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Abstract. In this paper, we establish the Schatten class and endpoint weak
Schatten class estimates for the commutator of Riesz transforms on weighted L2
spaces. As an application a weighted version for the estimate of the quantised
derivative introduced by Alain Connes and studied recently by Lord-McDonald—
Sukochev—Zanin and Frank—Sukochev—Zanin is provided.

1. Introduction

The commutator [b, T of the singular integral operator 7" with a sym-
bol b, which is defined by

[b, T1f(x) = b(x)T'f(x) = T(bf)(x),

has played a vital role in harmonic analysis, complex analysis, and partial
differential equations. We refer to the fundamental work by Nehari [24],

* Corresponding author.

T ZQ&’s research is supported by the China Scholarship Council, grant number 202006460063.

£ JL’s research is supported by Australian Research Council DP 220100285.

8 BDW’s research is supported in part by National Science Foundation Grants DMS #1800057,
#2054863, and #2000510 and Australian Research Council DP 220100285.

Key words and phrases: Schatten class, commutator, Riesz transform, Besov space.

Mathematics Subject Classification: 47B10, 42B20, 43A85.

0133-3852 (© 2023 Akadémiai Kiad6, Budapest



972 Z. GONG, J. LI and B. D. WICK

Calderén [2], and Coifman-Rochberg—Weiss [5]. It has been extensively
studied by many authors in different aspects with various applications, see
for example [3,4,16,25].

Besides the boundedness and compactness, the Schatten class estimates
of the commutator have been an important topic, as it connects to non-
commutative analysis. For example, the commutator of the Riesz transforms
b, Rj], j =1,...,n, links to the quantised derivative

db := i[sgn(D),1® M)

of Alain Connes introduced in [7, Chapter IV], where M, is the multipli-
cation operator defined as M f(x) = b(x)f(x). This has been intensively
studied in [10,12,13,18,22,30]. We note that in [22] they implemented a new
approach to prove that for b € L>=(R"), db is in the weak Schatten class if
and only if b is in the Sobolev space.

In [20], the authors have considered the Schatten class estimate of the
commutator of the Hilbert transform in the two-weight setting, along the
line in [1] and [19], and made a fundamental first step.

THEOREM A. Let H be the Hilbert transform on R, u, A € A2(R) and

set v = ,u%)\_%. Suppose b € VMO(R), then the commutator [b, H| belong to
S*(L3(R), L2 (R)) if and only if b € BL(R).

As observed in [20], the full characterization of Schatten class estimates
of [b, H] is not known, nor, the full characterization for the commutator of
Riesz transforms. In fact, even the one weight setting has not been charac-
terized before leading to the problem considered in this paper of determining
the characterization of the Schatten class SP (0 < p < c0) of the commuta-
tor of Riesz transforms in the one-weight setting. Here, we will consider
the Schatten—Lorentz membership of the commutators acting on weighted
spaces L?(w) for w in the Muckenhoupt Ay class. The main approach used
in this paper is based around dyadic harmonic analysis, the decomposition
of the cubes via the median of a VMO function, and the use of nearly weakly
orthonormal sequences from [30].

To state our result, we first recall the Schatten classes. Let G; and Gy be
separable complex Hilbert spaces. Suppose T is a compact operator from G;
to Go and T* the adjoint operator. It is clear that |T'| = (T*T)? is a compact,
self-adjoint, and non-negative operator on Gy. Let (Yx)g, k € Z4, be an
orthonormal basis for G; consisting of the eigenvectors of |T'|, and let s;(7T')
be the eigenvalue corresponding to the eigenvector 1. The numbers s1(7)
> s9(T) >+ > 5,(T) > -+ >0, are called the singular values of T'.

If 0<p<oo, 0<qg<oo and the sequence of singular values is ¢P9-
summable (with respect to a weight), then T is said to belong to the
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Schatten—Lorentz class SP9(Gy, Go). That is, T' € SP4(Gy, Go) if and only if

. 1/q
\|T|5p,q<gl,g2>=<2<sk<T>>q<1+k>r1> . g<oo,

keZ+
and

||T||Sp’°°(g17g2) = sup Sk(T)(l + k)l/p7 q = 0.
keZ+
Set, SPP(G1,Ga) = SP(G1,G2). Moreover, see for example [25], we also have

(1.1) SPad (gl,gg) C sz’qz(g1,g2) for allgy,qo  if p1 < po,
(1.2) SP (G, Ga) C SP(G1,G2) if g1 < qa.

If Gy = Gy = G, we will simply write SP4(G,G) = SP(G).

Suppose w € Ay, which will be defined in the next section. It is easy to
see that [b, R;] is bounded, respectively compact on L?(R"™, w), if and only
if b is in BMO, respectively VMO; see for example [3]. We now consider the
Besov space B”P (R"), 0 < p < oo, defined as the set of b € L{ (R") such

n/p loc
that

b(z) — b(y)|P L/p
18 ol = ([ [ P2 ) <o
/v re Jre [T — Y

Note that Bgﬁ)(R”) C VMO(R™). Thus, for b € Biﬁ,(R”), [b, R;] is both
bounded and compact. Our first result then provides a characterization of
when the commutator is in the Schatten class S,(L?(w)) in terms of mem-

bership of the symbol in the Besov space BY %(R”):

THEOREM 1.1. Suppose n > 1, 0 < p < 0o, w € Ag and b € VMO(R").
Then for any j = 1,2,...,n, the commutator [b, R;] € SP(L*(R™,w)) if and
only if

(1) be BZ’Z}(R”) for n.<p<oo. Moreover, we have |bllprs @n) ~
10, Bl sv (22 (7 )3

(2) b is a constant when 0 < p < n.

In Theorem 1.1, we note that there is a “cut-off” in the sense that the
function space collapses to constants when p is less than the critical in-
dex, p =n, of the dimension. This suggests that at the endpoint p =n
there might be a more interesting phenomenon going on when one replaces
membership in the Schatten—Lorentz space by its membership in weak-type
versions. This leads to the following result at the critical index.
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THEOREM 1.2. Suppose n > 1, b € VMO(R"), w € As. Then for any
j=1,2,...,n, the commutator [b, R;] € S™>°(L*(R™,w)) if and only if b €
Whn(R™). Moreover,

1Bl ey = B2 By

S (L2 (R )

Here W™(R") is the homogeneous Sobolev space on R™ defined by W1 (R™)
={be(S(R™)) : Vbe L"(R")} with the seminorm 1Bl vi71. () = VOl 1 () -

Once we have this, we provide a new application to the quantised deriva-
tive of Connes, which is the following result:

THEOREM 1.3. Suppose n>1, f¢€ VMO(R"™), w € Ay. Then df €
S (CN @ L2(w)) if and only if f € WH™(R™). Moreover,

ldf | snee @@Lz w)) = [ Flyirnggny-

Details of the proof of this application and how it follows immediately
from Theorem 1.2 are given in Section 7.

The rest of this paper is organized as follows. Section 2 provides prelim-
inary background information and notation. The proof of Theorem 1.1 is
started in Section 3 where the proof of (1) in Theorem 1.1 is given. In Sec-
tion 4, we give the proof of (2) of Theorem 1.1, and Section 5 provides the
proof of Theorem 1.2. In Section 6, we discuss the one-dimensional case.

Throughout this paper, using A < B and A 2 B to denote the statement
that A < CB and A > CB for some constant C' > 0, and A ~ B to denote
the statement that A < B and A 2 B. The letter “C” will denote a positive
constant whose value can change at each appearance. As usual, for p > 1,
% + z% =1, and £(Q) denotes the sidelength of Q.

