Dalton Transactions

PAPER

View Article Online

Cite this: *Dalton Trans.*, 2023, **52**, 9639

Received 23rd May 2023, Accepted 21st June 2023 DOI: 10.1039/d3dt01557b

rsc li/dalton

Examining the reactivity of tris(ortho-carboranyl) borane with Lewis bases and application in frustrated Lewis pair Si-H bond cleavage?

Kanika Vashisth, Sanjay Dutta, Manjur O. Akram and Caleb D. Martin (1)*

Reactions of tris(ortho-carboranyl)borane with Lewis bases reveals only small bases bind. The tremendous bulk and Lewis acidity is leveraged in frustrated Lewis pair Si-H cleavage with a wider range of Lewis bases and greater efficacy than B(C_6F_5)₃.

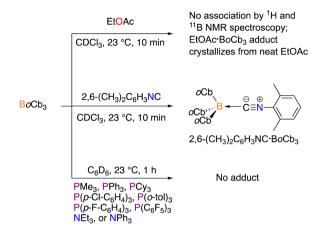
Introduction

Frustrated Lewis pairs (FLPs) arise from the combination of a Lewis acid and Lewis base that, due to steric demands, do not form a classical adduct. The quenched reactivity can be taken advantage of to activate bonds, exemplified in the pioneering reversible metal-free activation of H_2 by Stephan with the arene bridged intramolecular FLP, $Mes_2PC_6F_4B(C_6F_5)_2$ (Mes=2,4,6-trimethylphenyl). The field has exploded with both inter- and intra-molecular systems being applied to activate a plethora of bonds and in many cases, act as catalysts. While the application of FLPs is widespread, the prevalent Lewis acid reagents in these systems have been dominated by fluoroarylboranes, especially tris(pentafluorophenyl)borane $[B(C_6F_5)_3]$. The compatible Lewis bases require bulk to preclude coordination and accordingly, bulky phosphines and amines have been common Lewis base partners.

A bulkier Lewis acid could open the gateway to a series of smaller Lewis bases that are incompatible for FLP chemistry with fluoroarylboranes and perhaps new substrates for catalysis. Our team recently synthesized a Lewis acid candidate for FLP chemistry that uses an alternative approach to fluorine loading of aryl groups to enhance Lewis acidity, *ortho*-carboranes as large electron withdrawing substituents. Tris(*ortho*-carboranyl)borane (BoCb₃) is accessed in one pot from three commercially available chemicals (Fig. 1a). Mono- and bis-carboranylboranes have reported higher Lewis acidity than their aryl analogues but they are not as Lewis acidic as BoCb₃. Sod, A competition experiment reacting an equimolar amount of acetonitrile with

 $B(C_6F_5)_3$ BoCb₃ 452 605 484 622 H-33 89 CH₃CN 97 149 NΗ₃ 58.9 71.9 $B(C_6F_5)_3$ BoCb₂ `PEt₃ PhC(H)O•BoCba CH₂CN₂B₀Cb₂ PEt₃O•BoCb₃

Fig. 1 (a) Structures of $B(C_6F_5)_3$ and $BoCb_3$ (oCb = ortho-carborane). (b) Calculated properties of $B(C_6F_5)_3$ and $BoCb_3$ [F^- = fluoride ion affinity, H^- = hydride ion affinity, CH_3CN = acetonitrile affinity, and NH_3 = ammonia affinity; all are in kJ mol^{-1} ; $%V_{bur}$ = % buried volume of the corresponding fluoride adducts]. (c) Known $BoCb_3$ adducts.


 $B(C_6F_5)_3$ and $BoCb_3$ indicates preferential binding to $BoCb_3$. Calculated fluoride and hydride affinities, as well as ammonia and acetonitrile binding affinities, exceed the values reported for fluoroarylboranes (Fig. 1b).^{7,10} In addition to the greater Lewis acidity, the calculated steric profile of the fluoride adduct of $BoCb_3$ revealed greater bulk at boron than $B(C_6F_5)_3$ with a buried volume of 71.9% compared to 58.9%.¹¹ With the greater bulk of $BoCb_3$, a wider library of Lewis bases could be compatible for FLP chemistry which is herein investigated. In the disclosure of $BoCb_3$, acetonitrile, triethylphosphine oxide, and benzaldehyde adducts were reported (Fig. 1c).⁷

Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, USA. E-mail: caleb_d_martin@baylor.edu † Electronic supplementary information (ESI) available: Experimental procedures, NMR spectra, FT-IR spectra and X-ray crystallographic data (PDF). CCDC 2259756–2259759. For ESI and crystallographic data in CIF or other electronic format see DOI: https://doi.org/10.1039/d3dt01557b

Results and discussion

To determine whether FLPs are possible with BoCb₃ a variety of commercially available Lewis bases were screened

Paper **Dalton Transactions**

Scheme 1 Reactions of BoCb₃ with various Lewis bases.

(Scheme 1). The reaction of BoCb₃ with an equivalent of ethylacetate in CDCl3 showed no change by 1H and 11B NMR spectroscopy but the adduct could be crystallized in neat ethylacetate with the structure confirmed by a single crystal X-ray diffraction study (EtOAc·BoCb₃, Scheme 1 and Fig. 2). Dissolving the crystals in CDCl₃ revealed only free ethylacetate and BoCb₃ indicating the adduct is not resilient in CDCl3 solution. Reaction of BoCb3 with 2,6-(CH3)2C6H3NC generated the adduct, 2,6-(CH₃)₂C₆H₃NC·BoCb₃, as confirmed by a single crystal X-ray diffraction study. In this case, the adduct remains intact in CDCl₃ solution as confirmed by ¹H NMR spectroscopy with the three *ortho* C-H resonances shifted upfield (5.02 ppm to 4.72 ppm) along with the disappearance of the tricoordinate peak at 66.9 ppm in the 11B NMR spectrum. The corresponding ethylacetate and 2,6-(CH₃)₂C₆H₃NC adducts with B(C₆F₅)₃ have been reported and are resilient in solution.¹² Since the Lewis acidity of BoCb₃ is higher than B(C₆F₅)₃ but only the ethylacetate adduct of BoCb₃ dissociates in solution, the dissociation is presumed to occur from the larger steric

