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ABSTRACT: On the one hand, much of computational chemistry
is concerned with “bottom-up” calculations which elucidate
observable behavior starting from exact or approximated physical
laws, a paradigm exemplified by typical quantum mechanical
calculations and molecular dynamics simulations. On the other
hand, “top down” computations aiming to formulate mathematical
models consistent with observed data, e.g., parametrizing force
fields, binding or kinetic models, have been of interest for decades
but recently have grown in sophistication with the use of Bayesian
inference (BI). Standard BI provides an estimation of parameter
values, uncertainties, and correlations among parameters. Used for
“model selection,” BI can also distinguish between model structures such as the presence or absence of individual states and
transitions. Fortunately for physical scientists, BI can be formulated within a statistical mechanics framework, and indeed, BI has led
to a resurgence of interest in Monte Carlo (MC) algorithms, many of which have been directly adapted from or inspired by physical
strategies. Certain MC algorithms�notably procedures using an “infinite temperature” reference state�can be successful in a 5−20
parameter BI context which would be unworkable in molecular spaces of 103 coordinates and more. This Review provides a
pedagogical introduction to BI and reviews key aspects of BI through a physical lens, setting the computations in terms of energy
landscapes and free energy calculations and describing promising sampling algorithms. Statistical mechanics and basic probability
theory also provide a reference for understanding intrinsic limitations of Bayesian inference with regard to model selection and the
choice of priors.

■ INTRODUCTION
Bayesian inference (BI) has become a standard tool for
addressing “inverse problems” in many fields of science,
including chemistry and biophysics;1−5 applications have
included calorimetry analysis,6−8 analysis of single-molecule
data,9,10 and development of Markov state models from
molecular dynamics data.11,12 BI takes observed data as input,
potentially from different measurement types, and outputs a
“posterior” probability distribution of parameters for a preset
mathematical model that is consistent with the data and any
prior assumptions. This multidimensional distribution effec-
tively scores different parameter choices, yielding not only
most likely values but also possible ranges of parameters
(uncertainty ranges, in effect) as well as the correlation
structure among parameters. To the extent that suitable
uncertainties are placed on experimentally derived inputs, BI
automatically “propagates” uncertainty without assuming linear
relationships among variables. Bayesian calculations addition-
ally can perform “model selection,” which entails a quantitative
comparison of candidate models1,7,13�each defined by a set of
equations and parameters. Furthermore, BI can naturally be
extended for nested and hierarchical models.1

There are important but inexact analogies between the
probabilistic framework of BI and equilibrium statistical
mechanics (Figure 1). The task of model selection, for
example, requires estimation of integrals that sum over
probabilities: these are akin to partition functions.7 Procedur-
ally, the BI process often uses Markov-chain Monte Carlo
(MCMC), frequently borrowing methods motivated by
physical science, such as parallel tempering and annealing.4,14

There are also modern molecular sampling methods that
employ an implicitly Bayesian framework.15

This Review aims to provide an introduction to the
connections between statistical mechanics and Bayesian
inference. Multidimensional probability theory provides a
common basis for the two frameworks, which we discuss in
a pedagogical way to demonstrate the parallels and also subtle
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distinctions. The intrinsically subjective priors of BI are
addressed, along with the related issue of parameter
representation. We discuss MCMC sampling methods that
employ physical ideas as well as new approaches based on
machine learning.
We hope this Review will provide readers from a physical

science background the confidence to engage productively in
Bayesian studies, as well as to critically examine BI data using a
physical lens. Because many physical scientists have extensive
experience with sampling challenges, they should be well-
positioned to perform high-quality Bayesian studies. In this
paper, the introductory material and the range of topics
covered should be of value to students and more advanced
researchers.

■ PROBABILITY THEORY AND BASIC BAYESIAN
INFERENCE FORMALISM

We review the key probability theory useful for understanding
Bayesian inference, both as a refresher and to establish
nomenclature. For now, the essential structures are joint and
conditional probability densities, as well as marginal densities.
We begin with the simplest case of two dimensions for
illustration and then generalize to higher dimensions.
We will use the terms “distribution,” “probability distribu-

tion”, and “probability density” interchangeably.
Elements of Two-Dimensional Probability Theory.

Bayesian inference relies on a division of variables into two
groups, parameters, and data, so two-dimensional theory is a
natural starting point. We consider the (“random”) variables x
and y which are distributed according to the joint probability
density p(x,y). As always, a probability density must be
normalized, meaning that

dx dy p x y dx dy p x y( , ) ( , ) 1= =
+ +

(1)

where integrals written without limits implicitly mean
integration over the full domain of real numbers (−∞, +∞),
in this case for both x and y.
A marginal probability density or simply “marginal” describes

the overall probability of x or y alone, which is computed by
integrating over all of the probability density in the excluded
coordinate. Thus, the marginal for x, denoted px, must
integrate over all possible y values for any x, and we have

p x dy p x y( ) ( , )x = (2)

Note that the marginal is (already) normalized because if we
integrate ∫ dx px(x) we arrive directly at the normalization
condition for the joint distribution (1). The marginal for y,
denoted py(y) is derived in an exactly analogous fashion and
also is normalized.
Joint and marginal probabilities are shown for the two

discretized examples in Figure 2. Analogous to x and y

integrations for the respective marginals, in the discrete case,
simple sums of probability are performed in horizontal and
vertical directions in the tables.
The conditional probability density p(x | y) describes the

distribution of x values (only) for a fixed value of y which is
considered a “condition.”

p x y
p x y

dx p x y
p x y

p y
( )

( , )

( , )

( , )
( )y

| = =
(3)

where the integral in the denominator ensures normalization,
and the second equality uses the definition of the py marginal
analogous to (2). In a precise analogy, the conditional
distributions for a discrete system (Figure 2) can be derived
by renormalizing any row or column based on the
corresponding marginal.
We can derive the key Bayesian relation by rearranging (3)

to yield p(x, y) = p(x | y) py(y) . Combining this equality with
the analogous relation based on swapping x and y, we have

p x y
p y x p x

p y
( )

( ) ( )

( )
x

y

| =
|

(4)

Figure 1. Relationships between Bayesian inference and statistical
mechanics for theory and simulation. Although (exact) probability
theory underpins both approaches, the physical basis of statistical
mechanics yields unique calculations in contrast to the intrinsic
uncertainty embedded in the Bayeisan prior. On the other hand, the
much lower dimensional coordinate (parameter) space of Bayesian
inference enables use of more diverse sampling approaches, including
some developed for physical systems.

