
finite collection of parallelograms R C Dg. we will prove the estimate

U2(R)? < (log U2(R))" log N, (2.15)

with absolute implicit constant. Note also that the boundedness assumption on Mg for some p <2 and
Lemma 2.14 yield the a priori estimate U2(R) < N 172 Inserting this a priori estimate into (2.15) and boot-
strapping will then complete the proof of Theorem C. It thus suffices to prove (2.15) to obtain Theorem C.

The remainder of the section is dedicated to the proof of (2.15). We begin by expanding the square of
the L2-norm of Tz (a) as follows:

massg 2(R)? = | Tr(@)|3 <2 ) aR—/ Y ag= |Q| =12 ) arBj. (2.16)

ReR QerR ReR
O<R

For any £ C R and R € R we have implicitly defined

Bg:= |R|/ Y a QlQl (2.17)

QeL
O<R

Remark 2.18. Observe that for any £ C R and every fixed s € § we have

1o
> eorgy| >

U{RERS.BR>)L}C{erR2 MRS|:
QeL

which by our assumption on the weak (p, p) norm of My _ implies

massg, p (L£)?
<y e

sup|J

p—1

{RERS:B§>A$

For a numerical constant A > 1, to be chosen at the end of the proof, a nonnegative integer k and s € S
we consider subcollections of Ry as follows:

Rsx :={R:ReRs, Ak <BF <A(k+1)}, keN,seS. (2.19)
Using (2.16) we have
ITr@3 5 Z kA Y ar+N Sup[z kv ) aR]
seS k=0 ReR; « k>N ReR; 1

< A(log N) masss,1(R) + AN Y k sup|sh(Ry )| (2.20)
k>N S€S
Here A > 0 is the constant used to define the collections R x and in the last lines we used the definition
of a Carleson sequence and Remark 2.9.
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The following lemma encodes the exponential decay relation between mass and B ﬁ and is in fact the
main step of the proof of Theorem C.

Lemma 2.21. Let a = {ag : R € D%} be an L°°-normalized Carleson sequence, S C [—1, 1], and
LRC Dg with £ C R. We assume that for some p € [1,2)

Ap :=sup |[Mg, : L? — LP*°| < +o0.
SES

If A > C max(1, 4p Ua(L)2/?") for a sufficiently large numerical constant C > 1 then there exists £1 C L
such that
(i) massq,1(L1) < § massa,1(L),

(ii) fixing s € S and denoting by R’ the collection of rectangles R in R with BI% > A, see (2.17), we
have that
BE <A+ By forallReR,.

The final lemma we make use of in the argument translates the exponential decay of the mass of each
R k into exponential decay of the support size, which is what we need in the estimate (2.20).

Lemma 2.22. Let S C [—1, 1] and define the collections R i by (2.19) with A defined as in Lemma 2.21
for L=TR
2
A= Cmax(1l, 4pU2(R)”").
We assume that the operators {Mg, : s € S} map LP (R?) to L?>°°(R?) uniformly with constant Ap. For
k > 1 we then have the estimate
[sh(Rs )| £27% massa,1(R).

with absolute implicit constant.

With these lemmas in hand we now return to the proof of (2.15). Substituting the estimate of Lemma 2.22
into (2.20) yields

I Tr(@)]|3 < A massg,1(R) |:(10g N)+ N Z k2_k] < Amassg,1(R)(log N).
k>log N
This was proved for an arbitrary collection R and so also for every £ C R. Thus the estimate above and
our assumption A, < (p') imply
2
U2(R)*> S A(log N), A 2 max(1,(p")"U2(R) 7).
Now observe that we can assume U, (R) 2 1; otherwise there is nothing to prove. In this case we can take
2
A= (p ) Ua(R) 7
for every p > 1. The choice p’ := (log U2(R)) guarantees that [U2(R)]'/?" < 1 and leads to
U2(R)? 5 (log U2(R))" log N.

This is the desired estimate (2.15) and so the proof of Theorem C is complete.
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2.23. Proofs of the lemmas.

Proof of Lemma 2.14. We follow the proof of [Lacey 2007, Lemma 3.11]. Take R to be some finite
collection and ||g||,» = 1 such that
1 R /
ClR AR 7
= > i

Define R’ :={R e R:(g)r > [cN/ massa,l(R)]l/p } for some ¢ > 1 and R}, := R'ND? fors € S.
Then,

/Z R_g< Z ar(g 5 CN);/(Z aR)p + N sup CZRI%
ReR RER\R/ ReR’ ReR €S Rery, IRI,
This means
1 . ar(1x/|R)) ,ag)? 5
3 aR < (eN) ( : cup |> - Rer; ar(AR - I, (X rer; aR)l)(Z aR)”'
ReR cr’ seS (ZRERg aR)" (ZRE’RS aR)p ReR

We have proved that for an arbitrary collection R we have

1 1

1 N»r R/ >
UP(R)S(CN)P/(IJr lsupUp(R’s)M).

cr massg,1(R)?

We claim that supgcg Up(R)) < supses [[Mg, : L? — LP"*|. Assuming this for a moment and
using Remark 2.9 we can estimate

> ar < [sh(R})| < [{Mr, (8) > (N/ masse,1 (R) /')
RER{; / ’ ’ R
<sup |[Mg, : L?" — LP">®|P %’1()‘
SES cN
This proves the proposition upon choosing ¢ 2 sup;cg [|[Mg, : LP — PP
We have to prove the claim. Note that since R is a collection in a fixed direction, the inequality

Ug, < supses Mg, : LP?" — LP"%| follows by the John-Nirenberg inequality in the product setting
and Remark 2.9; see [Lacey 2007, Lemma 3.11]. O

Proof of Lemma 2.21. By the invariance under shearing of our statement, we can work in the case s = 0.
Therefore, Ri) will stand for the collection of rectangles in R¢ such that Blg > A, where A>C and C > 1
will be specified at the end of the proof. We write R = Ig X Lg for R € Ry.

Inside-outside splitting. For I € {m1(R): R € R} and any interval K we define
EIK'—{QEE:QflxK, m2(Q) C 3K}, E?“}( ={0el:0=<IxK, mm(Q)Z3K},
where we recall that the definition of partial order O < R was given in (2.13). Set also

Brx: _]ng Z |Q|1Q’ Br. ]gK 2 ?Q

Q ﬁout
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0

, [N x{e'}) a :
o :
on( XM
3K © )

Figure 3. A rectangle Q with angle ¢ intersecting R =1 xL C I xK.

We claim that if K C R is any interval then for all « € K we have
1 NI x{a})
f w0igi= T a0t G S iaKEZ oG @
X{a} Q Lout QE,COL“ X out

To see this note that in order for a Q-term appearing in the sum of the left-hand side above to be nonzero

we must have
71(0)C 1. m(Q)NK#2. m2(Q)NR\3K # .

Let us write §p = arctano if Q € D2 for some o € S. A computation then reveals that
|0 N (I x{a})| =min(|Jg], dist(a, R\ 72(Q))) cotOp.

We also observe that 72(Q) N (3K \ K) contains an interval A = A(«) of length |K|/3, whence for all
o’ € A we have

dist(ar, R\ 2 (Q)) < dist(ar, a’) +dist(a’, R\ 72(Q)) < | K| +dist(a’, R\ 72(Q)) < dist(a’, R\ 72(0));
see Figure 3. This clearly implies that for every o € K we have
|0 NI x{a})| 5][ lon X{a'})lda's][ |0 NI x{a'})|do’,
A 3K

which proves the claim.
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Smallness of the local average. We now use the previously obtained (2.24) to prove (ii). Let R denote
the family of parallelograms R = I x L € Ry such that B}"j; Ly > A For each such R let Kg be the

maximal interval K € {Lg,3Lg,..., 3kLR, ...} such that B}’;‘;K > A; the existence of the maximal
interval K'g is guaranteed for example by the a priori estimate of Lemma 2.14 and the assumption R € Rj.
Obviously Kg 2 Lg and B;"“ 3Kp = <A.

We show that for R € R we have
][ > aQ|Q| <K (2.25)
QEﬁ(}u;e KR
for some numerical constant ¥ > 1. Indeed it is a consequence of (2.24) that

1o 1o
Fser . 2 2101 Frps 2 “0T5]
Irx{a} Oer | | Irx3KR |Q|

out

IR.KR QL:‘;U;QKR
1o
f Y a0igi+], 2 “efgp
Irx3KR Q erou IRrRx3KR QEL(yul \Loul
IR.3KR IR. KR \“IR.3KR

The first summand is estimated using the maximality of Kg:

a = B <.
fIRX3KR Z Q|Q| Ir3KR

Q€LY 3k,
The second summand can be further analyzed by observing that the cubes Q appearing in the sum above
satisfy 711(Q) C I and 72(Q) C 9Kg since Q ¢ LI 55 thatis, L3 50 \ L3 ¢ is subordinate to
the singleton collection {/g x 9K g}. Applying the Carleson sequence property

1o |O N (Igr x3KR)|
a <1< (2.26)
]meR 2 “lg = 2 2710||Ix x 3KR|

out out out out
QeL \LTR 3K R Q€LY kp\LTR 3K R

IR.KR
by our assumption on A. Combining the estimates above shows that

10
]f 2 aejp) SH

RX
“oecy

for all @ € Kg. Since m2(R) C K this implies (2.25).
Observe that if R = Ig x Lg € Rg \ Ry, then

out _
Brr.Lx —]f . > “Q@ <A
K K Qeﬁ‘}”}(’ LR

Defining the subcollection L1. We set

hi= in .= in et ”
L= U In.Kg L1 1= U InLp: L1 =L UL
ReR} ReRY\R}
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Now note that for each R € R and K = K € K, (g) We have that

B% _][ a ][ a <K+ BE!,
R Z QIQI Z QIQI R
1R><KR IRXKR

while for R € Ry, \ Ry the same estimate holds using L g in place of Kg. It remains to show the desired
estimate for mass,,1(£1) in (i) of the lemma.