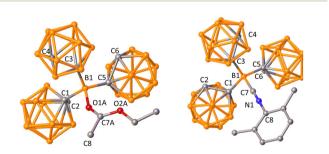


Fig. 2 Solid state structures of EtOAc·BoCb₃ (left) and 2,6-(CH₃)₂C₆H₃NC·BoCb₃ (right). Ellipsoids depicted at the 50% probability level and hydrogen atoms are omitted for clarity. EtOAc·BoCb3 is disordered and only the major occupancy component is shown. Selected bond lengths (Å) and angles (°): EtOAc·BoCb₃: B(1)-O(1A) 1.536(3), B(1)-O(1A)-C(7A) 1.260(2) 148.7(3); 2.6-(CH₂)₂ $C_6H_3NC \cdot BoCb_3$: B(1)-C(7) 1.6373(15), C(7)-N(1) 1.1448(14), B(1)-C(7)-N(1) 175.74(11).

profile of BoCb₃ versus B(C₆F₅)₃. This suggests that BoCb₃ should be a good candidate as a Lewis acid for FLP chemistry. The reactions of BoCb₃ with an array of phosphines [PMe₃, PPh_3 , PCy_3 , $P(o-tol)_3$, $P(p-Cl-C_6H_4)_3$, $P(p-F-C_6H_4)_3$, and $P(C_6F_5)_3$ and amine bases (NEt₃ and NPh₃) in C_6D_6 did not result in any change in the ¹H and ³¹P{¹H} NMR spectra from the respective starting materials, indicating adducts are not formed. It has been established that B(C₆F₅)₃ makes adducts with PMe₃, PPh₃, NEt₃, PCy₃, P(p-Cl-C₆H₄)₃, and P(p-F-C₆H₄)₃ but not with P(o-tol)₃ or P(C₆F₅)₃. From this, the breadth of Lewis bases for FLP generation with BoCb3 is much greater than $B(C_6F_5)_3$.

To determine if a BoCb3 adduct or FLP could induce Si-H cleavage, we first screened the adducts, CH₃CN·BoCb₃, PhC(H) O·BoCb₃, Et₃PO·BoCb₃, EtOAc·BoCb₃, (CH₃)₂C₆H₃NC·BoCb₃. None of the adducts showed any sign of reaction with an equivalent of silane at 23 °C in C₆H₆. Upon screening the phosphine FLP systems, the stoichiometric reactions of BoCb₃ and many phosphines (PR₃; R = Me, Ph, Cy, p-Cl-C₆H₄) with HSiEt₃ led to the ion pairs [R₃PSiEt₃][HBoCb₃] in high yields while reactions with $P(o-tol)_3$ and $P(p-F-C_6H_4)_3$ required two equivalents of silane to consume the phosphine and BoCb₃ starting materials. The reduced reactivity of P(otol)₃ is rationalized by steric bulk while P(p-F-C₆H₄)₃ is from the lower Lewis basicity from the electron withdrawing fluorine. Further corroborating this, the fully fluorinated variant, $P(C_6F_5)_3$, did not react at all with $HSiEt_3$ in the presence of BoCb₃, even with 5 equivalents of silane. The Tolman cone angles for P(o-tol)3 and P(C6F5)3 are similar (~184°) which imply the electron withdrawing C₆F₅ group shuts down the reactivity.14 Upon examining the amines, the FLP reaction of BoCb₃, NEt₃, and HSiEt₃ formed the [Et₃NSiEt₃][HBoCb₃] ion pair but the reaction with NPh3 did not show any change in the ¹H NMR and ¹¹B NMR spectra. The diminished reactivity is rationalized by the weaker Lewis basicity of NPh3. Comparing the reactivity with the same phosphines and $B(C_6F_5)_3$ reported in the literature, the $Ph_3P \cdot B(C_6F_5)_3$ adduct required 10 equivalents of HSiEt3 to achieve full conversion to the ion pair while $(p\text{-Cl-C}_6H_4)_3P\cdot B(C_6F_5)_3$ and $(p\text{-F-C}_6H_4)_3P\cdot B$ (C₆F₅)₃ resulted in only partial conversion with ten equivalents. 13b The Cy3P·B(C6F5)3 adduct did not react with HSiEt₃. 13b The results indicate that BoCb₃ is compatible with more Lewis bases to induce FLP Si-H cleavage.

In the literature, solution NMR spectroscopy indicates that HSiEt₃ interacts with B(C₆F₅)₃ and heating to 60 °C leads to the formation of Piers' borane, HB(C₆F₅)₂. 15 Contrarily, solution NMR spectroscopy does not reveal any interaction of BoCb3 with and heating to 120 °C did not result in any reaction.

In characterizing the ion pairs, in the phosphine reactions (Table 1), the ³¹P{¹H} NMR spectra showed the resonance for the [R₃PSiEt₃] cation shift downfield from the free phosphine (R = Me -25.9 ppm cf. -62.0 ppm, R = Ph -2.9 ppm cf.-5.6 ppm, R = Cy 2.6 ppm cf. -9.8 ppm, R = p-Cl-C₆H₄ -3.1 ppm *cf.* -8.6 ppm, R = *p*-F-C₆H₄ -3.7 ppm *cf.* -9.1 ppm, $R = o - tol \ 3.4 \ ppm \ cf. \ -29.7 \ ppm$).

Dalton Transactions Paper

Table 1 Reactions of BoCb₃ and Lewis bases, with HSiEt₃

BoCb_3 + LB + n HSiEt ₃ $\xrightarrow{C_6H_6,\ 23\ ^{\circ}C,\ 1\ h}$ [LBSiEt ₃][HBoCb ₃]					
LB	n	Product	³¹ P{ ¹ H} (ppm)	Conversion ^a	Isolated yield
PMe ₃	1	[Me ₃ PSiEt ₃][HBoCb ₃]	-25.9	Quantitative	80%
PPh ₃	1	[Ph ₃ PSiEt ₃][HBoCb ₃]	-2.9	96%	96%
PCy_3	1	[Cy ₃ PSiEt ₃][HBoCb ₃]	2.6	97%	87%
$P(o-tol)_3$	1	[(o-tol) ₃ PSiEt ₃][HBoCb ₃]	3.4	52%	_
$P(o-tol)_3$	2	[(o-tol) ₃ PSiEt ₃][HBoCb ₃]	3.4	77%	75%
$P(p\text{-}Cl\text{-}C_6H_4)_3$	1	$[(p-Cl-C_6H_4)_3PSiEt_3][HBoCb_3]$	-3.1	89%	76%
$P(p-F-C_6H_4)_3$	1	$[(p-F-C_6H_4)_3PSiEt_3][HBoCb_3]$	-3.7	67%	_
$P(p-F-C_6H_4)_3$	2	$[(p-F-C_6H_4)_3PSiEt_3][HBoCb_3]$	-3.7	91%	76%
$P(C_6F_5)_3$	1 or 5	NR	_	0%	_
NEt ₃	1	[Et ₃ NSiEt ₃][HBoCb ₃]	_	Quantitative	81%
NPh_3	1 or 5	NR	_	0%	_

NR = no reaction. ^a Conversions determined by quantitative ¹H NMR spectroscopy using 0.1 mmol mesitylene as internal standard.

