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On the growth of generalized Fourier coefficients
of restricted eigenfunctions

Madelyne M. Brown

Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

ABSTRACT
Let (M, g) be a smooth, compact, Riemannian manifold and /hf g a
sequence of L2-normalized Laplace eigenfunctions on M. For a
smooth submanifold H � M, we consider the growth of the
restricted eigenfunctions /hjH by testing them against a sequence of
functions whf g on H whose wavefront set avoids S�H: That is, we
study what we call the generalized Fourier coefficients: h/h,whiL2ðHÞ:
We give an explicit bound on these coefficients depending on how
the defect measures for the two collections of functions /h and wh

relate. This allows us to get a little– o improvement whenever the
collection of recurrent directions over the wavefront set of wh is
small. To obtain our estimates, we utilize geodesic beam techniques.
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1. Introduction and main results

On a smooth, compact, n-dimensional Riemannian manifold (M, g), we consider a
sequence of L2-normalized Laplace eigenfunctions /hf g satisfying

ð�h2Dg � 1Þ/h ¼ 0 and k/hkL2ðMÞ ¼ 1: (1)

From a quantum mechanics perspective, we can think of /hðxÞ as the wave function for

a free quantum particle with fixed energy h�2: Thus j/hðxÞj2 gives the probability dens-
ity for finding the quantum particle at x 2 M: Understanding how these high-energy
particles behave, corresponding to sending h ! 0þ, is a well-studied problem in math-
ematical physics. We are particularly interested in exploring how /h, on average, con-
centrates and grows on our manifold.
In this article, we lay the foundations for the defect measure approach to generalized

Fourier coefficients of /h when restricted to a smooth, closed submanifold H. The
Fourier expansion allows one to express /hjH in terms of any complete orthonormal
basis of L2ðHÞ: It is well known Laplace eigenfunctions on H can be used to build such
a basis of L2ðHÞ: Particularly, there exists such an orthonormal basis consisting of
eigenfunctions on H, whj

� �
j2N

, which satisfy

� hj
2DgHwhj ¼ EðhjÞwhj
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where gH is the Riemannian metric on H induced by g. Thus we can express

/hjH ¼
X
j2N

h/hjH ,whjiL2ðHÞwhj ¼
X
j2N

ð
H
/h

�whjdrH

� �
whj (2)

where drH is the volume measure on H induced by the metric gH. We study the
Fourier coefficients in (2), h/h,whjiL2ðHÞ to gain an understanding of the restricted

eigenfunctions /hjH: To extract more information we instead study the growth of
h/h,whiL2ðHÞ
�� �� where whf g is any collection of functions on H. We will call these the

generalized Fourier coefficients.

1.1. Summary of existing results

The growth of averages and weighted averages of eigenfunctions over a submanifold
H has been widely studied. Much work has been done in the case where H is a
smooth, closed curve, c, and (M, g) is a surface. Good [1] and Hejhal [2] showed for
c a periodic geodesic and (M, g) a hyperbolic surface that there is a C> 0 such that
as h ! 0þ ð

c
/hdrc

���� ���� � C: (3)

The integral in (3) is typically called a period integral. Further, for c a unit length geo-

desic, Chen and Sogge [3] showed that
Ð
c/hdrc
��� ��� � Ck/hkL2ðMÞ: Reznikov [4] showed

that on a compact hyperbolic surface, and c a periodc geodesic, the Fourier coefficients,
also called generalized periods, satisfyð

c
/hðcðtÞÞe�2p intdt

���� ���� � Ccjcj1=2

for any nj j � cch�1: Without needing to make any global assumptions on the surface M
or curve c, this was generalized by Xi [5] who proved for 0 � ah < c < 1 thatð

c
/hðcðtÞÞe�iatdt

���� ���� � C cj j (4)

where cj j is the length of c.
More generally, for M an n-dimensional manifold and H a submanifold of codimen-

sion k, Zelditch [6] proved the sharp boundð
H
/hdrH

���� ���� ¼ O h
1�k
2

� �
(5)

which generalizes (3). This bound has since been improved under various assumptions
on M and H by Canzani, Galkowski, Sogge, Toth, Wyman, Xi, and Zhang [5, 7–15].
Particularly in [8], Canzani and Galkowski show for a weight w 2 C1ðHÞ that

lim sup
h!0þ

h
k�1
2

ð
H
/hw drH

���� ���� � Cn,k

ð
SN�H

jwj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f jHpRHj�1

q
drSN�H ,
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where SN�H is the unit conormal bundle of H, HpRH is a function measuring how fast
geodesics flow out of the submanifold, and f is related to the defect measure of /h:

They actually prove a stronger result for /hf g quasimodes of a wide class of semiclassi-
cal operators. To obtain their estimates, they develop a new technique that involves
localizing /h near a family of geodesics emanating from points in H. Using this frame-
work, they improve many existing results without needing global geometric conditions
on their manifold.
Under various assumptions the standard restriction bound (5) has been logarithmic-

ally improved. In [11], Sogge, Xi, and Zhang study weighted period integrals on geode-
sics and show that there is a C> 0 such thatð

c
/h w drc

���� ���� � Cð log ð1=hÞÞ�1=2, h � 1,

for M a hyperbolic surface, c a geodesic, and w 2 C1
0 : Wyman extends this to the case

where M is a surface with nonpositive curvature in [14] and further extends this to k�
codimensional submanifolds in [15]. There he shows for manifolds with negative sec-
tional curvature that ð

H
/hdrH

���� ���� ¼ O
h

1�k
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log ð1=hÞ
p !

: (6)

In [7], Canzani and Galkowski give conditions on (H, M) for which (6) holds. This has
also been extended to the Fourier coefficient case on surfaces by Wyman and Xi [16].
For example, under the condition that M has nonpositive curvature, they showð

c
/hðcðtÞÞe�iatdt

���� ���� � Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ð1=hÞ

p
where a is an integer multiple of 2pjcj�1 and a is roughly size h�1:

In this article, we work in any dimension, and allow the “weight” w or (e�iat as in
[5, 16]) to be any collection of functions on H depending on h. We will utilize
Canzani and Galkowski’s technique to obtain our results. However, we face new chal-
lenges here as we must take into account the semiclassical behavior of both
sequences.

1.2. Statement of results

Let H � M be a closed, embedded submanifold of codimension k. Let whf g be a collec-
tion of L2-normalized functions on H,

kwhkL2ðHÞ ¼ 1, (7)

and let A :¼ WFhðwhÞ � T�H (see [17, pg. 188] for definition of the semiclassical wave-
front set, denoted WFh). We will use the coordinates ðx0, n0Þ in T�H:

We assume whf g has defect measure � (see [17, pg. 100] for definition of a defect
measure). Note that supp � � A: Further, assume

WFhðwhÞ ¼ A�B�H (8)
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where B�H denotes the coball bundle in T�H: Using the coordinates on T�H we can

also write this as A� ðx0, n0Þ : jn0jgH < 1
n o

where gH is the metric induced by g on H.

We define

RA :¼ q 2 S�HM : pT�Hq 2 A
� �

� T�M (9)

where S�HM denotes the cosphere bundle with footprints in H and pT�H is the projection

from T�M onto T�H: We use the defect measure � to define a measure �A on RA:

Essentially �A is an extension of the defect measure � to RA: We later define �A more
explicitly in (15).
In what follows we denote the recurrent set of RA by RA (see Section 5 for explicit

definition). Roughly, the recurrent set of RA is the collection of points q 2 RA which,

under the geodesic flow, return to RA infinitely often and eventually get arbitrarily close
to the initial point q.

Theorem 1.1. Let /hf g be a sequence of Laplace eigenfunctions on M satisfying (1). Let
H � M be a closed, embedded, smooth submanifold of codimention k, and let whf g �
L2ðHÞ be a sequence of L2�normalized functions on H with defect measure �, satisfying
WFhðwhÞ ¼: A�B�H. If �AðRAÞ ¼ 0, where �A is defined in (15), then

h/h,whiL2ðHÞ
�� �� ¼ o h

1�k
2

� �
, h ! 0þ: (10)

Wyman, Xi, and Zelditch studied sums of Fourier coefficients of restricted eigenfunc-
tions using the dynamics of the geodesic flows on M and H [18,19]. Here, we impose
additional conditions on the dynamics to obtain improvements. A comparable result,
[8, Theorem 2] due to Canzani and Galkowski, gives conditions on the recurrent set of