2. Preliminaries

2.1. Ay weights. We now recall the definition of Muckenhoupt weights.

DEFINITION 2.1. Let w(z) be a nonnegative locally integrable function
on R™. We say w is an Ay weight, written w € Ay(R"), if

[w]a, = sgpﬁ/@w(a:) dx - ﬁ/@w(a:)_l dx < oo.

Here the supremum is taken over all cubes @@ C R™. The quantity [w]4, is
called the A constant of w.

It is well known that Ao(R™) weights are doubling. Namely,
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LEMMA 2.1 [14]. Let w € Ay(R™). Then for every X > 1 and for every
cube Q C R™,

w(AQ) £ A" w(Q).
In this article, we will also use the reverse Holder inequality for A, (R™)
weights.

LEMMA 2.2 [14]. Let w € A2(R™). There is a reverse Hélder exponent
ow > 0, such that for every cube Q C R"

1

(2.1) [ﬁ/@w”"w (x) daz] e < M

2.2. Dyadic systems in R™.

DEFINITION 2.2. Let the collection 2° = 29(R") denote the standard
system of dyadic cubes on R™, where

72°(R") = | ) Z0(R™)
keZ
with
70 (R™) {2 +m):keZ, meZ}.
Next, we recall a shifted system of dyadic cubes on R".

DEFINITION 2.3 [17]. For w = (wi,wa,...,w,) € {0, = 3} define the
shifted dyadic system 2% = 2¢(R"),

=z @),
keZ
where
Z¢ (R ={27%([0, )" + m+ (-)*w) : k € Z, m € Z"}.
It is stralghtforward to check that 2% inherits the nestedness property
of 2 if Q,Q" € 2%, then QN Q' € {Q,Q",@}. See [17] for more details.

When the particular choice of w is unimportant, the notation & is sometimes
used for a generic dyadic system.

2.3. An expression of Haar functions. Next we recall the Haar
basis on R™. For any dyadic cube @) € 2, there exist dyadic intervals Iy,
I, ..., I, on R with common length [(Q), such that Q = I x Iy X - -+ X I,.
Then @ is associated with 2" Haar functions:

Ro(@) = hi ot (e ae, ) = [ A (@)

I xIox--Xx1,
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where € = (g1,€9,...,&,) € {0,1}" and
1 1
W = ~and K = = XIt)-

Writinge =1 wheneg; =1foralli=1,2,...,n, hb = LXQ is noncancella-
tive; on the other hand, when £ # 1, the rest of the 2" — 1 Haar functions
hg associated with Q satisfy the following properties.

LEMMA 2.3. For e # 1, we have

(1) hFQ is supported on @) and fR" h€ (z)dx = 0;

(2) h% is constant on each R € ch(Q), where ch(Q) ={R € D41 :
R CQ} denotes the dyadic sub-cubes of the cube QQ € Dy;
3) (hg. he) =0, for e #m;

(3)
(4) if h€ 75 0, then
Aol Lr@ny = Q7 2 for 1 < p < oo

() [1pgllLr ey - 1MLy = 15
(6) the average of a function b over a dyadic cube Q, (b)g = e fQ b(x) dx
can be expressed as

o= Y (bIp)hp(Q)

Pe2,QCP
eZl

where h3(Q) is a constant.
(7) firing a cube Q, and expanding b in the Haar basis, we have

(b(z) — B))xqlz) = > (bhR)h
Reggc@

(8) the conditional expectation of a locally integrable function b on R™
with respect to the increasing family of o—algebras o(Py) is given by the
exTPression:

Ep(b)(z) = Y (boxe(a), zeR",
QEDy

where (b)q is the average of b over Q as defined in (6) above. Note that we

have
B (b)(z) — Ep(0) (@) = Y > (b, hg)hg(x)

QE@]C €$1
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2.4. Characterization of Schatten class. In 1989, Rochberg and
Semmes introduced the notion of nearly weakly orthogonal (NWO) sequences
of functions contained in the following definition, see [30].

DEFINITION 2.4. Let {eg}gecs be a collection of functions. We say
{eg}ge is a NWO sequence, if suppeg C @ and the maximal function f*
is bounded on LP(R"™), where f* is defined as

() = sup Ll vo(o)

In this paper, we work with weighted versions of NWO sequences. We
will use the following result proved by Rochberg and Semmes.

LeMMA 2.4 [30]. If the collection of functions {eg:Q € Z} are sup-
ported on Q and satisfy for some 2 <r < oo, |eg|r S QY12 then
{eqg}ge is an NWO sequence.

NWO sequences are very useful in studying Schatten class properties of
operators. In [30], Rochberg and Semmes developed a substitute for the
Schmidt decomposition of the operator 7T'. If an operator 1" has a represen-
tation of the form

(2:2) T=> Xl eq)fo
Qe

with {eg}gco and {fg}gecz being NWO sequences and {Ag}gecy is a se-
quence of scalars. It is easy to see that

(2.3) 1T\ spa(g) S IA@llera, 0 <p<oo, 0<q< oo

A sort of converse also holds. When 1 < p = ¢ < oo, Rochberg and Semmes
also obtained:

LEMMA 2.5 [30]. For any (bounded) compact operator T on L*(R™) and
{eg}gew and {fo}oeo NWO sequences, then for 1 < p < oo,

1/p
3 \<TeQ,fQ>V’] < T llso ey,
Qe

Lacey and the last two authors in [20] provided a relationship between
Schatten norms on weighted and unweighted L?(R) (which also generalizes
to R™).

LEMMA 2.6 [20]. Suppose 1 < p < 0o, and w € A2(R™). Then T belongs
to SP(L2(R™, w)) if and only if w2Tw ™= belong to SP(L2(R™)). Moreover,

1T sp (2@ w)) = w2 Tw™2 || (12 @n))-
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Using this Lemma from [20], we can also obtain the following result.

LEMMA 2.7. Suppose 1 < p < 0o, and w € Ay(R™). Then T belongs to
SP(L2(R™, w)) if and only if w3 Tw™ s belong to SP>°(L?(R™)). Moreover,

1T | 5200 (22 (R ) A = Tw ™3] Spoo(L2(R™))”

2.5. Description of the Besov space.

DEFINITION 2.5. Suppose 0 < p,g<ocand0<a<1. Letb € Llloc(]R”).
Then b belongs to the Besov space BY?(R") if and only if

</ </ %@)wpdx)w .

In particular, note that if a = %

B [b(x) — b(y)|P e
Wz = ([ [ B gy 00)

Useful in the proof below will be dyadic norms and so we give the norm
of the dyadic Besov space next.

and p = g then

DEFINITION 2.6. Suppose 0 < p < oco. Let b€ L%OC(R”) and Z be an
arbitrary dyadic system in R™. Then b belongs to the dyadic Besov space
BI(R", 2) if and only if

. 1/p
18l 3.2 = ( S (1, ha>||cz|—a)p) < .

Qe
e#£l

Suppose w € Ay(R™). By the definition of As(R™) weights, we obtain
that

w(@uw™(Q)
QI

Then we have an equivalent norm on this dyadic space given by

1B ey = 3 (145 hIQI7E)”

~ 1.

Q;lﬁ
N w(@Q)= (w™(Q))= (b, hg)[\? b hIQIE \?
Qezj< QI > Q;@<w<cz>%<w—l<@>>%> '
e#l e#£l
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Key to our analysis will be the fact that a suitable family of dyadic norms
is equivalent to the norm in the continuous setting, the content of the next
lemma.

LEMMA 2.8. Suppose w € A3(R™), n < p < oo. There are dyadic sys-

n

tems P%, w € {0, 3> 3 , such that
(  BiR",2) =Bl (R"),
we{0,5,2}7

with

> lIbllprgn,ge) = |

we{0,1,2}n

1373

).