Smallness of mass,,1(L£1). By the definition of the collections CiI“ x We have that

sh(£r)c () Irx3KgU | ) Irx3Lg.
ReR} ReR{\R§
If K = K for some R € Ry we have by definition that By" > A. On the other hand for R € R, \ R
we have that BI% = BfR,LR > A
Define

where My = M(; 5) = M is the directional Hardy-Littlewood maximal operator acting in the direction
v=(1,5) = (1,0), see (2.3), since we have assumed s = 0. We will show that

U IR x3Kg C{(x,y) e R :My(1g)(x,y) > C}
ReR}

for a sufficiently small constant C > 0, where M is as in (2.3). To this end let us define

1o
V(@)= —
|1R| I exia) Z “Clo|
Q‘C'IR,KR

Note that

1 A A A
A< B =][ adaf—/ ocdoc—i—— H (Y (a >—H+—,
IrKr ™ [ V@ |KR| {Ksz(a)>)L/2}1/,( ) |K N V@ 2 2

which readily yields the existence of K’ C Kg, with

|Kg| <|K'|, inf inf Mv[
xelr yeK’

% corg e

out
Qeﬁ,R KR

This in turn implies that Mp(1g) =2 1 on /g x 3Kg. Now we can conclude

1
= IMz2(1p) X B S |E[ S 5 massa,1(£)

U Ig x3Kg
ReR

by the weak-(1, 1) inequality of the directional Hardy-Littlewood maximal operator My g).
On the other hand we have for the rectangles R € R, \ R that

U twxatec s ¥ aoig) = 5.

RERH\R} Q€L



1666 N. ACCOMAZZO, F. DI PLINIO, P. HAGELSTEIN, I. PARISSIS AND L. RONCAL

Thus we get by the weak (p. p) assumption for Mg, that

1 A
U IR X3LR| < {MRO(Z aQ—|QQ| > 5)} '
ReR{\R] Qer
p p
< A—p massg, (L) < A—p massq.1(£)U (L)Z(P—l)
~ Ap a,p ~ A’p a,l 2 .

By the subordination property of £; we get

< 1 massq,1(L),

2

massg,1(L1) <

U Igr x3Kg U U Ig x3Lg
ReR} ReR{\R§

upon choosing A > C max(1, APUZ(E)Z/ P") with sufficiently large C > 1. O

Proof of Lemma 2.22. Fix s € S and choose A in the definition of R, to be the value given by
Lemma 2.21 with £L =R = (J;eg Rs. Let j =0 and Lo = £; := R. Construct £; = L;41 C R such
that massg,1(£1) < % massg,1(Lo). Since Bﬁo > kA for all R € Rk, we have

Mk < BR® <A+ Bg' = By >Ak—1).

Repeat the procedure recursively with j 4+ 1 in place of j. When j = k — 1, we have reached the collec-
tion Ly_; with massg 1 (Lx—1) <27 mass,,1(Lo) and Blgk_‘ > A. This last condition and Remark 2.18

imply that
1
sh(Ro) < M| T ag 2]

O€Llr—
and so, using (2.10),

; : L .
|Sh(Rs,k)| = A_P massa,p(ck—l)p = X_p massa,l(ﬁk—l)p ' massa,2(£k—1) '

CAp (massg2(L0)*\P ™', CAp .
’ =2 c Ua(L)>P~ D
v (massa,l(ﬁo)) massg,1(Lo) IV 2(Lo)

and the lemma follows by the definition of A since Lo = R. O

< 27% mass,.1(Lo)

3. A weighted Carleson embedding and applications to directional maximal operators

In this section, we provide a weighted version of the directional Carleson embedding theorem. We then
derive, as applications, novel weighted norm inequalities for maximal and singular directional operators.

The proof of the weighted Carleson embedding follows the strategy used for Theorem C, with
suitable modifications. In order to simplify the presentation, we restrict our scope to collections of
parallelograms R = {U Rs:s€S } with the property that the maximal operator Mg associated to each
collection Ry satisfies the appropriate weighted weak-(1, 1) inequality. This is the case, for instance,
when the collections R are of the form

2 2 . 2
Rs CDZ. D= J Dtk 3.1)
k1<k
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for a fixed k € Z. In other words, the parallelograms in direction s have fixed vertical sidelength and
arbitrary eccentricity.

3.2. Directional weights. Let S be a set of slopes and w,u € Llloc([Riz) be nonnegative functions, which
we refer to as weights from now on. Our weight classes are related to the maximal operator

Mg := My oMq,1),

recalling that My = My s):ses) is the directional maximal operator defined in (2.4). We introduce the
two-weight directional constant

. Mg.ow(x)
[w,u]g := sup ————=.
x€R? M(x)

We pause to point out some relevant examples of pairs w, u with [w, u]s < co. Recall that, for p > 2,
Ms:2llp—p < (log#S )/P; this is actually a special case of Theorem C and interpolation. Therefore, if
g > 0 belongs to the unit sphere of L?(R?),

satisfies [w, w]s < 2|[Mg.2|/p— p; here T denotes £-fold composition of an operator T' with itself. We

[£]
MS 28

24 M52l p

also highlight the relevance of [w, u]s in Theorem D below by noticing that

sup [Mp2 : L'(u) — LY w)]|| < [w,u]s,
SES

with absolute implicit constant. This result is obtained via the classical Fefferman—Stein inequality in
direction s paired with the remark that M, W <Mgsow < [w,u]su.
S,

3.3. Weighted Carleson sequences. We begin with the weighted analogue of Definition 2.7, which is
given with respect to a fixed weight w.

Definition 3.4. Let a = {ag} ReD? be a sequence of nonnegative numbers. Then a will be called an
L°°-normalized w-Carleson sequence if for every £ C D2 which is subordinate to some collection
T C P? for some fixed T € S, we have

Z ap <w(sh(7)), mass;:= Z aRr < Q.

2
Lel REDS

As before, if R C D? for some fixed T € S then R is subordinate to itself and

massg,1(R) = Z ar <w(sh(R)), RC D% for some fixed T € S.
ReR
Throughout this section all Carleson sequences and related quantities are taken with respect to some fixed
weight w which is suppressed from the notation. We can now state our weighted Carleson embedding
theorem.
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Theorem D. Let S C[—1, 1] be a finite set of N slopes and R C ng. Let w, u be weights with [w, u]s < oo
and such that

sup Mg, : L' () = L") < [w, us.

s€S

Then for every L*°-normalized w-Carleson sequence a = {ag} p ep2 We have

(/ |TR(a)(x)|2 e )) < (log N)%[w,u]s massa,l(R)%.

3.5. Proof of Theorem D. We follow the proof of Theorem C and only highlight the differences to
accommodate the weighted setting. Write o := [Mu] L. Expanding the L?(o’)-norm we have
o(QnN R)
ITR@3 2y <2 D ar Y ag— ot OIR|

ReR QeRr
O<R

From the definition of & we have that

0NR| _ |0
infg Mru ~ u(Q)

||TR(CZ)||L2(G)<ZZCZR][ Z Qu(Q) _ZZGRBR,

ReR QeR ReR
O<R

][ZQ(Q)

QeL
O<R

0(QNR) = QN R,

whence

where now for any £ C R we have defined

Defining the families R x for s € S and k € N as in (2.19) we then have the estimate

@)1y =24 tog M) mass 1 (R) + N 3 esupush(R )|
k>log N ses

Again A > 0 is a constant that will be determined later in the proof and in the last line we used the
w-Carleson assumption for the sequence a = {ag} for rectangles in a fixed direction.

We need the weighted version of Lemma 2.21, which is given under the standing assumptions of
Theorem D.

Lemma 3.6. Leta ={ag: R € D%} be an L°°-normalized w-Carleson sequence, s € S C [—1, 1], and
L, RC D% with L C R. For every A > Cw, u]s, where C is a suitably chosen absolute constant, there
exists L1 C L such that

(i) massg,1(L1) < 4 massq,1(L),

(i) denoting by R the collection of rectangles R in Rg with B 1% > A we have that

B <A+ Bg' forallReR)
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Proof. We can assume that s = 0 and let Ry, be the collection of rectangles in Rg such that Bﬁ > A,
where A is as in the statement of the lemma and C will be specified at the end of the proof. For
I € {m1(R): R € Ry} and any interval K C R we define £ - and £3"% as in the proof of Theorem C,

but now we set
]L;K Z M(Q)IQ’ ]ng Z

Lout

(Q) lo.

We define Ry to be the subcollection of those R = | x L € Ry, such that B}’“i < A. By linearity we
get for each R € Ry that B£§A+B <A+BR,Where

L= |J £p,. shehc | 1x3L.
R=IXLERY R=IxLeR}
Since Rg C 7% we conclude as before that

w(sh(ﬁ/{»sw( U ’X“)fw({MRO(Z f;f)%})

R=IxLER} Qer

1
SM/ 3" ao 1o 4, Mmassa,l(ﬁ)
A R2
0€eR

u(Q) A

by the two-weight weak-type-(1, 1) inequality for Mz, = Mg,. Now L/ is subordinate to the collection
{I x3L: 1 x L eRg}. Using the definition of a Carleson sequence we have

> ag = w( U 1 x3L) < [w,ku]g massg,1(L),

Qery R=IXLERY

and so massg,1 (L)) < [w, u]s massq,1(L)/A.
It remains to deal with parallelograms

R=1xLeRy:=Ry\Rg, Bp'p>A

We define the maximal K g such that B;’“;(R > A as before; the existence of this maximal interval can be
guaranteed for example by assuming the collection R is finite. We have for each R = I x L € Rj that
B$" > A so Kgr D L and By < A by maximality.

I1,3Kpr
Now using (2.24) we get that
N(I x NI x3K 1
RO e b NP M vl D DT L
u u u
T T K B T

by the maximality of Kg. On the other hand

< T 4pl2nU xR

8= a .
me ]fx{a}u(@ 11x3K(u(0Q)

L3Sk QCIx9K
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Since Mz, w < MyMaw < [w, u]s u uniformly in s we get that for Q C I x 9K

L w(l x9K)

17 x 9K | 9]

u(Q) 2 [w,ulg
and by this and the w-Carleson property for all Q subordinate to / x 9K we get
E<[wuls <A

provided A > [w, u]s. We now define

/. in
Ly = LJ LNMRLKR
ReR

so that

sh(£)) € | ) m1(R) x Kg.
ReR}

Arguing as in the unweighted case of Theorem C we can estimate

wish(£)) < w( L m(R) KR) S w(My(1p) 2 1),

RG'R6
A
](x,w > 5}.

In the definition of E above we have that M, = M(; 5) = M since we have reduced to the case

where

1
E = {(x,y)e[RZ:MU[Z aQu(g)

QeL

v = (1,s5) = (1, 0). Using the subordination property of £/ and the Fefferman—Stein inequality once in
the direction e, for M, and once in the direction v = (1,s5) = (1, 0) for M,, we estimate

massg,1(L]) < w(Rgz*m(R) X KR) < % QX;QQMVI;%QU;(Q) < [w,/\u]S massa.1 (L).