The ¹H NMR spectra revealed the hydrogens on the orthocarbon atoms on the carboranes shifted upfield compared to free BoCb₃ (range = 4.60-4.48 ppm cf. 5.02 ppm).

Single crystal X-ray diffraction structures were obtained for [Me₃PSiEt₃][HBoCb₃] and [Ph₃PSiEt₃][HBoCb₃]. In both structures, the central B-H boron sits on a special position with a C_3 -axis of symmetry. The C-B-C angles of the central boron are 114.22(12)° and 115.18(11)°, indicating significant distortion from tetrahedral due to the bulky ortho-carborane substituents. The B-C bond lengths from the central boron are 1.712(2) Å and 1.703(2) Å, longer than free BoCb₃ [range = 1.614(8)– 1.627(7) Å] (Fig. 3). The borohydride species with $B(C_6F_5)_3$, $[HB(C_6F_5)_3]$, has a shorter B-C bond $[1.641(3) \text{ Å } cf. HBoCb_3]$ 1.712(2) Å] and less obtuse C-B-C bond angle [112.09(18)° vs. 114.22(12)° and 115.18(12)°] for [HBoCb₃]. 16 The longer bond and wider angle are rationalized by the larger steric bulk of ortho-carborane versus pentafluorophenyl.

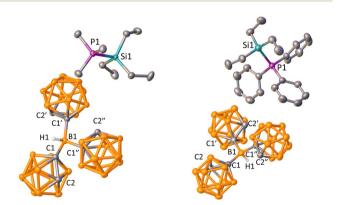


Fig. 3 Solid state structures of [Me₃PSiEt₃][HBoCb₃] (left) and [Ph₃PSiEt₃][HBoCb₃] (right). Ellipsoids depicted at the 50% probability level and hydrogen atoms are omitted for clarity. In the two structures, the cations and anions lie on three-fold symmetry sites and the remaining 2/3 of the ions are generated by symmetry. Selected bond lengths (Å) and angles (°): [Me₃PSiEt₃][HBoCb₃]: B(1)-C(1) 1.712(2), P(1)-Si(1) 2.295(13), C(1)-B(1)-C(1') 114.22(12); $[Ph_3PSiEt_3][HBoCb_3]$: B(1)-C(1)1.703(2), P(1)-Si(1) 2.359(15), C(1)-B(1)-C(1') 115.18(11).

a)
$$B(C_6F_5)_3 + [Et_3Si-PPh_3][HBoCb_3] \xrightarrow{CDCl_3} No \ Reaction$$
b) $BoCb_3 + n \ [HB(C_6F_5)_3][NEt_4] \xrightarrow{23 \ ^\circ C, \ 1 \ h} B(C_6F_5)_3 + [HBoCb_3][NEt_4] n = 1.0, 47\% \ conversion n = 1.4, 81\% \$

Scheme 2 Competition reaction between (a) [HBoCb₃] and B(C₆F₅)₃; (b) $[HB(C_6F_5)_3]$ and $BoCb_3$.

To determine whether $B(C_6F_5)_3$ or $BoCb_3$ bind hydride more readily, a solution of [Ph3PSiEt3][HBoCb3] was stirred with an equivalent of B(C₆F₅)₃ at 23 °C for an hour. There was no indication of hydride transfer from BoCb₃ to B(C₆F₅)₃ to form [HB (C₆F₅)₃] based on ¹⁹F{¹H} and ¹H NMR spectroscopy (Scheme 2). The equimolar reaction of $[NEt_4][HB(C_6F_5)_3]^{17}$ and BoCb3 in CDCl3 at 23 °C resulted in partial conversion to [HBoCb₃] and B(C₆F₅)₃ based on ¹⁹F{¹H} and ¹H NMR spectroscopy. Adding 1.4 equivalents of [NEt₄][HB(C₆F₅)₃] resulted in full conversion of BoCb3 to [NEt4][HBoCb3]. This is in line with the higher calculated hydride affinity of BoCb₃ (622 kJ mol⁻¹ cf. 484 kJ mol⁻¹).^{7,10}

To investigate the versatility of the BoCb₃ FLP system, we attempted CO2 activation. The intermolecular FLP combination of $B(C_6F_5)_3$ and P^tBu_3 reversibly binds CO_2 via addition across a C=O which is also possible with the ethylene bridged intramolecular FLP Mes₂P(CH₂)₂B(C₆F₅)₂. ¹⁸ The exposure of a C₆D₆ solution of BoCb₃ and P^tBu₃ or PMe₃ solution to an atmosphere of CO₂ at 23 °C did not result in any reaction by ¹H and ¹¹B NMR spectroscopy. Addition of HSiEt₃ to attempt the hydrosilation of CO2 resulted in no reaction at 23 °C or at 80 °C.

Conclusions

This work discloses that BoCb₃ is resistant to forming adducts with a wide variety of bases and generates FLPs. The quenched reactivity could be applied to Si-H bond cleavage with triarylphosphines and trialkylphosphines to generate the phosphoPaper **Dalton Transactions**

niumsilane and tris-(ortho-carboranyl)borohydride ion pairs, [R₃PSiEt₃][HBoCb₃]. In triarylphosphines the bulk in P(o-tol)₃ and electron withdrawing nature of P(p-F-C₆H₄)₃ required an extra equivalent of silane and P(C₆F₅)₃ did not react at all. Notably, in prior work by Gagné, many of these did not react at all with B(C₆F₅)₃ and those that reacted required ten equivalents of triethylsilane. In regards to amines, NEt3 was effective but NPh3 did not induce any reactivity. The C-B-C bond angle in [HBoCb₃] is more obtuse than in [HB(C₆F₅)₃], consistent with the steric profile. The greater hydride affinity of BoCb₃ over B(C₆F₅)₃ was experimentally validated by competition studies with the respective hydride salts. These studies clearly indicate that BoCb3 is bulkier and has a higher hydride affinity than $B(C_6F_5)_3$, that bodes well for FLP reactivity beyond Si-H cleavage.