PRrROOF. On the one hand, we first prove the dyadic Besov norm is dom-
inated by the continuous Besov norm, that is, for every w € {O, 35 3 i
10l B2 (=, 2y S 10l 522 () -

Choose a dyadic cube Q € 2%. Let Q = Q + {20(Q)}". By applying Lemma
2.3 and Holder’s inequality, we have

b alar 5 | [ ot |'§"

§/Q/Q|b(a:)—b(y)||h22(x)|dxdy‘Q|_g
<// |b‘x_ . dxdy>l/p<//|ha I dxdy>1/p QI
<// |b\fr— \2" s dy>1/p,

Hence, we can obtain

s b(z
By = 3 (ADNIQITE) S S //' |x_y‘2n  dwdy

N
Nl»—l

Qe Qe
£
[b(z) — b(y) P
< —d dx < ||bH PP (n) "
kzezqz;w/ /yew:zk<|x—yl<3~2k} o =yl B )
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On the other hand, we need to show that

Brr (R S Z ||bHBg(Rn7@w>.
we{0, 2

(2.4) 1]

’3’3

|bHBPP(Rn / / |x_y‘2n dydx

_ [b(a) —by)l”
=22 // a—ypr WY

kEZ Qeg yER":2*k<|x—y|§2*k+1}

[b(x) — b(y)[”
>3 [ T Y

kEZ QE Dy, yER":0<\x—y\§3-2*k}

Observe that

It is clear that for 2 € Q, that {y € R": 0 < |z —y| <3-27%} € 7Q. Then
there is J* € 2* such that

7Q C U J“,

we{0, 2

’3’3

(see for example [17]). Then, we have

1 1/p
Wy s( X % i [ [ ) - swPya)

wel0,1,2yn JoED

(X % g J“'pd“dy>l/p

wef0,1,2}n Jo€P~
1/p
|72 / \b(y) — (b) g |P dy da;>

(%
:2( >y |w‘/ JW|de>1/p::23.

E{O 1 2 njwegw
wel0,1,2}n JwED~

7373

To continue, we first denote

E¢(b)(z) = Y (b)sexse(x).

Jeeyy
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00 1 1/p
(25) 9= ( )IEDIEDS W/Jw [b(a) —Ef(b)(sv)!”dw)
we{0,1,2}n k=—o0 Jeegy
we{0,%,2}n k=—o0 Jeegy

Then we have
we{0,3,2}n k=—o00 JYET}
> & v 1/p
< ( > Yy [ e -maow) da:)
> & v 1/p
+< > Yy [ maew-meo) d:c) SRS
We consider J,. Note that for x € J“, that

B2 (b)(z) — B2 (5)(x) = (Zw, ha>haw<x>>m (2)
e£l

via definition of the conditional expectation and the connection with the
Haar functions. Using this fact and continuing the estimate we have

(2.6) 32=< >y ﬁ/, pda;>1/p

we{0,3,2}n JoED

> (b, h5e ) ()

e#£l

5< 2. ZZﬁ/ﬁ|<b,h%>|”\h%<x>|”dx)l/p

wef0,1,2}n JUeDw e£l

(b, B0 P\ 7
s( 3 ZZW) <Y Pleese

we{0,5.3} JvET e#1 we{0,5.3}"

7373

where the implicit constant depends on p and n.
Moreover, from the estimate of Jo we also see that for each k,

(X % [ ?:H(b)(w)—Ef(b)(x)lpdw>1/p

we{0,5,2}7 Jeepy

< Z 61l B2 (&~ 2,

we{0,1,2}n

7373

which gives that

Z Z ‘Ez)+1(b)($) - E;;’(b)(x)‘p du L/p
( [ |

O

Analysis Mathematica 49, 2023



982

Z. GONG, J. LI and B. D. WICK

<27 ST b e e,

wef{0,3,2}7

This implies that for any large positive integer M,

e (XX [ e mao@re)

wel0,1,2}n JUEDE

o0

1/p
<y pOpS [ 1Btame) - @) )

k=M-+1 0,1,2}n Joegy

< 02—(M+1)n/p Z

we{0,3,2}"

6] B2 (R, -

Then to continue, we take a truncation of J at the level —L and M for large
positive integers L and M:

s % 1 w p 1/r
Jom = < Z Z Z W/Jw |b(z) — E} (b)(z)| d:v)

we{0,2,2}n k=—L J€7y

130

<Jir,m + T2,
where

J1L.m = < Z i/[: 2kn Z /JW |b(x) — 20+1(b)(3?)|pd33> l/p-

wel0,1, 2 nk=—L  JUEgy

7’373

Via the decomposition J* € Z;7 into subcubes in 7}’ | we see that

~ - —no(k+1)n w p e
JLL,M:< YooY 2 > /J |b(z) — B 1 (b) ()] dx)

wel0,4.2)m k=—L JUEDh

< > Mf 27 ok 3 /]w|b(x)—E,§’(b)(x)\pdx>l/p

we{0,%,2}n k=—L+1 Jeepy

’373

IN

2—’;( > iwj 2k N /]W‘b(x)—Ef(b)(x)|pdx>l/p

we{0,1 2y k=—L+1  Jeesp

+< S oM 3 /J w\b(:c)—E‘*’MH(b)(x)\pdx)l/p

OJE{O 1 2n J“’E@f:

7373
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< 2750y g + ORI N b g gy,
we{0,1,2}n

7373

where the last inequality follows from (2.7). Since 27» < 1, absorbing the
first term on the right hand side back into the left hand side and simplifying
implies that for every L and M,

TS Y. blsreege,
wel0,1,2}n

where the implicit constant is independent of L and M, but does depend
upon n and p. Hence, letting M and L go to oo the above argument gives
that J; < ZwE{O 1 2y ||0]| B2 (R ), Which, together with (2.6), gives

7373

J=< Z 161 B2 (R, -
wel0.d, 2

Thus, we see that (2.4) holds completing the proof of Lemma 2.8. [

3. Proof of (1) in Theorem 1.1

From Lemma 2.8 we know that the continuous Besov space is the inter-
section of 3" dyadic Besov spaces with n < p < co. Thus, the proof of (1) in
Theorem 1.1 can be completed by discussing the following two properties.

PROPOSITION 3.1. Forn < p < oo, let w € A2(R™), and b € VMO(R")
with
116, Rj]ll sv(r2(mm )y < 00
Then we have
6l 2wy S 10, Bjlll sv (2 ®n,w))-

PROPOSITION 3.2. For n < p < oo, suppose that w € A3(R™), and b €
BZ’/’;(R"), then we have

116, Bj]llsv(L2(mm w)) S 0l 227 (R7)-

3.1. Proof of Proposition 3.1. Below, we consider cubes QQ € &, a
fixed dyadic system. To prove Proposition 3.1, we first need to use a known
result.

LEMMA 3.3. For each dyadic cube Q, there exists another dyadic cube Q
such that

Analysis Mathematica 49, 2023
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() QI = |Ql, and dist(Q, Q) ~ |Q|.
(ii) The kernel of the Riesz transform K;(x — &) does not change sign for
all (x,2) € Q X Q, and

(3.1) [Kj(z = 2)| 2 |Q|

Let my(Q) be a median value of b over Q (see for example the definition
in [23]). This means m;(Q) is a real number such that

(3.2) maX{Hy €Q:b(y) <my(Q)},[{y € Q:bly) > mb(Q)}\} <1Q|/2.