We have thus proved the lemma upon setting £; := £/1/ U £} and choosing A > C[w, u]s for a sufficiently
large numerical constant C > 1. O

Repeating the steps in the proof of Lemma 2.22 for A as in the statement of Lemma 3.6 we get for the
sets R x defined with respect to this A that

w(sh(Rs k) < 27F massg,1(R),
and this completes the proof of Theorem D.

3.7. Applications of Theorem D. The first corollary of Theorem D is a two-weighted estimate for the
directional maximal operator My from (2.4).

Theorem E. Let V C S! be a finite set of N slopes and w be a weight on R%. Then

My : L2(1\~/IVw) — L2’°°(w)|| < +1og N, MV =My oMy omax{M(l,O),M(Osl)}.



DIRECTIONAL SQUARE FUNCTIONS 1671

Remark 3.8. In the proof below, we argue for almost horizontal V, and in place of max{M( ), M(,1)}
we use Mg, 1). The usage of max{M(; ¢y, M(o,1)} enables the statement of the theorem to be invariant
under rotation of V.

Proof of Theorem E. By standard limiting arguments, it suffices to prove that for each k € Z the estimate
Mz : L2(2) — L>®(w)]| £ Ylog N, z:=Mg oMy oM nw, (3.9)

when R is a one-parameter collection as in (3.1), holds uniformly in k.
For a nonnegative function f € S(R?) let Uf be a linearization of My f, namely

Mg f(x) = Uf (x) = @ | SO = S NrlR ). Fri=lx € R R = R

ReR

By duality, (3.9) turns into
IU*(w1E)|2¢;-1) S V0og N w(E) forall E C R%. (3.10)

We can easily calculate
1
U*(wlp)= Y w(EnN FR)?R
ReRr l |
and it is routine to check that {w(E N FR)}rer is a w-Carleson sequence according to Definition 3.4.
The main point here is that the sets { E N Fr}rer are by definition pairwise disjoint and Fg € R for
each R e R.
Setting u := My oM, 1yw, if S are the slopes of V, it s clear that [w, u]s < 1 and that z7l=Mzu)~L
Therefore (3.10) follows from an application of Theorem D. O
We may in turn use Theorem E to establish a weighted norm inequality for maximal directional singular

integrals with controlled dependence on the cardinality #V = N. Similar considerations may be used to
yield weighted bounds for directional singular integrals in L? (R?) for p > 2; we do not pursue this issue.

Theorem F. Let K be a standard Calderén—Zygmund convolution kernel on R and V C S be a finite set
of N slopes. For v € V we define

Ty f(x) = sup

e>0

[ S mK@ s Ty f0 = s 7,00,

<l<g

Let w be a weight on R? with [w]A{/ = [Myw/w|eo < co. Then

3 5
1Ty : L?(w) - L>®(w)]| $ (log N)> [w]j{/-

We sketch the proof, which is a weighted modification of the arguments for [Demeter and Di Plinio
2014, Theorem 1]. Hunt’s classical exponential good-A inequality, see [Demeter and Di Plinio 2014,
Proposition 2.2] for a proof, may be upgraded to

c
V[w]A}’

w({xG[F\RZ:va(x)>2)&,va(x)§yk})§exp(— )w({xeRz:va(x)>A}) (3.11)
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by using that [w] aY dominates the A, constant of the one-dimensional weight ¢ — w (x +zv) for all x € R?,
v € V, together with Fubini’s theorem. With (3.11) in hand, Theorem F follows from Theorem E via
standard good-A inequalities, selecting (y)~! ~ [w]4v log N. Note that the right-hand side of the
estimate in the conclusion of Theorem E becomes [w]i/ \/m when the estimate is specified to
A}/ weights as the ones we consider here.

4. Tiles, adapted families, and intrinsic square functions

We define here some general notions of tiles and adapted families of wave-packets: definitions in this
spirit have appeared in, among others [Barrionuevo and Lacey 2003; Demeter and Di Plinio 2014; Lacey
and Li 2006; 2010; Lacey 2007]. These will be essential for the time-frequency analysis square functions
we use in this paper in order to model the main operators of interest. After presenting these abstract
definitions we show some general orthogonality estimates for wave packet coefficients. We then detail
how these notions are specialized in three particular cases of interest.

4.1. Tiles and wavelet coefficients. Throughout this section we fix a finite set of slopes S C [—1, 1].
Remember that alternatively we will refer to the set of vectors V := {(1,s) : s € S}. A rile is a set
t = R; x Q; C R? x R?, where R; € D% and Q; C R? is a measurable set, and |R;||Q2;] = 1. We
denote by s(¢) € S the slope such that R; € Dsz(t), and then

Ry = Aginy(Iy x Jy), with I; x J; € D§.

We also use the notation v; := (1, s(¢)). There are several different collections of tiles used in this paper,
they will generically be denoted by T, Ty, T’ or similar. Given any collection of tiles T we will often
use the notation R7 := {R; : t € T} to denote the collection of spatial components of the tiles in 7.
The exact geometry of these tiles will be clear from context; however, several estimates hold for generic
collections of tiles, as we will see in Section 4.3.

Lett = Ry x Q; be atile and M > 2. We denote by Af” the collection of Schwartz functions ¢ on R?
such that

(i) supp(¢) C 2,
(i1) there holds

sup  sup |R|2|I|"‘|J|‘3(1-|-| t|) (1_4_@) |3“8ﬂ¢(x+cR)|<1
0<a,B<M xeR2 ||| A

In the above display cg, refers to the center of R, and

By, (+) 1= —L . V(.).
|vg |

An immediate consequence of property (ii) is the normalization

sup [lpfl2 <1
peAM

We thus refer to A?’I as the collection of L2-normalized wave packets adapted to t of order M. For
our purposes, it will suffice to work with moderate values of M, say 23 < M < 2°9 In fact, we use
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M = My = 2°° in the definition of the intrinsic wavelet coefficient associated with the tile ¢ and the
Schwartz function f:
ar(f):= sup [(f.9)I>. Mo=2. 4.2)
¢eAﬁVI°
This section is dedicated to square functions involving wavelet coefficients associated with particular
collections of tiles which formally look like

Ar(f)? = Z at(f)li, T is a collection of tiles.
= R
We begin by proving some general global and local orthogonality estimates for collections of tiles with
finitely overlapping frequency components. These estimates will be essential in showing that the sequence
{a;(f)}ser is Carleson in the sense of Section 2, when | f| < 1 for some measurable set E C R? with
0 < |E| < o0. This in turn will allow us to use the directional Carleson embedding of Theorem C in order
to conclude corresponding estimates for intrinsic square functions defined on collections of tiles.

4.3. Orthogonality estimates for collections of tiles. We begin with an easy orthogonality estimate for
wave packet coefficients. For completeness we present a sketch of proof which has a T'T* flavor. The
argument follows the lines of proof of [Lacey 2007, Proposition 3.3].

Lemma 4.4. Let T be a set of tiles such that y_,cr 1q, < 1,let M > 23 and {¢; : t € T} be such that
¢r € Aﬁu forallt € T. We have the estimate

PN A WA E 4.5)
teT
and as a consequence

daH)SIfIE

teT

Proof. Fix M > 23. Tt suffices to prove that for || £ || = 1 and an arbitrary adapted family of wave packets
(¢ : ¢ € AM ¢t € T} there holds

B:=) [(fig)* S 1. (4.6)

teT
Let us first fix some Q2 € Q(T) := {Q; :t € T} and consider the family

TR :={teT Q2 =Q}.
To prove (4.6), we introduce
Ba(®):= > lg.¢) Sa():=(21a)".
teT ({2})

We claim that Bo(g) < ||gl|3 for all g, uniformly in Q € Q(T'). Assuming the claim for a moment and
remembering the finite overlap assumption on the frequency components of the tiles we have

2 1o

QeQ(T)

2
113 <1

o0

B= ) Ba(Saf)s Y ISa(Nl3<

QeQ(T) QeQ(T)
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as desired. It thus suffices to prove the claim. To this end let

Po(g):= Y (g.¢:)¢r
teT ({2})
Then for any g with ||g||2 = 1 we have that Bq(g) = (Pa(g), g) < || Pa(g)|2 and it suffices to prove
that || P (g) ||% < Bq(g). A direct computation reveals that

IPa()l3 < Balg) sup > [(¢r.¢r)| < B.
where the second inequality in the last display above follows by the polynomial decay of the wave packets
{¢: : Q; = Q}. This completes the proof of the lemma. O

We present below a localized orthogonality statement which is needed in order to verify that the
coefficients a;( /) form a Carleson sequence in the sense of Section 2. Verifying this Carleson condition
relies on a variation of Journé’s lemma that can be found in [Cabrelli et al. 2006, Lemma 3.23]; we
rephrase it here adjusted to our notation. In the statement of the lemma below we denote by M7’s2 the
maximal operator corresponding to the collection P2, where s € S is a fixed slope. Note that the proof in
[Cabrelli et al. 2006] corresponds to the case of slope s = 0 but the general case s € S follows easily by a
change of variables. Remember here that we have S C [—1, 1].

In the statement of the lemma below two parallelograms are called incomparable if none of them is
contained in the other.

Lemma 4.7. Lets € S be a slope and T C D? be a collection of pairwise incomparable parallelograms.
Define
sh*(T) := {Mpflsh(T) > 2_6}

and for each R € T let ug be the least integer u such that 2* R ¢ sh*(T). Then

> IRl < 2¥[sh(T)].

ReT
UR=U

With the suitable analogue of Journé’s lemma in hand we are ready to state and prove the localized
orthogonality condition for the coefficients a;( f).

Lemma 4.8. Let s € S be a slope, T C P? be a given collection of parallelograms and T be a collection
of tiles such that
Rt ={R;:teT}

is subordinate to T. Then we have

> ai(f) SIsh(DINS 12

teT
Proof. We first make a standard reduction that allows us to pass to a collection of dyadic rectangles. To do
this we use that there exist at most 92 shifted dyadic grids D? j such that for each parallelogram 7' € T

there exists 7 € U ij with 7 c T and |T| < |T| < |T|; see for example [Hytonen et al. 2013]. Now
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note that for each 7 € 7 we have
ITNT]|
IT|

21 sh(T) C {Mp2 (Agner) 2 13

and so [sh(7)| < |sh(7")|. Now it is clear that we can replace 7 with the dyadic collection 7 in the assump-

tion. Furthermore there is no loss in generality with assuming that 7 is a pairwise incomparable collection.