Experimental section

General considerations

All manipulations were performed under an inert atmosphere in a nitrogen filled MBraun Unilab glove box or using standard Schlenk techniques. Deuterated solvents CDCl₃ and C₆D₆ for NMR spectroscopy were purchased from Cambridge Isotope Laboratories, Inc., dried by stirring for 5 days over CaH₂, distilled, and stored over 3 Å molecular sieves. Deuterated dichloromethane CD₂Cl₂ was purchased from Cambridge Isotope Laboratories, Inc. and used as received. All other solvents were purchased from commercial sources as anhydrous grade, dried further using a JC Meyer Solvent System with dual columns packed with solvent-appropriate drying agents, and stored over 3 or 4 Å molecular sieves. Tris(ortho-carboranyl) borane and [NEt₄][HB(C₆F₅)₃] were prepared by the literature procedure.^{7,17} The following reagents: *ortho*-carborane, *n*BuLi, 2,6-dimethylphenyl isocyanide, triphenylphosphine, tricyclohexylphosphine, trimethylphosphine, tris(o-tolyl)phosphine, tris(4-chlorophenyl)phosphine, tris(4-fluorophenyl)phosphine, tris(pentafluorophenyl)phosphine, triphenylamine, tris(pentafluorophenyl)borane, tetraethylammonium bromide, and triethylsilane were purchased from commercial sources and used without further purification. Ethyl acetate was kept over molecular sieves overnight and distilled. Triethylamine was dried over CaH2 and distilled before use. Multinuclear NMR spectra (¹H, ¹³C{¹H}, ¹¹B{¹H}, ¹¹B, ³¹P{¹H}, ¹⁹F{¹H}) were recorded on a Bruker Avance III HD 400 MHz or 600 MHz instrument. High resolution mass spectra (HRMS) were obtained in the Baylor University Mass Spectrometry Center on a Thermo Orbitrap Q-Exactive spectrometer using +ESI and -ESI. Melting points (m.p.) or decomposition points (d.p.) were measured with a Thomas Hoover Uni-melt capillary melting point apparatus and are uncorrected. FT-IR spectra were recorded on a Bruker Alpha ATR FT-IR spectrometer on solid samples. Single crystal X-ray diffraction data were collected on a Bruker Apex III-CCD detector using Mo-K α radiation ($\lambda = 0.71073$ Å). Crystals were selected under paratone oil, mounted on MiTeGen micromounts, and immediately placed in a cold stream of N₂.

Structures were solved and refined using SHELXTL19 and figures produced using OLEX2.20

Crystallization of EtOAc·BoCb₃

Single crystals of EtOAc·BoCb₃ for X-ray diffraction studies were grown from an EtOAc (5 mL) solution of BoCb₃ (0.20 mmol, 88.5 mg) by vapor diffusion into toluene (10 mL) at 23 °C. From the crystallization vial, excess ethyl acetate was removed via pipette and the solids were further dried under vacuum to collect the NMR spectroscopic data. Dissolving the crystals of EtOAc·BoCb3 in CDCl3 and acquiring a 1H NMR spectrum did not show a resilient adduct. Titration studies are shown in the spectra section (Fig. S1 and S2†).

Preparation of 2,6-(CH₃)₂C₆H₃NC·BoCb₃

A chloroform solution of 2,6-dimethylphenyl isocyanide (0.21 mmol, 27.9 mg, 5 mL) was added to a chloroform solution of BoCb₃ (0.20 mmol, 88.5 mg, 5 mL) at 23 °C. The reaction mixture was stirred for 5 min. The volatiles removed in vacuo and the product crystallized from chloroform/n-pentane (3:7 ratio, 10 mL) to give pure 2,6-(CH₃)₂C₆H₃NC·BoCb₃ as white solid. Single crystals for X-ray diffraction studies were grown by vapor diffusion of a saturated dichloromethane solution of 2,6-(CH₃)₂C₆H₃NC·BoCb₃ into toluene. Yield: 94%, 107.3 mg; dp: 252 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.51 (t, J = 8.0 Hz, 1H, 7.29 (d, J = 8.0 Hz, 2H, 4.72 (s, 3H), 3.12-1.75(m, 36H) ppm; ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃): $\delta = 139.4$, 134.0, 130.2, 121.9, 64.0, 20.8 ppm; ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta = 2.0$ (s), -3.5 (s), -5.1 to -18.0 (m) ppm; ¹¹B NMR: δ = 1.9 (d, J = 122.9 Hz), -3.5 (d, J = 138.2 Hz), -5.1 to -19.9 (m) ppm; FT-IR (ranked intensity, cm⁻¹): 3141 (7), 2646 (8), 2591 (1), 2563 (10), 2544 (9), 1475 (12), 1131 (11), 1076 (6), 1034 (3), 987 (13), 880 (5), 775 (2), 746 (14), 726 (4), 658(15); HRMS (±ESI): a peak corresponding to the adduct was not observed.

General reactions with phosphine and amine Lewis bases $(PMe_3, PPh_3, PCy_3, P(p-Cl-C_6H_4)_3, P(o-tol)_3, P(p-F-C_6H_4)_3, NEt_3,$ or NPh₃)

The Lewis base (0.02 mmol; in 0.2 mL C₆D₆) was added to a solution of BoCb₃ (0.02 mmol, 8.8 mg) in C₆D₆ (0.7 mL) at 23 °C and stirred for 1 h. Analyzing the sample by ¹H, ³¹P{¹H}, and ¹⁹F{¹H} NMR spectroscopy did not show any shift from the starting materials.