By fQ ho(z) dz = 0 and using (3.2), a simple calculation gives

| / b)) da
'/ ) o) = %/V) Q dx
|Q\5 /QmE?‘b(x)_ Q)| da + ‘Ql|; /QmE;?‘b(:E)_mb(Q) dx
—: Term? + Term§ .

Where

E? ={zeQ:bx)< mb(Q)} and Eg) ={zeQ:bz)> mb(Q)}
Now we denote

FIQ = {y €eqQ: b(y) > mb(Q)} and F2Q = {y €q: b(y) < mb(Q)}.

Then by the definition of m;(Q), we have |F1Q\:\F2Q| ~ |Q| and FlQ U F2Q

Note that for s = 1,2, if z € Eg and y € FSQ, then
|b(z) — my(Q)] < |b(z) — mb(@)| + \mb(Q) —b(y)|
= |b(x) — my(Q) + mp(Q) — b(y)| = |b(x) — b(y)|.

Therefore, for s = 1,2, by using (3.1) and by the fact that ]FSQ\ ~ |Q|, we
have

T
Q)

‘ th /Q ) - mi@

Term% <

[
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- |Ql|% /QmEQ FQ!b(x) —mp(Q ) dy dx
\Q| /QOEQ F@| (Q|IE;(z —y)|dy de
|Q| /QmEQ /FQ Y Kj(r —y)| dy dx.

To continue, by noting that K;(z —y) and b(z) — b(y) do not change sign
for (z,y) € (Q OE?) X FSQ, s = 1,2, we have that

Q < L _ (o
Termy? < \Q|;‘/QOE? /F? (b(a:) b(y))KJ(aﬁ y) dy dx

/n /n (b(@) = b(y)) Kj(x — )X pa (y) dy X g pe (z) dz|.

GE

We now insert the weight w to get

o1 L Lo -t @K et

><( 2 (W)X pe () dy (w2 (@)X grpe (7)) dz|.

TermsQ

Thus, we further have
(b, hp)lQl2 )p
Q2;ﬂ<MQﬁ@rw@ﬁ

L[ 0@ = @K@ - i)

p

Yy

QEQ e#£l s=1

x (w
s Yy

QEQ e#£l s=1

(™ @xgue@)

m\»—A

(W)X pa(y)) dy

L[ 0@ =) @K@ - i)

wz(y)ng(y)d wTE (z )XQ”E‘f( )dw

w@F 7 w(Q)!
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Z ZK’LU? b, R; w_5GS Héﬂp,

QeD,c#£1 s=1
where
w? ()X pa () w3 (1) xgnpe (2)
G5(y) = ———— and Hj(z):= .
W= ) N T

Applying Lemma 2.2, there is a reverse Holder exponent o, > 0, so

1 oW D A1 1
HGZ?HLz(owH) g w(Q)l (/Qw(Uw+1)(x) da:) 5 |Q|2(ow+1) 2

Similarly, [|Hp| zzewrn S |Q[3w 0 2. Then, {GZ}}QEQ and {Hp)}gey are
NWO sequences for L2(R"™). It follows from Lemma 2.6 and Lemma 2.5 that

18]l 52 (gny S Nw? b, Rylw™2 || go (@) ~ 116 Rilll s (r2@n w))-

The proof of Proposition 3.1 is complete.

3.2. Proof of Proposition 3.2. In [3], the authors have obtained
that for w € A2(R™), for every b € BZ’Z}(R”) C VMO(R"), [b, R;] is compact

form L?(R",w) to L?>(R™,w). On the other hand, Petermichl, Treil and Vol-
berg have shown that Riesz transforms are averages of dyadic shifts as in [28]
(see also [27]). For a choice of dyadic system 2 with Haar basis {hg,}, let

0: 2 — 2 with |o(Q)] =27"Q], for all Q € 2. Use the same notation for
a map o: {0,1}" — {1}" — {{0,1}" — {1}"} U {0}, and so if o(¢) = 0 then
ho€) .= 0. In [28], and as utilized in [21], the dyadic shift operator IIT is
given by

(3.3) HIf(2) = > (fhg)hlio) (@)
QED e#£1
It is clear that
e _ 30(e)
II1A —ho(Q).

We further have ||II1[|z2g» w)—r2(&"w) S 1 and the Riesz transforms are in
the convex hull of the operators III. Therefore, we only need to prove that

106, T [ (12 () S 110 5
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As proved in [15], [b, ITI] can be decomposed into a composition of the shift I11
and paraproduct operators as follows:

(Y +10;7 + Ty (L) T + 107 + TY) f + Ty b — TI(TT7 b),

where

I f= > bW hehy, W7f= Y (bah29><f>h5>‘Q|
Q€D ,c#1 QEZ e#1

and

LY f =% > (0ho)(f h)hihty

Q€D en#l
e£n

are the paraproduct operators with symbol b. Then we have
1[0, TIT) | 5 (2 (R a0y < 20T || 522 (R 20)) TN 22 (R ) L2 (R )
+ 20107 Wl s (2 (& 20)) ITIT 22 (R 20) s L2 (R a0
+ 2||F?||SP(L2(R" YT £2 (R ) — L2 (R ) + ||H1Hfb—HI(Hfb)||SP(L2(1Rn,w))-

Thus, in order to show that Proposition 3.2 holds, using Lemma 2.6, we need
to obtain the following two lemmas.
LEMMA 3.4. Suppose that w e Ag(R™), and b€ VMO(R"™) for n<

p < oco. Then we have wzﬂb w 2 w%HZ@w_%, and w%I’gjw_% belong to
SP(L?(R™)) respectively, if and only if be BY(R™, 2). Moreover,

(3.4) lw=TT w2 || g2z 210l B2 (7,9
(3.5) Jw2TT7 w2 || go (2 =l|bll B2 R, 2
(3.6) [w2T w2 || go(r2(rny) |6l 528, 2) -

In particular, when b € Bi%(R”)), then we know all these operators are
bounded with norm at most ||bHBp,/p (RP)-

PROOF. The last statement follows from Lemma 2.8 which gives the
equivalence between the continuous and dyadic norms, and so in particular
that the continuous norm controls the dyadic one.

Lacey and the last two authors in [20] proved (3.4) and (3.5) in one
dimension. The proof generalizes to n dimensions by direct modifications
we do not include, but are easy exercises left for the reader.

It only remains to prove (3.6). We turn first to sufficiency.
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Sufficiency. Suppose b € BY(R™, Z). By the definition of I’i)@f, we have

(w2l w™)( =37 0. hg) (wE £ )R () hy (2w (x)
QED e n#l
e#En
(b, h) Q)%(w‘l(Q))%' 5 (@)h(x)w? (z)|Q)|
é%ﬁ QI w(Q):
e#En
w™z (Y h()|QI2
. d
e a9
= 3" 3 B@)-Gola) [ 1) Haly) dy
QEQeéngénl R

As in the proof of Proposition 3.1, applying Lemma 2.2 leads to the fact that
{Go}oes and {Hg}gey are NWO sequences for L*(R"), and by Lemma 2.6
and (2.3), that

HF ||sp L2 (R w)) ||w5fl?w_5ng(L2(Rn))
wwm@%ﬂm%
<M BEQP=Y —2 - = 1% g -
Qe Qe Q>
e#Zl e#£l

We next turn to the necessity.
Necessity. For any dyadic cube Q, we have (b, h)) = (L (b)), hhb| Q).
Therefore,

|<b,hE>IIQ|‘ P 7 (hg), hhd|QDIIQI= \P
%&@* ><;%szwwwé>

_ w%wmwmmfmmﬁp
_ZZ< w(Q): (w(Q))3

l\.’)l»—t

QED e n#El >
eZn
1_g 1 U)% h¢ w_5h€ h77
_ Z Z <wzrbgw_2< V ‘QL Q> Q|Q|>
QeP enZl w(Q)2
eZn

Analysis Mathematica 49, 2023



BESOV SPACES, SCHATTEN CLASSES AND THE QUANTISED DERIVATIVE

= 3 3 [(wirfw Go) Ha)[
QEYD e n#l
e#n

where

B VA o L S a1 o)

T wQ): O (w —1<Q>>é

989

By Lemma 2.2, and a computation similar inside the proof of Proposition 3.1,
we can obtain that the above two collections of functions are NWO sequences.