SN�H for which the period integral
Ð
H/hdrH is o h

1�k
2ð Þ as h ! 0þ: If we take the collec-

tion wh � 1 we recover their result (see Example 1.9). In Examples 1.4 and 1.5 we dem-
onstrate how Theorem 1.1 can be used in two different ways: to study the generalized
Fourier coefficients and to understand the size of the recurrent set.
Next, instead of taking /hf g to be exact Laplace eigenfunctions, we further generalize

by considering quasimodes of the form

ð�h2Dg � 1Þ/h ¼ oL2ðMÞðhÞ as h ! 0þ and k/hkL2ðMÞ ¼ 1: (11)

We also assume /h is compactly microlocalized. That is, there exists a cutoff v 2
C1
c ðT�MÞ such that

ð1�OphðvÞÞ/h ¼ OC1ðh1Þ:

Further, let l be a defect measure for /h: We note that l is supported in S�M: Similar

to [10, Lemma 6 & Remark 3] we use l to define a measure on RA, lA, by

lAðXÞ :¼ lim
T!0þ

1
2T

l

�[
tj j�T

utðXÞ
�

for X � RABorel: (12)

The following theorem gives our main estimate for controlling generalized Fourier coef-
ficients of quasimodes. Theorem 1.1 then follows as a corollary.
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Theorem 1.2. Let /hf g be a sequence of compactly microlocalized quasimodes on M sat-
isfying (11) with defect measure l. Let H � M be a closed, embedded, smooth submani-
fold of dimension k, and let whf g � L2ðHÞ be a sequence of L2�normalized functions on
H with defect measure �, satisfying WFhðwhÞ ¼ A�B�H. Further, suppose we have a
Radon-Nikodym decomposition of the form

lA ¼ f �A þ kA

where �A?kA and f 2 L1ðRA, �AÞ: Then there exists a constant Cn,k > 0 depending only
on n and k such that

lim sup
h!0þ

h
k�1
2 h/h,whiL2ðHÞ
�� �� � Cn,k

ð
RA
ð1� jn0 j2gHðx0 ÞÞ

k�2
2 fd�A

� �1=2

: (13)

This gives much more explicit control on the constant in the standard restriction
bound (5) which gives us more insight into when (5) can be improved upon. For
example, if f¼ 0 in (13) then we see that we have a little-o improvement. Showing that
f¼ 0 under the assumptions of Theorem 1.1 is exactly how we obtain (10). We will see
how this bound on the generalized Fourier coefficients can be used to understand the
true Fourier coefficients in Example 1.6. In the special case where �A is a volume meas-
ure on RA, we can refine the proof of the theorem to get a finer bound as follows.

Theorem 1.3. Let /hf g and whf g satisfy the hypothesis of Theorem 1.2. Suppose RA �
N � T�M where N is a smooth submanifold of dimension d 2 N. Further, let m be the
volume measure on N induced from the Liouville measure on T�M. Moreover, suppose
we have

lA ¼ f �A þ kA and �A ¼ um

where �A?kA, f 2 L1ðRA, �AÞ and u 2 CðRA;RÞ. Then there exists a constant Cn,k,d > 0
depending only on n, k, and d such that

lim sup
h!0þ

h
k�1
2 h/h,whiL2ðHÞ
�� �� � Cn,k,d

ð
RA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� jn0 j2gHðx0 ÞÞ

k�2
2 f

q
uj j dm: (14)

When we take whf g to be an orthonormal collection of eigenfunctions on H the esti-
mate in Theorem 1.2 allows us to study the growth of the Fourier coefficients of
restricted eigenfunctions as we do in Example 1.6. We note that the theorem holds in
more generality than this, as the collection whf g does not necessarily consist of eigen-
functions. To the best of our knowledge, the only existing results in this direction are
due to Wyman, Xi, and Zelditch [18,19], where the authors obtain asymptotics for sums
of the norm-squares of the generalized Fourier coefficients over the joint spectrum. If
we take our collection whf g independent of h, we recover the weighted averages result
in [8, Theorem 6], which we demonstrate in Example 1.9. We also show in Examples
1.7, 1.8 that we are able to recover the results of [5, Theorem 1.3] and [5, Theorem
1.4]. A similar argument to [8, Remark 1] could be used to show that we can use (14)
with H a single point to recover L1 bounds of /h: Using such L1 bounds, if in add-
ition we take w � 1, we could also recover the main result of [20].
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1.3. Examples

