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Abstract. In this paper, we establish the Schatten class and endpoint weak
Schatten class estimates for the commutator of Riesz transforms on weighted L

2

spaces. As an application a weighted version for the estimate of the quantised
derivative introduced by Alain Connes and studied recently by Lord–McDonald–
Sukochev–Zanin and Frank–Sukochev–Zanin is provided.

1. Introduction

The commutator [b, T ] of the singular integral operator T with a sym-
bol b, which is defined by

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x),

has played a vital role in harmonic analysis, complex analysis, and partial
differential equations. We refer to the fundamental work by Nehari [24],
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Calderón [2], and Coifman–Rochberg–Weiss [5]. It has been extensively
studied by many authors in different aspects with various applications, see
for example [3,4,16,25].

Besides the boundedness and compactness, the Schatten class estimates
of the commutator have been an important topic, as it connects to non-
commutative analysis. For example, the commutator of the Riesz transforms
[b,Rj ], j = 1, . . . , n, links to the quantised derivative

d̄b := i
[

sgn(D), 1⊗Mb

]

of Alain Connes introduced in [7, Chapter IV], where Mb is the multipli-
cation operator defined as Mbf(x) = b(x)f(x). This has been intensively
studied in [10,12,13,18,22,30]. We note that in [22] they implemented a new
approach to prove that for b ∈ L∞(Rn), d̄b is in the weak Schatten class if
and only if b is in the Sobolev space.

In [20], the authors have considered the Schatten class estimate of the
commutator of the Hilbert transform in the two-weight setting, along the
line in [1] and [19], and made a fundamental first step.

Theorem A. Let H be the Hilbert transform on R, μ, λ ∈ A2(R) and

set ν = μ
1

2λ− 1

2 . Suppose b ∈ VMO(R), then the commutator [b,H] belong to

S2(L2
λ(R), L

2
μ(R)) if and only if b ∈ B2

ν(R).

As observed in [20], the full characterization of Schatten class estimates
of [b,H] is not known, nor, the full characterization for the commutator of
Riesz transforms. In fact, even the one weight setting has not been charac-
terized before leading to the problem considered in this paper of determining
the characterization of the Schatten class Sp (0 < p < ∞) of the commuta-
tor of Riesz transforms in the one-weight setting. Here, we will consider
the Schatten–Lorentz membership of the commutators acting on weighted
spaces L2(w) for w in the Muckenhoupt A2 class. The main approach used
in this paper is based around dyadic harmonic analysis, the decomposition
of the cubes via the median of a VMO function, and the use of nearly weakly
orthonormal sequences from [30].

To state our result, we first recall the Schatten classes. Let G1 and G2 be
separable complex Hilbert spaces. Suppose T is a compact operator from G1

to G2 and T ∗ the adjoint operator. It is clear that |T | = (T ∗T )
1

2 is a compact,
self-adjoint, and non-negative operator on G1. Let (ψk)k, k ∈ Z+, be an
orthonormal basis for G1 consisting of the eigenvectors of |T |, and let sk(T )
be the eigenvalue corresponding to the eigenvector ψk. The numbers s1(T )
≥ s2(T ) ≥ · · · ≥ sn(T ) ≥ · · · ≥ 0, are called the singular values of T .

If 0 < p < ∞, 0 < q ≤ ∞ and the sequence of singular values is �p,q-
summable (with respect to a weight), then T is said to belong to the
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Schatten–Lorentz class Sp,q(G1,G2). That is, T ∈ Sp,q(G1,G2) if and only if

‖T‖Sp,q(G1,G2) =

(

∑

k∈Z+

(sk(T ))
q (1 + k)

q

p
−1

)1/q

, q < ∞,

and

‖T‖Sp,∞(G1,G2) = sup
k∈Z+

sk(T )(1 + k)1/p, q = ∞.

Set, Sp,p(G1,G2) = Sp(G1,G2). Moreover, see for example [25], we also have

Sp1,q1(G1,G2) ⊂ Sp2,q2(G1,G2) for allq1, q2 if p1 < p2,(1.1)

Sp,q1(G1,G2) ⊂ Sp,q2(G1,G2) if q1 < q2.(1.2)

If G1 = G2 = G, we will simply write Sp,q(G,G) = Sp,q(G).
Suppose w ∈ A2, which will be defined in the next section. It is easy to

see that [b,Rj ] is bounded, respectively compact on L2(Rn, w), if and only
if b is in BMO, respectively VMO; see for example [3]. We now consider the
Besov space Bp,p

n/p(R
n), 0 < p < ∞, defined as the set of b ∈ L1

loc(R
n) such

that

(1.3) ‖b‖Bp,p
n/p(R

n) :=

(
∫

Rn

∫

Rn

|b(x) − b(y)|p
|x− y|2n dy dx

)1/p

< ∞.

Note that Bp,p
n/p(R

n) ⊂ VMO(Rn). Thus, for b ∈ Bp,p
n/p(R

n), [b,Rj ] is both

bounded and compact. Our first result then provides a characterization of
when the commutator is in the Schatten class Sp(L

2(w)) in terms of mem-
bership of the symbol in the Besov space Bp,p

n/p(R
n):

Theorem 1.1. Suppose n > 1, 0 < p < ∞, w ∈ A2 and b ∈ VMO(Rn).
Then for any j = 1, 2, . . . , n, the commutator [b,Rj ] ∈ Sp(L2(Rn, w)) if and

only if

(1) b ∈ Bp,p
n/p(R

n) for n < p < ∞. Moreover, we have ‖b‖Bp,p
n/p(R

n) ≈
‖[b,Rj ]‖Sp(L2(Rn,w));

(2) b is a constant when 0 < p ≤ n.

In Theorem 1.1, we note that there is a “cut-off” in the sense that the
function space collapses to constants when p is less than the critical in-
dex, p = n, of the dimension. This suggests that at the endpoint p = n
there might be a more interesting phenomenon going on when one replaces
membership in the Schatten–Lorentz space by its membership in weak-type
versions. This leads to the following result at the critical index.
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Theorem 1.2. Suppose n > 1, b ∈ VMO(Rn), w ∈ A2. Then for any

j = 1, 2, . . . , n, the commutator [b,Rj ] ∈ Sn,∞(L2(Rn, w)) if and only if b ∈
Ẇ 1,n(Rn). Moreover,

‖b‖Ẇ 1,n(Rn) ≈ ‖[b,Rj ]‖Sn,∞(L2(Rn,w)).

Here Ẇ 1,n(Rn) is the homogeneous Sobolev space on Rn defined by Ẇ 1,n(Rn)
= {b∈(S(Rn))′ : ∇b ∈ Ln(Rn)} with the seminorm ‖b‖Ẇ 1,n(Rn)=‖∇b‖Ln(Rn).

Once we have this, we provide a new application to the quantised deriva-
tive of Connes, which is the following result:

Theorem 1.3. Suppose n > 1, f ∈ VMO(Rn), w ∈ A2. Then d̄f ∈
Sn,∞(CN ⊗ L2(w)) if and only if f ∈ Ẇ 1,n(Rn). Moreover,

‖d̄f‖Sn,∞(CN⊗L2(w)) ≈ ‖f‖Ẇ 1,n(Rn).

Details of the proof of this application and how it follows immediately
from Theorem 1.2 are given in Section 7.

The rest of this paper is organized as follows. Section 2 provides prelim-
inary background information and notation. The proof of Theorem 1.1 is
started in Section 3 where the proof of (1) in Theorem 1.1 is given. In Sec-
tion 4, we give the proof of (2) of Theorem 1.1, and Section 5 provides the
proof of Theorem 1.2. In Section 6, we discuss the one-dimensional case.

Throughout this paper, using A � B and A � B to denote the statement
that A ≤ CB and A ≥ CB for some constant C > 0, and A ≈ B to denote
the statement that A � B and A � B. The letter “C” will denote a positive
constant whose value can change at each appearance. As usual, for p ≥ 1,
1
p + 1

p′ = 1, and �(Q) denotes the sidelength of Q.

2. Preliminaries

2.1. A2 weights. We now recall the definition of Muckenhoupt weights.

Definition 2.1. Let w(x) be a nonnegative locally integrable function
on Rn. We say w is an A2 weight, written w ∈ A2(R

n), if

[w]A2
:= sup

Q

1

|Q|

∫

Q
w(x) dx · 1

|Q|

∫

Q
w(x)−1 dx < ∞.

Here the supremum is taken over all cubes Q ⊂ Rn. The quantity [w]A2
is

called the A2 constant of w.

It is well known that A2(R
n) weights are doubling. Namely,
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Lemma 2.1 [14]. Let w ∈ A2(R
n). Then for every λ > 1 and for every

cube Q ⊂ Rn,

w(λQ) � λ2nw(Q).

In this article, we will also use the reverse Hölder inequality for A2(R
n)

weights.

Lemma 2.2 [14]. Let w ∈ A2(R
n). There is a reverse Hölder exponent

σw > 0, such that for every cube Q ⊂ Rn

(2.1)

[

1

|Q|

∫

Q
w1+σw (x) dx

]
1

1+σw

�
w(Q)

|Q| .

2.2. Dyadic systems in Rn.

Definition 2.2. Let the collection D0 = D0(Rn) denote the standard
system of dyadic cubes on Rn, where

D
0(Rn) =

⋃

k∈Z
D

0
k (R

n)

with

D
0
k (R

n) =
{

2−k([0, 1)n +m) : k ∈ Z, m ∈ Z
n
}

.

Next, we recall a shifted system of dyadic cubes on Rn.

Definition 2.3 [17]. For ω = (ω1, ω2, . . . , ωn) ∈
{

0, 13 ,
2
3

}n
, define the

shifted dyadic system Dω = Dω(Rn),

D
ω(Rn) =

⋃

k∈Z
D

ω
k (R

n),

where

D
ω
k (R

n) = {2−k([0, 1)n +m+ (−1)kω) : k ∈ Z, m ∈ Z
n}.

It is straightforward to check that Dω inherits the nestedness property
of D0: if Q,Q′ ∈ Dω, then Q ∩Q′ ∈ {Q,Q′,∅}. See [17] for more details.
When the particular choice of ω is unimportant, the notation D is sometimes
used for a generic dyadic system.

2.3. An expression of Haar functions. Next we recall the Haar
basis on Rn. For any dyadic cube Q ∈ D , there exist dyadic intervals I1,
I2, . . . , In on R with common length l(Q), such that Q = I1 × I2 × · · · × In.
Then Q is associated with 2n Haar functions:

hε
Q(x) := h

(ε1,ε2,...,εn)
I1×I2×···×In

(x1, x2, . . . , xn) :=

n
∏

i=1

h
(εi)
Ii

(xi)
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where ε = (ε1, ε2, . . . , εn) ∈ {0, 1}n and

h
(1)
Ii

:=
1√
Ii
χIi and h

(0)
Ii

:=
1√
Ii
(χIi− − χIi+).