We do so in the rest of the proof and continue using the notation 7 assuming it is a dyadic collection.
Since Rt is subordinate to 7 we have the decomposition

T=|JT(T). T(T):={eT:RCT}.
TeT
Now if f is supported on sh*(7") and ¢; € Aﬁuo foreach t € T then

D WL SIAIE < Ish (DI 1% S Ish(DIF 113

teT

by Lemma 4.4. We may thus assume that f is supported outside sh* (7). By Lemma 4.7 it then suffices
to prove that

TSP s 27 T

teT(T)

whenever u is the least integer such that 2¥7T ¢ sh*(7") and || f ||cc = 1. As f is supported off sh*(7)
we have for this choice of u that

f = Z fn, fn = f12u+nT\2u+n—1T.
n>0

Let z7 be the center of 7 and suppose that T = Ag(I7 x J7), with I x J7 € D2; remember that we
write vg := (1,s). Let

(x —z7) - vg \ 0 _ _
)= (14 S ) 1 U ) e,
)
Observe preliminarily that
L xr lloo < 27200FM

so that for any constant ¢ > 0 we have

D L) 552 > b)) é=Zj S e s ext o l?)
( ) <x( ) - )

teT (T) n>0 “teT(T) n>0 “teT(T)
1 _ 1
SY Whaxrlz S 1 faxrlool2“t" T2 S 275 |T|2
n>=0 n>0

as claimed. To pass to the second line we have used estimate (4.5) of Lemma 4.4 together with the easily
verifiable fact that for each ¢ € T (T') the wave-packet ¢ X}lqﬁl is adapted to ¢ with order My —20 > 23
provided the absolute constant ¢ is chosen small enough. O
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4.9. The intrinsic square function associated with rough frequency cones. Let s € S be our finite set of
slopes. As usual we write vs := (1,5) fors € S and V := {vs : s € S} and switch between the description
of directions as slopes or vectors as desired with no particular mention. Now assume we are given a
finitely overlapping collection of arcs {ws}ses With each ws C S! centered at (vs/|vs|)L-. We will adopt

o= () ()

assuming that the positive direction on the circle is counterclockwise and s~ < s < s ™.

the notation

For s € S we define the conical sectors

Quk :=;56R2:2k_1<|$|<2k+1 iews}, kez; (4.10)

1€l

these are an overlapping cover of the cone

Cszz{éeRz\{O}:é—'ews},

with k € Z playing the role of the annular parameter. Each sector €2  is strictly contained in the cone Cs.

For each s € S let £ € Z be chosen such that 25 < |w,| <2741 We perform a further discretization
of each conical sector £ x by considering Whitney-type decompositions with respect to the distance
to the lines determined by the boundary rays rs— and rg+; here r + denotes the ray emanating from the
origin in the direction of vj;r and similarly for ry—. For each sector €2  a central piece which we call
Qg k.0 1s left uncovered by these Whitney decompositions. This is merely a technical issue and we will
treat these central pieces separately in what follows.

To make this precise let s, k be fixed and define the regions

Qe = {g € Qi %2—|m|—1 < % < %2—|m|+1}, m>0.
g té’s ) (4.11)
1st(&, rg— _
stm:: gerk:lz_‘ml_l_—sflz Il +1 , m<O0.
Ny ) 3 |a)s| 3
The central part that was left uncovered corresponds to m = 0 and is described as
. . 11
Qs k0= {g € Qg k :min(dist(§, rs—), dist(§, rg+)) > §§|ws|}. 4.12)

Notice that the collection {24 x m }men is a finitely overlapping cover of Q; . Furthermore the family
1825 k. m }s,k,m has finite overlap as the cones {C;}scs have finite overlap and for fixed s the family
182 &k .m }k,m 1s Whitney both in k and m.

These geometric considerations are depicted in Figure 4.

The collection of tiles T' corresponding to this decomposition is obtained as

T:= )1, uTdUuTS (4.13)

seS
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re— 2Kl wg|=2k=ts vs=(1,s)
vi-=(=s,1) Qs k
Qs,k,O
o+
$25. k> m>0 R; dpalto Qg 4.0
jgl=2F+1 jgl=2F""

Figure 4. The decomposition of the sector €2 ; into Whitney regions, and the spatial
grid corresponding to the middle region 2 ¢ .

where

I, = U To— ks Ts—kom =1 = Re X Qs km Rt € Ds— g k—t+|m|}> M <0,
kezZ,m<0

T = T Toro:={t=R/ xQro:R €D }

s - $,k,05 $,k,0 - t s,k,0 - I}t s,k.k—LlsSs (4.]4)

kez

y T T ={t=R; xQ :R; €D } >0

s = stkmy st em = U = Iy skm - e stk k—Ls+|m|s, M >0,
keZ,m>0

We stress here that for each cone Cy; we introduce tiles in three possible directions vg—, vy, vg+. This
turns out to be a technical nuisance more than anything else as the total number of directions is still
comparable to #S, and our estimates will be uniform over all S with the same cardinality. However in
order to avoid confusion we set

S*:=SU{s :seStU{st:seSt=S"USUST. (4.15)

Note also that for fixed s, k, m the choice of scales for R; yields that the tile t = R, x Q; ¢ » obeys the
uncertainty principle in both radial and tangential directions.
We then define the associated intrinsic square function by

1

ar(f)i= (L atnii) 4.16)

pyard |R;|

where the set of slopes S are kept implicit in the notation. Here we remember the notation a;( f) that
was introduced in (4.2). Using the orthogonality estimates of Section 4.3 as input for Theorem C, we
readily obtain the estimates of the following theorem.
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Theorem G. We have the estimates

1

IA7 : LP(R2)] <, (log#S)2 ™7 (loglog#S)2 ™7, 2< p <4, (4.17)
Ar(f1

sup —“ r(f 1E)||4 < (log#S)%(log log#S)%, (4.18)
E.f  |E|3

where the supremum in the last display is taken over all measurable sets E C R? of finite positive measure
and all Schwartz functions f on R with || f||eo < 1.

Proof. First of all, observe that the case p = 2 of (4.17) is exactly the conclusion of Lemma 4.4. By
restricted weak-type interpolation it thus suffices to prove (4.18) to obtain the remaining cases of (4.17);
we turn to the former task.

For convenience define S* :=SU{s™ :seS}U{sT:5€ S} =:S~USUST; note that this is the
actual set of slopes of tiles in T. Let

Ry :={R;:t € T} C D>..

Observe that we can write

1r 1r
a2 = 3 (X atfio) k= ¥ angt
ReRt “teT:R;=R ReRT
where
a:={aR= Z at(flE):ReRTé-
teT:R,=R
We fix E and f as in the statement and we will obtain (4.18) from an application of Theorem C to the
Carleson sequence a = {aR}ReRry -
First, mass; < |E| as a consequence of Lemma 4.4 since

Yoar= ). Y. a(flp)=) a(flp) 5|f1el; S IE|

ReRT ReRT teT:R;=R teT

Further, the fact that a is (a constant multiple of) an L.°°-normalized Carleson sequence is a consequence
of the localized estimate of Lemma 4.8. To verify this we need to check the validity of Definition 2.7 for
the sequence a above. To that end let £ C DZ, be a collection of parallelograms which is subordinate to
T C D2 for some fixed o € S* Then

doar=Y), Y. alflp)= ) a(flg),
ReL Rel teT:R;=R teT.
where T, :={t € T : R; € L}. By Lemma 4.8 the right-hand side of the display above can be estimated
by a constant multiple of [sh(7)||| f1£||%, < |sh(7)|. This shows the desired property in the definition
of a Carleson sequence.
Finally if Ty :={t € T : s(t) = 0} for 0 € §*, we have that
sup Mg, : LP(R?) — LPPR*)|$p. p—>17T.

geS*
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Indeed note that for fixed direction o € S* each maximal operator appearing in the estimate above is
bounded by the strong maximal operator in the coordinates (v, e2) with v = (1, 0).
Now Theorem C applies to the Carleson sequence a = {ag}rer, yielding

IAT(f1E)113 = TRy (@)]13 < (log #5™)(log log #5™) massa < (log #8) (log log #S)| E].
which is the claimed estimate (4.18) as #S™* ~ #S. The proof of Theorem G is thus complete. O

4.19. The intrinsic square function associated with smooth frequency cones. The tiles in the previous
subsection were used to model rough frequency projections on a collection of essentially disjoint cones.
Indeed note that all decompositions were of Whitney type with respect to all the singular sets of the
corresponding rough multiplier. In the case of smooth frequency projections on cones we need a simplified
collection of tiles that we briefly describe below.

Assuming S is a finite set of slopes and the arcs {w;}ses on S! have finite overlap as before we now
define for s € S and k € Z the collections

Ts,k ={t=R; X Qs,k ‘R, € Ds,k—és,k}’ T, .= U Ts,ka T .= U T, (4.20)
kez seS

with € given by (4.10). Here we also assume that 26 < |ws| < 26+ Notice that each conical
sector £25 x now generates exactly one frequency component of possible tiles in contrast with the previous
subsection where we need a whole Whitney collection for every s and every k; in fact the tiles T j are for
all practical purposes the same as the tiles T x o considered in Section 4.9. It is of some importance to note
here that for each fixed s € S the collection Ry := {R; :t € T } consists of parallelograms of fixed eccen-
tricity 2% and thus the corresponding maximal operator Mz . is of weak-type-(1, 1) uniformly in s € S

sug Mg, : L'(R?) — LY (R?)|| < 1.
S

The intrinsic square function A7 is formally given as in (4.16) but defined with respect to the new
collection of tiles defined in (4.20). A repetition of the arguments that led to the proof of Theorem G
yields the following.

Theorem H. For T defined by (4.20) we have the estimates

1

|AT i LP(R?)] 5, (l0g#S)277, 2<p<4,
A 1
sup AT (f 1E)||4 < (log#5)}
E.f |E|#
where the supremum in the last display is taken over all measurable sets E C R? of finite positive measure
and all Schwartz functions f on R? with || f || eo < 1.

4.21. The intrinsic square function associated with rough frequency rectangles. The considerations in
this subsection aim at providing the appropriate time-frequency analysis in order to deal with a Rubio-
de-Francia-type square function, given by frequency projections on disjoint rectangles in finitely many
directions. The intrinsic setup is described by considering again a finite set of slopes S and corresponding
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directions V. Suppose that we are given a finitely overlapping collection of rectangles F = | J;cg Fs,
consisting of rectangles which are tensor products of intervals in the coordinates v, v+, v = (1, s), for
some s € §. Namely a rectangle F' € Fs is a rotation by s of an axis-parallel rectangle. We stress
that the rectangles in each collection Fy are generic two-parameter rectangles, namely their sides have
independent lengths (there is no restriction on their eccentricity).