General procedure for the synthesis of [LB-SiEt₃][HBoCb₃] (LB = Lewis base) ion pairs

A benzene solution of the Lewis base (2 mL) was added to a benzene solution of BoCb₃ (2 mL) followed by the addition of HSiEt₃ at 23 °C. The reaction mixture was stirred for 1 h. The precipitate was collected by filtration, washed with benzene (3 × 1 mL), and dried in vacuo to give the product as a white solid. Amounts and characterization details for each species are listed as well as any deviations from the general procedure.

[Me₃PSiEt₃][HBoCb₃]

PMe₃: 0.045 mmol, 4.6 μL; BoCb₃: 0.045 mmol, 19.9 mg; HSiEt₃: 0.045 mmol, 7.1 μL. Single crystals for X-ray diffraction studies were grown from a dichloromethane solution of [Me₃PSiEt₃][HBoCb₃] by vapor diffusion into hexanes. Yield: 80%, 22.8 mg; dp: 156 °C; ¹H NMR (400 MHz, CDCl₃): δ = 4.61 (s, 3H), 2.80–1.47 (m, 39H), 1.21 (t, J = 8.0 Hz, 9H), 1.13 (q, J = 6.7 Hz, 6H) ppm; 13 C{ 1 H} NMR (101 MHz, CDCl₃): δ = 65.0, 8.9 (d, J = 37.4 Hz), 7.4, 2.0 (d, J = 11.1 Hz) ppm; 11 B{ 1 H} NMR (128 MHz, CDCl₃): δ = -1.4 (s), -4.1 (s), -5.8 to -16.6 (m) ppm; 11 B NMR: δ = -1.4 (d, J = 133.1 Hz), -4.1 (d, J = 149.8 Hz), -5.8 to -16.5 (m) ppm; 31 P{ 1 H} NMR (162 MHz, CDCl₃): δ = -25.9 ppm; HRMS (-ESI): calculated for [C₆B₃₁H₃₄] [M] -441.5758; found 441.5771.

[Ph₃PSiEt₃][HBoCb₃]

PPh₃: 0.24 mmol, 63.7 mg, in 5 mL benzene; BoCb₃: 0.24 mmol, 106.9 mg, in 5 mL benzene; HSiEt₃: 0.24 mmol, 38.8 µL. Single crystals for X-ray diffraction studies were grown from a dichloromethane solution of [Ph₃PSiEt₃][HBoCb₃] by vapor diffusion into toluene. Yield: 96%, 190.1 mg; dp: 168 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.89-7.81$ (broad, m, 3H), 7.78-7.68 (m, 6H), 7.46-7.41 (m, 6H), 4.60 (s, 3H), 2.81-1.68 (m, 30H), 1.26–1.17 (m, 6H), 1.07 (t, J = 8.0 Hz, 9H) ppm; ¹³C {¹H} NMR (101 MHz, CDCl₃): $\delta = 135.1$ (d, J = 2.0 Hz), 133.5 (d, J = 10.1 Hz), 131.2 (d, J = 12.1 Hz), 65.0, 7.7 (d, J = 4.0 Hz), 4.8 $(d, J = 10.1 \text{ Hz}) \text{ ppm}; {}^{11}B{}^{1}H} \text{ NMR } (128 \text{ MHz}, \text{CDCl}_3); \delta = -1.5$ (s), -4.1 (s), -5.6 to -15.7 (m) ppm; ¹¹B NMR: $\delta = -1.5$ (d, J =126.7 Hz), -4.1 (d, J = 134.4 Hz), -5.9 to -16.8 (m) ppm; 31 P $\{^1H\}$ NMR (162 MHz, CDCl₃): $\delta = -2.9$ ppm; FT-IR (ranked intensity, cm⁻¹): 3131 (14), 2552 (3), 1730 (7), 1602 (10), 1439 (5), 1331 (15), 1235 (8), 1161 (12), 1112 (13), 1072 (2), 1034 (11), 885 (6), 724 (1), 682 (9), 493 (4). HRMS (-ESI): calculated for $[C_6B_{31}H_{34}]^-[M]^-$ 441.5758; found 441.5773.

[Cy₃PSiEt₃][HBoCb₃]

PCy₃: 0.10 mmol, 56.1 mg; BoCb₃: 0.10 mmol, 44.0 mg; HSiEt₃: 0.105 mmol, 16.7 μL. Yield: 87%, 83.6 mg; dp: 184 °C; ¹H NMR (400 MHz, CD₂Cl₂): δ = 4.63 (s, 3H), 2.84–1.05 (m, 78H) ppm; ¹³C{¹H} NMR (101 MHz, CD₂Cl₂): δ = 65.3, 32.2 (d, J = 25.3 Hz), 29.1 (d, J = 3.0 Hz), 27.3 (d, J = 11.1 Hz), 25.7 (d, J = 1.0 Hz), 8.2 (d, J = 3.0 Hz), 6.0 (d, J = 8.1 Hz) ppm; ¹¹B{¹H} NMR (128 MHz, CD₂Cl₂): δ = −1.6 (s), −4.1 (s), −5.2 to −15.4 (m) ppm; ¹¹B NMR: δ = −1.6 (d, J = 140.8 Hz), −4.1 (d, J = 143.4 Hz), −6.2 to −16.8 (m) ppm; ³¹P{¹H} NMR (162 MHz, CD₂Cl₂): δ = 2.6 ppm; FT-IR (ranked intensity, cm⁻¹): 3135 (11), 2936 (6), 2858 (14), 2550(1), 1448 (5), 1176 (13), 1119 (7), 1071 (8), 1032 (4), 890 (12), 728 (3), 710 (15), 685 (2), 519 (9), 446 (10). HRMS (–ESI): calculated for [C₆B₃₁H₃₄] [M] ⁻ 441.5758; found 441.5770.