Thus, we establish by Lemma 2.5 that

b RIQIE \?
T ( 1 )
) QZJ w(Q)F (w=(Q))*
eZl

5 ||w2rbjw_§||sp L2(R™)) ~ ||FE)@HI;’P(L2(R",U)))’

The proof is complete. [

LEMMA 3.5. Forn<p<oo, suppose that we Az(R™), and b € BY(R", 7).

Let R7 f = HHIfb III(H?b), then we have

(3.7) w2 R7w™2 || go 2@y S 10l B2 (R, 2)-
PROOF. A direct computation gives
R f () := Iy ;b — TII(TT7 )
= D (W RRbphR) — D7 (I7b Kok (x)

Pe9 n#l QED,e#£1

= > (L) (o) — (Ba)hy(0) (@)

QED e#1

= szaf, hig) (b, by YRy (o (Q))R2(D) (),
60
enZl

where the last equality is from [15, (2.2)]. Therefore, we have that
w ()R (w5 f) ()
= % [ w0 W) dy @) bR QR @)

Qe
en#l
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b P (o(Q)w(Q)F (! (Q))F hzég)u)w%gx»@ﬁ
Qe @l w(Q)?

en£l

y / w™ = (y)h (y)

EJQ'zf(y) dy=:Y_ BYQ)-Ghz) | fly)H,(y)dy,

(w1(Q)) & -
enZl
where
Bl O W) (QNu(Q)E (W (@)
Q]
hao) (@)ws (2)|Ql3 W™ () ()| QI
GL(z) = 2@ T and  Hp(y) == e
o w(@)? N TE

By Lemma 2.2, and a repeat of a computation inside the proof of Proposition
3.1, we know that {Gb}Qeg and {Hé}@eg are NWO sequences for L?(R™).

Therefore, by (2.3), and |h(0(Q))| & |Q| 7% we get

w2 R7w ™2 || g0 (2 @)y S 1BH(Q)ler

N (b, )NIQIE PP
~ E T P = ||bll B2 (mn,2)-
w( 2

Qe, n#1 Q)= (w=H(Q))

The proof is complete. [

4. Proof of Theorem 1.1: the case of 0 < p < n

In this section, we prove (2) in Theorem 1.1. That is, for 0 < p < n,
the commutator [b, R;] € SP(L?*(R",w)) if and only if b is a constant. Here
n > 1 (and when n = 1 we mean of course the Hilbert transform as opposed
to the Riesz transforms).

The sufficient condition is obvious, since [b, R;] = 0 when b is a constant.
Thus, it suffices to show the necessity. By the inclusion SP(L?*(R",w)) C
S9(L2(R™,w)) for p < g, then the proof of (2) in Theorem 1.1 can be proved
on the basis of the following property.

PROPOSITION 4.1. Suppose w € A3(R™), and b € VMO(R"™) with [b, R;]
€ S*(L*(R"™,w)), then b is a constant.

PROOF. In order to obtain Proposition 4.1, we recall the following stan-
dard notation on martingale differences and conditional expectation. Let Zj
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be the collection of dyadic cubes at level k as in Section 2.2. Next, we
choose hg among these 2" — 1 Haar functions such that

‘ / b(@)hol(x) do / b)) .
Q Q
Note that Q € %, the function

(Br1(0)(x) — Bx(b)(2))xo(x) = Y (b, hg)hp(x).
e#l

— Imax

So we have

> (b, hp)hG

e#l

1 n Hn —1/n
(4.1) (@ /Q B (0) () — Ee(b)(@)| da:) <clQ

n

< ClRIY™Y b np)|[rg |, < CleT?
eZl

/ b(z)hg(x) dx|,
Q
where C' is a constant depending only on n. Then we obtain that

ZQ”kHEkH(b) Z Z IQI/ |Ek+1 — Ex( )(x)‘”da:
k

k Qe
/b Vho(z da:

<C) > e
k QED

Following the proof of the estimate of (2.6) in the proof of Lemma 2.8, we

have that

Z2nkHEk+1(b) — B )], < bl rre,2) < C||[b, Ryl
k

S(L2(R™w))’?

where the last inequality follows from Proposition 3.1. This, together with
Holder’s inequality, further implies that for a fixed positive integer K,

E — Er(b d
H{@\/ [Eiac (b +(0)@)] "”}kw .
n\ 1/n
—< \Q|/‘Ek+K° - Buh)@)| de >
kEL,QEDy,
. 1/n
S( \QI/ B, (0)() = E(b) )| dx)
kEL,QEDy,
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Ko—1 1 . 1/n
<Y (X g ) B - Bt i)

7=0 kEZ,QED)

Ko—1 1/n
=3 (S M 1B - Bees ) S 10 Rl ey

7=0 keZ

where the implicit constant depends on K. This further implies that

(4.2) H{ﬁ/@)ﬁ/@z!Ek+K0(b)(:E)—Ek+Ko(b)(y)|dydx}kezge%

S H[b, RJ]HS"(B(R",W))

1AL

since Ey(b)(z) = E(b)(y) for every Q € 2, and for every x,y € Q.
Suppose b € C*(R") with ||[b, B;]||s»(z2®n w)) < +00. If b is not con-
stant, then there exists a point zyp € R™ such that Vb(xo) # 0. By applying
[9, Lemma 5.3] with R", there is € > 0 and N > 0 such that if £ > N, then
for any dyadic cube Q € 2 with |Cg — z¢| < ¢, and for Q,0 € D+ K, With

QCQ QCQ, anddist(Q,Q) = (Q),
(b} — (b)g| = CUQ)IVD(xo)].
Here Cg represents the center of ().

Noting that for & > N, the number of Q € & and |Cg — x¢| < ¢ is at
least 2. Thus, we obtain

H{ﬁ /Q " /Q |Ek+KO<b><x>—Ek+KO<b><y>|dydx}keme%

> ”{ﬁ/@)ﬁ/@\Ek+KO(b)(x)—Ek+K0(b)(y)\dydﬂf} keZ, k>N

QEDy, |Co—xo|<e

n

n

> b — (b))
> [0 = 0l perror,

1/n
> C’( Z okn (2_k|Vb(x0)|)n> = 00.

k>N

n

This contradicts (4.2).
Suppose b€ VMO(R") with [[[b, R;]|| s~ (£2(rn w)) < +00. Let € C§°(R™),
non-negative, and [ (z)dr = 1. Define 9.(z) = L4(Z). Then b.(z) =

en 3
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b 1).(x) is in C*°(R™). We note that for € small enough,

kKo (D — Epyk, (b dy d:v}

e Lo [, Wldydzg .