We also note that F consists of rectangles rather than parallelograms and this difference is important
when one deals with rough frequency projections. Our techniques are sufficient to deal with the case
of parallelograms as well but we just choose to detail the setup for the rectangular case. The interested
reader will have no trouble adjusting the proof for variations of our main statement below for the case of
parallelograms, or for the case that the families Fs are in fact one-parameter families.

Given F € Fs we define a two-parameter Whitney discretization as follows. Let F =rotg(I X J)+ yF
for some yr € R?, where roty denotes counterclockwise rotation by s about the origin and I x J is an
axis parallel rectangle centered at the origin. Note that I = (—|7|/2,|I|/2) and similarly for J. Then we
define for (k1,k2) € N?, ki, ko #0,

w

._ Ayk—1 1 |€1] —ki1+1 1 y—ko—1 <1_@<1 —ka+1
Wkl,kz(F)._%geli.g)z <5- |1|—32 32 <S5y = 32 .

The definition has to be adjusted for k1 = 0 or k» = 0. For example we define for k # 0

_ 1,—
Woaa(F)i= (£ € T 311~ lerl = §3101 5277101 < S0l = Joe o)

1
a1,
Then for k = (k1. k>) € N? we set Qg k) ky (F) =10ty (Wi, 1, (F)) + YF.
We can define tiles for this system as follows. If F' € F for some s € S and F =rotg({ X J)+ yF
with I x J as above, then we choose Ef,@f € Z such that 2ef <|I] < 2£f+1 and 2€5 <|J| < 265"'1.
We will have

and symmetrically for k; # 0 and k, = 0. Finally

Nl»—

Woo(F)i= (£ € 17 111~ lerl = §3111, 5171~ o2l >

=1/, 7= ). TF)= |J T h(F). FeF (4.22)
sES FeF; (k1,k2)eN2
where

Ts,kl,kz(F) = {l =R x Qs,kl,kz(F) R; € DS,—k2+€5,—k1+€f}’ F e F;.

Note again that the tiles defined above obey the uncertainty principle in both v, v for every fixed
v={(1,s) withs € S.

The intrinsic square function associated with the collection F is denoted by A= and formally has the
same definition as (4.16), where now the T are given by the collection T7 of (4.22). The corresponding
theorem is the intrinsic analogue of a multiparameter directional Rubio de Francia square function
estimate.
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Theorem 1. Let F be a finitely overlapping collection of two-parameter rectangles in directions given by S

>t

FeFr

<1

~

o0

Consider the collection of tiles T defined in (4.22) and let A= be the corresponding intrinsic square
function. We have the estimates

|A7s: LP(R?)] <p (log#S)2 77 (loglog#5)2 ™7, 2<p <4,
[Ar=(f1E)lla
sup ———

: < (log#S)%(loglog#S)i,
E.f |E|#

where the supremum in the last display is taken over all measurable sets E C R? of finite positive measure
and all Schwartz functions f on R% with || f||eo < 1.

Remark 4.23. As before, there is slight improvement in the case of one-parameter spatial components in
each direction. More precisely suppose that F = | J;cg Fs is a given collection of disjoint rectangles
in directions given by S. If for each s € S the family Rz, :={R; :t € Tr,} yields a weak-type-(1, 1)
maximal operator then the estimates of Theorem I hold without the log log-terms.

Remark 4.24. Suppose that R = | J g Rs C 73§ is a family of parallelograms in directions given by s;
namely we have that if R € R then R = Az(I x J) + yg for some rectangle I x J in R? with sides
parallel to the coordinate axes and centered at 0, and yg € R?. Now there is an obvious way to construct
a Whitney partition of each R € R. Indeed we just define the frequency components

Qs ke dy (R) = As(Wie, i, (I X J)) + YR,

with Wy, x, (I x J) as constructed before. Then

TS,k],kZ(R) = {Rt x Qsak17k2 (R) : Rt € DS,—k2+Z§,—k1+elp}7 R € Rs,

and T are given as in (4.22). With this definition there is a corresponding intrinsic square function Az,
which satisfies the bounds of Theorem I. The improvement of Remark 4.23 is also valid if R = | J,cg Rs
and each R consists of rectangles of fixed eccentricity.

The proof of Theorem I relies again on the global and local orthogonality estimates of Section 4.3 and
a subsequent application of the directional Carleson embedding theorem, Theorem C. We omit the details.

5. Sharp bounds for conical square functions
We begin this section by recalling the definition for the smooth conical frequency projections given in
Section 1. Let T C [0, 27) be an interval and consider the corresponding rough cone multiplier

2w p00

Co f(x) 1= [ Floe) 1 ()™ gdodd, x € R2,
0 0



1682 N. ACCOMAZZO, F. DI PLINIO, P. HAGELSTEIN, I. PARISSIS AND L. RONCAL

and its smooth analogue

1.9‘_6-[

2w poo . . i
cere= [ f f(Qelﬁ)ﬂ(W)e’x'Qeﬂngdﬁ, e, G5.0)

where § is a smooth function on R supported on [—1, 1] and equal to 1 on [—% %] and c¢, || stand
respectively for the center and length of 7.

This section is dedicated to the proofs of two related theorems concerning conical square functions.
The first is a quantitative estimate for a square function associated with the smooth conical multipliers of
a finite collection of intervals with bounded overlap given in Theorem A, namely the estimates

o 1_1
1CS iz Sp Gogr) H 1 £,

for 2 < p < 4, as well as the restricted-type analogue valid for all measurable sets £

o 1 1
IHC: (S1E) I Laey2y < (log#T)*|E|# | f oo

under the assumption of finite overlap
T
TET

The second theorem concerns an estimate for the rough conical square function for a collection of

<1 (5.2)

~

oo

finitely overlapping cones t.

Theorem J. Let T be a finite collection intervals in [0, 27) with finite overlap as in (5.2). Then the square
Jfunction estimate

_2 1_1
4Ce f g2y Sp (og#7)' 75 (loglog#2) 277 | £, (53)
holds for each2 < p < 4.

Theorem A is sharp, in terms of log #®-dependence, for all 2 < p < 4 and for p = 4 up to the restricted
type. Theorem J improves on [Cérdoba 1982, Theorem 1], where the dependence on cardinality is
unspecified. Examples providing a lower bound of (log #@)/2=1/7|| f|| p for the left-hand side of (5.3),
and showing the sharpness of Theorem A, are detailed in Section 8.

The remainder of the section is articulated as follows. In the upcoming Section 5.4 we show Theorem A.
The subsequent subsection is dedicated to the proof of Theorem J.

5.4. Proof of Theorem A. We are given a finite collection of intervals w € @ having bounded overlap as
in (5.2). By finite splitting we may reduce to the case of w € @ being pairwise disjoint; we treat this case
throughout.
The first step in the proof of Theorem A is a radial decoupling. Let 1 be a smooth radial function on
R? with
111,21 (18]) = ¥ (§) = 1pp-1 221(IED)

and define the Littlewood—Paley projection

S f(x) = / V@ ke f©)evEds, xR,
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The following weighted Littlewood—Paley inequality is contained in [Bennett and Harrison 2012, Proposi-
tion 4.1].

Proposition 5.5 [Bennett and Harrison 2012]. Let w be a nonnegative locally integrable function. Then
[Larrws [ S isenpuBl,
R R kez

with implicit constant independent of w, f, where we recall that MB! denotes the three-fold iteration of
the Hardy-Littlewood maximal operator M with itself.

We may easily deduce the next lemma from the proposition.

Lemma 5.6. For any p > 2 we have

: (5.7
P

( ) |C§Sk(f)|2)£

kez,tet

HCE F il ey < '

Proof. The case p = 2 is trivial so we assume p > 2. Letting r := % > 1 there exists some w € L” /(IRZ)
with ||w||,» = 1 such that

HCE M sy = 3 [ IC2 AP0 s 30 [ €esucnPuh
TET

kez,tet
and the lemma follows by Hélder’s inequality and the boundedness of M (3] on L” /([Rz). O

The second and final step of the proof of Theorem A is the reduction of the operator appearing in the
right-hand side of (5.7) to the model operator of Theorem H.

In order to match the notation of Section 4.9 we write {ws}ses for the collection of arcs in st
corresponding to the collection of intervals T, namely for t € T we implicitly define s = s; by means of
v /|vt| = et = (1,5)/|(1,5)|. We set S := {s; : T € T} and define the corresponding arcs in S' as

Wy, = {e“9 10 €t}

Now the cone C; is the same thing as the cone Cs and #S = #z. Similarly we write C; = C{ so the
cones can now be indexed by s € S. Define £ such that 2~ < |w,| <27¢s+1,

By finite splitting and rotational invariance there is no loss in generality with assuming that S C [—1, 1].
Notice that the support of the multiplier of C;’ Sy is contained in the frequency sector Q; j defined in
(4.10). By standard procedures of time-frequency analysis, as for example in [Demeter and Di Plinio
2014, Section 6], the operator Cy’ Sk can be recovered by appropriate averages of operators

Corf = Z (f.bt)dr.
teTy i

where ¢; € A?MO for all 1 € Ty x and Ty is defined in (4.20). Here My = 250 is as chosen
in (4.2). Fixing s,k for the moment we preliminarily observe that for each v > 1 the collection
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Rk :=Rr,, ={R;:t € Ts} can be partitioned into subcollections {Rik , 1= = 28V} with
the property that
Ri.RyeR!, = 22TRiN2>™R =0

We will also use below the Schwartz decay of ¢; € .Aﬁu 9 in the form

VIR ¢ S1g, +) 273 3™ 1,

v>0 PER; k
oZ2" Ry, pC2V IR,

Using Schwartz decay of ¢; twice, in particular to bound by an absolute constant the second factor
obtained by Cauchy—Schwarz after the first step, we get

|cs,kf|25( S 10 0) |2¢'T’;_|)( 3 /_|¢,)

teT k teTy k

1R

2 —8M, 2
D BRITA ] f+22 vy D gl ] |
tels i v>0 tely k PER k

pZL2Y Ry ,pC2" TR,
1R 28\)
=D TR oS MDD M DRIl

tely i v>0 ReR; k j=1 PERs. k

oZ2" R, pc2”+1Rz

Now for fixed w, k, v, j and ¢t € T ; observe that there is at most one p = ol ()€ Ré) ., such that

pZ2R;, p C2"T1R,. Thus the estimate above can be written in the form

s,k,v

2811

ICorfPS Y. [ foge) |2 1z, +Zz—8MovZ S b0 Lo

tel , v>0 j=1teTs skv( )l

Observe that if ¢ € Ty,
M, -
¢r e LM peRey, pC2TIR, = 27MY|(£,0,)* <ar, (f),

where 1, = p x Q€ T is the unique tile with spatial localization given by p; this is because
274Mv g, ¢ A%O. We thus conclude that

ICxfPS D a

IETAk

(5.8)

Comparing with the definition of A7 given in (4.16) we may summarize the discussion in the lemma
below.