$[(p\text{-}Cl\text{-}C_6H_4)_3PSiEt_3][HBoCb_3]$

P(p-Cl-C₆H₄)₃: 0.05 mmol, 18.3 mg; BoCb₃: 0.05 mmol, 22.0 mg; HSiEt₃: 0.053 mmol, 8.5 μL. Yield: 76%, 35.0 mg; d.p: 148 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.62 (d, J = 8.0 Hz, 6H), 7.24–7.08 (m, 6H), 4.48 (s, 3H), 2.74–1.38 (m, 30H), 1.11–0.90

(m, 15H), ppm; $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz, CDCl₃): δ = 143.0 (d, J = 4.0 Hz), 134.4 (d, J = 12.1 Hz), 132.0 (d, J = 13.1 Hz), 116.5 (d, J = 62.6 Hz), 64.9, 7.8 (d, J = 4.0 Hz), 4.9 (d, J = 10.1 Hz) ppm; $^{11}\text{B}\{^1\text{H}\}$ NMR (128 MHz, CDCl₃): δ = -1.6 (s), -4.1 (s), -5.4 to -18.4 (m) ppm; ^{11}B NMR: δ = -1.6 (d, J = 133.1 Hz), -4.1 (d, J = 133.1 Hz), -5.8 to -18.7 (m) ppm; $^{31}\text{P}\{^1\text{H}\}$ (162 MHz, CDCl₃): δ = -3.1 ppm; FT-IR (ranked intensity, cm⁻¹): 2558 (4), 1577 (7), 1481 (10), 1392 (8), 1118 (15), 1089 (1), 1013 (11), 890 (9), 815 (3), 757 (13), 727 (2), 682 (14), 576 (6), 530 (12), 491 (5). HRMS (-ESI): calculated for $[\text{C}_6\text{B}_{31}\text{H}_{34}]^-[\text{M}]^-$ 441.5758; found 441.5767.

[(o-tol)₃PSiEt₃][HBoCb₃]

P(o-tol)₃: 0.05 mmol, 15.2 mg; BoCb₃: 0.05 mmol, 22.0 mg; HSiEt₃: 0.105 mmol, 16.8 μ L. Washing with *n*-pentane (2 \times 2 mL) and drying the solid in vacuo afforded the product as a white powder. Yield: 75%, 32.2 mg; d.p: 158 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.74$ (t, J = 8.0 Hz, 3H), 7.58 (t, J = 6.0Hz, 3H), 7.44 (t, J = 8.0 Hz, 3H), 7.03 (q, J = 8.0 Hz, 3H), 4.60 (s, 3H), 2.87-1.68 (m, 39H), 1.20-1.10 (m, 15H) ppm; ${}^{13}C{}^{1}H$ } NMR (101 MHz, CDCl₃): δ = 142.6 (d, J = 10.1 Hz), 135.0 (d, J = 11.1 Hz), 134.9 (d, J = 3.0 Hz), 133.7 (d, J = 10.1 Hz), 128.6 (d, J = 12.1 Hz, 117.5 (d, J = 58.6 Hz), 65.0, 23.7 (d, J = 6.1 Hz), 8.4 $(d, J = 5.1 \text{ Hz}), 5.8 (d, J = 10.1 \text{ Hz}) \text{ ppm}; {}^{11}B{}^{1}H{}^{1} \text{ NMR}$ (128 MHz, CDCl₃): $\delta = -1.6$ (s), -4.2 (s), -5.8 to -16.4 (m) ppm; ¹¹B NMR: $\delta = -1.6$ (d, J = 143.4 Hz), -4.0 (d, J = 135.7Hz), -5.8 to -16.3 (m) ppm; ${}^{31}P{}^{1}H{}$ (162 MHz, CDCl₃): $\delta =$ 3.4 ppm; FT-IR (ranked intensity, cm⁻¹): 3136 (12), 2954 (13), 2559 (1), 1592 (14), 1453 (7), 1286 (15), 1118 (9), 1070 (3), 1032 (10), 904 (6), 804 (11), 749 (2), 558 (5), 501 (8), 461 (4). HRMS (-ESI): calculated for $[C_6B_{31}H_{34}]^-[M]^-$ 441.5758; found 441.5766.

$[(p-F-C_6H_4)_3PSiEt_3][HBoCb_3]$

 $P(p-F-C_6H_4)_3$: 0.05 mmol, 15.8 mg; $BoCb_3$: 0.05 mmol, 22.0 mg; HSiEt₃: 0.105 mmol, 16.8 µL. The solid was washed with *n*-pentane (2×2 mL). The volatiles were evaporated in vacuo to provide the product as a white powder. Yield: 76%, 33.0 mg; d. p: 176 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.48-7.40 (m, 12H), 4.58 (s, 3H), 2.74–1.57 (m, 30H), 1.20 (q, J = 6.7 Hz, 6H), 1.10 (t, J = 6.0 Hz, 9H) ppm; $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz, CDCl₃): $\delta =$ 135.9 (dd, J = 9.1 Hz, 12.1 Hz), 119.5 (dd, J = 13.1 Hz, 22.2 Hz), 65.0, 7.8 (d, J = 5.1 Hz), 4.9 (d, J = 10.1 Hz) ppm; ${}^{11}B{}^{1}H$ } NMR (128 MHz, CDCl₃): $\delta = -1.5$ (s), -4.1 (s), -5.8 to -16.1 (m) ppm; ¹¹B NMR: $\delta = -1.5$ (d, J = 133.1 Hz), -4.1 (d, J = 139.5Hz), -5.8 to -16.8 (m) ppm; ${}^{31}P{}^{1}H{}$ (162 MHz, CDCl₃): $\delta =$ -3.7 ppm; $^{19}\text{F}{^1\text{H}}$ NMR (376 MHz, CDCl₃): $\delta = -98.1 \text{ ppm}$; FT-IR (ranked intensity, cm⁻¹): 2562 (6), 1591 (8), 1499 (9), 1402 (13), 1250 (4), 1163 (10), 1118 (7), 1070 (11), 911 (12), 829 (2), 727 (5), 691 (15), 516 (1), 459 (14), 438 (3). HRMS (-ESI): calculated for $[C_6B_{31}H_{34}]^-[M]^-$ 441.5758; found 441.5767.