Writing ε ≡ 1 when εi ≡ 1 for all i = 1,2, . . . , n, h1
Q := 1√

Q
χQ is noncancella-

tive; on the other hand, when ε �≡ 1, the rest of the 2n − 1 Haar functions
hε
Q associated with Q satisfy the following properties.

Lemma 2.3. For ε �≡ 1, we have

(1) hε
Q is supported on Q and

∫

Rn h
ε
Q(x) dx = 0;

(2) hε
Q is constant on each R ∈ ch(Q), where ch(Q) = {R ∈ Dk+1 :

R ⊆ Q} denotes the dyadic sub-cubes of the cube Q ∈ Dk;

(3) 〈hε
Q, h

η
Q〉 = 0, for ε �≡ η;

(4) if hε
Q �= 0, then

‖hε
Q‖Lp(Rn) = |Q|

1

p
− 1

2 for 1 ≤ p ≤ ∞;

(5) ‖hε
Q‖L1(Rn) · ‖hε

Q‖L∞(Rn) = 1;

(6) the average of a function b over a dyadic cube Q, 〈b〉Q := 1
|Q|
∫

Q b(x)dx

can be expressed as

〈b〉Q =
∑

P∈D,Q�P
ε 	≡1

〈b, hε
P 〉hε

P (Q)

where hε
P (Q) is a constant.

(7) fixing a cube Q, and expanding b in the Haar basis, we have

(b(x)− 〈b〉Q)χQ(x) =
∑

R∈D,R⊂Q
ε 	≡1

〈b, hε
R〉hε

R;

(8) the conditional expectation of a locally integrable function b on Rn

with respect to the increasing family of σ−algebras σ(Dk) is given by the
expression:

Ek(b)(x) =
∑

Q∈Dk

〈b〉QχQ(x), x ∈ R
n,

where 〈b〉Q is the average of b over Q as defined in (6) above. Note that we
have

Ek+1(b)(x)− Ek(b)(x) =
∑

Q∈Dk

∑

ε 	≡1

〈b, hε
Q〉hε

Q(x).
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2.4. Characterization of Schatten class. In 1989, Rochberg and
Semmes introduced the notion of nearly weakly orthogonal (NWO) sequences
of functions contained in the following definition, see [30].

Definition 2.4. Let {eQ}Q∈D be a collection of functions. We say
{eQ}Q∈D is a NWO sequence, if supp eQ ⊂ Q and the maximal function f∗

is bounded on Lp(Rn), where f∗ is defined as

f∗(x) = sup
Q

|〈f, eQ〉|
|Q|1/2 χQ(x).

In this paper, we work with weighted versions of NWO sequences. We
will use the following result proved by Rochberg and Semmes.

Lemma 2.4 [30]. If the collection of functions {eQ : Q ∈ D} are sup-

ported on Q and satisfy for some 2 < r < ∞, ‖eQ‖r � |Q|1/r−1/2, then
{eQ}Q∈D is an NWO sequence.

NWO sequences are very useful in studying Schatten class properties of
operators. In [30], Rochberg and Semmes developed a substitute for the
Schmidt decomposition of the operator T . If an operator T has a represen-
tation of the form

(2.2) T =
∑

Q∈D

λQ〈·, eQ〉fQ

with {eQ}Q∈D and {fQ}Q∈D being NWO sequences and {λQ}Q∈D is a se-
quence of scalars. It is easy to see that

(2.3) ‖T‖Sp,q(G) � ‖λQ‖�p,q , 0 < p < ∞, 0 < q < ∞.

A sort of converse also holds. When 1 < p = q < ∞, Rochberg and Semmes
also obtained:

Lemma 2.5 [30]. For any (bounded) compact operator T on L2(Rn) and
{eQ}Q∈D and {fQ}Q∈D NWO sequences, then for 1 < p < ∞,

[

∑

Q∈D

|〈TeQ, fQ〉|p
]1/p

� ‖T‖Sp(L2(Rn)).

Lacey and the last two authors in [20] provided a relationship between
Schatten norms on weighted and unweighted L2(R) (which also generalizes
to Rn).

Lemma 2.6 [20]. Suppose 1 ≤ p < ∞, and w ∈ A2(R
n). Then T belongs

to Sp(L2(Rn, w)) if and only if w
1

2Tw− 1

2 belong to Sp(L2(Rn)). Moreover,

‖T‖Sp(L2(Rn,w)) ≈ ‖w 1

2Tw− 1

2 ‖Sp(L2(Rn)).
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Using this Lemma from [20], we can also obtain the following result.

Lemma 2.7. Suppose 1 ≤ p < ∞, and w ∈ A2(R
n). Then T belongs to

Sp,∞(L2(Rn, w)) if and only if w
1

2Tw− 1

2 belong to Sp,∞(L2(Rn)). Moreover,

‖T‖Sp,∞(L2(Rn,w)) ≈
∥

∥w
1

2Tw− 1

2

∥

∥

Sp,∞(L2(Rn))
.

2.5. Description of the Besov space.

Definition 2.5. Suppose 0 < p, q < ∞ and 0 < α < 1. Let b ∈ L1
loc(R

n).
Then b belongs to the Besov space Bp,q

α (Rn) if and only if

(
∫

Rn

(
∫

Rn

|b(x)− b(y)|p

|x− y|
p

q
n+pα

dy

)q/p

dx

)1/q

< ∞.

In particular, note that if α = n
p and p = q then

‖b‖Bp,p
n/p(R

n) :=

(
∫

Rn

∫

Rn

|b(x)− b(y)|p
|x− y|2n dy dx

)1/p

.

Useful in the proof below will be dyadic norms and so we give the norm
of the dyadic Besov space next.

Definition 2.6. Suppose 0 < p < ∞. Let b ∈ L1
loc(R

n) and D be an
arbitrary dyadic system in Rn. Then b belongs to the dyadic Besov space
Bp

d(R
n,D) if and only if

‖b‖Bp
d(R

n,D) :=

(

∑

Q∈D

ε 	≡1

(

|〈b, hε
Q〉||Q|− 1

2

)p
)1/p

< ∞.

Suppose w ∈ A2(R
n). By the definition of A2(R

n) weights, we obtain
that

w(Q)w−1(Q)

|Q||Q| ≈ 1.

Then we have an equivalent norm on this dyadic space given by

‖b‖pBp
d(R

n,D) =
∑

Q∈D

ε 	≡1

(

|〈b, hε
Q〉||Q|− 1

2

)p

≈
∑

Q∈D

ε 	≡1

(

w(Q)
1

2 (w−1(Q))
1

2 |〈b, hε
Q〉|

|Q| 32

)p

≈
∑

Q∈D

ε 	≡1

( |〈b, hε
Q〉||Q| 12

w(Q)
1

2 (w−1(Q))
1

2

)p

.
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Key to our analysis will be the fact that a suitable family of dyadic norms
is equivalent to the norm in the continuous setting, the content of the next
lemma.

Lemma 2.8. Suppose w ∈ A2(R
n), n < p < ∞. There are dyadic sys-

tems Dω, ω ∈
{

0, 13 ,
2
3

}n
, such that

⋂

ω∈{0, 1
3
, 2
3
}n

Bp
d(R

n,Dω) = Bp,p
n/p(R

n),

with
∑

ω∈{0, 1
3
, 2
3
}n

‖b‖Bp
d(R

n,Dω) ≈ ‖b‖Bp,p
n/p(R

n).

Proof. On the one hand, we first prove the dyadic Besov norm is dom-
inated by the continuous Besov norm, that is, for every ω ∈

{

0, 13 ,
2
3

}n
,

‖b‖Bp
d(R

n,Dω) � ‖b‖Bp,p
n/p(R

n).

Choose a dyadic cube Q ∈ Dω. Let Q̂ = Q+ {2�(Q)}n. By applying Lemma
2.3 and Hölder’s inequality, we have

|〈b, hε
Q〉||Q|− 1

2 �

∣

∣

∣

∣

∫

Q
b(x)hε

Q(x) dx

∣

∣

∣

∣

|Q̂|
|Q| 32

�

∫

Q̂

∫

Q

∣

∣b(x)− b(y)
∣

∣|hε
Q(x)| dx dy|Q|− 3

2

�

(
∫

Q̂

∫

Q

|b(x)− b(y)|p
|x− y|2n dx dy

)1/p(∫

Q̂

∫

Q
|hε

Q(x)|p
′

dx dy

)1/p′

|Q|−
2

p′
+ 1

2

�

(
∫

Q̂

∫

Q

|b(x) − b(y)|p
|x− y|2n dx dy

)1/p

.

Hence, we can obtain

‖b‖pBp
d(R

n,Dω) =
∑

Q∈Dω

ε 	≡1

(|〈b, hε
Q〉||Q|− 1

2 )
p
�
∑

Q∈Dω

∫

Q̂

∫

Q

|b(x)− b(y)|p
|x− y|2n dx dy

�
∑

k∈Z

∑

Q∈Dω
k

∫

Q

∫

{y∈Rn:2−k≤|x−y|≤3·2−k}

|b(x)− b(y)|p
|x− y|2n dy dx � ‖b‖pBp,p

n/p(R
n).
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On the other hand, we need to show that

(2.4) ‖b‖Bp,p
n/p(R

n) �
∑

ω∈{0, 1
3
, 2
3
}n

‖b‖Bp
d(R

n,Dω).

Observe that

‖b‖pBp,p
n/p(R

n) =

∫

Rn

∫

Rn

|b(x)− b(y)|p
|x− y|2n dy dx

=
∑

k∈Z

∑

Q∈Dk

∫

Q

∫

{y∈Rn:2−k<|x−y|≤2−k+1}

|b(x)− b(y)|p
|x− y|2n dy dx

≤
∑

k∈Z

∑

Q∈Dk

∫

Q

∫

{y∈Rn:0<|x−y|≤3·2−k}

|b(x)− b(y)|p
|x− y|2n dy dx.

It is clear that for x ∈ Q, that {y ∈ Rn : 0 < |x− y| ≤ 3 · 2−k} ⊂ 7Q. Then
there is Jω ∈ Dω such that

7Q ⊂
⋃

ω∈{0, 1
3
, 2
3
}n

Jω,

(see for example [17]). Then, we have

‖b‖Bp,p
n/p(R

n) �

(

∑

ω∈{0, 1
3
, 2
3
}n

∑

Jω∈Dω

1

|Jω|2
∫

Jω

∫

Jω

|b(x)− b(y)|p dy dx
)1/p

≤
(

∑

ω∈{0, 1
3
, 2
3
}n

∑

Jω∈Dω

1

|Jω|2
∫

Jω

∫

Jω

|b(x)− 〈b〉Jω |p dx dy
)1/p

+

(

∑

ω∈{0, 1
3
, 2
3
}n

∑

Jω∈Dω

1

|Jω|2
∫

Jω

∫

Jω

|b(y)− 〈b〉Jω |p dy dx
)1/p

= 2

(

∑

ω∈{0, 1
3
, 2
3
}n

∑

Jω∈Dω

1

|Jω|

∫

Jω

|b(x)− 〈b〉Jω |p dx
)1/p

=: 2I.