Lemma 5.9. Let 1 < p < 00. Then

( pOe: Sk(f)|2)

kez,tet

S sup [[AT(H)llp,
P Iflp=1

||f||p—1
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where

T:=| )T

seSkez
and Ty j is defined in (4.20).
The proof of the upper bound in Theorem A is then completed by juxtaposing the estimates of
Lemmas 5.6 and 5.9 with Theorem H. For the optimality of the estimate see Section 8.6.

5.10. Proof of Theorem J. The proof of Theorem J is necessarily more involved than its smooth
counterpart Theorem A. In particular we need to decompose each cone not only in the radial direction as
before, but also in the directions perpendicular to the singular boundary of each cone. We describe this
procedure below.

Consider a collection of intervals T = {7} as in the statement. By the same correspondence as in the
proof of Theorem A we pass to a family {ws}ses consisting of finitely overlapping arcs on S! centered
at vﬁ*/|v§-| and corresponding cones C;. Note that the sectors {2 x }ses kez defined in (4.10) form a
finitely overlapping cover of | J;c g Cs. We remember here that vy = (1, 5), that the interval wy is given
by (vs£, vj:r), and that the positive direction is counterclockwise.

Now, for each fixed s € S the cover {2 x m } (k,m)ez2 defined in (4.11), (4.12), is a Whitney cover
of 2 x in the product sense: for each €24  ,, the distance from the origin is comparable to 2% and the
distance to the boundary is comparable to 2~ Imlles]

The radial decomposition in k will be taken care of by the Littlewood—Paley decomposition {Si }x <7,
defined as in the proof of Theorem J. Now for fixed s,k we consider a smooth partition of unity
subordinated to the cover {25 x m }mez. Note that one can easily achieve that by choosing {@s n }m<o to
be a one-sided (contained in Cy) Littlewood—Paley decomposition in the negative direction v~ = vs—,

and constant in the direction (v when m < 0, and similarly one can define ¢y, ;; when m > 0, with

respect to the positive direction v™. The central piece s,k,0 corresponds to ¢y, defined implicitly as

vs,0 =1¢, — Z Ps,m-

meZ

Now the desired partition of unity is

s Jesm (§) := 1 () s, m (E) Yk (§) = @5,m (E) Vi ().

where ¥ := ¥ (2% .), with the ¥ constructed in the proof of Theorem A. Remember that Sy f := (¥, f )M
and let us define @y, f = (ws,mf)v.

An important step in the proof is the following square function estimate in L?(R?), with 2 < p < 4,
that decouples the Whitney pieces in every cone Cy. It comes at a loss in N, which appears to be inevitable
because of the directional nature of the problem.

Lemma 5.11. Let {Cs}ses be a family of frequency cones, given by a family of finitely overlapping arcs
® = {ws}ses as above. For 2 < p < 4 there holds

1 1_1
HCs Filo gy S gy 108 H) 7 ISk Pum Floqeoss

XZXZ}).
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Proof. Observe that the desired estimate is trivial for p = 2 so let us fix some p € (2, 4). There exists
some g € L9 with g = (p/2) = p/(p — 2) such that

A= HC P gz = [ D 1CoS P
T R2 sES

and so by Proposition 5.5 we get

A% 5 ZZ/RZ |Cs Sie f1PMPg,

kezZ seS

where we recall that MP! denotes three iterations of the Hardy—Littlewood maximal operator M. Fixing s
for a moment we use Proposition 5.5 in the directions vg—, vy and vg+ to further estimate

[carpmBles S 3 [ isi0un Mg MO

meZ SE{_,O,+}

where we adopted the convention s° := s for brevity, and M, is given by (2.3). Remember also that

D, for m > 0 corresponds to directions sT, while ® s,m corresponds to directions s~ for m < 0, and to

0

directions s® = s for m = 0. Now for any v € S! and r > 1 we have that

MPIG < (+')?[M,G"]7;

see for example [Pérez 1994]. Thus ME,SS]E MBlg < (#)2[My«MBIG]"1Y/7, where My = f := Sup,ey* My f,
where here we use V* :={(1,s) : s € S*} with §* as in (4.15), and My f := sup,,cp+ My (f).

It is known [Katz 1999] that My + maps L? (R?) to L?(R2) with a bound (log #V*)/? for p > 2. As
p < 4 there exists a choice of 1 <r < p/(2(p —2)) so that p/(r(p —2)) > 2 and a theorem from [Katz
1999] applies. Using this fact together with Holder’s inequality proves the lemma. O

The proof of Theorem J can now be completed as follows. For each (s,k,m) € S x Z x Z the
operator Sg @5, is a smooth frequency projection adapted to the rectangular box €2  ,,. Following the
same procedure that led to (5.8) in the proof of Theorem A we can approximate each piece S @5, f by
an operator of the form

1r
CoedenS = Y. (fid)r. |CeepmfIPS ) a(N) R
tGTSS'ka teng,k,m t
where s° follows the sign of m and coincides with s if m = 0. The collections of tiles T x ,, are the ones
given in (4.14). Now Lemma 5.11 and Theorem G are combined to complete the proof of Theorem J.

6. Directional Rubio de Francia square functions

In his seminal paper Rubio de Francia [1985] proved a one-sided Littlewood—Paley inequality for arbitrary
intervals on the line. This estimate was later extended by Journé [1985] to the case of rectangles
(n-dimensional intervals) in R"; a proof more akin to the arguments of the present paper appears in
[Lacey 2007]. The aim of this subsection is to present a generalization of the one-sided Littlewood—Paley
inequality to the case of rectangles in R? with sides parallel to a given set of directions. The set of
directions is to be finite, necessarily, because of Kakeya counterexamples.
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As in the case of cones of Section 5 we will present two versions, one associated with smooth frequency
projections and one with rough. To set things up let S be a finite set of slopes and V' be the corresponding
directions. We consider a family of rotated rectangles F as in Section 4.21, where F = | J ¢ Fs. For
each s € § arectangle F € F; is a rotation by s of an axis parallel rectangle, so that the sides of R are
parallel to (v, v1) with v = (1, 5). We will write F = roty(Ir x Jr) + yF for some yr € R? in order
to identify the axes-parallel rectangle /g x Jg producing F by an s-rotation; this writing assumes that
Ir x JF is centered at the origin.

Now for each F € F we consider the rough frequency projection

Prf)i= [ F@OL© e xer
R
and its smooth analogue

PRIW= [ FOrr@c™t e xR

where yg is a smooth function on R?, supported in R, and identically 1 on rots(%l X %J )
We first state the smooth square function estimate.

Theorem K. Let F be a collection of rectangles in R? with sides parallel to (v, v) for some v in a finite
set of directions V. Assume that F has finite overlap. Then

o 1_1 1_1
||{PFf}||Lp(R2;e§) Sp (log#V)27 7 (loglog#V) 2" 7| |

for2 < p < 4, as well as the restricted-type analogue valid for all measurable sets E

o 1 1 1
||{PF (flE)}”L“([R{Z;ﬁ%T) < (log#V)4 (loglog#V) 4 |E|#|| f |lco-
The dependence on #V in the estimates above is best possible up the doubly logarithmic term.

Remark 6.1. We record a small improvement of the estimates above in some special cases. Suppose that
for fixed s € S all the rectangles F' € F; have one side-length fixed, or that they have fixed eccentricity.
In both these cases the collections of spatial components of the tiles needed to discretize these operators,
Rrr = {R; :t € T/}, with T as in (4.22), give rise to maximal operators that are of weak-type (1, 1).
Then Remark 4.23 shows that the estimates of Theorem K hold without the doubly logarithmic terms,
and as shown in Section 8.2 this is best possible.

The rough version of this Rubio-de-Francia-type theorem is slightly worse in terms of the dependence
on the number of directions. The reason for that is that, as in the case of conical projections, passing
from rough to smooth in the directional setting incurs a loss of logarithmic terms, essentially originating
in the corresponding maximal function bound.

Theorem L. Let F be a collection of rectangles in R? with sides parallel to (v, v ) for some v in a finite
set of directions V. Assume that F has finite overlap. Then the following square function estimate holds
for2 <p<4:

3_3 1_1
1PF o osezy Sp (log#V)3 77 (loglog#V) 2775 £1],.
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The proofs of these theorems follow the by now familiar path of introducing local Littlewood—Paley
decompositions on each multiplier, approximating with time-frequency analysis operators, establishing a
directional Carleson condition on the wave-packet coefficients and finally applying Theorem C. We will
very briefly comment on the proofs below.

Proof of Theorems L and K. We first sketch the proof of Theorem L, which is slightly more involved. The
first step here is a decoupling lemma which is completely analogous to Lemma 5.11 with the difference
that now we need to use two directional Littlewood—Paley decompositions, while in the case of cones
only one. This explains the extra logarithmic term of the statement.

Remember that F = J; Fy, with s = (1, v) for some v € V; here s gives the directions (v, v1) of the
rectangles in F;. Using the finitely overlapping Whitney decomposition of Section 4.21 we have for each
F € Fs a collection of tiles

Ts(F):= | Tokyieo(F)
(k1,k2)e72

as in (4.22). Let us for a moment fix s and F € F;. The frequency components of the tiles in T5(F) form
a two-parameter Whitney decomposition of F', so let {¢F k, k-, }(k, k,)ez2 be @ smooth partition of unity
subordinated to this cover and denote by ® g i, «, the Fourier multiplier with symbol ¢z i, «,-

The promised analogue of Lemma 5.11 is the following estimate: for 2 < p < 4 there holds

1 _2
IPFE 3 Lo @y S m(log#V)l 2 N Ps iy o S| Lo 202

The proof of this estimate is a two-parameter repetition of the proof of Lemma 5.11, where one applies

(6.2)

><Z><Z})'

Proposition 5.5 once in the direction of v and once in the direction of vL. Using the familiar scheme we
can approximate each ®; i, r, f by time-frequency analysis operators

1g,

Prief = . (fé). IPriiflPs D a () k|

teTY,kl,kz(F) tETS.kl,kz(F)

and by (6.2) the proof of Theorem L follows by corresponding bounds for the intrinsic square function of
Theorem I, defined with respect to the tiles T/ given by (4.22).