[Et₃NSiEt₃][HBoCb₃]

NEt₃: 0.10 mmol, 13.9 μ L; BoCb₃: 0.10 mmol, 44.0 mg; HSiEt₃: 0.105 mmol, 16.7 μ L. The solids were washed with *n*-pentane (4 × 2 mL) to afford the product as white powder. Yield: 81%,

53.2 mg; d.p: 140 °C; ¹H NMR (400 MHz, CDCl₃): δ = 4.61 (s, 3H), 3.23 (q, J = 8 Hz, 6H), 2.74–1.73 (m, 30H), 1.45 (t, J = 8 Hz, 9H), 1.27–1.18 (m, 15H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 65.0, 51.3, 9.7, 7.7, 5.4 ppm; ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ = -1.4 (s), -4.1 (s), -5.8 to -16.3 (m) ppm; ¹¹B NMR: δ = -1. 5 (d, J = 137.0 Hz), -4.1 (d, J = 138.2 Hz), -5.8 to -16.5 (m) ppm; FT-IR (ranked intensity, cm⁻¹): 3183 (11), 3136 (8), 2556 (1), 1458 (9), 1393 (6), 1262 (13), 1115 (4), 1070 (5), 1029 (2), 889 (12), 798 (7), 725 (3), 653 (14), 514 (10), 455 (15). HRMS

(-ESI): calculated for $[C_6B_{31}H_{34}]^-$ [M] 441.5758; found

441.5766; (+ESI): calculated for $[C_{12}H_{30}NSi]^+$ $[M]^+$ 216.2142;

Conflicts of interest

found 216.2136.

Paper

There are no conflicts to declare.

Acknowledgements

We are grateful to the Welch Foundation (Grant No. AA-1846), the ACS PRF (65596-ND3), and the National Science Foundation (Award No. 1753025) for their generous support of this work. John Tidwell is thanked for assistance with X-ray crystallography.

References

- (a) G. Kehr and G. Erker, Chem. Rec., 2017, 17, 803-815;
 (b) G. N. Lewis, Valence and the Structure of Atoms and Molecules, Chemical Catalog Company, Incorporated, 1923;
 (c) N. Li and W. X. Zhang, Chin. J. Chem., 2020, 38, 1360-1370;
 (d) J. S. McCahill, G. C. Welch and D. W. Stephan, Angew. Chem., Int. Ed., 2007, 46, 4968-4971;
 (e) D. W. Stephan, Acc. Chem. Res., 2015, 48, 306-316;
 (f) D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2015, 54, 6400-6441.
- 2 G. C. Welch, R. R. S. Juan, J. D. Masuda and D. W. Stephan, *Science*, 2006, **314**, 1124–1126.
- 3 (a) D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2010, 49, 46-76; (b) R. Knitsch, T. Özgün, G. Q. Chen, G. Kehr, G. Erker, M. R. Hansen and H. Eckert, ChemPhysChem, 2019, 20, 1837-1849; (c) W. E. Piers, A. J. Marwitz and L. G. Mercier, Inorg. Chem., 2011, 50, 12252-12262; (d) K. L. Bamford, S. S. Chitnis, Z. W. Qu and D. W. Stephan, Eur. J. Chem., 2018, 24, 16014-16018; (e) J. M. Farrell, R. T. Posaratnanathan and D. W. Stephan, Chem. Sci., 2015, 6, 2010-2015; (f) G. Wang, C. Chen, T. Du and W. Zhong, Adv. Synth. Catal., 2014, 356, 1747-1752; (g) H. Wang, R. Fröhlich, G. Kehr and G. Erker, Chem. Commun., 2008, 5966-5968.
- 4 (a) D. Chen and J. Klankermayer, Chem. Commun., 2008, 2130–2131; (b) D. Chen, Y. Wang and J. Klankermayer, Angew. Chem. Int. Ed., 2010, 49, 9475–9478; (c) J. M. Farrell, Z. M. Heiden and D. W. Stephan, Organometallics, 2011, 30,

4497-4500; (d) B. Gao, X. Feng, W. Meng and H. Du, Angew. Chem., Int. Ed., 2020, 59, 4498-4504; (e) Z. M. Heiden and D. W. Stephan, Chem. Commun., 2011, 47, 5729-5731; (f) M. Oestreich, J. Hermeke and J. Mohr, Chem. Soc. Rev., 2015, 44, 2202-2220; (g) D. J. Scott, M. J. Fuchter and A. E. Ashley, J. Am. Chem. Soc., 2014, 136, 15813-15816; (h) P. Spies, G. Erker, G. Kehr, K. Bergander, R. Fröhlich, S. Grimme and D. W. Stephan, Chem. Commun., 2007, 5072-5074; (i) P. Spies, S. Schwendemann, S. Lange, G. Kehr, R. Fröhlich and G. Erker, Angew. Chem., Int. Ed., 2008, 47, 7543-7546; (j) D. W. Stephan, Dalton Trans., 2009, 3129-3136; (k) W. E. Piers and T. Chivers, Chem. Soc. Rev., 1997, 26, 345-354; (l) K. Chulsky and R. Dobrovetsky, Int. Ed.,2017, 56, Chem., (m) J. R. Lawson and R. L. Melen, *Inorg. Chem.*, 2017, 56, 8627-8643; (n) W. E. Piers, Adv. Organomet. Chem., 2005, 52, 1–76; (*o*) A. Y. Houghton, V. A. Karttunen, W. E. Piers and H. M. Tuononen, Chem. Commun., 2014, 50, 1295-1298; (p) A. Fukazawa, J. L. Dutton, C. Fan, L. G. Mercier, A. Y. Houghton, Q. Wu, W. E. Piers and M. Parvez, Chem. Sci., 2012, 3, 1814-1818; (q) J. L. Carden, A. Dasgupta and R. L. Melen, Chem. Soc. Rev., 2020, 49, 1706-1725; (r) R. M. Bullock, Catalysis without precious metals, John Wiley & Sons, 2011; (s) G. Erker, Dalton Trans., 2005, 1883-1890; (t) P. A. Chase, L. D. Henderson, W. E. Piers, M. Parvez, W. Clegg and M. R. Elsegood, Organometallics, 2006, 25, 349-357.