Figure 2. Joint probabilities and marginals: the discrete case. (a) An
idealized joint probability distribution over “macro” (closed/open)
and “micro” features (helix/coil-RotA/RotB) of protein conforma-
tions, where a certain group of residues may be in an α helix or not
and one residue has two alternative rotameric conformations (RotA/
RotB). All possibilities must sum to 1, but we can also consider the
marginal distributions by summing horizontally over microfeatures for
a given macroconformation or vertically over macroconformations for
each set of microfeatures. (b) A hypothetical joint distribution of coin
types (based on probability of heads P(H)) and possible coin tosses.
Going across each row, the relative probabilities for each toss pair are
as expected, but the absolute probabilities are based on the imposed
marginal of coin types. This example takes as prior knowledge that
90% of coins are fair with P(H) = 0.5 and 10% are weighted with
P(H) = 0.1. Although formally identical, the analogy between joint
distributions (a) and (b) is imperfect on physical grounds because (a)
describes a true joint distribution of possibilities for a single
experimental condition, whereas (b) encompasses two different
types of coin-toss “experiments”.
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which is Bayes’ rule.1 This is an exact mathematical result that
is exploited, and adjusted, in Bayesian inference. In words, the
“opposing” conditional probabilities p(x | y) and p(y | x) are
proportional to one another, after correction by the ratio of
marginals px/py. Note that the denominator depends only on y
and so does not affect relative values of x.
Looking ahead to the practical goal of parameter inference

from data, if y represents the observed data and x represents a
model parameter, then the Bayes theorem (4) tells us how to
calculate the so-called “posterior” distribution p(x | y) of
possible parameter values given the data. This posterior is
evidently proportional to the likelihood p(y | x) of observing
the data given the parameter, a function we will examine in
detail below. Likewise, we will delve into the other functions,
especially the marginal px which is used to represent prior
information in Bayesian inference.
A final important concept concerns independence vs

correlation. In most cases of physical interest, two variables x
and y will be correlated and thus p(x,y) ≠ px(x)py(y). If
instead, equality holds for every possible (x,y) pair, that means
the two variables are independent, because the value of one
variable does not affect the distribution of the other.
Higher Dimensional Probability theory. In generalizing

the preceding framework to higher dimensions, we maintain a
division of variables into two groups because the separation
between data and parameters is fundamental in Bayesian
inference. We also adopt the standard θ notation for
“parameters”, which are not variables in a physical sense
(because in nature, they should have unique values for a
correct physical model) but are the key variables whose
distribution we would like to know, based on their consistency
with available data and prior knowledge.
Thus, we define a vector for the parameter variables θ⃗ = (θ1,

θ2, ..., θm) to take the place of the scalar variable x from the
two-dimensional case, and y ⃗ = (y1, y2, ..., yn) representing
multidimensional data instead of the scalar y. Note that the
dimensionalities of sets m and n generally will differ. For
integrals we will use the shorthand d⃗θ = dθ1, dθ2, ... dθm and dy ⃗
= dy1, dy2, ... dyn.
Maintaining a probability theory perspective (leaving

inference for later), there is no fundamental difference between
the θ⃗ and y ⃗ variables, and we assume that a joint distribution
p(θ⃗, y)⃗ is a standard, normalized probability distribution. That
is,

÷÷÷÷ ÷÷÷
d dy p y( , ) 1= (5)

With the overall dimensionality m + n, we can construct
marginals of any dimensionality up to m + n − 1. An example
one-dimensional (1D) marginal is

÷÷÷
p d d d dy p y( ) ... ( , )m1 1 2 3= (6)

and any other 1D marginal can be written as an integral of the
joint distribution over all coordinates not marginalized. Any
such marginal is properly normalized, as can be seen by
integrating (6) over θ1 and comparing to (5). Extending the
marginal concept, we can define an example (normalized) two-
dimensional (2D) marginal via

÷÷÷
p d d d dy p y( , ) ... ( , )m1,2 1 2 3 4= (7)

Two-dimensional marginals will prove very useful in analyzing
BI data. Any other variables can be chosen for marginalization
by excluding the chosen set from the integration.
Two other marginals of interest for BI theory consider the

overall sets of parameters and data variables, namely,

p dy p y( ) ( , )= (8)

p y d p y( ) ( , )y = (9)

These marginals, which are useful in defining important
conditional probabilities below, are abstract entities and are
not easily amenable to intuition. But for completeness, we note
that formally, pθ⃗(θ⃗) is the distribution of parameters
considering all possible sets of data, and py ⃗(y ⃗) is the
distribution of data sets accounting for all possible systems.
We emphasize that in a practical Bayesian inference process,
detailed below, only a single data set y ⃗ is considered,
corresponding to the data actually observed. As a minor
point, although the subscripts on the marginals (8) and (9)
may seem redundant, we include them to denote marginals
defined strictly from probability theory.
We can also define conditional probabilities using the

marginals

p y
p y
p y

( )
( , )

( )y

| =
(10)

p y
p y

p
( )

( , )

( )
| =

(11)

Finally, we write down the key precursor equation for
Bayesian inference, the multidimensional Bayes’ theorem,
derived by equating the joint distributions in (10) and (11).

p y
p y p

p y
( )

( ) ( )

( )y

| =
|

(12)

We emphasize that this equation is a direct consequence of the
definitions of basic probability theory.
When (12) is put to use for statistical inference of

parameters, we must tread carefully to avoid confusion.
Ambiguous nomenclature arises because the marginal pθ⃗ of
the full joint distribution is replaced by the “prior” distribution,
as discussed below. In turn, the main distribution of interest
becomes the conditional probability p(θ⃗ | y)⃗, known as the
“posterior” distribution, also discussed at length below.

Bayesian Inference as a Bridge from Theory to Useful
Information. The goal of Bayesian inference is to derive the
distribution of parameters θ⃗ consistent with the observed data
y ⃗ and prior assumptions about the parameters. We now bridge
between the exact probability theory discussed so far and the
inference process, which necessarily involves assumptions. On
the one hand, it is important to realize that (subjective)
assumptions must enter Bayesian inference, so the sensitivity of
the final results to any assumptions should be checked. On the
other hand, the explicit inclusion of assumptions in Bayesian
inference should not be taken as a weakness of the approach
compared to other methods because any inference method will
involve assumptions that may or may not be explicit.

What Is a Model? For physical scientists, the notion of a
model is quite intuitive. A model is simply an equation or set of

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Review

https://doi.org/10.1021/acs.jctc.4c00014
J. Chem. Theory Comput. 2024, 20, 2971−2984

2973

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00014?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


equations describing the behavior of a system. In Bayesian
inference, the model yields the numerical prediction ŷi(θ⃗) for
measurement i, given model parameters θ⃗ and the
experimental conditions for that measurement. A complete
Bayesian model also makes explicit assumptions about the
sources of uncertainty, such as the mathematical forms of
measurement noise and systematic measurement bias, leading
to a probabilistic description of data based on parameters.
As one example, consider the case of isothermal titration

calorimetry (ITC), in which changes in heat are measured
during a binding process.6,8 For binding with 1:1 stoichiom-
etry, in the simplest case, the mathematical model governing
ITC data expresses a measured set of heat increments dQi in
terms of the presumed known receptor and ligand concen-
trations, as well as in terms of the model thermodynamic
parameters, i.e., the enthalpy of binding ΔH and the
dissociation constant Kd. That is, there is an equation that
yields the set of predicted data values ŷi = dQi based on the
known concentrations and on the model parameters ΔH and
Kd. Therefore, the two components of parameter vector θ⃗ will
be ΔH and Kd (or its log).
Although our primary interest will be in determining the

physical parameters of interest, e.g., ΔH and Kd in the ITC
setting, there are additional, unavoidable “nuisance” parame-
ters. Because measurements always have noise, there will be a
noise parameter, typically σ representing the standard
deviation of Gaussian noise, assumed independent and
identically distributed for each measurement, although in
principle, other noise models may be used. Typically there are
additional nuisance parameters. In ITC, for example, an
additional parameter ΔH0 represents heat evolved due to
experimental imperfections, and a careful treatment accounts
for the fact that concentrations cannot be measured perfectly
and so these also should be treated as (partially) unknown
model parameters.6,8

Mathematically, then, the set of parameters θ⃗ includes both
the real parameters of interest and nuisance parameters. As we
will see below, the BI distribution of nuisance parameters
sometimes provides valuable lessons.
We should bear in mind that not every model will be

appropriate for a given set of data and that even the best
models will typically build in some unwarranted assumptions.
For now, we will assume that some model, bad or good, has
been chosen and examine the implications for Bayesian
inference of the parameters of that model. If a model is
inappropriate for the data, we can expect that a wide range of
parameter values, possibly unphysical, will be evaluated to have
a relatively high probability. There is indeed “signal” in the
inferred parameter distribution about the validity of a given
model compared to another, which we will discuss below when
considering “model selection.”
Recasting Bayes’ Theorem to Define the Posterior.