For Theorem K things are a bit simpler as the decoupling step of (6.2) is not needed. Apart from
that one needs to consider for each F a new set of tiles which is very easy to define: If F' € F5 with
F =rots(Ip x JF) + yF,

T'(F):={t=R;xF:R; € D? 3,

s,8y.Lr
and then T' := | Jpc» T'(F). One can recover Py by operators of the form

1R,

PRf = Y (fide)de. IPRSIPS D a(F) R}

teTs(F) teTs(F)

as before. Using the orthogonality estimates of Section 4.3 in Theorem C yields the upper bound in
Theorem K. The optimality of the estimates in the statement of Theorem K is discussed in Section 8.2. [
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7. The multiplier problem for the polygon

Let P =Py be aregular N-gon and Tp, be the corresponding Fourier restriction operator on P

To f(x) = /R FOEet e xR

In this subsection we prove Theorem B, namely we will prove the estimate

|

I Ty : LP®)]| < (og N*375] 4 < p<a,

The idea is to reduce the multiplier problem for the polygon to the directional square function estimates
of Theorem K and combine those with vector-valued inequalities for directional averages and directional
Hilbert transforms.

We introduce some notation. The large integer N is fixed throughout and left implicit in the notation.
By scaling, it will be enough to consider a regular polygon P with the following geometric properties:
First, P has vertices

{vj = el <j=<N+1}, vj:=exp2nj/N),

on the unit circle S!, with #; = ¥y 41 = 0 and oriented counterclockwise so that 41— > 0. The
associated Fourier restriction operator is then defined by

Tpf:=(1pf).

The proof of the estimate of Theorem B for T» occupies the remainder of this section; by self-duality of
the estimate it will suffice to consider the range 2 < p < 4.

7.1. A preliminary decomposition. Let N be a large positive integer and take k such that 2¢~1 < N < 2,
For each —2« < k < 0 consider a smooth radial multiplier mj which is supported on the annulus

<|fl<1-

22/c

22/<

—k—1 7—k=5
Akzz{SGIRz:l— }

and is identically 1 on the smaller annulus

R —k—2 —k—4
ak:=%5§eR 11— e <|5§|<1—ZT}

Now consider the corresponding radial multiplier operators Ty
0
Tef = (mef)Y. me:= > my.

k=—2«k
We note that m, is supported in the annulus

=5
2.1 2

With this in mind let us consider radial functions mq, mp € S(R?), with 0 < mg, mp < 1, such that

(mo +my +mp)lp =1p, (7.2)
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with the additional requirement that

supp(mp) C Ap :={E e R?:1-2"23 < |g| < 1 4+ 2723, (7.3)
Defining
7{0\f = fmo’ 7{K\.f = me? Opf = fm'Pl'Pv

identity (7.2) implies that Tp = Ty + T, + Op. Observing that Ty is bounded on p for all 1 < p < oo
with bounds O, (1) we have

ITrliLr@2) Sp L+ 1 TellLo@w2) + 1OPlLr@2), 1< p <oo. (7.4)
7.5. Estimating T,. We aim for the estimate
< A5
1T fllp ™2 270 fllp. 2=p <4 (7.6)

The case p = 2 is obvious, whence it suffices to prove the restricted-type version at the endpoint p = 4

1
1T (f1E) 4 S K|ET*]| f ]l oo- (7.7)
Now we have that for any g
0 0 1
3
Tegl=1| > Tkg 5( > ITkg|4) 3
k=—2k k=—2k
and thus
o i
ITegl it (30 I7iel) 78)
k=—2k

Let {w; : j € J} be the collection of intervals on S! centered at v; :=exp(27ij/N) and of length 2. Note
that these intervals have finite overlap and their centers v; form a ~ 1/N-net on S!. Now let {8; : j € J}
be a smooth partition of unity subordinated to the finitely overlapping open cover {w; : j € J} so that
each B; is supported in ;. We can decompose each Ty as

(ﬂ?)(é)=ka(lél)ﬂj(|§|)f@) Y m® €. = TaHE). £

jeJ jeJ jeJ

For s; € § and —2« < k < 0 we define the conical sectors

Qi ={EeR?:§ € Ay, £/I5| € )}

and note that each one of the multipliers m;  is supported in €2; . Each €2; ; is an annular sector around
the circle of radius 1 — 2% /22€ of width ~ 27K /22¢ where —2k < k < 0. It is a known observation,
usually attributed to Cérdoba [1977, Theorem 2] or C. Fefferman [1973], that for such parameters we have

Y loj+a, SL (7.9)

Ji'ed
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This pointwise inequality and Plancherel’s theorem allow us to decouple the pieces T} in L*; for each

(Z T3 )

jeJ

fixed k as above we have

1Tk flla <

(7.10)

see also the proof of Lemma 7.18 below for a vector-valued version of this estimate. Combining the last
estimate with (7.8) and dominating the ¢2-norm by the £!-norm yields

Imefla <o ( [ y (ZITkal)) (L] > (Z'T’kf'z)r )

k=—2k jeJ k=—2k jeJ
3 2 % 3
<k Z S oITje S| = k3 Ay f s
=—2kjeJ

with
0 :
AJ,Kf:=( ) Z|T,-,kf|2) .
k=—2kjeJ

But now note that {7 x }; x is a finitely overlapping family of smooth frequency projections on a family
of rectangles in at most ~ N directions. Furthermore all these rectangles have one side of fixed length
since |w;j| = 27" for all j € J. So Theorem K with the improvement of Remark 6.1 applies to yield

1 1 1 1
[Asicflla < Qog#N)4 || flloo E[* > k4| fllool EI*. (7.11)
The last two displays establish (7.7) and thus (7.6).

Remark 7.12. The term 7} is also present in the argument of [Cérdoba 1977]. Therein, an upper
estimate of order O(x5/4) for p near 4 is obtained, by using the triangle inequality and the bound
sup {[| Tk | Lar2) - =26 <k <0} ~ «1/# for the smooth restriction to a single annulus.

7.13. Estimating Op. In this subsection we will prove the estimate

105 fllp S * G721 £1,. (7.14)

Let ® be a smooth radial function with support in the annular region {£ € R?: 1—¢272¢ < |£| < 14-¢272¢},
where c is a fixed small constant, and satisfying 0 < ® < 1. Let {8, : j € J} be a partition of unity on S!
relative to intervals w; as in Section 7.5. Define the Fourier multiplier operators on R?

§

T, f (€)= <I>($)ﬁj(|§|

)f(é) £eR> (7.15)

The operators 7; satisfy a square function estimate

1_ 1

HT) S lpp@azy S22 1 fllpe 2= p <4,

IRTj (f1E) I La@meiezy = KFLEIF] £ lloo-

(7.16)
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which follows in the same way as (7.11), by using Theorem K with the improvement of Remark 6.1.
They also obey a vector-valued estimate

1_1
||{ijj}||Lp(R2~42)§K2 ””{fj}”Lp(RZﬁ)v 2<p<4,
47 (fle)}”L4(R2 2y R <K4|F|4||{fj}||Loo(R2 €2)

These estimates are easy to prove. Indeed note that it suffices to prove the endpoint-restricted estimate at

(7.17)

p = 4. Using the Fefferman—Stein inequality for fixed j € J we can estimate for each function g with
lgll2 =1

ZHTUHMIg<Z: IﬁhVM£<HUUMpr sup M; g
( FjeJ
Jj€

< |F| 2 sup M; gl 2,00 g2).
jeJ
where M; is the Hardy-Littlewood maximal operator with respect to the collection of parallelograms in
2
Sj,—2K,—K
operator and the number of directions involved in its definition is comparable to N ~ 2*. Then the

with s5; defined through (—s;, 1) := v;. Now sup;c; M; is the maximal directional maximal

maximal theorem from [Katz 1999] applies to give the estimate
1

[ SUP Mjgll2.0m2) S k2.
j eJ
This proves the second of the estimates (7.17) and thus both of them by interpolation.

In the estimate for Op we will also need the following decoupling result.

Lemma 7.18. Let2 < p < 4. Then
Y Tif
J

Proof. Note that the case p = 2 of the conclusion is trivial due to the finite overlap of the supports of the

1_1
SKk2or ||{fj}||Lp(R2;eg)-

multipliers of the operators 7;. Thus by vector-valued restricted-type interpolation of the operator

Uit 0UhD =) T fi
jeJ
it suffices to prove a restricted type L*! — L* estimate:
11
IO fiDlla S k*|E|* (7.19)

for functions with ||{ fj}|l;2 < 1g. To do so note that the finite overlap of the supports of 777] * m
over j, k, as in (7.9), gives

OGS DNa S IRT; fi i a2
and the restricted-type estimate (7.19) follows from (7.17). O

We come to the main argument for Op. Let mp be as in (7.2)—(7.3) and T be the multiplier operators
from (7.15) corresponding to the choice ® = mp. Then obviously

mPfA=Z7§7

jeJ
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We may also tweak ® and the partition of unity on S' to obtain further multiplier operators T"J as in
(7.15) and such that the Fourier transform of the symbol of 7~} equals 1 on the support of the symbol
of T;. With these definitions in hand we estimate for 2 < p < 4

11
10p flp = 5 2 P IRTe(T; M Lr w2102

2 %H{H H,+1<T PHLr @), (7.20)

The first inequality is an application of Lemma 7.18 for fj The last equality is obtained by observing
that the polygon multiplier 7’» on the support of each 7; may be written as a (sum of O(1)) directional
biparameter multipliers H; H; 1 of iterated Hilbert transform type, where H; is a Hilbert transform
along the direction v;, which is the unit vector perpendicular to the j-th side of the polygon, and pointing
inside the polygon; these are at most ~ N such directions.

In order to complete our estimate for Op we need the following Meyer-type lemma for directional
Hilbert transforms of the form

Hof @)= [ F @l de. xe®,

Lemma 7.21. Let V C S! be a finite set of directions and H, be the Hilbert transform in the direction v.
Then for % < p <4 we have

1_1
1Hy folll oo,y S Qog#) 2L s
The dependence on #V is best possible.