- 5 (a) S. J. Geier and D. W. Stephan, J. Am. Chem. Soc., 2009,
 131, 3476-3477; (b) G. C. Welch and D. W. Stephan, J. Am. Chem. Soc., 2007, 129, 1880-1881; (c) A. Berkefeld,
 W. E. Piers and M. Parvez, J. Am. Chem. Soc., 2010, 132, 10660-10661.
- 6 (a) S. P. Fisher, A. W. Tomich, S. Lovera, J. F. Kleinsasser, J. Guo, M. Asay, H. Nelson and V. Lavallo, Chem. Rev., 2019, 119, 8262-8290; (b) R. N. Grimes, Dalton Trans., 2015, 44, 5939-5956; (c) M. Scholz and E. Hey-Hawkins, Chem. Rev., 2011, 111, 7035-7062; (d) K. C. Song, H. Kim, K. M. Lee, Y. S. Lee, Y. Do and M. H. Lee, Dalton Trans., 2013, 42, 2351–2354; (e) M. O. Akram, C. D. Martin and J. L. Dutton, ChemRxiv, 2023, preprint, DOI: 10.26434/chemrxiv-22023-26431l26434k; (f) A. M. Spokoyny, C. D. Lewis, G. Teverovskiy and S. L. Buchwald, Organometallics, 2012, **31**, 8478–8481; (g) X. Yang, Z. Zheng, C. B. Knobler and M. F. Hawthorne, J. Am. Chem. Soc., 1993, 115, 193-195; (h) J. Schulz, R. Clauss, A. Kazimir, S. Holzknecht and E. Hey-Hawkins, Angew. Chem., Int. Ed., 2023, 62, e202381462; (i) A. M. Spokoyny, C. W. Machan, D. J. Clingerman, M. S. Rosen, M. J. Wiester, R. D. Kennedy, C. L. Stern, A. A. Sarjeant and C. A. Mirkin, Nat. Chem., 2011, 3, 590-596.
- 7 M. O. Akram, J. R. Tidwell, J. L. Dutton and C. D. Martin, Angew. Chem., Int. Ed., 2022, 61, e202212073.
- 8 (a) J. Kahlert, L. Böhling, A. Brockhinke, H.-G. Stammler, B. Neumann, L. M. Rendina, P. J. Low, L. Weber and M. A. Fox, *Dalton Trans.*, 2015, 44, 9766–9781; (b) J. O. Huh, H. Kim, K. M. Lee, Y. S. Lee, Y. Do and M. H. Lee, *Chem.*

Commun., 2010, **46**, 1138–1140; (c) K. M. Lee, J. O. Huh, T. Kim, Y. Do and M. H. Lee, *Dalton Trans.*, 2011, **40**, 11758–11764.

Dalton Transactions

- 9 (a) T. Bischof, L. Beßler, I. Krummenacher, L. Erhard, H. Braunschweig and M. Finze, Eur. J. Chem., 2023, e202300210; (b) M. Diab, K. Jaiswal, D. Bawari and R. Dobrovetsky, Isr. J. Chem., 2023, e202300010; (c) J. Krebs, Haehnel. I. Krummenacher, Α. Friedrich. H. Braunschweig, M. Finze, L. Ji and T. B. Marder, Eur. J. Chem., 2021, 27, 8159-8167; (d) J. Krebs, A. Häfner, S. Fuchs, X. Guo, F. Rauch, A. Eichhorn, I. Krummenacher, A. Friedrich, L. Ji and M. Finze, Chem. Sci., 2022, 13, 14165-14178; (e) S. Yruegas, J. C. Axtell, K. O. Kirlikovali, A. M. Spokoyny and C. D. Martin, Chem. Commun., 2019, 55, 2892-2895; (f) C. Zhang, X. Liu, J. Wang and Q. Ye, Angew. Chem., Int. Ed., 2022, 61, e202205506; (g) C. Zhang, J. Wang, Z. Lin and Q. Ye, *Inorg. Chem.*, 2022, **61**, 18275– 18284; (h) C. Zhang, J. Wang, W. Su, Z. Lin and Q. Ye, I. Am. Chem. Soc., 2021, 143, 8552-8558; (i) P. A. Chase, P. E. Romero, W. E. Piers, M. Parvez and B. O. Patrick, Can. J. Chem., 2005, 83, 2098-2105; (j) P. A. Chase, W. E. Piers and B. O. Patrick, J. Am. Chem. Soc., 2000, 122, 12911-12912; (k) H. Zhang, J. Wang, W. Yang, L. Xiang, W. Sun, W. Ming, Y. Li, Z. Lin and Q. Ye, J. Am. Chem. Soc., 2020, 142, 17243-17249; (l) T. Bischof, Z. Lin, Guo, I. Krummenacher, L. Beßler, X. M. Finze and H. Braunschweig, Chem. Sci., 2022, 13, 7492-7497; (*m*) M. O. Akram, J. R. J. L. Dutton and C. D. Martin, Angew. Chem., Int. Ed., 2023, e202307040.
- 10 H. Böhrer, N. Trapp, D. Himmel, M. Schleep and I. Krossing, *Dalton Trans.*, 2015, 44, 7489–7499.
- 11 L. Zapf, M. Riethmann, S. A. Föhrenbacher, M. Finze and U. Radius, *Chem. Sci.*, 2023, 14, 2275–2288.
- 12 (a) M. A. Beckett, D. S. Brassington, S. J. Coles and M. B. Hursthouse, *Inorg. Chem. Commun.*, 2000, 3, 530–533;
 (b) H. Jacobsen, H. Berke, S. Döring, G. Kehr, G. Erker, R. Fröhlich and O. Meyer, *Organometallics*, 1999, 18, 1724–1735.
- (a) P. A. Chase, M. Parvez and W. E. Piers, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2006, 62, o5181-o5183;
 (b) A. Gudz, P. R. Payne and M. R. Gagné, Organometallics, 2017, 36, 4047-4053;
 (c) A. Massey and A. Park, J. Organomet. Chem., 1964, 2, 245-250;
 (d) A. Massey and A. Park, J. Organomet. Chem., 1966, 5, 218-225.
- 14 C. A. Tolman, Chem. Rev., 1977, 77, 313-348.
- 15 (a) E. A. Patrick and W. E. Piers, Chem. Commun., 2020, 56, 841–853; (b) D. J. Parks, J. M. Blackwell and W. E. Piers, J. Org. Chem., 2000, 65, 3090–3098.
- 16 Y. Jiang, B. Schirmer, O. Blacque, T. Fox, S. Grimme and H. Berke, J. Am. Chem. Soc., 2013, 135, 4088–4102.
- 17 V. Morozova, P. Mayer and G. Berionni, *Angew. Chem. Int. Ed.*, 2015, **54**, 14508–14512.
- 18 C. M. Mömming, E. Otten, G. Kehr, R. Fröhlich, S. Grimme, D. W. Stephan and G. Erker, *Angew. Chem., Int. Ed.*, 2009, 48, 6643–6646.
- 19 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.
- 20 O. Dolomanov, L. Bourhis, R. Gildea, J. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339–341.