We now rewrite Bayes’ theorem very slightly to make it usable
for inference. The issue with the original form (12) is that we
have no idea what the marginal pθ⃗(θ⃗) should be nor any
unbiased way to estimate it. Instead, with the goal of
performing parameter inference where we wish to explicitly
build in any assumptions about the parameters, the marginal of
θ⃗ from (12) is replaced with an assumed prior distribution
Prior(θ⃗). We also adopt a more direct notation for the
posterior and likelihood, namely, Post(θ⃗ | y)⃗ = p(θ⃗ | y)⃗ and
Like(y⃗ | θ⃗) = p(y ⃗ | θ⃗).

The desired posterior distribution of parameters θ⃗ consistent
with the (single) set of data y ⃗ and prior assumptions is
therefore

y
y

p y
yPost( )

Like( )Prior( )
( )

Like( )Prior( )
y

| = | |

(13)

Two important points should be understood about (13), which
can be visualized with help from Figure 3. (i) Even though the

prior distribution plays the formal role of the marginal in Bayes
theorem (12)�more on this below�in actuality, the prior is
imposed and not computed from a joint distribution of y ⃗ and θ⃗.
The logic for understanding (13) nevertheless is straightfor-
ward: the posterior probability of a given parameter set θ⃗
depends on the probability that θ⃗ occurs in the first place (the
prior) weighting the conditional probability of the data y ⃗ once
the parameters have been selected (the likelihood). Thus, the
posterior always depends on the choice of prior, though
hopefully weakly as discussed below. (ii) Despite the
appearance of py(⃗y)⃗ in the denominator in (13), in BI, we
are interested in the (posterior) distribution of parameters for
a single set of data y,⃗ and we are not concerned with all
possible data sets. Hence, for BI calculations, py(⃗y)⃗ acts simply
as a normalization constant and can be ignored in most
practical calculations, as implied by the proportionality symbol
in (13). This is exactly analogous to sampling a Boltzmann-
factor distribution without considering the partition function, a
concept to which we shall return to later.

The Likelihood at the Heart of Bayesian Inference. As
we can see from the fundamental Bayesian inference eq 13, to
obtain the desired posterior distribution of physical (and
nuisance) parameters Post(θ⃗ | y)⃗, we require a function called
the “likelihood,” Like(y ⃗ | θ⃗). The likelihood is the dominant
function in Bayesian inference (at least whenever there is
enough data to do reliable parameter inference, see below).
Fortunately, the likelihood is also the most intuitive
component of the BI pipeline: it simply tells us the probability
of observing a given set of data given the physical model,
including the full set of experimental conditions and the noise

Figure 3. Components of Bayesian inference. Bayes’ rule is an exact,
basic result of probability theory, but Bayesian inference is a way of
combining previous knowledge about a parameter of interest θ,
encoded in the Prior distribution, with data values y1, y2, .... The
Likelihood function effectively weights different parameter (θ) values
based on the data. When prior assumptions and data likelihood are
combined together, the un-normalized Posterior distribution (“after
data”) is obtained.
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model. In many cases, the noise is taken to have a Gaussian
distribution about the model-predicted value, which is what we
shall assume.
The equation for the likelihood derives from considering

one measurement at a time under the assumed fixed set of
conditions θ⃗, with the addition of a noise model. We first note
that each data point yi has been generated under conditions ci⃗,
for which the model makes a prediction�dependent on the
parameters θ⃗�called ŷi = ŷi(ci⃗, θ⃗). With a Gaussian noise
model parametrized by variance σ2 (assuming a mean of zero),
the overall likelihood is simply the product of the probabilities
for each individual point. For N data points, we have

y eLike( )
1

2i

N
y y

1

( ) /2i i
2 2

| =
= (14)

This equation models the assumption that the noise for every
data point is independent. Note that σ is considered part of the
parameter set θ⃗, and the physical parameters are implicit in ŷi
values because those are determined from the parameter-
dependent model.
A Simple Example. Several key lessons regarding Bayesian

inference are revealed by a simple model that permits closed-
form evaluation of the likelihood function. We consider
terminal velocity measurements (Figure 4) where the velocity
“parameter” of interest θ is simply linear in the measured
distance value y. The model-predicted data value is simply ŷ =
θΔt based on the single velocity parameter θ, and it is the same
for all data points, i.e., ŷi = ŷ = θΔt. Thus, the likelihood is

y eLike( , )
1

2i

N
y t

1

( ) /2i
2 2

| =
= (15)

for the vector of data values y ⃗ = (y1, y2, ..., yN) . Note that by
definition the likelihood is normalized for integration over yi
values, and not for integration over parameters θ or σ.
The product of Gaussians in (15) can be trivially expressed

as the exponential of a sum of terms, which in turn can be
rewritten in a revealing way by completing the square:

i
k
jjjj

y
{
zzzz

lmoo
noo

|}oo
~oo

y
N

t yLike( , ) 1
2

exp 1
2 /

( )
N

y2
2 2| = [ + ]

(16)

where y yy
2 2 2= is the variance in the measurements, with

y̅ and y2 denoting the averages of the data measurements and
their squares, respectively.

Several lessons emerge readily from this form (16). (i) As
we would expect intuitively, for any pair of (θ, σ) parameters,
the likelihood is always larger if the data has lower variance, i.e.,
if the strictly positive σy

2 is smaller. (ii) For any fixed value of
the noise parameter σ, the θ distribution is a simple Gaussian
with mean y̅/Δt and standard deviation N t/( ). The
linearity of the model makes the θ distribution Gaussian, even
though that form was applied to the yi distribution; therefore,
this is not generally true for any model type. Nevertheless, the
narrowing of the distribution of θ with √N is a statistically
expected behavior. (iii) Finally, examining the σ behavior at
the most likely θ = y̅/Δt value, we can estimate the most likely
σ2 ∼ σy

2, which is the intuitive result that the Bayesian noise
parameter mirrors the spread in the data. Putting this together
with point (ii), we estimate the most likely overall variance for
θ as σθ

2 ∼ (σy/Δt)2/N.
Considering the Prior, and a Contrast with Statistical

Mechanics. Given our derivation in terms of conditional and
marginal probabilities, a potentially confusing question that
naturally arises is, “Does the prior impose itself as the marginal
probability observed by sampling the posterior?” A superficial
glance at the equations suggests that this is the case because
the prior in (13) takes the place of the true mathematical
marginal for the joint distribution that appears in (12).
However, this is tantamount to stating that the posterior
distribution (over model parameters) must be identical with
the prior distribution (over the same marginal parameters),
which certainly is not true.
How should we understand the probabilistic logic here? The

prior would indeed be the marginal if we were to integrate over
(or sample) all possible data sets y,⃗ but that is not done in
Bayesian inference. BI considers only a single fixed set of data
and samples parameter values consistent with that data. But the
prior still affects the posterior, and this unavoidable effect of
subjectivity is a contrast to statistical mechanics. Because the
prior is always subjectively chosen (albeit with the aim of
encoding empirical knowledge), the BI practitioner should
check the degree to which their choice affects the posterior.
Some sensitivity to the prior should be expected, and this does
not invalidate BI findings but rather adds information to the
inference results, which after all attempt to assess how precisely
determined the parameters are.
It is important to realize that even a broad uniform prior,

equivalent to setting a range for a parameter, intrinsically
represents a subjective choice. The reason stems from the
subjective nature of parameter representation and the multi-
plicity of ways to include the same parameter values. As