Proof. 1t suffices to prove the estimate for 2 < p < 4. The proof is by way of duality and uses the following
inequality for the Hilbert transform: for r > 1 and w a nonnegative locally integrable function we have

1
f|va|2ws/ 2 My |y,
R2 R2

with M, given by (2.3). See for example [Pérez 1994]. Using this we have for a suitable g € L@P/2) of
norm 1 that

HHo £} 2 o /Z|vav|g<2/ fo Mgl

veV

SISHZ o gz | MV 817 oo oy

with My g := sup,cy Myg. Now for 2 < p < 4 there is a choice of 1 <r < p/(2(p —2)) so that
p/(r(p —2)) > 2. This means that the maximal theorem from [Katz 1999] applies again to give

1
My g1 7 | Lrr2y @2y < (log#V)'~

and so the proof of the upper bound is complete. The optimality is discussed in Section 8.1. O
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Let us now go back to the estimate for Op. The left-hand side of (7.20) contains a double Hilbert
transform. By an iterated application of Lemma 7.21 we thus have

_2
VCH) Hy 41 (T M ooz y S €7 T DM Lo e

since the number of directions is N = 2¥. The final estimate for the right-hand side of the display above is a
direct application of (7.16), which together with (7.20) yields the estimate for || Op f ||, claimed in (7.14).

Now the decomposition (7.4), together with the estimate of Section 7.5 for T; and the estimate (7.14)
for Op, completes the proof of Theorem B.

Remark 7.22. Consider a function f in R? such that supp( f ) C Ag, where Ag is an annulus of width §2
around S'. Decomposing A into a union of O(1/8) finitely overlapping annular boxes of radial width §2
and tangential width §, we can write f =) ies i fs wheze each T} is a smooth frequency projection
onto one of these annular boxes, indexed by j. Then if 7; is a multiplier operator whose symbol is
identically 1 on the frequency support of 7; f* and supported on a slightly larger box, we can write
f=2; T“] T; f, as in (7.20) above. Then Lemma 7.18 yields

11
IS @2y < (0g(1/8))2 7 IR} 3 Lo @212

This is the inverse square function estimate claimed in the remark after Theorem B in Section 1.

8. Lower bounds and concluding remarks

8.1. Sharpness of Meyer’s lemma. We briefly sketch the quantitative form of Fefferman’s counterexample
[1971] proving the sharpness of Lemma 7.21. Let N be a large dyadic integer. Using a standard
Besicovitch-type construction we produce rectangles {R; : j =1, ..., N} with sidelengths 1 x 1/N, so
that the long side of R; is oriented along v; := exp(2mij/N). Now we consider the set E to be the union
of these rectangles and

N 1
E = Ri| < .
‘ U 1~ log N
Jj=1
Denoting by EJ- the 2-translate of R; in the direction of v; we gather that {iéj :j=1,...,N}isa

pairwise disjoint collection. Furthermore if H; is the Hilbert transform in direction v;, there holds

|Hj1R; | 2C1§j'

Therefore for all 1 < p < oo

(Z |H)1, |2)%

J=1

N % N %
1 1 1 1
(Z|1R_,.|2) < (Zum) EIP < (og ).
=1 PN

Self-duality of the square function estimate then gives the optimality of the estimate of Lemma 7.21.

while for p <2
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8.2. Sharpness of the directional square function bound. In this subsection we prove that the bound of
Theorem L is best possible, up to the doubly logarithmic terms. In particular we prove that the bound of
Remark 6.1 is best possible.

We begin by showing a lower bound for the rough square function estimate

1(Pr&} oy < (PP} LP®) > LP®: )l 2<p <4, (83)

where the notation is as in Section 6. Now as in [Fefferman 1971] one can easily show that the estimate
above implies the vector-valued inequality for directional averages, for directions corresponding to the
directions of rectangles in F. For this let #/ = N, where V is the set of directions of rectangles in F.
Now consider functions {gr } rer with compact Fourier support; by modulating these functions we can
assume that supp(¢r) C B(cg, A) for some A > 1 and {cf}Frer a I00AN -net in R%. Then if F is a
rectangle centered at c g with short side 1 parallel to a direction v € V and long side of length N parallel
to vi:, then we have that | Prgr| = |Ay. gF|, where Ay . is the averaging operator

Ay fx) = 2N /|

/ f(x—tvp—sv#)dtds, x € R
t]<1/2 JN|s|<1

Note that this is a single-scale average with respect to rectangles of dimensions 1 x 1/N in the directions
VF, vi: respectively. Since the frequency supports of these functions are well-separated we gather that
for all choices of signs e € {—1, 1} we have

Y 1PrGPP =) PT(Z EFgF)

TeF TeF FeF

2

=Y |Prerl*.

TeF

Thus applying (8.3) with the function G as above and averaging over random signs we get

||{AvFgF}||Lp(R2;e§T) <|{Pr}: LP(R?) — LP(RZ;K%_-)||||{gp}||L,,(R2;@), 2<p<4.
Now we just need to note that as in Section 8.1 we have that

Avplry 2 13
where { RF } Fer are the rectangles used in the Besicovitch construction in Section 8.1. As before we get
1

[{PF}: LP(R%) — LP(R2:2)| = (log#V) 27

For p < 2 the square function estimate (8.3) is known to fail even in the case of a single directions; see
for example the counterexample in [Rubio de Francia 1985, §1.5].

One can use the same argument in order to show a lower bound for the norm of the smooth square
function

KPE& L r @z < KPR} LP(R?) — LP®*: 3 ligllp, 2= p <4

Indeed, following the exact same steps we can deduce a vector-valued inequality for smooth averages

AZFf(x):z//f(x—tvp—sv#)yp(t,s)dtds, x € R?,
RJR



1696 N. ACCOMAZZO, F. DI PLINIO, P. HAGELSTEIN, I. PARISSIS AND L. RONCAL

where yF is the smooth product bump function used in the definition of P in Section 6. By a direct
computation one easily shows the analogous lower bound Ay 1g, 2 1 R for the rectangles of the
Besicovitch construction and this completes the proof of the lower bound for smooth projections as well.

8.4. Sharpness of Cordoba’s bound for radial multipliers. Firstly we remember the definition of each
radial multiplier Ps: Let @ : R — R be a smooth function which is supported in [—1, 1] and define

Pf@= [ FOOET -l s, xR
These smooth radial multipliers were used extensively in Section 7. Cérdoba [1979] proved the bound

1_1
1Psfllp < Gog1/8) 275l £1,. 2<p<a

In fact the same bound is implicitly proved in Section 7 in a more refined form, but only in the open
range p € (% 4) with weak-type analogues at the endpoints. More precisely we have discretized Pg into
a sum of pieces { Ps_;};es, where each Ps_ ; is a smooth projection onto an annular box of width § and
length V8, pointing along one of N equispaced directions v;. Then it follows from the considerations in
Section 7 that

1_1
1WPs.; f 3o @22y Slog(1/8)2 2 (| flp, 2<p <4,
1 1
13Ps,; F1F il page.ezy S10g(1/8) 3 ]| flloo| F3.

Obviously one gets the same bound by duality for % < p <2, while the L?-bound is trivial. Now these

(8.5)

estimates imply Coérdoba’s estimate for Ps in the open range (%, 4) by the decoupling inequality (7.10),
also due to Cérdoba. On the other hand Cérdoba’s estimate is sharp. Indeed one uses the same rescaling
and modulation arguments as in the previous subsection in order to deduce a vector-valued inequality for
smooth averages starting by Cérdoba’s estimate. Testing this vector-valued estimate against the rectangles
of the Besicovitch construction proves the familiar lower bound for Pg and thus also shows the optimality
of the estimates in (8.5). We omit the details.

8.6. Lower bounds for the conical square function. We conclude this section with a simple example
that provides a lower bound for the operator norm of the conical square function ||Cy(f) : €2 || of
Theorem J and the smooth conical square function ||CS : €2 || of Theorem A. The considerations in this
subsection also rely on the Besicovitch construction so we adopt again the notation of Section 8.1 for the
rectangles {R; : 1 < j < N} and their union E. Let H j+ denote the frequency projection in the half-space
{¢ € R2: £-vj > 0}, where vj := exp(27ij/N). We begin by observing that

HYf—H' f=CiPyf—C;P_f, (8.7

where P4, P_ denote the rough frequency projections in the upper and lower half-space respectively and
Cy, is the multiplier associated with the cone bordered by v;, vj41. Since H j+ is a linear combination of
the identity with the usual directional Hilbert transform H; along v; we conclude that

v )
‘ (Z (Hys —Hj>f|2)

Jj=1

SIHCLP(R?) = LPR%E N SN, 2<p <4,
p
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Now note that for each fixed 1 <k < N we have

1z, > (Hj—Hj11)lg, = 1z Hilg, 2 1z, (8.8)

J

if Ek is a sufficiently large translation of Ry in the positive direction vg. Thus
N
‘/ 10, & D_(Hjv1— Hj)lg, Zf 1z,
j=1 e Rk

On the other hand the left-hand side of the display above is bounded by a constant multiple of

> ~

1{Cj} : L7 (®2) > LP (B2 63)] H (Z 1%,.)2 H SICy 1 LP(R?) — LP(R?:(2) | (log )27
J '

for all 2 < p < 4. We thus conclude that

1

HCj}: LP(R?) — LP(R%:€2)] = (log N)2 ™7, 2<p<A4.

We explain how this counterexample can be modified to get a lower square function estimate for

the smooth cone multipliers C,, from (5.1) matching the upper bound of Theorem A. For ¢ € R write

vjt. :=exp(2ri(j+1t)/N)andlet H ]t and H ]t "+ be the directional Hilbert transform and analytic projection

along v’, respectively. Let § > 0 be a small parameter to be chosen later and for each 1 < j < N let w;
be an interval of size SN ~! centered around 27/ N. Arguing as in (8.7),

Nt

t,+ t,+
S [ AL

Co,Prf—Co P f= cx(
Nlt|<é

11
%3
sufficiently large translation of Ry in the positive direction v and § is chosen sufficiently small depending

for a suitable nonnegative averaging function « which equals 1 on [ ] Now, if ﬁk is again a

only on the translation amount, the analogue of (8.8) is

N
1; inf H! —H! H1g. =15 inf Hi[1g ]>13 .
Ry N1ﬂ<8;( J ./+1) R; Ry N1§1|<(S k[ Rk] ~ "Ry

The lower bound for [[{Cy, } : L? (R?) — LP(R?; sz.) || then follows exactly as in the previous case.
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