S By i, (Th)(2) — By i, (T00) (y) | dy dﬂ?} ;
heB(Ol H Q| /Q Q| / | )] AR

where 7b(x) = b(x — h) for h in the unit ball B(0,1) in R™. For every
fixed he B(0,1), by repeating the arguments, especially Proposition 3.1, for
,b(x), and by translating the dyadic system according to h and the trans-
lation invariance of the kernel of the Riesz transform R;, we obtain that

1 1
H{—/ —/ ‘EkJrKO(Thb)( — By, () (y |dyd:v}
1Ql Jo 1@ Jg keZ,QeP |lin
S, Blllse (2w w))»

where the implicit constant is independent of h. This yields that for € small
enough,

fe+1o (D — Bk, (b dy dﬂ?}
H{ ‘Q| /Q |Q‘ / ‘ ‘ k€Z,QED 111
S b Byl

S(L2 (R w))-

Thus, b, is a constant on R™. Since b, — b as ¢ — 07, we obtain that b is a
constant. Therefore, the proposition holds. [

5. Proof of Theorem 1.2: p =n

5.1. Proof of the sufficient condition. In this subsection, we as-
sume that b € WL (R"), then prove

b, R;] € S™>°(L*(R", w)).

By Lemma 2.7, we just need to show that [|w?[b, Rj](w_é)\ S

HbHWl,n(Rn)-

Let A = {(z,y) e R" xR" : z=y},and Q = {(z,y) € R" x R"\A : x #y}.
Let & be a dyadic Whitney decomposition of the open set {2, that is
Upes P = Q. Therefore, we write K;(x —y) = Xpe» K;(x —y)xp(z,y), and
P can be the cubes P; X P, where Py, P, € &, have the same side length and
that distance between them must be comparable to this sidelength. Thus,

S (L2 (R7)
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for each dyadic cube P, € 9, P5 is related to P; and at most M of the cubes
P, such that P, x P, € &.

Therefore, for s =1,2,...,M and @ = Py, there is Rg, such that
Q x Rg,s € & and we can reorganize the sum

Kj(x— ZK (x —y)xp(z,y) ZZK r—y X(QxRQ )(x Y),

Pec? Qe s=1

where |Q| = |Rg s| and dist(Q, Rg.s) ~ |Q).
Next, decomposing in a Fourier series on QQ X Rg s we can write
QY
Kj(@ = y)X(@xho. ) (1:0) = Y e, 7™ Ixo(x) - Xqp..(4),
lezan

where z; = CS) + Q)T yi = Cgfg,s +URs)Gi i =1,2,....n, = (T,T")
where [/ = (I, 0oy .y l), = (lnt1s oty - -y lopn), and cliQ is the Fourier co-
efficient 7

; T~ T~ 1 1
cl = / / Ki(x—y)x z,y)e T2 g dy — ——
7.0 Ro. Jo J( ) (QXRQ,S)( ) ‘Q| |RQ,S‘

For the multi-index «, v € Z'}, using the relation F(y= m(ﬁ am £)(1),
and the size condition of K;(z — ),

1

oY I _ RN
19205 Kl =yl < Clown) T — ey

yield that

: 1

A< —— y(Q)(Ry )

kol S e (@) e

<[ [ gy -yl dedy o
poJo Q1 Ray)
1 1 1 1

< ———— Q)R slvl/ /—dmd —
S Wyt QTR T = g Y Q1 TR

L1

~AQI (1 + |1])led+hl
Let )\%Q = ‘Q|§|RQ’S‘§CJ%Q’ then

DU —
|)|a\+lvl

QT (1|1

Analysis Mathematica 49, 2023



BESOV SPACES, SCHATTEN CLASSES AND THE QUANTISED DERIVATIVE 995

and

1
K]( )X(QXRQS Z )\lQ ‘Q|1/2 1/7Q( ) |RQS‘1/2 Gl_;/7RQ,s(y)7
lezan ’

where F}7,Q(I) = e27ril7-5XQ( ) and Gl” (y) — 627riﬁ/'gXRQ,S (y) Then, we
get

K@—y) =YY Ki@—y)X@Qxha.) (@ V)

1
- Z Z Z >‘1Q |Q|1/2 l’,Q( )|RQ,S|1/2 Gﬁ’,RQ,S(y)‘

Qe s=1[cy2n

Thus, the kernel of w? [b, Rj](w_%) can be represented as

1 1
Ky (2,y) Z Z Z )\iQ|Q|1/2 : (@)
QeZ s=1 [cy2n

1 1

x Fy x) WG%,RQ,S(Q)W—E(Q)-

For each @ rewrite b(x) — b(y) as (b(z) — (b)kq) + ((b) kg — b(y)) yielding

M 1
Ky'(z,y) = C[w]A2<R") Z Z Z Z A%Q

Qe s=1 [gz2n m=0

(b(x) — bic@)"w? (1) Fy () (b — b(y)' w5 (1) Gy g, (v)
[w(Q)]? (@)

where K > 1 is the constant chosen such that K@ contains Q U Rg . We
introduce the notation

)

N =

1/r
ose, (b, Q) — [uc@rl / ) = Bl

@ with o, the reverse Holder exponent. Then

(b(z) — (b)) w
[w(Q)]?
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and
(b — b)) " w ()G 5. (¥)
Gy, = (osc. (b, Q —(1-m) . Qs 77
) = (05615, Q) e
Form =0,1,let 5 = %ﬁr)) and p = % It is clear that 8 > 2, p > 1, and

pp" = 2(1+ 0y). By Hélder’s inequality, Lemma 2.2, supp(Fj; Q) C Q, and
| F; QHoo < 1 yields that

HFf',Q,mHLB(R)

(b(z) — (b) k@)™ w
[w(@)]

(2)Fy (@)

(oscr (b, @)™

wi= o=

B 1/B
dx)

1 o' 75 .
S T d g
. <\KQ\ KQ ) x) @l

< Clw(Q)] ™ (oser (b, Q) <‘KQ‘ / KQde)m/r

1 1 1/2(140.) o
N +0w d < C T
) <\KQ\ ol @ x) Q1P < Clufayan, QI

We now consider Gl,, and use a method similar to the proof above.

(L

) 18
< Ol Q)] (oses (b, Q) ( / )~ Bl ) dx)

HGP',RQ,S,mHLﬂ(Rn)

1y ) KQ b(y))l‘mw‘i(y)Gp/,RQ,S(y) ‘de> /B
[w= ()]

(0sc, (b, @)

< Clw 1 (Q)]#|Q] (osc, (b, Q))~1—™

1 # 1 p'B »'B
X | —= b(x) — (b p(1-m)f d:v) <— w2z (y dy)
(‘KQ‘ [ )~ (tmcl 7 W

Analysis Mathematica 49, 2023



BESOV SPACES, SCHATTEN CLASSES AND THE QUANTISED DERIVATIVE 997

< Clw™(Q)]2|Q| (osc, (b, @)~ =™
1 1-m/r 1 m
< ( b(2) — (B xal” da:) ( w o) () dy)

KQ] Jio [KQl Jkq
o Ferm)
<clu @110 (g KQ‘”_(H%)(”dy)( |
) N —1 K 1/2 1_1
§[w_1(Q)]_2‘Q|B<%> SC[w]A2<Rn)vK|Q‘B .

where the last inequality comes from Lemma 2.1. Therefore,

w b, Ry](w™ =)

1 M
= C[w]Az(R") Z Z Z Z )\Qf OSCT(b, Q)<f, Glj/,RQ,S,m>F’lj7Q7m’

jez2n m=0 s=1 QP

where {G, 7 .} and {F,; } are NWO sequences and the coefficients
{)\QI} satisfy |\ L

Q,f| < YIGEE for all multi-indices «, € Z". Thus, by
(2.3), we have

2 Ral 0™ gy S 0560 (s @l

By [11, Theorem 1 and Remark (d)] (see also [29, Theorem 2.2]), we know
that osc,(b, Q) € £ follows from b € W™ (R™). Then w3 b, Rj](w_%) €
S0 (LQ(R”)). Hence, we are done with the proof of the sufficient condition
in Theorem 1.2.