Figure 4. Bayesian inference for a simple linear model. (a) The parameter of interest is the terminal velocity of a coin dropped in water. Measured
distance (y) values are linearly related to the parameter of interest, velocity (θ = y/Δt), given the constant observation time Δt. (b) When a
relatively small amount of data is available, the peak of the estimated posterior likely will be displaced from “true” values based on a large amount of
data.
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common examples, consider representing a rate constant or
binding affinity. Both quantities are known to depend
exponentially on (free) energetic quantities, so physical
scientists may find the energy representations to be more
“natural.” But a uniform distribution of a given parameter is
very different from a uniform distribution of the log of the
parameter, and there is no fundamental way to prefer one over
the other in Bayesian inference. This is a contrast to statistical
mechanics where the partition function is defined explicitly as
an integral over Cartesian coordinates−and thus there is an
unambiguous mathematical route to employing other coor-
dinates using a Jacobian.16

A practical question that naturally arises for BI practitioners
is how much data is needed so that the posterior is insensitive
to the choice of prior? Superficially, one might assume that
with more than 10 data points in the full likelihood (14) which
is a product over single-data-point distributions, that the effects
of the single prior distribution in (13) would be incon-
sequential. However, the situation depends on the system,
data, and model�and the effects of the prior can vary
significantly from parameter to parameter.8 The practitioner
should not assume that a certain number of data points provide
immunity to the effects of the prior; instead, the sensitivity
needs to be checked empirically by varying the prior. To frame
this more theoretically, the real issue is whether the full
likelihood is much narrower than the prior for a given
parameter, and this is unknown until the distribution is
sampled.
Figure 5 illustrates schematically the relative importance of

prior and posterior. Although generically “enough” data should

make the posterior relatively independent of the choice of the
prior, there is no simple number of data points that guarantees
this independence. In addition to the number of data points,
the quality of the data, i.e., the level of noise or intrinsic
variance) plays a key role. Thus, it is not correct, in general, to
say that the prior plays the role of a single data point; this
holds only if the width of the prior matches the intrinsic
variance in the data. Based on this reasoning, it is sensible to
quantify�on a problem-specific basis�the amount of
information extracted from the data, compared to the prior.17

Posterior Marginals and Uncertainty Ranges. For
many inference applications, the estimation of the uncertainty
for parameters of interest is a key goal. The high-dimensional
posterior Post(θ⃗|y)⃗ embodies essentially all the information
gathered in Bayesian inference including the “credibility

regions” (akin to confidence intervals) that quantify the ranges
of likely parameter values, given the data and prior
assumptions. These Bayesian uncertainty ranges are derived
by marginalizing the posterior along the parameters of interest.
We introduce a special function name, Marg, for the

marginals of the posterior distribution p(θ⃗ | y)⃗, exemplified for
one and two parameters as

d d d yMarg( ) ... Post( )m1 2 3= | (17)

d d d yMarg( , ) ... Post( )m1 2 3 4= | (18)

which can be similarly defined for any subset of θ⃗ parameters.
Note that these functions do not involve integration over y⃗, in
contrast to (6) and (7) because y ⃗ is assumed fixed. Thus, more
completely, we may write Marg(θ1) = Marg(θ1|y)⃗, indicating
that the marginals depend on the data.
The credibility regions, i.e., uncertainty ranges, are derived

from the posterior marginals in a straightforward way: to
obtain a 95% credibility region, for example, one takes the 2.5
and 97.5 percentile values. Because the posterior defined in
(13) accounts for all possible parameter values via integration,
weighted by the likelihood and prior, the credibility region also
does. This contrasts with approximations sometimes employed
within a maximum likelihood framework18 which can fail to
include information about all parameter values despite use of
the likelihood function.19

As a technical aside, note that (17) and (18) are not
standard marginals if we consider θ⃗ and y ⃗ to be the full set of
variables, as was assumed in the derivation of Bayes’ theorem
(12). In the context of parameter inference, however, the real
concern is the validity of different parameter sets based on a
fixed data set y,⃗ motivating the use of the posterior marginals
(17) and (18).

■ MODEL SELECTION AND THE CONNECTION TO
FREE ENERGY CALCULATIONS

Even though parameter inference may be done systematically
in a BI pipeline, by itself, knowing parameter values does not
tell us whether the original model is valid. That is, once a
certain model is assumed (e.g., possible states and transitions
among them), Bayesian inference provides a systematic
framework for evaluating possible parameter values for that
model but does not automatically generate an overall
assessment of the assumed model. The process of model
selection13 enables comparison among specific models, with
some caveats that can be learned from statistical mechanics.

Defining the model selection problem. Assume we
want to compare the ability of two models, 1 and 2, for
describing a single set of data y.⃗ The models will be assumed to
have different sets of parameters θ⃗(1) and θ⃗(2), even though
nominally some parameters could describe the same physical
process in both models. For example, one model could
describe a set of states with transition rate constants for
parameters, and the other model could include some or all of
the same states, but perhaps with fewer allowed transitions. In
the schematic example of Figure 6, two different binding-event
orders are compared based on a titration of both ligands
simultaneously.

The Marginal Likelihood in Model Selection. A
primary (though not unique) approach for assessing the
overall suitability of a given model is via its marginal likelihood,

Figure 5. Relative effects of likelihood and prior. Based on the
available data, there is some fixed width in the likelihood function
(red curve) for a parameter of interest θ based on the most likely
noise parameter(s). In a linear model, the width is simply related to
the measured data variance, but more generally, there is some
distribution of θ values. The width of the likelihood will depend on
the quality (noise) and quantity (N) of the data. The prior, however,
is independent of these factors and may be broader or narrower than
the likelihood.
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also known as Bayesian evidence, which is a partition-function-
like quantity that sums over the posterior probability
associated with all possible parameter values. If the parameters
θ⃗ and the prior distribution Prior( )| are associated with the
model , then given the set of data y,⃗ the marginal likelihood
for the model is

p y d y d y

Z

( ) Post( ) Like( )Prior( )| = | = | |

(19)

The “marginal” nomenclature arises because if the integrand
Like(y⃗|θ⃗) Prior(θ⃗) is taken to be a true joint probability
distribution�following (11)�then the integral over θ⃗
represents the marginal py ⃗ as in (9).