To continue, we first denote

Eω
k (b)(x) :=

∑

Jω∈Dω
k

〈b〉JωχJω(x).
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Then we have

I =

(

∑

ω∈{0, 1
3
, 2
3
}n

∞
∑

k=−∞

∑

Jω∈Dω
k

1

|Jω|

∫

Jω

∣

∣b(x)− Eω
k (b)(x)

∣

∣

p
dx

)1/p

(2.5)

≤
(

∑

ω∈{0, 1
3
, 2
3
}n

∞
∑

k=−∞
2kn

∑

Jω∈Dω
k

∫

Jω

∣

∣b(x)− Eω
k+1(b)(x)

∣

∣

p
dx

)1/p

+

(

∑

ω∈{0, 1
3
, 2
3
}n

∞
∑

k=−∞
2kn

∑

Jω∈Dω
k

∫

Jω

∣

∣Eω
k+1(b)(x)−Eω

k (b)(x)
∣

∣

p
dx

)1/p

=: I1+I2.

We consider I2. Note that for x ∈ Jω, that

Eω
k+1(b)(x)−Eω

k (b)(x) =

(

∑

ε 	≡1

〈b, hε
Jω〉hε

Jω(x)

)

χJω(x)

via definition of the conditional expectation and the connection with the
Haar functions. Using this fact and continuing the estimate we have

I2 =

(

∑

ω∈{0, 1
3
, 2
3
}n

∑

Jω∈Dω

1

|Jω|

∫

Jω

∣

∣

∣

∣

∑

ε 	≡1

〈b, hε
Jω〉hε

Jω(x)

∣

∣

∣

∣

p

dx

)1/p

(2.6)

�

(

∑

ω∈{0, 1
3
, 2
3
}n

∑

Jω∈Dω

∑

ε 	≡1

1

|Jω|

∫

Jω

∣

∣〈b, hε
Jω〉
∣

∣

p∣
∣hε

Jω(x)
∣

∣

p
dx

)1/p

�

(

∑

ω∈{0, 1
3
, 2
3
}n

∑

Jω∈Dω

∑

ε 	≡1

∣

∣〈b, hε
Jω〉
∣

∣

p

|Jω| p2

)1/p

�
∑

ω∈{0, 1
3
, 2
3
}n

‖b‖Bp
d(R

n,Dω),

where the implicit constant depends on p and n.
Moreover, from the estimate of I2 we also see that for each k,

(

∑

ω∈{0, 1
3
, 2
3
}n

2kn
∑

Jω∈Dω
k

∫

Jω

∣

∣Eω
k+1(b)(x)− Eω

k (b)(x)
∣

∣

p
dx

)1/p

≤
∑

ω∈{0, 1
3
, 2
3
}n

‖b‖Bp
d(R

n,Dω),

which gives that
(

∑

ω∈{0, 1
3
, 2
3
}n

∑

Jω∈Dω
k

∫

Jω

∣

∣Eω
k+1(b)(x)−Eω

k (b)(x)
∣

∣

p
dx

)1/p
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≤ 2−kn/p
∑

ω∈{0, 1
3
, 2
3
}n

‖b‖Bp
d(R

n,Dω).

This implies that for any large positive integer M ,

(

∑

ω∈{0, 1
3
, 2
3
}n

∑

Jω∈Dω
k

∫

Jω

∣

∣b(x)−Eω
M+1(b)(x)

∣

∣

p
dx

)1/p

(2.7)

≤
∞
∑

k=M+1

(

∑

ω∈{0, 1
3
, 2
3
}n

∑

Jω∈Dω
k

∫

Jω

∣

∣Eω
k+1(b)(x)− Eω

k (b)(x)
∣

∣

p
dx

)1/p

≤ C 2−(M+1)n/p
∑

ω∈{0, 1
3
, 2
3
}n

‖b‖Bp
d(R

n,Dω).

Then to continue, we take a truncation of I at the level −L and M for large
positive integers L and M :

IL,M =

(

∑

ω∈{0, 1
3
, 2
3
}n

M
∑

k=−L

∑

Jω∈Dω
k

1

|Jω|

∫

Jω

∣

∣b(x)−Eω
k (b)(x)

∣

∣

p
dx

)1/p

≤ I1,L,M + I2,

where

I1,L,M :=

(

∑

ω∈{0, 1
3
, 2
3
}n

M
∑

k=−L

2kn
∑

Jω∈Dω
k

∫

Jω

∣

∣b(x)−Eω
k+1(b)(x)

∣

∣

p
dx

)1/p

.

Via the decomposition Jω ∈ Dω
k into subcubes in Dω

k+1 we see that

I1,L,M =

(

∑

ω∈{0, 1
3
, 2
3
}n

M
∑

k=−L

2−n2(k+1)n
∑

Jω∈Dω
k+1

∫

Jω

∣

∣b(x)−Eω
k+1(b)(x)

∣

∣

p
dx

)1/p

=

(

∑

ω∈{0, 1
3
, 2
3
}n

M+1
∑

k=−L+1

2−n · 2kn
∑

Jω∈Dω
k

∫

Jω

∣

∣b(x)− Eω
k (b)(x)

∣

∣

p
dx

)1/p

≤ 2−
n

p

(

∑

ω∈{0, 1
3
, 2
3
}n

M
∑

k=−L+1

2kn
∑

Jω∈Dω
k

∫

Jω

∣

∣b(x)−Eω
k (b)(x)

∣

∣

p
dx

)1/p

+

(

∑

ω∈{0, 1
3
, 2
3
}n

2Mn
∑

Jω∈Dω
k

∫

Jω

∣

∣b(x)−Eω
M+1(b)(x)

∣

∣

p
dx

)1/p
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≤ 2−
n

p I1,L,M + C2Mn/p2−(M+1)n/p
∑

ω∈{0, 1
3
, 2
3
}n

‖b‖Bp
d(R

n,Dω),

where the last inequality follows from (2.7). Since 2−
n

p < 1, absorbing the
first term on the right hand side back into the left hand side and simplifying
implies that for every L and M ,

I1,L,M �
∑

ω∈{0, 1
3
, 2
3
}n

‖b‖Bp
d(R

n,Dω),

where the implicit constant is independent of L and M , but does depend
upon n and p. Hence, letting M and L go to ∞ the above argument gives
that I1 �

∑

ω∈{0, 1
3
, 2
3
}n ‖b‖Bp

d(R
n,Dω), which, together with (2.6), gives

I �
∑

ω∈{0, 1
3
, 2
3
}n

‖b‖Bp
d(R

n,Dω).

Thus, we see that (2.4) holds completing the proof of Lemma 2.8. �

3. Proof of (1) in Theorem 1.1

From Lemma 2.8 we know that the continuous Besov space is the inter-
section of 3n dyadic Besov spaces with n < p < ∞. Thus, the proof of (1) in
Theorem 1.1 can be completed by discussing the following two properties.

Proposition 3.1. For n < p < ∞, let w ∈ A2(R
n), and b ∈ VMO(Rn)

with

‖[b,Rj ]‖Sp(L2(Rn,w)) < ∞.

Then we have

‖b‖Bp
d(R

n) � ‖[b,Rj ]‖Sp(L2(Rn,w)).

Proposition 3.2. For n < p < ∞, suppose that w ∈ A2(R
n), and b ∈

Bp,p
n/p(R

n), then we have

‖[b,Rj ]‖Sp(L2(Rn,w)) � ‖b‖Bp,p
n/p(R

n).

3.1. Proof of Proposition 3.1. Below, we consider cubes Q ∈ D , a
fixed dyadic system. To prove Proposition 3.1, we first need to use a known
result.

Lemma 3.3. For each dyadic cube Q, there exists another dyadic cube Q̂
such that
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(i) |Q| = |Q̂|, and dist(Q, Q̂) ≈ |Q|.
(ii) The kernel of the Riesz transform Kj(x− x̂) does not change sign for

all (x, x̂) ∈ Q× Q̂, and

(3.1) |Kj(x− x̂)| � 1

|Q| .

Let mb(Q̂) be a median value of b over Q̂ (see for example the definition

in [23]). This means mb(Q̂) is a real number such that

(3.2) max
{

∣

∣{y ∈ Q̂ : b(y) < mb(Q̂)}
∣

∣,
∣

∣{y ∈ Q̂ : b(y) > mb(Q̂)}
∣

∣

}

≤ |Q̂|/2.

By
∫

Q hε
Q(x) dx = 0 and using (3.2), a simple calculation gives

∣

∣

∣

∣

∫

Q
b(x)hε

Q(x) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Q
(b(x)−mb(Q̂))hε

Q(x) dx

∣

∣

∣

∣

≤ 1

|Q| 12

∫

Q

∣

∣b(x)−mb(Q̂)
∣

∣ dx

≤ 1

|Q| 12

∫

Q∩EQ
1

∣

∣b(x)−mb(Q̂)
∣

∣ dx+
1

|Q| 12

∫

Q∩EQ
2

∣

∣b(x)−mb(Q̂)
∣

∣ dx

=: TermQ
1 +TermQ

2 .

Where

EQ
1 :=

{

x ∈ Q : b(x) < mb(Q̂)
}

and EQ
2 :=

{

x ∈ Q : b(x) ≥ mb(Q̂)
}

.

Now we denote

F Q̂
1 :=

{

y ∈ Q̂ : b(y) ≥ mb(Q̂)
}

and F Q̂
2 :=

{

y ∈ Q̂ : b(y) ≤ mb(Q̂)
}

.

Then by the definition of mb(Q̂), we have |F Q̂
1 |= |F Q̂

2 | ≈ |Q̂| and F Q̂
1 ∪ F Q̂

2

= Q̂.

Note that for s = 1, 2, if x ∈ EQ
s and y ∈ F Q̂

s , then
∣

∣b(x)−mb(Q̂)
∣

∣ ≤
∣

∣b(x)−mb(Q̂)
∣

∣+
∣

∣mb(Q̂)− b(y)
∣

∣

= |b(x)−mb(Q̂) +mb(Q̂)− b(y)| = |b(x)− b(y)|.

Therefore, for s = 1, 2, by using (3.1) and by the fact that |F Q̂
s | ≈ |Q|, we

have

TermQ
s �

1

|Q| 12

∫

Q∩EQ
s

∣

∣b(x)−mb(Q̂)
∣

∣ dx
|F Q̂

s |
|Q|
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=
1

|Q| 12

∫

Q∩EQ
s

∫

F Q̂
s

∣

∣b(x)−mb(Q̂)
∣

∣

1

|Q| dy dx

�
1

|Q| 12

∫

Q∩EQ
s

∫

F Q̂
s

∣

∣b(x)−mb(Q̂)
∣

∣|Kj(x− y)| dy dx

�
1

|Q| 12

∫

Q∩EQ
s

∫

F Q̂
s

|b(x)− b(y)||Kj(x− y)| dy dx.