5.2. Proof of the necessary condition. In this subsection, we as-
sume that [b, R;] € S™°°(L?(R™,w)), then prove that b € W1 (R").
First, choosing two cubes (Q and @ in &, as Lemma 3.3. Define

Jo(z,y) = QI K, (z — y)xo(x)xo(v)-

For K, 1(x — ), decomposing in a multiple Fourier series on @) x Q, we can
write

Kj_l(x —y) = Z C;:Qe%m‘l'-iezml”-ﬂ XQ(x) . XQ(W»
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where z; = C’S) +0Q)Zs, yi = C'g) +0Q)gi,i=1,2,...,n, 1=, l_i’) where

I/ = (i, 02,3 1n)y " = (lng1, lngo, - - -, loy), and the Fourier coefficient Cll

are given by

. 77~ T~ 1 1
= / / K-_l(x _ y)X R e—27rzl -me—27rzl Y dr dy — —.
077 JoJo T M@ @a

Similar to the estimate in the previous subsection, using

000K (2 — y)| < Cla, B) |z — y|" 1710,

Q| = |Q| and dist(Q, Q) ~ |Q| yields

; 1 1
ek — Q) W// 030 K- (v — y)| de dy
Lol = (e o) |@| ]

1
<1 gy BI/ / 2 — g1l =18 gy L
(1+ H)‘a'“ﬁ' |Q|| Q|
< Q e
@l (1+ |l|)\a|+\6|
where «, 8 € Z" are multi-indices. Therefore, we can denote )\] To = %cz

and then the estimate
| J | ;
Q' ~ (L [i])e+A
holds. Obviously,

1
Z )le ‘Q|l/2 l',Q( )|Q|1/2 Gl” A(y),

lez2n

where F}7,Q(x) _ e2wiﬁ-§XQ( ) and Gl” A( ) _ e2wiﬁ'.§XQ(y)_

Next, recall that for each Q € 2, there is Q in Z as in Lemma 3.3. We
set the function e, 5(2,y) = sgn(b(z) — b(y))xq(x)x(y). Define the oper-
ator Lg as

wh (@) Lo(w @) = [ whla)eg (o) olev)u W) () dy.

Considering an arbitrary sequence {aq}gecs € ¢l Here ¢»-1! is the
Lorentz sequence space defined as the set of all sequences {ag}ges such
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o
k=1
where the sequence {a}} is the sequence {|ag|} rearranged in a decreasing
order.

Define the operator L as

w (2)L(w ™= f)(2) = Y aqu: (z) Lo(w™ = f)().
Qe
Therefore, we also write

=

w

(@) L(w™? f) () = Clugay e, Z Z N 9(f Gp, o)y o(®),

where

GroW i) . Fpe@ui(

Groly) = —“——— and F o(a) = ———.
(w=1(Q))> (w(Q))>

By Lemma 2.2, and repeating the argument from inside the proof Proposi-

tion 3.1, they are NWO sequences. Thus, applying Lemma 2.7 gives

N[

Il gz (12 )y lw? L3 |

TN L RR)) =
Using the idea of [30, p. 262], we also can obtain

Trace(w? b, R;]Lo(w™}) :|Q|_2/Q/Q(b(:v)—

b(y
Q2 /Q /Q Ib(z) — b(y)| dy dz.

Trace( %[bR]LQ( % 2 \Q|/‘b

Neg.ole.y) dyd

Then we have

Therefore, by duality, there exists a sequence {ag}qgez With a2
such that

1 <1
16 s gy S 1M (B, Q) e S || Trace(w? [b, Rj] Lo

Nl
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= Z Trace(w :[b, R, i1 Lo(w™ 2)) -agQ
”aQ” oo 1<1 Qeg

= sup Trace(w%[b, Rj]L(w_%))
lagll 2y <1

1

< sup [jwil, RyJ(w ™))

Hw%L(w_%)‘

§mee (L2 (R™)) ST (12 (R™))

S s Bjlllseoe (22 @ w))

where the first inequality comes from [11, Theorem 1 and Remark (d)], see
also [30]. Hence, the proof of the necessary condition in Theorem 1.2 is
complete.

6. Discussion on the one dimensional case

When n = 1, Peller [25] obtained the following result in the unweighted
case:

THEOREM 6.1 [25]. For b € VMO(R), and 0 < p < oo, we have
16 H]ll 50 (22 (m)) = 16l B2 (&

1/p(R):

For p = 2, Lacey and the last two authors in [20] considered Schatten classes
and the commutator [b, H] in the two weight setting (see Theorem A in Sec-
tion 1). In [20, Section 7|, the authors raised two questions about the one
weight question in one dimension:

(i) For b € VMO(R), and 1 <p < oo. Is [|[b, H]|[sr(r2(w)) = I|bll Br» )

1/17
true?

(ii) Can the above conclusion be extended to 0 < p < 17

Similar to the proof of (1) in Theorem 1.1, we can give a positive answer
to problem (i). The reader can see that all of Section 3 works for n =1 and
replacing the Riesz transform with the Hilbert transform. The main details
are an equivalence with the Besov space and a dyadic counterpart and the
ability to study the commutator by the dyadic shift operator. Section 3 does
the analysis in the case of the Riesz transforms, but the case of the Hilbert
transform is similar, and in fact slightly easier since we can use Petermichl’s
Haar shift [26] and the resulting paraproducts in the one variable case are
easier to work with (there is no paraproduct like I', which required an addi-
tional argument). We omit the details. Coupling these results and making
the direct modifications in Section 3 exactly answers (i) above.

However, we can not come up with a good way to solve problem (ii) in
this paper because of the method used. There are a couple of obstacles in an-
swering this question using the methods from this paper. A first obstruction
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is that Lemma 2.5 is used to provide a lower bound for the Schatten norm
of the commutator [b, H|; resulting in the restriction that n =1 < p < oo.
Consequently, we lose a tool to study the case 0 < p <1 for [b, H].

While Section 4 does carry over to the case of n = 1, this section is unfor-
tunately not applicable to the situation for (ii). A main obstacle to handling
the case n =1 and 0 < p <1 is that the norm of the Besov space requires
more derivatives to characterize it. For n = 1, the corresponding Besov space

Bf}’; (R), p <1, is defined by

(6.1) BF(R)= {beBMO //\thkP (z)[P dxdt<oo},

where P;(b)(x) is the Poisson integral of b on R? and V = (0, 9;) and k must
satisfy k > %. In particular, because of the condition k£ > % one will have to

utilize a norm involving more derivatives. In [30, Section 5] it is pointed out
that b € Bf}p (R) implies that the sequence {osc(b,Q,r, K, L)} € /P where
L>1/p,1<r<oo, K>1,and

1 . 1/r
osc(b,Q,r, K,L) = degl(rlgf<L{‘KQ‘ KQ|b(:E)—P(3:)| d:v} , Qeg

with P(z) the corresponding polynomial of degree less than or equal to L.

Note that the norm (6.1) with & > 1/p does not connect to the norm we
introduced in (1.3) which essentially uses only a first derivative. In fact, the
norm in (1.3) for p > 1 is equivalent to the sequence {osc(b,Q,r, K)} € (P,
1<r<oo, K>1,and

1

1/r

osc(b,Q,r, K) = {

here we refer to [30, Section 4, pp. 266—267]. Moreover, the space given via
the norm in (1.3) for p > 1 coincides with the classical Besov space, we re-
fer to [31, Sections 2.2.2, 2.5.7]. The proof of Proposition 4.1 only handles
this simpler oscillation condition and not the one that is more closely con-
nected to the Besov space Bf}’; (R) and the oscillation condition involving
polynomials.