The marginal likelihood (19) is analogous to a partition
function (Figure 1) with the posterior playing the role of the
Boltzmann factor. The defining integral represents the “sum”
over all of the probability embodied in the posterior. Also in
analogy to a partition function, the marginal likelihood
p y( )| is the normalization constant for the posterior,
given the fixed data set y.⃗ Note that in (19) the model and
data y ⃗ are fixed “constants” and not variables to be integrated
over: in a physics context, these might be called (confusingly in
the present context) “parameters”; they are analogous to N, V,
T which are held fixed in a canonical partition function. Also,
in the special but common case where the priors are uniform
distributions that simply set ranges for parameters, the
likelihood by itself is analogous to the Boltzmann factor.
If we want to estimate the relative probability of two models
1 and 2, we can form the Bayes factor,13 which is the

simple ratio of the two marginal likelihoods.

p y
p y

Z
Z

Bayes Factor
( )
( )

1

2

1

2
= |

|
=

(20)

where Z Z( )i i= . Note that the ratio (20) can be adjusted by
the prior likelihood for the models themselves, if these differ;13

here we assume there is no difference, so (20) is valid as
written. Below, we consider computational strategies for
computing Bayes factors, which are akin to partition function
ratios, albeit of much lower dimensionality in typical cases of
interest.
A natural, powerful feature of the comparison invoked by the

Bayes factor (20) is that it automatically penalizes overfitting,
i.e., models with more parameters.9 To see this, consider the
marginal likelihood (19), which is an integral over all
parameters weighted by the (normalized) prior. On the one
hand, models with more parameters may well exhibit better fits
and hence higher likelihood values; however, given that the
likelihood itself is essentially a Gaussian of the mean-squared
error (14), there is a limit to how much the likelihood can
increase once the mean-squared error is below the variance σ2.
On the other hand, as more parameters are included beyond
what is physically appropriate to the data, we expect that the
fraction of parameter space occupied by high-likelihood
parameters to decrease significantly and overwhelm the slightly
larger likelihood.

Limitations of the Partition Function Analogy. The
partition function analogy has its limitations, and these could
be of practical importance. We can consider whether the logic
of the Bayes factor, i.e., of a ratio of integrals over the posterior
distribution of parameters) is well founded. Although the
marginal likelihood (19) is mathematically analogous to a
partition function, this is not quite true in the physical sense. In
a physical system, we wish to sum over all possible system
configurations because they are expected to occur: the
configurational integral of the partition function, after all, is
equivalent to a time average for ergodic systems.16 In contrast,
in Bayesian inference, all possible sets of parameters are not
expected to occur, and physically, we know there is only one
true set if the model is correct. One can make a “robustness”
argument, namely, that we expect more high-probability sets of
parameters for a better model; further, given the noise intrinsic
to data, one can argue we have no choice but to seek such
robust models. However, it is not unreasonable to appeal to a
maximum likelihood or maximum posterior perspective in

Figure 6. Model comparison in Bayesian inference. A hypothetical
system in which a protein (blue) that binds two ligands (A and B) is
analyzed based on experimental readout of the doubly bound protein
population as the concentrations of A and B are simultaneously
increased. A given set of experimental data (top) is analyzed using two
different models (1 and 2). Each independent analysis produces its
own posterior over the parameters specific to that model (bottom).
Note that the posterior distributions, Prior(θ) × Like(θ), are not
normalized over parameters, implying integration over parameters will
yield different values known as marginal likelihoods.
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seeking the single best model, and this approach does play an
important role in modern model selection.7

The well-defined statistical mechanics partition function also
points us to a fundamental mathematical ambiguity in the
marginal likelihood defined in (19). Whereas a partition
function is strictly defined as an integral over Cartesian
coordinates and a Jacobian correction is required for different
variables,16 no such fundamental integration measure can be
defined for the marginal likelihood. Returning to our examples
of having rate constants and/or binding affinities as BI
parameters, we can equally describe these parameters by their
direct values or by their energy-like logarithms. It seems
impossible to consider either representation more fundamen-
tal, yet the resulting marginal likelihoods will be different.
Thus, despite the appealing analogy with statistical mechanics,
it seems that unavoidable ambiguities are intrinsic to Bayesian
model selection.
This statistical inexactness of Bayesian model selection, as

with Bayesian parameter inference, should not be interpreted
as a reason to disregard the approach, but rather to proceed
with caution. That is, always try more than one reasonable
prior to testing the sensitivity of results to the prior.

■ MONTE CARLO IN BAYESIAN INFERENCE
The main practical task in Bayesian inference is sampling the
posterior distribution Post(θ⃗ | y)⃗ in order to obtain estimates
for parameters θ⃗ given the data at hand y.⃗ BI will not only
provide (i) the most likely parameter values but also yields (ii)
confidence intervals, technically known as “credibility regions”
in BI, (iii) parameter correlations, and, when synthetic data is
used, (iv) key information for experimental design.
Intuition about sampling energy landscapes applies directly

to sampling Bayesian posteriors. Mathematically, the con-
nection is straightforward: the posterior is a probability akin to
a Boltzmann factor, and so the negative logarithm of the
posterior is like an energy. Probability peaks in the posterior
plane are directly analogous to energy minima. In one
dimension, if we suppress the data y ⃗ for simplicity, in BI we
want to sample Post(θ) where θ is the model parameter, and
this is analogous to the role of the Boltzmann factor e−U(x)/kBT

where x is the physical coordinate. The simplest energy
landscape would have a single, smooth basin, which could
readily be sampled; likewise, it would be easy to sample a
posterior with a single peak, e.g., the Gaussian likelihood (16)
from our simple example in combination with a uniform prior.
In complex BI problems, not surprisingly, multimodal
distributions can occur.
In principle, a standard Monte Carlo method such as the

Metropolis−Hastings algorithm20 can be used to sample any
Bayesian posterior, whether it is simple or complicated. In one
dimension, the Metropolis acceptance probability would be

P min 1, Post( )/Post( )accept new old= [ ] (21)

in analogy to the physical Metropolis probability min[1,
e−U(xnew)/kBT/e−U(xold)/kBT] in the simple but typical case of a
symmetric attempt distribution, where “new” and “old” denote
the trial and previous configurations, respectively. In the most
interesting and complex problems, however, simple approaches
are not sufficient, and therefore, our discussion of MC methods
focuses on more cutting-edge methods.
Although sampling the BI posterior is formally identical with

equilibrium molecular simulation, the much lower dimension-

ality in BI dramatically alters the slate of algorithms that can be
considered. Instead of trying to sample the Boltzmann-factor
distribution e−U(x)⃗/kBT where U is the potential energy and x ⃗ is
the full set of configurational coordinates�typically 105 or
more coordinates�we are sampling Post(θ⃗) = Post(θ⃗|y)⃗,
where typically there are often 10−100 components of θ⃗, and y ⃗
is fixed data that is not sampled.
Here, we primarily restrict ourselves to Markov chain Monte

Carlo (MCMC) algorithms, which are less formally called
Monte Carlo (MC) in much of the physical sciences. As
described in greater detail later, there are many classes of
algorithms, such random walk Metropolis−Hastings,20 Ham-
iltonian MC,7,21 and ensemble methods that sample the
posterior, each with their own performance characteristics. Of
particular interest in this paper are “temperature”-based
methods, as described below.
The relatively low dimensionality of Bayesian inference

problems, compared to biomolecular systems, opens up the
possibility to exploit high and effectively infinite temperature in
MC sampling for BI. Although high-temperature-based
sampling protocols are common for biomolecular systems,22,23

there are intrinsic limitations in that arena, including the
challenge of sampling an unfolded biomolecule and the
potentially minimal overlap between distributions at different
temperatures.24,25 The authors are unaware of sampling
protocols that employ infinite temperature, i.e., a uniform
distribution in all coordinates) for biomolecular systems.
Because of its importance in BI, “temperature”-based annealing
is discussed below in greater detail.
Finally, although the topic has not been investigated

systematically to our knowledge, we expect that the choice
of parameter representation could affect sampling. In a
molecular system, one would expect internal coordinates to
be more natural and effective for Monte Carlo sampling, as
opposed to Cartesian coordinates.26,27 Likewise, in Bayesian
inference, it may prove more natural to consider a transformed
coordinate, e.g., based on an exponential, logarithm, or
trigonometric function.