To continue, by noting that Kj(x− y) and b(x)− b(y) do not change sign

for (x, y) ∈
(

Q ∩EQ
s

)

× F Q̂
s , s = 1, 2, we have that

TermQ
s �

1

|Q| 12

∣

∣

∣

∣

∫

Q∩EQ
s

∫

F Q̂
s

(

b(x)− b(y)
)

Kj(x− y) dy dx

∣

∣

∣

∣

=
1

|Q| 12

∣

∣

∣

∣

∫

Rn

∫

Rn

(

b(x)− b(y)
)

Kj(x− y)χ
F Q̂

s
(y) dy χQ∩EQ

s
(x) dx

∣

∣

∣

∣

.

We now insert the weight w to get

TermQ
s �

1

|Q| 12

∣

∣

∣

∣

∫

Rn

∫

Rn

(b(x)− b(y))w
1

2 (x)Kj(x− y)w− 1

2 (y)

× (w
1

2 (y)χ
F Q̂

s
(y))dy (w− 1

2 (x)χQ∩EQ
s
(x)) dx

∣

∣

∣

∣

.

Thus, we further have

∑

Q∈D,ε 	≡1

( |〈b, hε
Q〉||Q| 12

w(Q)
1

2 (w−1(Q))
1

2

)p

�
∑

Q∈D,ε 	≡1

2
∑

s=1

∣

∣

∣

∣

∣

∫

Rn

∫

Rn

(b(x)− b(y))w
1

2 (x)Kj(x− y)w− 1

2 (y)

× (w
1

2 (y)χ
F Q̂

s
(y)) dy

(

w− 1

2 (x)χQ∩EQ
s
(x)
)

w(Q)
1

2 (w−1(Q))
1

2

dx

∣

∣

∣

∣

∣

p

�
∑

Q∈D,ε 	≡1

2
∑

s=1

∣

∣

∣

∣

∫

Rn

∫

Rn

(b(x)− b(y))w
1

2 (x)Kj(x− y)w− 1

2 (y)

×
w

1

2 (y)χ
F Q̂

s
(y)

w(Q̂)
1

2

dy
w− 1

2 (x)χQ∩EQ
s
(x)

(w−1(Q))
1

2

dx

∣

∣

∣

∣

p
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=:
∑

Q∈D,ε 	≡1

2
∑

s=1

|〈w 1

2 [b,Rj ]w
− 1

2Gs
Q̂
,Hs

Q

〉|p,

where

Gs
Q̂
(y) :=

w
1

2 (y)χ
F Q̂

s
(x)

w(Q̂)
1

2

and Hs
Q(x) :=

w− 1

2 (x)χQ∩EQ
s
(x)

(w−1(Q))
1

2

.

Applying Lemma 2.2, there is a reverse Hölder exponent σw > 0, so

‖Gs
Q̂
‖L2(σw+1) �

1

w(Q̂)
1

2

(
∫

Q̂
w(σw+1)(x) dx

)
1

2(σw+1)

� |Q̂|
1

2(σw+1)
− 1

2 .

Similarly, ‖Hs
Q‖L2(σw+1) � |Q|

1

2(σw+1)
− 1

2 . Then, {Gs
Q̂
}Q̂∈D

and {Hs
Q}Q∈D are

NWO sequences for L2(Rn). It follows from Lemma 2.6 and Lemma 2.5 that

‖b‖Bp
d(R

n) � ‖w 1

2 [b,Rj ]w
− 1

2 ‖Sp(L2(Rn)) ≈ ‖[b,Rj ]‖Sp(L2(Rn,w)).

The proof of Proposition 3.1 is complete.

3.2. Proof of Proposition 3.2. In [3], the authors have obtained
that for w ∈ A2(R

n), for every b ∈ Bp,p
n/p(R

n) ⊂ VMO(Rn), [b,Rj ] is compact

form L2(Rn, w) to L2(Rn, w). On the other hand, Petermichl, Treil and Vol-
berg have shown that Riesz transforms are averages of dyadic shifts as in [28]
(see also [27]). For a choice of dyadic system D with Haar basis {hε

Q}, let
σ : D → D with |σ(Q)| = 2−n|Q|, for all Q ∈ D . Use the same notation for
a map σ : {0, 1}n − {1}n → {{0, 1}n − {1}n} ∪ {0}, and so if σ(ε) = 0 then
hσ(ε) := 0. In [28], and as utilized in [21], the dyadic shift operator III is
given by

(3.3) IIIf(x) :=
∑

Q∈D,ε 	≡1

〈f, hε
Q〉h

σ(ε)
σ(Q)(x).

It is clear that

IIIhε
Q = h

σ(ε)
σ(Q).

We further have ‖III‖L2(Rn,w)→L2(Rn,w) � 1 and the Riesz transforms are in
the convex hull of the operators III. Therefore, we only need to prove that

‖[b, III]‖Sp(L2(Rn,w)) � ‖b‖Bp
d(R

n).
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As proved in [15], [b, III] can be decomposed into a composition of the shift III
and paraproduct operators as follows:

(ΠD
b + Π∗D

b + ΓD
b )(IIIf)−III(ΠD

b +Π∗D
b + ΓD

b )f +ΠD
IIIfb− III(ΠD

f b),

where

ΠD
b f =

∑

Q∈D,ε 	≡1

〈b, hε
Q〉〈f〉Qhε

Q , Π∗D
b f =

∑

Q∈D,ε 	≡1

〈b, hε
Q〉〈f, hε

Q〉
χQ

|Q|

and

ΓD
b f =

∑

Q∈D

∑

ε,η 	≡1
ε 	≡η

〈b, hε
Q〉〈f, hη

Q〉hε
Qh

η
Q

are the paraproduct operators with symbol b. Then we have

‖[b, III]‖Sp(L2(Rn,w)) ≤ 2‖ΠD
b ‖Sp(L2(Rn,w))‖III‖L2(Rn,w)→L2(Rn,w)

+ 2‖Π∗D
b ‖Sp(L2(Rn,w))‖III‖L2(Rn,w)→L2(Rn,w)

+ 2‖ΓD
b ‖Sp(L2(Rn,w))‖III‖L2(Rn,w)→L2(Rn,w)+‖ΠD

IIIf b− III(ΠD
f b)‖Sp(L2(Rn,w)).

Thus, in order to show that Proposition 3.2 holds, using Lemma 2.6, we need
to obtain the following two lemmas.

Lemma 3.4. Suppose that w ∈ A2(R
n), and b ∈ VMO(Rn) for n <

p < ∞. Then we have w
1

2ΠD
b w

− 1

2 , w
1

2Π∗D
b w− 1

2 , and w
1

2ΓD
b w

− 1

2 belong to

Sp(L2(Rn)) respectively, if and only if b ∈ Bp
d(R

n,D). Moreover,

‖w 1

2ΠD
b w

− 1

2 ‖Sp(L2(Rn))≈‖b‖Bp
d(R

n,D);(3.4)

‖w 1

2Π∗D
b w− 1

2 ‖Sp(L2(Rn))≈‖b‖Bp
d(R

n,D);(3.5)

‖w 1

2ΓD
b w

− 1

2 ‖Sp(L2(Rn))≈‖b‖Bp
d(R

n,D).(3.6)

In particular, when b ∈ Bp,p
n/p(R

n)), then we know all these operators are

bounded with norm at most ‖b‖Bp,p
n/p(R

n).

Proof. The last statement follows from Lemma 2.8 which gives the
equivalence between the continuous and dyadic norms, and so in particular
that the continuous norm controls the dyadic one.

Lacey and the last two authors in [20] proved (3.4) and (3.5) in one
dimension. The proof generalizes to n dimensions by direct modifications
we do not include, but are easy exercises left for the reader.

It only remains to prove (3.6). We turn first to sufficiency.
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Sufficiency. Suppose b ∈ Bp
d(R

n,D). By the definition of ΓD
b f , we have

(w
1

2ΓD
b w

− 1

2 )(f)(x) =
∑

Q∈D

∑

ε,η 	≡1
ε 	≡η

〈b, hε
Q〉
〈

w− 1

2 f, hη
Q

〉

hε
Q(x)h

η
Q(x)w

1

2 (x)

=
∑

Q∈D

∑

ε,η 	≡1
ε 	≡η

〈b, hε
Q〉w(Q)

1

2 (w−1(Q))
1

2

|Q| 32
·
hε
Q(x)h

η
Q(x)w

1

2 (x)|Q|
w(Q)

1

2

×
∫

Rn

w− 1

2 (y)hη
Q(y)|Q| 12

(w−1(Q))
1

2

f(y) dy

=:
∑

Q∈D

∑

ε,η 	≡1
ε 	≡η

B(Q) ·GQ(x)

∫

Rn

f(y)HQ(y) dy.

As in the proof of Proposition 3.1, applying Lemma 2.2 leads to the fact that
{GQ}Q∈D and {HQ}Q∈D are NWO sequences for L2(Rn), and by Lemma 2.6
and (2.3), that

‖ΓD
b ‖pSp(L2(Rn,w)) ≈ ‖w 1

2ΓD
b w

− 1

2 ‖pSp(L2(Rn))

�
∑

Q∈D

ε 	≡1

|B(Q)|p =
∑

Q∈D

ε 	≡1

|〈b, hε
Q〉|pw(Q)

p

2 (w−1(Q))
p

2

|Q| 3p2
= ‖b‖pBp

d(R
n,D).

We next turn to the necessity.

Necessity. For any dyadic cube Q, we have 〈b, hε
Q〉 = 〈ΓD

b (h
η
Q), h

ε
Qh

η
Q|Q|〉.

Therefore,

∑

Q∈D

ε 	≡1

( |〈b, hε
Q〉||Q| 12

w(Q)
1

2 (w−1(Q))
1

2

)p

=
∑

Q∈D

∑

ε,η 	≡1
ε 	≡η

( |〈ΓD
b (h

η
Q), h

ε
Qh

η
Q|Q|〉||Q| 12

w(Q)
1

2 (w−1(Q))
1

2

)p

=
∑

Q∈D

∑

ε,η 	≡1
ε 	≡η

( |〈w 1

2ΓD
b w

− 1

2 (w
1

2hη
Q), w

− 1

2hε
Qh

η
Q|Q|〉||Q| 12

w(Q)
1

2 (w−1(Q))
1

2

)p

=
∑

Q∈D

∑

ε,η 	≡1
ε 	≡η

∣

∣

∣

∣

〈

w
1

2ΓD
b w

− 1

2

(

w
1

2

√

|Q|hε
Q

w(Q)
1

2

)

,
w− 1

2hε
Qh

η
Q|Q|

(w−1(Q))
1

2

〉
∣

∣

∣

∣

p
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=:
∑

Q∈D

∑

ε,η 	≡1
ε 	≡η

∣

∣

∣

〈

w
1

2ΓD
b w

− 1

2 (G′
Q),H

′
Q

〉
∣

∣

∣

p
,

where

G′
Q :=

w
1

2

√

|Q|hε
Q

w(Q)
1

2

and H ′
Q :=

w− 1

2hε
Qh

η
Q|Q|

(w−1(Q))
1

2

.