We next consider some examples to illustrate the use of Theorems 1.1,1.2, and 1.3. In
the first two examples, we make use of Theorem 1.1 in two different ways. In the first,
we show that the recurrent set has measure zero with respect to �A, and hence we
obtain a little-o improvement. In the second example, we pick specific collections of /h

and wh and explicitly compute the generalized Fourier coefficients. Then we use
Theorem 1.1 to obtain information on the size of the recurrent set. Next in Example
1.6, we show that when we take wh ¼ whj to be an orthonormal basis of eigenfunctions

on H, we can use Theorem 1.2 to find a bound on true Fourier coefficients in the case
where whj has approximately the same frequency as /h: In the last three examples we

use Theorems 1.2 and 1.3 to obtain bounds on the generalized Fourier coefficients in a
few different settings. First, we take an explicit collection of wh, second, we assume the
collection of /h’s are themselves restricted eigenfunctions, and third, when the collec-
tion of /h does not depend on the semiclassical parameter h.
We will use the coordinates ðx0, �xÞ with respect to H such that H ¼ �x ¼ 0f g and

work with dual coordinates ðn0, �nÞ: In these coordinates we can write

RA ¼ ðx0, �x, n0, �nÞ : �xj j ¼ 0, ðx0, n0Þ 2 A, njg ¼ 1
�� o

:
n

Note that RA is parametrized by ðx0, n0, �nÞ and that once ðx0, n0Þ are fixed, the remaining

coordinate lives on the k� 1 dimensional sphere of radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jn0j2gH

q
: We define the

measure �A, byð
ðx0 ,0,n0 ,�nÞ2RA

f ðx0, n0, �nÞd�Aðx0, n0, �nÞ :¼
ð
ðx0 ,n0Þ2A

ð
p�1ðx0 ,n0Þ

f ðx0, n0, �nÞ
ckð1� jn0 j2gHðx0 ÞÞ

k�1
2

dvol Sk�1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�jn0 j2gH

p ð�nÞd�ðx0, n0Þ
(15)

where ck is such that �AðRAÞ ¼ �ðAÞ ¼ 1, p is the projection of RA onto A, and f is any
integrable function on RA: The process of constructing �A from � is sometimes referred
to as disintegration.

Example 1.4. (Extracting information from the dynamics). Consider the torus T ¼
ðx, yÞ 2 R

2 : ðx, yÞ 	 ðxþ 1, yÞ 	 ðx, yþ 1Þ
� �

and a collection of L2-normalized eigen-
functions /hf g on T: Furthermore, let H ¼ y ¼ 0f g and consider the collection

wh ¼ CðhÞ exp i
2h

x� 1
2

� �� �
exp � 1

2h
jx � 1=2j2

xð1� xÞ

 !
on H where C(h) is such that kwhkL2ðHÞ ¼ 1: The wavefront set for whf g is A ¼
ðx, nÞ : x ¼ 1=2, n ¼ 1=2
� �

, and the defect measure is � ¼ d x¼1=2,n¼1=2f g: Therefore

RA ¼ ðx, y, n, gÞ : x ¼ 1=2, y ¼ 0, n ¼ 1=2, g ¼ 6
ffiffiffi
3

p
=2

n o
and �A is a point mass at both 1=2, 0, 1=2,

ffiffiffi
3

p
=2

� �
and 1=2, 0, 1=2,�

ffiffiffi
3

p
=2

� �
with mass

1/2. Geodesics emanating from RA never return back to RA since their directions have
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irrational slopes. Therefore the recurrent set of RA is empty and hence �AðRAÞ ¼ 0:
Thus, Theorem 1.1 implies

h/h,whiL2ðHÞ
�� �� ¼ oð1Þ as h ! 0þ:

Example 1.5. (Obtaining information on the recurrent set). Consider the torus T and

the collection of eigenfunctions on T, /h ¼ e
i
hð
ffiffi
2

p

2 xþ
ffiffi
2

p

2 yÞ where h ¼
ffiffi
2

p

4pn and n 2 N:

Furthermore, let H ¼ y ¼ 0f g and consider the collection of functions on H, wh ¼ e
i
ffiffi
2

p

2h x:

Then observe

h/h,whiL2ðHÞ
�� �� ¼ ð1

0
/hj y¼0f g

�wh dx ¼
ð1
0
e
i
ffiffi
2

p

2h xe�
i
ffiffi
2

p

2h xdx ¼ 1: (16)

One can check that A ¼ WFh whf g ¼ ðx, nÞ : n ¼
ffiffiffi
2

p
=2

� �
, � ¼ d

n¼
ffiffi
2

p
=2f gdx,

RA ¼ ðx, y, n, gÞ : y ¼ 0, n ¼
ffiffiffi
2

p
=2, g ¼ 6

ffiffiffi
2

p
=2

n o
,

and �A ¼ dx, where we use ðn, gÞ to denote the dual coordinates to (x,y). It is clear
from (16) that h/h,whiL2ðHÞ

�� �� 6¼ oð1Þ as h ! 0þ and thus Theorem 1.1

implies �AðRAÞ > 0:
For this example we can actually compute the recurrent set since the geometry is

quite simple. Note that geodesics emanating from RA return to their starting point after
time n

ffiffiffi
2

p
, where n 2 Z: Therefore every point of RA is recurrent and

so �AðRAÞ ¼ �AðRAÞ ¼ 1:

Example 1.6. (True Fourier coefficients). Take wh ¼ whj an orthonormal basis of eigen-

functions on H satisfying � hj2DgHwhj ¼ EðhjÞ2whj : Assume EðhjÞ ! c 2 ð0, 1Þ as hj !

0þ: Then WFhðwhjÞ � S�cH ¼ ðx0, n0Þ 2 T�H : jn0j2gHðx0Þ ¼ c2
n o

: Since c 2 ð0, 1Þ we see

that A ¼ WFhðwhjÞ�B�H and hence we can apply Theorem 1.2 to obtain

lim sup
h!0þ

h
k�1
2 h/h,whjiL2ðHÞ

��� ��� � Cn,kð1� c2Þ
k�2
4

ð
RA
fd�A

� �1=2

� Cn,kð1� c2Þ
k�2
4

where we used that kf kL1ðRA,�AÞ � 1:

Example 1.7. (Reproducing [5, Theorem 1.4]). Consider the simple case where we have
a surface containing a smooth closed curve c parametrized by t. We consider

lim sup
h!0þ

ð
c
/hðcðtÞÞe�iaðhÞtdt

���� ����
for /h eigenfunctions, and some function a satisfying 0 � aðhÞh < c <
1, limh!0þ aðhÞh ¼ a0, and such that 2paðhÞ is an integer multiple of cj j: We note that
this is a semiclassical version of [5, Theorem 1.4]. To apply our estimate, we need to
normalize the exponential, thus we instead consider
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jcj1=2lim sup
h!0þ

ð
c
/hðcðtÞÞ

e�iaðhÞt

jcj1=2
dt

�����
����� ¼: jcj1=2lim sup

h!0þ
h/h,whiL2ðcÞ
�� ��:

We note that the collection whf g ¼ eiaðhÞtjcj�1=2
n o

has a defect measure � ¼
jcj�1d s¼a0f gdt where s is dual to t and dt denotes the Lebesgue measure on c.

Furthermore, the wavefront set A ¼ WFhðwhÞ ¼ s ¼ a0f g: Now, using s to denote the
coordinate on M normal to c and r dual to s, we have

RA ¼ ðt, s, s, rÞ : s ¼ 0, s ¼ a0, r ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a20

q
 �
which is one dimensional. Furthermore we compute �A ¼ jcj�1dt where dt is Lebesgue

on RA:

Thus, applying Theorem 1.3, we have that there is a C> 0 such that

jcj1=2lim sup
h!0þ

h/h,whiL2ðcÞ
�� �� � Cjcj1=2

ð
RA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð1� jsj2Þ�1=2

q
jcj�1dt:

Next, using H€older’s inequality and that kf kL1ðRA,�AÞ � lAðRAÞ � 1 we obtain

jcj1=2lim sup
h!0þ

h/h,whiL2ðcÞ
�� �� � Cjcj1=2

ð
RA
jf kcj�1dt

� �1=2 ð
RA
ð1� a20Þ

�1=2jcj�1dt

� �1=2

¼ Cjcj1=2ðf ð1=2
L1ðRA,�AÞð1� a20Þ

�1=4 � Cjcj1=2

ð1� a20Þ
1=4

:

Finally since a0 � c < 1 we have

lim sup
h!0þ

ð
c
/hðcðtÞÞe�iaðhÞtdt

���� ���� � Cjcj1=2

ð1� a20Þ
1=4

� Cjcj1=2

ð1� c2Þ1=4
: (17)

We see from (17) that we are able to bound the Fourier coefficients by Cjcj1=2 which
differs from Xi’s bound of C cj j stated in (4). This discrepancy is because our method

uses L2 norms, while Xi uses L1 norms. Actually, we believe that the wavefront set con-

dition in Theorem 1.2 can be weakened to the condition that wh ¼ oðh1=4Þ near S�H:

Then we could take aðhÞ not necessarily an integer multiple of cj j=2p in this example.

This would then be a more general version of what Xi considered in [5, Theorem 1.4].

Example 1.8. (Reproducing [5, Theorem 1.3]). As in [5, Theorem 1.3] we consider the
case where /h are eigenfunctions on M and wh are the restrictions of a eigenfunctions
on M to a hypersurface H. Let

wh ¼
WhjH

kWhkL2ðHÞ
where Wh satisfies ð�h2Dg � aðhÞ2ÞWh ¼ 0 on M:

We also assume that 0 � aðhÞ < c < 1 as in [5, Theorem 1.3] and suppose aðhÞ ! a0,

taking a subsequence if necessary. Since WFhðWhÞ ¼ jnjg ¼ a0
n o

one can see that
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WFhðwhÞ � jn0jgH � a0
n o

where we use coordinates x ¼ ðx0, �xÞ on M such that H ¼

�x ¼ 0f g, and dual coordinates n ¼ ðn0, �nÞ: Applying Theorem 1.2 we have

lim sup
h!0þ

h/h,whiL2ðHÞ
�� �� � Cn,1

ð
RA
f ð1� jn0 j2gHðx0 ÞÞ

�1=2d�A
� �1=2

:

Furthermore, since jn0jgH � a0 on RA, kf kL1ðRA,�AÞ � 1, and a0 � c < 1, we obtain

lim sup
h!0þ

h/h,whiL2ðHÞ
�� �� � Cn,1kf k1=2L1ðRA,�AÞð1� a20Þ

�1=4 � Cn,1

ð1� c2Þ1=4
:

Thus, we find that for h small

h/h,WhiL2ðHÞ
�� �� � Cn,1kWhkL2ðHÞ

ð1� c2Þ1=4
�

C 1þ aðhÞ
h

� 
1=4
ð1� c2Þ1=4

where we use [21, Theorem 3] to bound kWhkL2ðHÞ: In this case we recover the bound

in [5, Theorem 1.3 (1.23)].

Example 1.9 (Reproducing [8, Theorem 6]). We study the case where our collection
whf g does not depend on h. We consider

lim sup
h!0þ

h
k�1
2 h/h,wiL2ðHÞ
�� ��

where /h are compactly microlocalized quasimodes, and w 2 C1ðHÞ is independent of

h. We must normalize w to apply the theorem. We instead consider w ¼ wkwk�1
L2ðHÞ: A

short calculation shows that � ¼ kwk�2
L2ðHÞjwðx0Þj

2d n0¼0f gdx0 is the defect measure for w

where we use coordinates x ¼ ðx0, �xÞ on M such that H ¼ �x ¼ 0f g, and dual coordi-
nates n ¼ ðn0, �nÞ: Furthermore we observe that A ¼ WFhðwÞ ¼ N�H: Therefore RA ¼
SN�H, which is n� 1 dimensional. Next we note