Annealing Algorithms. Although temperature plays no
direct role in Bayesian inference (even though experimental
data being analyzed has been collected at finite temperature),
the BI problem can usefully be reformulated to include an
artificial temperature.14 Instead of considering only the true
posterior, we introduce an inverse temperature parameter β
and consider distributions of the form

p y( ) Like( ) Prior( )[ | ] (22)

With this definition, p1(θ⃗) = Like(y⃗|θ⃗)·Prior(θ⃗) = Post(θ⃗)
corresponds to the true posterior and p0(θ⃗) = Prior(θ⃗)
represents the infinite temperature limit and yields the prior.
The prior is typically a distribution that can be sampled exactly,
such as a uniform distribution over a finite range for each
parameter in θ⃗ or a multidimensional Gaussian.
Annealed importance sampling (AIS),14,28 in physical terms,

uses a valid high-temperature (low β) sample−i.e., an
ensemble of many systems−that is gradually cooled in order
to obtain a representative sample at a lower temperature (β =
1). See Figure 7. Cooling is gradual in the sense that finite
temperature decreases are alternated with a constant-temper-
ature simulation (e.g., MC or molecular dynamics). Each
cooling step adjusts a weight factor that is tracked for every
system in the ensemble, and a resampling process may be used
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to suppress low-weight samples and replicate those with higher
weights.28

Importantly, AIS is formally equivalent to a stochastic
Jarzynski-relation29 protocol, and permits the calculation of
free energies or partition functions.14 AIS therefore can yield
estimates of the marginal likelihood (19) for Bayesian model
selection.
When an annealing protocol is used for sampling, the

infinite-temperature limit (β = 0) is attractive for several
reasons. First, it can be sampled exactly, enabling the use of an
annealing process initiated from truly independent β = 0
samples. In BI problems with ∼10 or tens of parameters,
typically, there are finite values of β > 0 with sufficient overlap
with the β = 0 ensemble to permit practical sampling in an
annealing protocol that gradually “cools” the system until β = 1
is reached. In a biomolecular system, generically, one would
expect effectively zero overlap with any numerically realizable
finite β because of the huge number of degrees of freedom. A
second point is that the ability to conduct multiple
independent runs using fully random initial samples for β =
0 readily enables the confirmation of the sampling quality. This
type of complete independence of runs is essentially out of
reach for complex biomolecular systems.
Third, when it is necessary to perform model selection via

the Bayes factor (20), the AIS algorithm has the unique
advantage of being able to compute the partition-function-like
marginal likelihood (19) simultaneously as it estimates the
posterior for parameter inference.14 That is, based on the
trivially computable β = 0 reference system, AIS can yield what
amounts to “absolute” partition functions (not partition
function ratios) at the target β = 1 value. Note that both the
partition function and the marginal likelihood are integrals
over (un-normalized) probability distributions. Thus, in
practice, separate AIS simulations can be run for different
models, each yielding the usual posterior for parameter
inference and marginal likelihood, without the need for
additional calculations to generate the ratios of marginal

likelihoods. This is a significant strength of AIS, given the
importance of model selection in biophysical systems.7,9

In principle, AIS can be used with any constant-temperature
canonical sampler, and some of these are discussed below.
Note that the use of “walkers” at multiple temperatures is a
feature shared in common with parallel tempering (PT)
methods4,22,30,31 which also are commonly used for Bayesian
inference. In practical situations, PT sampling typically cannot
exploit the β = 0 limit,24 unlike AIS.

New and Old Fixed-Temperature Algorithms. As
noted above, methods such as AIS or parallel tempering are
metasamplers and can use any one of a host of fixed-
temperature (fixed β) methods to generate probability
distributions of interest. Fixed-temperature algorithms are
stand-alone sampling procedures that can be integrated into a
larger multi-temperature sampler. While we only discuss a few
selected algorithms and their trade-offs, it is important to note
that there are hybrid approaches that combine multiple
methods.32

The random walk Metropolis−Hastings (MH) algorithm20

is a well established, basic method for Markov chain Monte
Carlo sampling. Briefly, for each iteration, a random jump from
the current parameter set to a new parameter set is performed
using a proposal (jump) distribution. The new candidate
parameter set is either accepted or rejected based on the
comparative probabilities of the old and proposed parameter
sets. This generates a list of θ⃗ values that eventually will
converge to the target (in this case Posterior) distribution;
however, the method is well-known to require significant
tuning leading to potential convergence problems.1,33

A more advanced approach commonly used in BI is
Hamiltonian Monte Carlo (HMC), which constructs trial
moves based on approximate “dynamics” computed from
gradients of the effective energy landscape (negative log of the
probability distribution).7,21 Hamiltonian-based methods build
on MH, utilizing information on the posterior’s shape via its
gradient to efficiently generate the proposed moves. Briefly,
HMC introduces a momentum variable associated with each
parameter that is combined to create a fictitious Hamiltonian.
The Hamiltonian dynamics is simulated (via integration) for a
given step size and number of steps, generating a new proposal.
A popular extension of HMC is the No-U-Turn sampler34

which adaptively determines the simulation step size and
length, reducing the need for hyperparameter tuning. However,
while Hamiltonian-based methods are able to efficiently
sample from high dimensional posterior distributions, they
require gradient calculations which may be infeasible to
calculate. Furthermore, these methods may also struggle with
multimodal distributions (i.e., multiple energy basins). We
refer the interested reader to a conceptual introduction of
HMC35 for more details on this popular approach.
An alternative method that does not require gradients, the

affine invariant ensemble sampler36 evolves a set of walkers
(MCMC chains) through the posterior landscape. For each
sampling step, each walker is proposed a new position in the
parameter space based on the position of other randomly
selected walkers. In the “stretch” move, for example, a walker is
moved in a direct line toward or away from another randomly
selected walker, based on a random scale factor. The proposed
move is then accepted or rejected based on the MH acceptance
probability criterion. Critically, this proposal strategy is
invariant to stretching, rotation, and translation, i.e., affine-
invariant. In effect, the affine invariant ensemble sampler is able

Figure 7. Annealed importance sampling (AIS) algorithm. A set of
independent systems is started at a high temperature (colored circles,
top row), followed by three steps. (i) The systems are instantaneously
“cooled” to a slightly lower temperature (larger β, second row from
top), which results in the association of a weight to each system�the
ratio of probabilities for the two β values, given the θ value at the
preceding temperature. (ii) The systems are then resampled according
to their weights, leading to the elimination of some systems and
multiple copies of others (color corresponds to “parent” system of top
row). (iii) A brief amount of dynamics or MC sampling for each
system is then performed to “relax” or decorrelate the systems
(horizontal displacements along the θ axis). These three steps of
cooling-resampling-relaxing are repeated until the target temperature
of interest (β = 1, bottom row) is reached. In Bayesian inference, the
parameter β is nonphysical but acts to smooth the landscape in the
same manner as the physical analog β = 1/kBT.
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to transform the complex geometry of a posterior distribution
into a simpler distribution that can be sampled more efficiently.
In our hands, this approach proved effective at sampling small-
to-medium sized models of isothermal titration calorimetry
(<10 parameters)8 but required extensive computing.
Relatedly, this algorithm requires an adequate number of
walkers to densely cover the posterior, which can be well suited
for multimodal distributions, but may become computationally
infeasible for large dimensionality.
Finally, recent machine learning advances for density

estimation using normalizing flows37,38 have been incorporated
into MCMC sampling methods. These generative models use
neural networks with a series of differentiable and invertible
transformations to learn a mapping from a simple distribution
(e.g., Gaussian) to a complex distribution (e.g., the Posterior).
One interesting application is the use of normalizing flows for
preconditioning39 within an annealed importance sampler.
Here the normalizing flows are trained using the previous
temperature stage and used to transform the current β-specific
distribution into a standard Normal distribution. Metropolis-
Hastings with a standard Normal proposal distribution is used,
enabling efficient sample generation subject to the accuracy of
transformation. We have found this method to be valuable for
the Bayesian inference of dynamic models of membrane
transporters with 10−20 parameters.40

While we have only scratched the surface of the available
sampling algorithms here, we advise the reader that each
algorithm has trade-offs and that the “best” sampler will
depend on the specific problem at hand, such as the feasibility
of gradient calculations or multimodality of the posterior.
Challenges for Bayesian Inference and Monte Carlo.