By Lemma 2.2, and a computation similar inside the proof of Proposition 3.1,
we can obtain that the above two collections of functions are NWO sequences.
Thus, we establish by Lemma 2.5 that

‖b‖pBp
d(R

n,D) =
∑

Q∈D

ε 	≡1

( |〈b, hε
Q〉||Q| 12

w(Q)
1

2 (w−1(Q))
1

2

)p

� ‖w 1

2ΓD
b w

− 1

2 ‖pSp(L2(Rn)) ≈ ‖ΓD
b ‖pSp(L2(Rn,w)).

The proof is complete. �

Lemma 3.5. For n<p<∞, suppose that w∈A2(R
n), and b ∈ Bp

d(R
n,D).

Let R
Df := ΠD

IIIf b− III(ΠD
f b), then we have

(3.7) ‖w 1

2R
Dw− 1

2 ‖Sp(L2(Rn)) � ‖b‖Bp
d(R

n,D).

Proof. A direct computation gives

R
Df(x) := ΠD

IIIf b− III(ΠD
f b)

=
∑

P∈D,η 	≡1

〈IIIf, hη
P 〉〈b〉Ph

η
P (x)−

∑

Q∈D,ε 	≡1

〈ΠD
f b, h

ε
Q〉h

σ(ε)
σ(Q)(x)

=
∑

Q∈D,ε 	≡1

〈f, hε
Q〉(〈b〉σ(Q) − 〈b〉Q)hσ(ε)

σ(Q)(x)

=
∑

Q∈D

ε,η 	≡1

〈f, hε
Q〉〈b, hη

Q〉h
η
Q(σ(Q))h

σ(ε)
σ(Q)(x),

where the last equality is from [15, (2.2)]. Therefore, we have that

w
1

2 (x)RD(w− 1

2 f)(x)

=
∑

Q∈D

ε,η 	≡1

∫

Rn

w− 1

2 (y)f(y)hε
Q(y) dyw

1

2 (x)〈b, hη
Q〉h

η
Q(σ(Q))h

σ(ε)
σ(Q)(x)
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=
∑

Q∈D

ε,η 	≡1

〈b, hη
Q〉h

η
Q(σ(Q))w(Q)

1

2 (w−1(Q))
1

2

|Q| ·
h
σ(ε)
σ(Q)(x)w

1

2 (x)|Q| 12

w(Q)
1

2

×
∫

Rn

w− 1

2 (y)hε
Q(y)|Q| 12

(w−1(Q))
1

2

f(y) dy =:
∑

Q∈D

ε,η 	≡1

B1(Q) ·G1
Q(x)

∫

Rn

f(y)H1
Q(y) dy,

where

B1(Q) :=
〈b, hη

Q〉h
η
Q(σ(Q))w(Q)

1

2 (w−1(Q))
1

2

|Q| ,

G1
Q(x) :=

h
σ(ε)
σ(Q)(x)w

1

2 (x)|Q| 12

w(Q)
1

2

and H1
Q(y) :=

w− 1

2 (y)hε
Q(y)|Q| 12

(w−1(Q))
1

2

.

By Lemma 2.2, and a repeat of a computation inside the proof of Proposition
3.1, we know that {G1

Q}Q∈D and {H1
Q}Q∈D are NWO sequences for L2(Rn).

Therefore, by (2.3), and |hηQ(σ(Q))| ≈ |Q|− 1

2 we get

‖w 1

2R
Dw− 1

2 ‖Sp(L2(Rn)) � ‖B1(Q)‖�p

≈
(

∑

Q∈D, η 	≡1

( |〈b, hη
Q〉||Q| 12

w(Q)
1

2 (w−1(Q))
1

2

)p)1/p

= ‖b‖Bp
d(R

n,D).

The proof is complete. �

4. Proof of Theorem 1.1: the case of 0 < p ≤ n

In this section, we prove (2) in Theorem 1.1. That is, for 0 < p ≤ n,
the commutator [b,Rj ] ∈ Sp(L2(Rn, w)) if and only if b is a constant. Here
n ≥ 1 (and when n = 1 we mean of course the Hilbert transform as opposed
to the Riesz transforms).

The sufficient condition is obvious, since [b,Rj ] = 0 when b is a constant.
Thus, it suffices to show the necessity. By the inclusion Sp(L2(Rn, w)) ⊂
Sq(L2(Rn, w)) for p < q, then the proof of (2) in Theorem 1.1 can be proved
on the basis of the following property.

Proposition 4.1. Suppose w ∈ A2(R
n), and b ∈ VMO(Rn) with [b,Rj ]

∈ Sn(L2(Rn, w)), then b is a constant.

Proof. In order to obtain Proposition 4.1, we recall the following stan-
dard notation on martingale differences and conditional expectation. Let Dk
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be the collection of dyadic cubes at level k as in Section 2.2. Next, we
choose hQ among these 2n − 1 Haar functions such that

∣

∣

∣

∣

∫

Q
b(x)hQ(x) dx

∣

∣

∣

∣

= max
ε 	≡1

∣

∣

∣

∣

∫

Q
b(x)hε

Q(x) dx

∣

∣

∣

∣

.

Note that Q ∈ Dk, the function

(Ek+1(b)(x)−Ek(b)(x))χQ(x) =
∑

ε 	≡1

〈b, hε
Q〉hε

Q(x).

So we have
(

1

|Q|

∫

Q
|Ek+1(b)(x)−Ek(b)(x)|n dx

)1/n

≤ C|Q|−1/n

∥

∥

∥

∥

∑

ε 	≡1

〈b, hε
Q〉hε

Q

∥

∥

∥

∥

n

(4.1)

≤ C|Q|−1/n
∑

ε 	≡1

|〈b, hε
Q〉|
∥

∥hε
Q

∥

∥

n
≤ C|Q|−1/2

∣

∣

∣

∣

∫

Q
b(x)hQ(x) dx

∣

∣

∣

∣

,

where C is a constant depending only on n. Then we obtain that

∑

k

2nk
∥

∥Ek+1(b)− Ek(b)
∥

∥

n

n
=
∑

k

∑

Q∈Dk

1

|Q|

∫

Q

∣

∣Ek+1(b)(x)− Ek(b)(x)
∣

∣

n
dx

≤ C
∑

k

∑

Q∈Dk

|Q|−n/2

∣

∣

∣

∣

∫

Q
b(g)hQ(x) dx

∣

∣

∣

∣

n

.

Following the proof of the estimate of (2.6) in the proof of Lemma 2.8, we
have that

∑

k

2nk
∥

∥Ek+1(b)− Ek(b)
∥

∥

n

n
� ‖b‖Bp

d(R
n,D) ≤ C

∥

∥[b,Rj ]
∥

∥

n

Sn(L2(Rn,w))
,

where the last inequality follows from Proposition 3.1. This, together with
Hölder’s inequality, further implies that for a fixed positive integer K0,

∥

∥

∥

∥

{

1

|Q|

∫

Q

∣

∣Ek+K0
(b)(x)−Ek(b)(x)

∣

∣dx

}

k∈Z,Q∈Dk

∥

∥

∥

∥

ln

≤
(

∑

k∈Z,Q∈Dk

∣

∣

∣

∣

1

|Q|

∫

Q

∣

∣Ek+K0
(b)(x)−Ek(b)(x)

∣

∣dx

∣

∣

∣

∣

n)1/n

≤
(

∑

k∈Z,Q∈Dk

1

|Q|

∫

Q

∣

∣Ek+K0
(b)(x)−Ek(b)(x)

∣

∣

n
dx

)1/n
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≤
K0−1
∑

j=0

(

∑

k∈Z,Q∈Dk

1

|Q|

∫

Q

∣

∣Ek+j+1(b)(x)−Ek+j(b)(x)
∣

∣

n
dx

)1/n

=

K0−1
∑

j=0

(

∑

k∈Z
2nk‖Ek+j+1(b)−Ek+j(b)‖nn

)1/n

�
∥

∥[b,Rj ]
∥

∥

Sn(L2(Rn,w))
,

where the implicit constant depends on K0. This further implies that

∥

∥

∥

∥

{

1

|Q|

∫

Q

1

|Q|

∫

Q

∣

∣Ek+K0
(b)(x)−Ek+K0

(b)(y)
∣

∣dy dx

}

k∈Z,Q∈Dk

∥

∥

∥

∥

ln
(4.2)

�
∥

∥[b,Rj ]
∥

∥

Sn(L2(Rn,w))

since Ek(b)(x) = Ek(b)(y) for every Q ∈ Dk and for every x, y ∈ Q.
Suppose b ∈ C∞(Rn) with ‖[b,Rj ]‖Sn(L2(Rn,w)) < +∞. If b is not con-

stant, then there exists a point x0 ∈ Rn such that ∇b(x0) �= 0. By applying
[9, Lemma 5.3] with Rn, there is ε > 0 and N > 0 such that if k > N , then

for any dyadic cube Q ∈ Dk with |CQ − x0| < ε, and for Q̃, Q̂ ∈ Dk+K0
with

Q̃ ⊂ Q, Q̂ ⊂ Q, and dist(Q̃, Q̂) ≈ �(Q̃),

|〈b〉Q̃ − 〈b〉Q̂| ≥ C�(Q)|∇b(x0)|.

Here CQ represents the center of Q.
Noting that for k > N , the number of Q ∈ Dk and |CQ − x0| < ε is at

least 2kn. Thus, we obtain

∥

∥

∥

∥

{

1

|Q|

∫

Q

1

|Q|

∫

Q

∣

∣Ek+K0
(b)(x)− Ek+K0

(b)(y)
∣

∣dy dx

}

k∈Z,Q∈Dk

∥

∥

∥

∥

ln

≥
∥

∥

∥

∥

{

1

|Q|

∫

Q

1

|Q|

∫

Q

∣

∣Ek+K0
(b)(x)−Ek+K0

(b)(y)
∣

∣dy dx

}

k∈Z, k>N
Q∈Dk, |CQ−x0|<ε

∥

∥

∥

∥

ln

≥
∥

∥

∥{∣∣〈b〉Q̃ − 〈b〉Q̂
∣

∣} k∈Z, k>N
Q∈Dk, |CQ−x0|<ε

∥

∥

∥

ln

≥ C

(

∑

k>N

2kn
(

2−k|∇b(x0)|
)n
)1/n

= ∞.