So, this remains an open problem. While Peller in [25] proved Theorem
6.1 by using Hankel operators exploiting the connection with analyticity, a
possible alternate approach will be to develop an alternate dyadic norm on
the Besov space but using a wavelet with more cancellation.
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7. An application: the quantised derivative

Let n > 1, and let xy,x2,...,2, be the coordinates of R". For j =
1,...,n, we define D; to be the derivative in the direction z;,
1 0
D= —-— =—i0,.
J ) axj J

When f € L*°(R") is not a smooth function then D;f denotes the distri-
butional derivative of f. We also consider D; as a self-adjoint operator
on L?(R") with its standard domain of square integrable functions with a
square integrable weak derivative in the direction x;. This is equivalent to
the closure of the symmetric operator D; restricted to Schwartz functions.
We use the notation Vf =i (Dyf, Daof,...,D,f) for an essentially bounded
function f € L*°(R™). For a square integrable function f with a square inte-
grable derivative in each direction we consider V as an unbounded operator
from L?(R™) to the Bochner space L?*(R"™,C").

Let N = 21"/2] . We use n-dimensional Euclidean gamma matrices, which
are N x N self-adjoint complex matrices 71, ..., 7, satisfying the anticom-
mutation relation

Yivk + Y = 205k, 1<,k <n,

where § is the Kronecker delta. The precise choice of matrices satisfying this
relation is unimportant so we assume that a choice is fixed for the rest of
the discussion.

Using this choice of gamma matrices, we can define the n-dimensional
Dirac operator by

n
D= Z v & Dj.
j=1
This is a linear operator on the Hilbert space CV ® L?(R") initially defined
with dense domain CV ® S(R"), where S(R") is the Schwartz space of func-
tions on R™. It is easily seen that D is symmetric on this domain. Taking
the closure we obtain a self-adjoint operator which we also denote by D. We
then define the sign of D as the operator sgn(D) via the Borel functional
calculus, i.e., sgn(D) = %.

Given f € L>(R"), denote by My the operator of pointwise multiplica-
tion by f on the Hilbert space L?(R™). The operator 1 ® M is a bounded lin-
ear operator on CV @ L? (R™), where 1 denotes the identity operator on CN.
The commutator

df :=i[sgn(D),1® My]
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denotes the quantised derivative of Alain Connes introduced in [7, IV]. It
is of particular interest in the quantised calculus to determine conditions
on f such that df € S™*°(CN @ L?(R")). The asymptotic behaviour of the
singular values of the quantised derivative denotes the dimension of the in-
finitesimal in the quantised calculus. That the sequence of singular values
belongs to the weak space £™°° when the dimension of the Euclidean space
is n indicates analogous behaviour between quantum derivatives and dif-
ferential forms. Specifically, a product of n derivatives lies in the space
SLoo(CN @ L*(R™)), which is the only weak space admitting a non-trivial
trace that acts as the integral.

In one dimension, necessary and sufficient conditions on f € L>(R) such
that [sgn(—i%), M) € SP4(CYN ® L* (R)) where p, q € (0,00] are provided
by Peller in [25, Chapter 4, Theorem 4.4]. Janson and Wolff [18], and Connes,
Sullivan and Teleman [8] have studied necessary and sufficient conditions for
df € SP4(CN @ L2(R"™)) with p,q € (0,00] in the higher dimensional case
n > 1. The case of p = ¢ was studied by Janson and Wolff in their paper
[18]. They proved that when p > n, a necessary and sufficient condition for
df € SP(CN ® L*(R™)) is that f is in the Besov space Bii)(R”). They also
show that if p < n, then df € SP if and only if f is a constant.

The case of p+#q with p € [l,00) and ¢ € [1,00] was answered by
Rochberg and Semmes in [30, Corollary 2.8, Theorem 3.4]. Necessary and
sufficient conditions on f € L*°(R™) are given so that

df € SP(CN ® L2(R")).

These conditions are given in terms of the mean oscillation of f, and it is
not obvious whether an equivalent condition could be given in terms of more
familiar function spaces. In the Appendix of Connes, Sullivan and Teleman’s
paper [8, p. 679], it is proved that necessary and sufficient conditions for
df € S (CN @ L*(R")) are that f € LL _(R") and Vf € L"(R",C").

Recently, Lord-McDonald-Sukochev—Zanin [22] gave a different proof
of this result under the assumption that f & L°°(R™) using double op-
erator integrals. Their method gave sharp bounds on the quasinorm
ldf] Sme(CN@L2(Rr))- For the morm Vf € L™(R™,C"), they implicitly as-
sumed that the essentially bounded function f has weak partial derivatives
and that the Bochner norm of Vf in L™(R"™,C"),

1/n n 1/n
9l = ([ 10@IRa) = ([ T inssaras)
j=1

is finite. The key step that they established is a new trace formula described
as follows, which is analogous to Connes [6].
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Recall that a trace on SH>°(CN ® L?(R")) is a linear functional
@: SH°(CY @ L2(R")) — C

such that ¢([A, B]) = 0 for all bounded operators A and for all operators
B € 81 (CYN @ L*(R™)). The trace ¢ is called continuous when it is contin-
uous with respect to the $1°°(CN @ L?(R")) quasinorm. Given an orthonor-
mal basis {e,, }>°, of CV @ L?(R"), define the operator T := diag{n%rl}zozo

by (en,Tem) = Onm L The linear functional ¢ is called normalised when

n+1-
1 e’}
diog{ ) ) =1
cp( 188 n+1Jn=0

The property that ¢ is normalised is independent of the choice of orthonor-
mal basis, since for all unitary operators U and all bounded operators B we
have o(UBU*) = p(B).

PROPOSITION 7.1 [22]. Let f € L*(R") be real valued and such that
Vfe L"(R" C"). Then there is a constant ¢, > 0 such that for any contin-
uous normalised trace ¢ on SH°(CN @ L2(R™)) we have

Pdf") = o [ 1953 e

Proposition 7.1 is the analogue of [6, Theorem 3(3)] for functions on the
non-compact manifold R”. It is also stated for a larger class of functions
than [6, Theorem 3(3)] which is proved for smooth functions. Based on this
trace formula, in [22] they obtained that

PROPOSITION 7.2 [22]. Let n>1 and f € L>°(R"™). Then, for df €
S (CN ® L2(R™)), it is necessary and sufficient that Vf € L™(R™, C").
Further, there exist positive constants ¢ and C depending only on n such
that

IV Ellr@ecny < Nldflsmecvorz@nyy < CIV Il Ln@e cn-

From our Theorem 1.2, we have the following result in this direction:

THEOREM 7.3. Suppose n>1, f € VMO(R"™), w € Ay.  Then df €
S (CN @ L2(w)) if and only if f € WH™(R™). Moreover,

||Jf||5"vm(CN®L2(w)) ~ Hf”Wl,n(Rn)'

PROOF. We provide the details of the link between df and [f, VA~1/?],
where A is the standard Laplacian on R™. In fact, from the definition of D
and the property of these self-adjoint complex matrices vy, ..., Vo, We see
that

D= —-1®A.
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Moreover, sgn(D) which can equivalently be expressed as

sgn(D) = Z’yj ® D;ATY? = Z'yj ® Rj,
j=1 j=1

where R; is the jth Riesz transform. Hence,

df = i[sgn(D), 1 ® My :z’[zwj ®Rj,1®Mf} =i [y ®R;,1® My]
j=1 j=1

=iy (v @ RMy— ;@ MpR;) =iy v @ [R;, My].
Jj=1 j=1

Thus, the result follows from Theorem 1.2. [
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