While Bayesian inference and Markov-chain Monte Carlo are
robust approaches to quantifying parameter estimates and
uncertainty, they are not without challenges. First, as we have
described previously, BI methods require the choice of a
model, prior, and likelihood for a given data set in order to
generate a posterior, which inherently requires some
subjectivity and assumptions. However, the sensitivity of the
inference results to these choices can be readily analyzed, and
we find explicitly integrating and testing our modeling
assumptions to be a valuable aspect of Bayesian inference.
Another potential challenge for Bayesian inference is how to

deal with complex data structures and models. For heirarchical
data such as data generated from a population and individuals,
BI can be extended into hierarchical Bayesian inference.1 This
approach uses priors, likelihoods, and models for both the
individual and population levels and introduces hyper-
parameters that govern how tightly coupled the different
levels are. In effect, this systematically embeds individual BI
models into a larger interconnected framework that can
account for the uncertainties and dependencies of the data. A
related concern is how to incorporate multiple data sets while
accounting for batch effects (i.e., unique nuisance parameters
for each data set). Two possible solutions to this are to use the
posterior of one data set as the priors of the next data set, and
use importance sampling between the posterior of the one data
set and next.41

Moving to MCMC sampling algorithms specifically, the
primary challenge is efficiently generating independent samples
of the posterior distribution, due to complex posterior
geometries and/or poor hyperparameter selection of the
MCMC method. In particular, sampling challenges arising
from strong correlations, multiple modes, and heavy tails in the

posterior region are exacerbated by high dimensionality and
will prove difficult for any sampling method. Unfortunately,
there is no silver bullet approach. Relatedly, MCMC
algorithms may be susceptible to initial state bias, which can
be tested by using multiple independent runs.
As an alternative to MCMC, variational inference provides a

deterministic optimization approach to estimate intractable or
high dimensional posteriors.1,42 Here a tractable distribution
(e.g., Gaussian) is selected to represent the posterior. Then the
parameters of the tractable distribution, such as the mean and
variance of a Gaussian, are adjusted such that the difference
between the tractable distribution and the true posterior is
minimized. Since the true posterior is not known, we cannot
directly calculate this divergence but instead use an
approximation: the evidence (marginal likelihood) as a lower
bound. Maximizing this quantity will generate the optimal set
of model parameters for the chosen surrogate posterior
distribution. While computationally efficient, these methods
are approximate and introduce stronger assumptions on the
posterior distribution that may yield significant inaccuracies if
not validated.
For certain problems, the likelihood function may be

unknown or complex enough that it is intractable to calculate.
In this case, there are “simulation-based” inference methods
that calculate the posterior by comparing simulated data under
different conditions to the observed data.43 Approximate
Bayesian computation1,44 typically computes a similarity
measure between the simulated and observed data or related
summary statistics, only keeping the parameter sets that yield
data below some threshold of similarity. These methods are
sensitive to the choice of similarity measure and cutoff
threshold, suffer from the curse of dimensionality, and may
yield less informative and accurate estimates of the posterior
than typical MCMC methods. However, recent neural-network
based methods for density estimation such as normalizing
flows45,46 noted above have shown promise to address the
limitations of approximate Bayesian computation.
Finally, while this review focuses on BI methods, we note

alternative frequentist methods for parameter estimation and
uncertainty quantification, such as maximum likelihood
estimation with likelihood profiling,47 or bootstrapping.48

These approaches may be more computationally efficient
than BI but do not generate an exact posterior distribution that
fully and transparently describes the uncertainties and
correlations of the model and data.

Tools for Bayesian Inference in Practice. We have
found that successful BI in practice requires an appropriate
choice of sampling algorithm and hyperparameters for a given
model and data of interest. We recommend utilizing modern
probabilistic programming frameworks, which provide an array
of efficiently implemented sampling algorithms. Popular
examples include STAN,21 pyMC,49 Pyro,50 and Turing.jl.51

In certain cases, more specialized sampling implementations
may be useful, such as preconditioned Monte Carlo with
normalizing flows39,52 or the affine invariant ensemble
sampler.36,53 In either case, we suggest examining parameter
identifiability54 and correlations when doing BI. Also, we
suggest validating the sampling results with ground truth values
(i.e., synthetic data), checking for convergence using
independent runs, comparing predicted posterior models
with the observed data, and evaluating the sensitivity of the
posterior to your modeling assumptions. Fortunately, many of
the above frameworks can aid with exploring and diagnosing BI
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models and sampling data, in addition to stand-alone tools
such as ArviZ.55 Finally, we highlight recent work that aims to
integrate many of these practices into a comprehensive
workflow for dynamic models.56

■ INTERPRETING DATA FROM BAYESIAN MONTE
CARLO

Confirming MC Sampling Quality. Although true
equilibrium sampling is effectively out of reach for many
atomistic biomolecular systems, with some possible excep-
tions,57 in Bayesian inference the guiding mindset should be to

obtain validated full sampling. The effective energy landscapes
encountered in BI will not often be trivial, but we have a
chance to sample them. If we trust the posterior distribution,
then we can in turn trust the uncertainty ranges, “credibility
regions”, provided by BI.
This review is not a manual for performing BI or assessing

sampling, but we do recommend performing multiple
independent MC simulations from different start points to
ensure the same distributions are obtained. Visual comparison
of the one and two-dimensional marginals of the posterior for
all parameters is a key step, we have found.8

Figure 8. Corner plot showing 2D and 1D marginals from Bayesian inference.8 The plots show various projections of the full eight-dimensional
posterior distribution for an example system based on MC simulation of synthetic experimental binding data mimicking isothermal titration
calorimetry. Contour lines indicate probability densities (darker = higher probability) for the corresponding parameters with red lines indicating
known true values. Correlations among parameters are clearly visible in the diagonal contours of 2D marginals. The 1D marginals reveal how
“identifiable” each parameter is based on the width of the distribution. The prior distribution for each parameter was taken to be uniform over the
range shown. Reproduced from ref 8. Available under a CC BY 4.0 DEED license. Copyright 2023 Estelle, George, Barbar, and Zuckerman.
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Maximum Likelihood and Sampling. It is worthwhile to
revisit the maximum-likelihood approach to characterizing a
model, analogous to global energy minimization, in the context
of challenging-to-sample distributions, i.e., rugged landscapes.
On the one hand, in contrast to molecular systems, there is no
true physical heterogeneity in BI parameter space: if the model
structure is correct, then there is a single set of correct
parameters, not an equilibrium ensemble as in a physical
system. Of course, in reality, finite data, noise, and
experimental bias are likely to obscure the truly most likely
parameters.
But aside from data-centric issues, there is a key practical