This contradicts (4.2).
Suppose b∈VMO(Rn) with ‖[b,Rj ]‖Sn(L2(Rn,w))< +∞. Let ψ∈C∞

0 (Rn),

non-negative, and
∫

ψ(x) dx = 1. Define ψε(x) =
1
εnψ(

x
ε ). Then bε(x) =

Analysis Mathematica 49, 2023



BESOV SPACES, SCHATTEN CLASSES AND THE QUANTISED DERIVATIVE 993

b ∗ ψε(x) is in C∞(Rn). We note that for ε small enough,

∥

∥

∥

∥

{

1

|Q|

∫

Q

1

|Q|

∫

Q

∣

∣Ek+K0
(bε)(x)−Ek+K0

(bε)(y)
∣

∣dy dx

}

k∈Z,Q∈Dk

∥

∥

∥

∥

ln

� sup
h∈B(0,1)

∥

∥

∥

∥

{

1

|Q|

∫

Q

1

|Q|

∫

Q

∣

∣Ek+K0
(τhb)(x)−Ek+K0

(τhb)(y)
∣

∣ dy dx

}

k∈Z
Q∈Dk

∥

∥

∥

∥

ln
,

where τhb(x) = b(x− h) for h in the unit ball B(0, 1) in Rn. For every
fixed h∈B(0, 1), by repeating the arguments, especially Proposition 3.1, for
τhb(x), and by translating the dyadic system according to h and the trans-
lation invariance of the kernel of the Riesz transform Rj , we obtain that

∥

∥

∥

∥

{

1

|Q|

∫

Q

1

|Q|

∫

Q

∣

∣Ek+K0
(τhb)(x)−Ek+K0

(τhb)(y)
∣

∣ dy dx

}

k∈Z,Q∈Dk

∥

∥

∥

∥

ln

� ‖[b,Rj ]‖Sn(L2(Rn,w)),

where the implicit constant is independent of h. This yields that for ε small
enough,

∥

∥

∥

∥

{

1

|Q|

∫

Q

1

|Q|

∫

Q

∣

∣Ek+K0
(bε)(x)−Ek+K0

(bε)(y)
∣

∣dy dx

}

k∈Z,Q∈Dk

∥

∥

∥

∥

ln

� ‖[b,Rj ]‖Sn(L2(Rn,w)).

Thus, bε is a constant on Rn. Since bε → b as ε → 0+, we obtain that b is a
constant. Therefore, the proposition holds. �

5. Proof of Theorem 1.2: p = n

5.1. Proof of the sufficient condition. In this subsection, we as-
sume that b ∈ Ẇ 1,n(Rn), then prove

[b,Rj ] ∈ Sn,∞(L2(Rn, w)
)

.

By Lemma 2.7, we just need to show that ‖w 1

2 [b,Rj ](w
− 1

2 )‖Sn,∞(L2(Rn)) �
‖b‖Ẇ 1,n(Rn).

Let Λ = {(x, y) ∈ Rn×Rn : x=y}, and Ω = {(x, y) ∈ Rn×Rn\Λ : x �=y}.
Let P be a dyadic Whitney decomposition of the open set Ω, that is
⋃

P∈P
P = Ω. Therefore, we writeKj(x−y) = ΣP∈PKj(x−y)χP (x, y), and

P can be the cubes P1×P2, where P1, P2 ∈ D , have the same side length and
that distance between them must be comparable to this sidelength. Thus,
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for each dyadic cube P1 ∈ D , P2 is related to P1 and at most M of the cubes
P2 such that P1 × P2 ∈ P .

Therefore, for s = 1, 2, . . . ,M and Q = P1, there is RQ,s such that
Q×RQ,s ∈ P and we can reorganize the sum

Kj(x− y) =
∑

P∈P

Kj(x− y)χP (x, y) =
∑

Q∈D

M
∑

s=1

Kj(x− y)χ(Q×RQ,s)(x, y),

where |Q| = |RQ,s| and dist(Q,RQ,s) ≈ |Q|.
Next, decomposing in a Fourier series on Q× RQ,s we can write

Kj(x− y)χ(Q×RQ,s)(x, y) =
∑


l∈Z2n

cj
l,Q
e2πi


l′·x̃e2πi

l′′·ỹχQ(x) · χQR,s

(y),

where xi = C
(i)
Q + �(Q)x̃i, yi = C

(i)
RQ,s

+ �(RQ,s)ỹi, i = 1, 2, . . . , n, 
l = (
l′,
l′′)

where 
l′ = (l1, l2, . . . , ln), 
l
′′ = (ln+1, ln+2, . . . , l2n), and cj
l,Q

is the Fourier co-

efficient

cj
l,Q
:=

∫

RQ,s

∫

Q
Kj(x− y)χ(Q×RQ,s)(x, y)e

−2πi
l′·x̃e−2πi
l′′·ỹ dx dy
1

|Q|
1

|RQ,s|
.

For the multi-index α, γ ∈ Zn
+, using the relation f̂(
l) = 1

(2πi
l)(α,γ)

̂(∂(α,γ)f)(
l),

and the size condition of Kj(x− y),

|∂α
x ∂

γ
yKj(x− y)| ≤ C(α, γ)

1

|x− y|n+|α|+|γ| ,

yield that

|cj
l,Q| �
1

(1 + |
l|)|α|+|γ|
�(Q)|α|�(RQ,s)

|γ|

×
∫

RQ,s

∫

Q
|∂α

x ∂
γ
yKj(x− y)| dx dy 1

|Q|
1

|RQ,s|

�
1

(1 + |
l|)|α|+|γ|
�(Q)|α|�(RQ,s)

|γ|
∫

RQ,s

∫

Q

1

|x− y|n+|α|+|γ| dx dy
1

|Q|
1

|RQ,s|

�
1

|Q|
1

(1 + |
l|)|α|+|γ|
.

Let λj

l,Q

= |Q| 12 |RQ,s|
1

2 cj
l,Q
, then

|λj

l,Q

| � 1

(1 + |
l|)|α|+|γ|
,
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and

Kj(x− y)χ(Q×RQ,s)(x, y) =
∑


l∈Z2n

λj

l,Q

1

|Q|1/2 F
l′,Q
(x)

1

|RQ,s|1/2
G
l′′,RQ,s

(y),

where F
l′,Q(x) = e2πi

l′·x̃χQ(x) and G
l′′,RQ,s

(y) = e2πi

l′′·ỹχRQ,s

(y). Then, we
get

K(x− y) =
∑

Q∈D

M
∑

s=1

Kj(x− y)χ(Q×RQ,s)(x, y)

=
∑

Q∈D

M
∑

s=1

∑


l∈Z2n

λj

l,Q

1

|Q|1/2 F
l′,Q
(x)

1

|RQ,s|1/2
G
l′′,RQ,s

(y).

Thus, the kernel of w
1

2 [b,Rj ](w
− 1

2 ) can be represented as

Kw
b (x, y) =

∑

Q∈D

M
∑

s=1

∑


l∈Z2n

(b(x)− b(y))λj

l,Q

1

|Q|1/2w
1

2 (x)

× F
l′,Q
(x)

1

|RQ,s|1/2
G
l′′,RQ,s

(y)w− 1

2 (y).

For each Q rewrite b(x)− b(y) as (b(x)− 〈b〉KQ) + (〈b〉KQ − b(y)) yielding

Kw
b (x, y) = C[w]A2(R

n)

∑

Q∈D

M
∑

s=1

∑


l∈Z2n

1
∑

m=0

λj

l,Q

×
(b(x)− bKQ)

mw
1

2 (x)F
l′,Q(x)

[w(Q)]
1

2

·
(bKQ − b(y))1−mw− 1

2 (y)G
l′′,RQ,s
(y)

[w−1(Q)]
1

2

,

where K > 1 is the constant chosen such that KQ contains Q ∪RQ,s. We
introduce the notation

oscr(b,Q) =

[

|KQ|−1

∫

KQ
|b(u) − 〈b〉KQ|rdu

]1/r

,

where r > 2(1+σw)
σw

with σw the reverse Hölder exponent. Then

F
l′,Q,m
(x) = (oscr(b,Q))−m

(b(x)− 〈b〉KQ)
m w

1

2 (x)F
l′,Q
(x)

[w(Q)]
1

2
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and

G
l′′,RQ,s,m
(y) = (oscr(b,Q))−(1−m)

(〈b〉KQ − b(y))1−m w− 1

2 (y)G
l′′,RQ,s
(y)

[w−1(Q)]
1

2

.

For m = 0,1, let β = 2(1+σw)r
r+2(1+σw) and p = r

β . It is clear that β > 2, p > 1, and

βp′ = 2(1 + σw). By Hölder’s inequality, Lemma 2.2, supp(F
l′,Q) ⊂ Q, and

‖F
l′,Q
‖∞ � 1 yields that

∥

∥F
l′,Q,m

∥

∥

Lβ(R)

≤
(
∫

Rn

∣

∣

∣

∣

(oscr(b,Q))−m
(b(x)− 〈b〉KQ)

mw
1

2 (x)F
l′,Q
(x)

[w(Q)]
1

2

∣

∣

∣

∣

β

dx

)1/β

≤ C [w(Q)]−
1

2 (oscr(b,Q))−m

(

1

|KQ|

∫

KQ
|b(x)−〈b〉KQ|βmw

β

2 (x) dx

)1/β

|Q|
1

β

≤ C [w(Q)]−
1

2 (oscr(b,Q))−m

(

1

|KQ|

∫

KQ
|b(x)− 〈b〉KQ|pβm dx

)
1

pβ

×
(

1

|KQ|

∫

KQ
w

p′β

2 (x) dx

)
1

p′β

|Q|
1

β

≤ C [w(Q)]−
1

2 (oscr(b,Q))−m

(

1

|KQ|

∫

KQ
|b(x)− 〈b〉KQ|r dx

)m/r

×
(

1

|KQ|

∫

KQ
w1+σw (x) dx

)1/2(1+σw)

|Q|
1

β ≤ C[w]A2(R
n),K |Q|

1

β
− 1

2 .

We now consider G
l′′,RQ,s,m
and use a method similar to the proof above.

∥

∥G
l′′,RQ,s,m

∥

∥

Lβ(Rn)

≤
(
∫

Rn

∣

∣

∣

∣

(oscr(b,Q))−(1−m)
(〈b〉KQ−b(y))1−mw− 1

2 (y)G
l′′,RQ,s
(y)

[w−1(Q)]
1

2

∣

∣

∣

∣

β

dy

)1/β

≤ C [w−1(Q)]−
1

2 (oscr(b,Q))−(1−m)

(
∫

KQ
|b(x)−〈b〉KQ|β(1−m)w− β

2 (y) dx

)1/β

≤ C [w−1(Q)]−
1

2 |Q|
1

β (oscr(b,Q))−(1−m)

×
(

1

|KQ|

∫

KQ
|b(x)− 〈b〉KQ|p(1−m)β dx

)
1

pβ
(

1

|KQ|

∫

KQ
w− p′β

2 (y) dy

)
1

p′β
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≤ C [w−1(Q)]−
1

2 |Q|
1

β (oscr(b,Q))−(1−m)

×
(

1

|KQ|

∫

KQ
|b(x)− 〈b〉KQ|r dx

)1−m/r( 1

|KQ|

∫

KQ
w−(1+σw)(y) dy

)
1

2(1+σw)

≤ C [w−1(Q)]−
1

2 |Q|
1

β

(

1

|KQ|

∫

KQ
w−(1+σw)(y) dy

)
1

2(1+σw)

≤ [w−1(Q)]−
1

2 |Q|
1

β

(

w−1(KQ)

|KQ|

)1/2

≤ C[w]A2(R
n),K |Q|

1

β
− 1

2 ,

where the last inequality comes from Lemma 2.1. Therefore,

w
1

2 [b,Rj ](w
− 1

2 )

= C[w]A2(Rn)

∑


l∈Z2n

1
∑

m=0

M
∑

s=1

∑

Q∈D

λQ,
l oscr(b,Q)
〈

f,G
l′′,RQ,s,m

〉

F
l′,Q,m,

where {GQ,
l′′,m} and {FQ,
l′,m} are NWO sequences and the coefficients

{λ
Q,
l

} satisfy |λ
Q,
l

| � 1

(1+|
l|)|α|+|γ|
for all multi-indices α, γ ∈ Zn

+. Thus, by

(2.3), we have

∥

∥w
1

2 [b,Rj ](w
− 1

2 )
∥

∥

Sn,∞(L2(Rn))
�
∥

∥oscr(b,Q)
∥

∥

�n,∞.

By [11, Theorem 1 and Remark (d)] (see also [29, Theorem 2.2]), we know

that oscr(b,Q) ∈ �n,∞ follows from b ∈ Ẇ 1,n(Rn). Then w
1

2 [b,Rj ](w
− 1

2 ) ∈
Sn,∞ (L2(Rn)

)

. Hence, we are done with the proof of the sufficient condition
in Theorem 1.2.

5.2. Proof of the necessary condition. In this subsection, we as-
sume that [b,Rj ] ∈ Sn,∞(L2(Rn, w)), then prove that b ∈ Ẇ 1,n(Rn).

First, choosing two cubes Q and Q̂ in D , as Lemma 3.3. Define

JQ(x, y) = |Q|−2K−1
j (x− y)χQ(x)χQ̂(y).

For K−1
j (x− y), decomposing in a multiple Fourier series on Q× Q̂, we can

write

K−1
j (x− y) =

∑


l∈Z2n

cj
l,Q
e2πi


l′·x̃e2πi

l′′·ỹ χQ(x) · χQ̂(y),
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where xi = C
(i)
Q + �(Q)x̃i, yi = C

(i)

Q̂
+ �(Q̂)ỹi, i = 1,2, . . . , n, 
l = (
l′,
l′′) where


l′ = (l1, l2, . . . , ln), 
l
′′ = (ln+1, ln+2, . . . , l2n), and the Fourier coefficient cj
l,Q

are given by

cj
l,Q
:=

∫

Q̂

∫

Q
K−1

j (x− y)χ(Q×Q̂)e
−2πi
l′·x̃e−2πi
l′′·ỹ dx dy

1

|Q|
1

|Q̂|
.

Similar to the estimate in the previous subsection, using

∣

∣∂α
x ∂

β
yK

−1
j (x− y)

∣

∣ ≤ C(α, β) |x− y|n−|α|−|β|,

|Q| = |Q̂| and dist(Q, Q̂) ≈ |Q| yields

|cj
l,Q| �
1

(1 + |
l|)|α|+|β|
�(Q)|α|�(Q̂)|β|

∫

Q̂

∫

Q
|∂α

x ∂
β
yK

−1
j (x− y)| dx dy 1

|Q|
1

|Q̂|

�
1

(1 + |
l|)|α|+|β|
�(Q)|α|�(Q̂)|β|

∫

Q̂

∫

Q
|x− y|n−|α|−|β| dx dy

1

|Q|
1

|Q̂|

� |Q| 1

(1 + |
l|)|α|+|β|

where α, β ∈ Zn
+ are multi-indices. Therefore, we can denote λj


l,Q
= 1

|Q|c
j

l,Q

,

and then the estimate

|λj

l,Q

| � 1

(1 + |l|)|α|+|β|

holds. Obviously,

JQ(x, y) =
∑


l∈Z2n

λj

l,Q

1

|Q|1/2 F
l′,Q
(x)

1

|Q̂|1/2
G
l′′,Q̂

(y),

where F
l′,Q
(x) = e2πi


l′·x̃χQ(x) and G
l′′,Q̂
(y) = e2πi


l′′·ỹχQ̂(y).

Next, recall that for each Q ∈ D , there is Q̂ in D as in Lemma 3.3. We
set the function εQ,Q̂(x, y) = sgn(b(x)− b(y))χQ(x)χQ̂(y). Define the oper-

ator LQ as

w
1

2 (x)LQ(w
− 1

2 f)(x) =

∫

Rn

w
1

2 (x)εQ,Q̂(x, y)JQ(x, y)w
− 1

2 (y)f(y) dy.

Considering an arbitrary sequence {aQ}Q∈D ∈ �
n

n−1
,1. Here �

n

n−1
,1 is the

Lorentz sequence space defined as the set of all sequences {aQ}Q∈D such

Analysis Mathematica 49, 2023



BESOV SPACES, SCHATTEN CLASSES AND THE QUANTISED DERIVATIVE 999

that

∥

∥{aQ}Q∈D

∥

∥

�
n

n−1
,1 =

∞
∑

k=1

k
n

n−1
−1a∗k,

where the sequence {a∗k} is the sequence {|aQ|} rearranged in a decreasing
order.

Define the operator L as

w
1

2 (x)L(w− 1

2 f)(x) =
∑

Q∈D

aQw
1

2 (x)LQ(w
− 1

2 f)(x).

Therefore, we also write

w
1

2 (x)L(w− 1

2 f)(x) = C[w]A2(R
n)

∑

Q∈D

∑


l∈Z2n

λj

l,Q

aQ〈f, G̃
l′′,Q̂〉F̃
l′,Q(x),

where

G̃
l′′,Q̂
(y) =

G
l′′,Q̂(y)w
− 1

2 (y)

(w−1(Q))
1

2

and F̃
l′,Q
(x) =

F
l′,Q(x)w
1

2 (x)

(w(Q))
1

2

.

By Lemma 2.2, and repeating the argument from inside the proof Proposi-
tion 3.1, they are NWO sequences. Thus, applying Lemma 2.7 gives

‖L‖
S

n
n−1

,1
(L2(Rn,w))

≈
∥

∥w
1

2Lw− 1

2

∥

∥

S
n

n−1
,1
(L2(Rn))

≤ ‖aQ‖� n
n−1

,1 .

Using the idea of [30, p. 262], we also can obtain

Trace(w
1

2 [b,Rj ]LQ(w
− 1

2 )) = |Q|−2

∫

Q

∫

Q̂
(b(x)− b(y))εQ,Q̂(x, y) dy dx

= |Q|−2

∫

Q

∫

Q̂
|b(x)− b(y)| dy dx.

Then we have

Trace(w
1

2 [b,Rj ]LQ(w
1

2 )) �
1

|Q|

∫

Q
|b(x)− 〈b〉Q̂| dx

�
1

|Q|

∫

Q
|b(x)− 〈b〉Q| dx =: M(b,Q).

Therefore, by duality, there exists a sequence {aQ}Q∈D with ‖aQ‖� n
n−1

,1 ≤ 1
such that

‖b‖Ẇ 1,n(Rn) � ‖M(b,Q)‖�n,∞ �
∥

∥Trace(w
1

2 [b,Rj ]LQ(w
− 1

2 ))
∥

∥

�n,∞
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= sup
‖aQ‖

�
n

n−1
,1≤1

∑

Q∈D

Trace
(

w
1

2 [b,Rj ]LQ(w
− 1

2 )
)

· aQ

= sup
‖aQ‖

�
n

n−1
,1≤1

Trace
(

w
1

2 [b,Rj ]L(w
− 1

2 )
)

� sup
‖aQ‖

�
n

n−1
,1≤1

∥

∥w
1

2 [b,Rj ](w
− 1

2 )
∥

∥

Sn,∞(L2(Rn))

∥

∥w
1

2L(w− 1

2 )
∥

∥

S
n

n−1
,1
(L2(Rn))

� ‖[b,Rj ]‖Sn,∞(L2(Rn,w)),

where the first inequality comes from [11, Theorem 1 and Remark (d)], see
also [30]. Hence, the proof of the necessary condition in Theorem 1.2 is
complete.

6. Discussion on the one dimensional case

When n = 1, Peller [25] obtained the following result in the unweighted
case:

Theorem 6.1 [25]. For b ∈ VMO(R), and 0 < p < ∞, we have

‖[b,H]‖Sp(L2(R)) ≈ ‖b‖Bp,p
1/p(R)

.

For p = 2, Lacey and the last two authors in [20] considered Schatten classes
and the commutator [b,H] in the two weight setting (see Theorem A in Sec-
tion 1). In [20, Section 7], the authors raised two questions about the one
weight question in one dimension:

(i) For b ∈ VMO(R), and 1 < p < ∞. Is ‖[b,H]‖Sp(L2(w)) ≈ ‖b‖Bp,p
1/p(R)

true?

(ii) Can the above conclusion be extended to 0 < p ≤ 1?

Similar to the proof of (1) in Theorem 1.1, we can give a positive answer
to problem (i). The reader can see that all of Section 3 works for n = 1 and
replacing the Riesz transform with the Hilbert transform. The main details
are an equivalence with the Besov space and a dyadic counterpart and the
ability to study the commutator by the dyadic shift operator. Section 3 does
the analysis in the case of the Riesz transforms, but the case of the Hilbert
transform is similar, and in fact slightly easier since we can use Petermichl’s
Haar shift [26] and the resulting paraproducts in the one variable case are
easier to work with (there is no paraproduct like Γb which required an addi-
tional argument). We omit the details. Coupling these results and making
the direct modifications in Section 3 exactly answers (i) above.

However, we can not come up with a good way to solve problem (ii) in
this paper because of the method used. There are a couple of obstacles in an-
swering this question using the methods from this paper. A first obstruction
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is that Lemma 2.5 is used to provide a lower bound for the Schatten norm
of the commutator [b,H]; resulting in the restriction that n = 1 < p < ∞.
Consequently, we lose a tool to study the case 0 < p ≤ 1 for [b,H].