issue in a maximum-likelihood/energy-minimization strategy:
it may be extremely difficult to do global maximization in a
landscape that is rugged and challenging to sample. In other
words, can you trust the maximum likelihood estimates? In our
hands, working with systems that are challenging�but
possible�to sample, optimization algorithms do not provide
reproducible, truly optimal results.40 We know this because we
can simply compare optimization results to the maximum
likelihood observed in MC sampling, which is reproducible
when sampling is adequate. While computationally expensive,
we have found that good MC sampling is a robust way to find
globally optimal parameters.
Parameter Credibility Regions and Identifiability. The

main strength of Bayesian inference, in the authors’ view, is the
ability to provide not only parameter values but also
uncertainty ranges consistent with the observed data. Any
fitting (optimization) method can give a point estimate of most
likely parameters for an assumed model, but uncertainties that
do not include information about all possible parameter values
make an uncontrolled approximation.19 In BI, the posterior
distribution of parameters consistent with model and data (13)
tells us whether we really “know” the parameter value: the
parameter may be characterized by a narrow posterior marginal
(17), suggesting it is indeed identif ied by the data, or the
posterior marginal may be very broad, indicating the most
likely value is nearly meaningless. See Figure 8. The rationale
here is in direct analogy to molecular simulation estimates,
which always provide average values of observables, but the
associated uncertainties indicate whether the averages are
reliable.58,59

What “narrow” and “broad” mean will depend on the
context, and domain expertise will play a key role in evaluating
this, but comparison with the prior distribution provides a
natural reference point. If the prior distribution correctly
characterizes the prior state of knowledge before considering
the data, then it is highly appropriate to characterize what is
learned from the data via the concepts of information theory.17

It is important to note that it may be strictly impossible to
gain information on certain parameters, based on the
mathematically formal concept of identifiability.60 Intuitively,
the concept is straightforward for physical systems based on
examples: equilibrium binding measurements cannot reveal on-
or off-rates but can determine their (equilibrium) ratio;
measurement of binding in one domain of a decoupled two-
domain system cannot reveal properties of the second domain.
There is, however, a gray zone framed as “practical
identifiability.” For example, in a two-step binding process, if
the first binding step is much weaker than the second, binding
parameters for the first step may be practically nonidentifiable
given insufficient data.8 It is important to be aware of these
issues, although the posterior implicitly includes identifiability

information even if it is unknown beforehand: if a posterior
marginal does not differ from the prior for a given parameter,
then the data has not helped to identify that parameter.17 For
further discussion of identifiability analysis in a Bayesian
pipeline, see the discussion in recent work.5

We also note that BI credibility regions can help to reveal
bias in experimental measurements. This can be done directly
if an explicit “nuisance” parameter is used to represent bias in
experimental measurements.40 Alternatively, bias can be
assessed implicitly based on nuisance parameters describing
uncertainty for input experimental values: if the posterior
marginal for such a nuisance parameter is found to have
significant probability at the extremes of the assumed range,
that suggests the original experimental range for the parameter
was underestimated (assuming the model itself is correct).

Parameter Correlations. The posterior may contain
significantly more information than can be gleaned from 1D
posterior marginals, because some parameters will exhibit
correlations. Such correlations, if present, are easily noticeable
in the 2D marginals typically shown in “corner plots” (Figure
8) which can be visualized as contour plots.8 Bear in mind that
correlations may be linear or nonlinear.16

Such correlations provide important information in two
ways. First, if two parameters are correlated, that suggests that
a different experiment measuring one of the parameters
separately could be used as prior information to identify the
second by narrowing its marginal. Consider for example, the
two concentrations [Pep] and [LC8] which lie along a clear
diagonal in their 2D marginal in Figure 8. This posterior
marginal indicates that, based on the data used, neither
concentration is well identified, but if one could be refined,
then the other would also be better determined. Note that
these two concentrations are considered nuisance parameters:
they are not the binding parameters of interest, but a full
analysis requires accounting for realistic uncertainty in
experimentally determined input parameters.8

A second, related value of correlations concerns different
representations of parameters, which may prove to be
revealing. That is, depending on the specific nature of the
correlations, it may be the case that a function of two (or
more) parameters may be well-identified, i.e., exhibit a
narrower marginal than either of the original parameters. In
the example data of Figure 8, the strong correlations between
ΔG (standard free energy change of first binding event) and
ΔΔG (free energy difference between first and second binding
events) ultimately reveal that the marginal distribution of the
total free energy for double binding (2ΔG + ΔΔG) is much
narrower than either of the components.8 Thus, correlations
may have readily interpretable physical meaning.

Synthetic Data and Experimental Design. While
Bayesian inference methods are agnostic to the type of data
used, we have found it valuable to utilize computer-generated
“synthetic” data for several reasons. First, unlike with
experimental data, synthetic data provide ground truth values
since they are generated using a known model and parameter
set. These ground truth parameter values help facilitate the
testing and validation of a particular model and BI sampling
implementation, such as confirming that the most likely
parameter estimates correspond to their expected “true” values
(within noise). Similarly, synthetic data may be used to
examine the sensitivity to different choices of priors or model
parametrizations.
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A second use for synthetic data is the cost-effective design of
the experiments. As discussed above, the width of the
parameter estimates from the posterior distribution can be
compared to that of the prior distributions in order to gauge
how informative a given data set is. In other words, if the data
does not significantly change the posterior as compared to the
prior, then we have not gained information, as seen from
Bayes’ law (13). Operationally, BI is performed using the same
physical model and priors but different synthetic data sets
generated across a range of experimental conditions.
Quantitative measures such the Kullback−Leibler (KL)
divergence (i.e., relative entropy) may be used to compare
separation of the posterior and prior distributions.17,40 These
quantities can then be used to determine the optimal
experiment or set of experiments that maximizes the
information gain. Here the use of synthetic data saves the
potentially significant experimental costs needed to generate
the data.
Generally speaking, BI can be broadly applied for optimal

decision making with a given objective function (e.g., KL
divergence). For further details we refer the interested reader
to texts on Bayesian experimental design.1,61

■ CONCLUSIONS
This review has attempted to connect the dots between
Bayesian inference and statistical mechanics with a practical
focus on Monte Carlo sampling (Figure 1). On the one hand,
multidimensional probability theory�of which Bayes’ rule is
one example�is a point of rigorous commonality. On the
other, whereas classical statistical mechanics is uniquely
defined by the Boltzmann factor and Cartesian integration
measure over phase space, the Bayesian framework is
intrinsically ambiguous due to the need for prior specification
of existing knowledge and of the parameters themselves. Yet
regardless of those differences, the key message is that
knowledge of statistical mechanics in the realm of physical
chemistry/chemical physics provides a solid basis for under-
standing of Bayesian inference theory and practice.
The relationship between practical Monte Carlo calculations

in these two realms is perhaps more interesting. Approaches
based on physical ideas, such as faster sampling at higher
temperatures, Hamiltonian dynamics, and the annealing idea,
have proven to be of great value in Bayesian inference, arguably
more than for the physical systems that motivated the
development of some of the approaches. Fundamentally, this
is due to the vast gap in dimensionality between typical
Bayesian and biomolecular systems: the relatively low
dimensionality (often 10−100 parameters) typically encoun-
tered in exact Bayesian calculations enables the practical use of
high, and even infinite, effective temperatures in sampling.
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