While Section 4 does carry over to the case of n = 1, this section is unfor-
tunately not applicable to the situation for (ii). A main obstacle to handling
the case n = 1 and 0 < p ≤ 1 is that the norm of the Besov space requires
more derivatives to characterize it. For n = 1, the corresponding Besov space
Bp,p

1/p(R), p ≤ 1, is defined by

(6.1) Bp,p
1/p(R) =

{

b ∈ BMO(R) :

∫ ∞

0

∫

R

|tk∇kPt(b)(x)|p
dx dt

t2
< ∞

}

,

where Pt(b)(x) is the Poisson integral of b on R2 and ∇ = (∂x, ∂t) and k must
satisfy k > 1

p . In particular, because of the condition k > 1
p one will have to

utilize a norm involving more derivatives. In [30, Section 5] it is pointed out
that b ∈ Bp,p

1/p(R) implies that the sequence {osc(b,Q, r,K,L)} ∈ �p where

L > 1/p, 1 ≤ r < ∞, K ≥ 1, and

osc(b,Q, r,K,L) = inf
deg(P )≤L

{

1

|KQ|

∫

KQ
|b(x)− P (x)|r dx

}1/r

, Q ∈ D

with P (x) the corresponding polynomial of degree less than or equal to L.
Note that the norm (6.1) with k > 1/p does not connect to the norm we

introduced in (1.3) which essentially uses only a first derivative. In fact, the
norm in (1.3) for p > 1 is equivalent to the sequence {osc(b,Q, r,K)} ∈ �p,
1 ≤ r < ∞, K ≥ 1, and

osc(b,Q, r,K) =

{

1

|KQ|

∫

KQ
|b(x)− 〈b〉KQ|r dx

}1/r

, Q ∈ D ,

here we refer to [30, Section 4, pp. 266–267]. Moreover, the space given via
the norm in (1.3) for p > 1 coincides with the classical Besov space, we re-
fer to [31, Sections 2.2.2, 2.5.7]. The proof of Proposition 4.1 only handles
this simpler oscillation condition and not the one that is more closely con-
nected to the Besov space Bp,p

1/p(R) and the oscillation condition involving

polynomials.
So, this remains an open problem. While Peller in [25] proved Theorem

6.1 by using Hankel operators exploiting the connection with analyticity, a
possible alternate approach will be to develop an alternate dyadic norm on
the Besov space but using a wavelet with more cancellation.
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7. An application: the quantised derivative

Let n > 1, and let x1, x2, . . . , xn be the coordinates of Rn. For j =
1, . . . , n, we define Dj to be the derivative in the direction xj ,

Dj =
1

i

∂

∂xj
= −i∂j .

When f ∈ L∞(Rn) is not a smooth function then Djf denotes the distri-
butional derivative of f . We also consider Dj as a self-adjoint operator
on L2(Rn) with its standard domain of square integrable functions with a
square integrable weak derivative in the direction xj . This is equivalent to
the closure of the symmetric operator Dj restricted to Schwartz functions.
We use the notation ∇f = i(D1f,D2f, . . . ,Dnf) for an essentially bounded
function f ∈ L∞(Rn). For a square integrable function f with a square inte-
grable derivative in each direction we consider ∇ as an unbounded operator
from L2(Rn) to the Bochner space L2(Rn,Cn).

Let N = 2�n/2�. We use n-dimensional Euclidean gamma matrices, which
are N ×N self-adjoint complex matrices γ1, . . . , γn satisfying the anticom-
mutation relation

γjγk + γkγj = 2δj,k, 1 ≤ j, k ≤ n,

where δ is the Kronecker delta. The precise choice of matrices satisfying this
relation is unimportant so we assume that a choice is fixed for the rest of
the discussion.

Using this choice of gamma matrices, we can define the n-dimensional
Dirac operator by

D =
n
∑

j=1

γj ⊗Dj.

This is a linear operator on the Hilbert space CN ⊗ L2(Rn) initially defined
with dense domain CN ⊗S(Rn), where S(Rn) is the Schwartz space of func-
tions on Rn. It is easily seen that D is symmetric on this domain. Taking
the closure we obtain a self-adjoint operator which we also denote by D. We
then define the sign of D as the operator sgn(D) via the Borel functional
calculus, i.e., sgn(D) = D

|D| .

Given f ∈ L∞(Rn), denote by Mf the operator of pointwise multiplica-
tion by f on the Hilbert space L2(Rn). The operator 1⊗Mf is a bounded lin-
ear operator on CN ⊗L2(Rn), where 1 denotes the identity operator on CN .
The commutator

d̄f := i
[

sgn(D), 1⊗Mf

]
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denotes the quantised derivative of Alain Connes introduced in [7, IV]. It
is of particular interest in the quantised calculus to determine conditions
on f such that d̄f ∈ Sn,∞(CN ⊗ L2(Rn)). The asymptotic behaviour of the
singular values of the quantised derivative denotes the dimension of the in-
finitesimal in the quantised calculus. That the sequence of singular values
belongs to the weak space �n,∞ when the dimension of the Euclidean space
is n indicates analogous behaviour between quantum derivatives and dif-
ferential forms. Specifically, a product of n derivatives lies in the space
S1,∞(CN ⊗ L2(Rn)), which is the only weak space admitting a non-trivial
trace that acts as the integral.

In one dimension, necessary and sufficient conditions on f ∈ L∞(R) such
that

[

sgn(−i d
dx),Mf

]

∈ Sp,q(CN ⊗ L2 (R)) where p, q ∈ (0,∞] are provided
by Peller in [25, Chapter 4, Theorem 4.4]. Janson andWolff [18], and Connes,
Sullivan and Teleman [8] have studied necessary and sufficient conditions for
d̄f ∈ Sp,q(CN ⊗ L2(Rn)) with p, q ∈ (0,∞] in the higher dimensional case
n > 1. The case of p = q was studied by Janson and Wolff in their paper
[18]. They proved that when p > n, a necessary and sufficient condition for
d̄f ∈ Sp(CN ⊗ L2(Rn)) is that f is in the Besov space Bp,p

n/p(R
n). They also

show that if p ≤ n, then d̄f ∈ Sp if and only if f is a constant.
The case of p �= q with p ∈ [1,∞) and q ∈ [1,∞] was answered by

Rochberg and Semmes in [30, Corollary 2.8, Theorem 3.4]. Necessary and
sufficient conditions on f ∈ L∞(Rn) are given so that

d̄f ∈ Sp,q(CN ⊗ L2(Rn)).

These conditions are given in terms of the mean oscillation of f , and it is
not obvious whether an equivalent condition could be given in terms of more
familiar function spaces. In the Appendix of Connes, Sullivan and Teleman’s
paper [8, p. 679], it is proved that necessary and sufficient conditions for
d̄f ∈ Sn,∞(CN ⊗ L2(Rn)) are that f ∈ L1

loc(R
n) and ∇f ∈ Ln(Rn,Cn).

Recently, Lord–McDonald–Sukochev–Zanin [22] gave a different proof
of this result under the assumption that f ∈ L∞(Rn) using double op-
erator integrals. Their method gave sharp bounds on the quasinorm
‖d̄f‖Sn,∞(CN⊗L2(Rn)). For the norm ∇f ∈ Ln(Rn,Cn), they implicitly as-
sumed that the essentially bounded function f has weak partial derivatives
and that the Bochner norm of ∇f in Ln(Rn,Cn),

‖∇f‖Ln(Rn,Cn) =

(
∫

Rn

‖(∇f)(x)‖nn dx
)1/n

=

(
∫

Rn

n
∑

j=1

|Djf(x)|n dx
)1/n

,

is finite. The key step that they established is a new trace formula described
as follows, which is analogous to Connes [6].
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Recall that a trace on S1,∞(CN ⊗ L2(Rn)) is a linear functional

ϕ : S1,∞(CN ⊗ L2(Rn)) → C

such that ϕ([A,B]) = 0 for all bounded operators A and for all operators
B ∈ S1,∞(CN ⊗L2(Rn)). The trace ϕ is called continuous when it is contin-
uous with respect to the S1,∞(CN ⊗L2(Rn)) quasinorm. Given an orthonor-
mal basis {en}∞n=0 of CN ⊗ L2(Rn), define the operator T := diag

{

1
n+1

}∞
n=0

by 〈en, T em〉 = δn,m
1

n+1 . The linear functional ϕ is called normalised when

ϕ
(

diag
{ 1

n+ 1

}∞

n=0

)

= 1.

The property that ϕ is normalised is independent of the choice of orthonor-
mal basis, since for all unitary operators U and all bounded operators B we
have ϕ(UBU∗) = ϕ(B).

Proposition 7.1 [22]. Let f ∈ L∞(Rn) be real valued and such that
∇f ∈ Ln(Rn,Cn). Then there is a constant cn > 0 such that for any contin-
uous normalised trace ϕ on S1,∞(CN ⊗ L2(Rn)) we have

ϕ
(

|d̄f |n
)

= cn

∫

Rn

‖∇f(x)‖n2 dx.

Proposition 7.1 is the analogue of [6, Theorem 3(3)] for functions on the
non-compact manifold Rn. It is also stated for a larger class of functions
than [6, Theorem 3(3)] which is proved for smooth functions. Based on this
trace formula, in [22] they obtained that

Proposition 7.2 [22]. Let n > 1 and f ∈ L∞(Rn). Then, for d̄f ∈
Sn,∞(CN ⊗ L2(Rn)), it is necessary and sufficient that ∇f ∈ Ln(Rn,Cn).
Further, there exist positive constants c and C depending only on n such
that

c‖∇f‖Ln(Rn,Cn) ≤ ‖d̄f‖Sn,∞(CN⊗L2(Rn)) ≤ C ‖∇f‖Ln(Rn,Cn).

From our Theorem 1.2, we have the following result in this direction:

Theorem 7.3. Suppose n > 1, f ∈ VMO(Rn), w ∈ A2. Then d̄f ∈
Sn,∞(CN ⊗ L2(w)) if and only if f ∈ Ẇ 1,n(Rn). Moreover,

‖d̄f‖Sn,∞(CN⊗L2(w)) ≈ ‖f‖Ẇ 1,n(Rn).

Proof. We provide the details of the link between d̄f and [f,∇∆−1/2],
where ∆ is the standard Laplacian on Rn. In fact, from the definition of D
and the property of these self-adjoint complex matrices γ1, . . . , γn, we see
that

D2 = −1⊗∆.
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Moreover, sgn(D) which can equivalently be expressed as

sgn(D) =
n
∑

j=1

γj ⊗Dj∆
−1/2 =

n
∑

j=1

γj ⊗ Rj,

where Rj is the jth Riesz transform. Hence,

d̄f = i[sgn(D), 1⊗Mf ] = i

[ n
∑

j=1

γj ⊗ Rj , 1⊗Mf

]

= i
n
∑

j=1

[γj ⊗Rj , 1⊗Mf ]

= i
n
∑

j=1

(

γj ⊗ RjMf − γj ⊗MfRj

)

= i
n
∑

j=1

γj ⊗ [Rj ,Mf ].

Thus, the result follows from Theorem 1.2. �
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