�A ¼ kwk�2
L2ðHÞjwðx0Þj

2drSN�H

where rSN�H is the measure on SN�H induced by the Sasaki metric on T�M: Applying
Theorem 1.3 we have

lim sup
h!0þ

h
k�1
2 h/h,wiL2ðHÞ
�� �� � Cn,k,n�1

kwk2L2ðHÞ

ð
SN�H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð1� jn0 j2gHðx0 ÞÞ

k�2
2

q
wj2drSN�H

��
¼ Cn,k

kwk2L2ðHÞ

ð
SN�H

ffiffiffi
f

p
jwj2drSN�H

since n0 ¼ 0 on SN�H: Note that in the notation of Theorem 1.3 we have u ¼
kwk2L2ðHÞjwj

2: In addition, since the dimension of RA is n� 1 we just have that our con-

stant depends on n and k. Thus, for the inner product with w, we have

lim sup
h!0þ

h
k�1
2 h/h,wiL2ðHÞ
�� �� � Cn,k

kwkL2ðHÞ

ð
SN�H

ffiffiffi
f

p
jwj2drSN�H ¼ Cn,k

ð
SN�H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f kwk�2

L2ðHÞjwj
2

q
wj jdrSN�H:
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The last equality matches with the bound in [8, Theorem 6], since under the square
root is the Radon-Nikodym derivative of lA with respect to rSN�H , which in this case

is fu ¼ f kwk�2
L2ðHÞjwj

2:

1.4. Organization of the paper

The remaining sections of our paper are organized as follows: Section 2 contains the
proofs of Theorems 1.2 and 1.3 assuming a key quantitative estimate given in Proposition
2.1. Section 3 contains a few of the more technical lemmas, which focus on localizing to

RA, needed to prove Proposition 2.1. Section 3 can be omitted on a first read. Section 4 is
dedicated to the proof of Proposition 2.1 in which the key idea is to first localize the gener-

alized Fourier coefficients to geodesic tubes emanating from RA: In Section 5 we define

the recurrent set of RA and use Theorem 1.2 to prove Theorem 1.1.

2. Proof of Theorem 1.2 and Theorem 1.3

In this section we present the proofs of Theorems 1.2 and 1.3. We first introduce nota-
tion that will be used throughout the paper. Then we state the main estimate,
Proposition 2.1, which is central to the proof of Theorem 1.2, but we save its proof for
Section 4. Assuming the proposition, we prove Theorem 1.2 and then modify its proof
to obtain Theorem 1.3.
Throughout this section we assume /hf g is a compactly microlocalized collection of

quasimodes on M satisfying (11) with defect measure l. We also assume that the
sequence of functions whf g on H have defect measure � and satisfy (7) and (8).

2.1. Preliminaries

We let PðhÞ :¼ �h2Dg � 1 with principal symbol pðx, nÞ ¼ jnj2g � 1: Then we can

rewrite the quasimode equation for /h as, PðhÞ/h ¼ oL2ðMÞðhÞ: Using properties of
defect measures, we know that

supp l � p ¼ 0f g ¼ jnj2g ¼ 1
n o

¼ S�M � T�M,

so /hf g is localized near S�M: Also, since A ¼ WFhðwhÞ, we note that RA, defined in
(9), can be thought of points where /h are concentrated which project onto where wh

are concentrated. Therefore, it is reasonable to expect contributions from h/h,whiL2ðHÞ
�� ��

to be small away from RA: We prove this in Lemma 3.2.
We use Hp to denote the Hamilton vector field associated to p and ut :¼ exp ðtHpÞ

to denote the geodesic flow. Let L � T�M be a smooth, embedded hypersurface con-

taining RA which is transversal to the flow, so

Hp 62 TL and RA � L

as depicted in Figure 1. For q 2 L and R> 0 define

BLðq,RÞ :¼ Bðq,RÞ \L:
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We use the geodesic flow to form tubes in T�M by flowing out of L: For time T> 0
and U � L we define the tube

T TðUÞ :¼
[
tj j�T

utðUÞ: (18)

Sometimes when U is a ball, we will write T T
q0
ðRÞ :¼ T TðBLðq0,RÞÞ: For U � RA and

e > 0 we define

UðeÞ :¼
[
q2U

BLðq, eÞ � L (19)

which is a version of U that has been thickened by e into L: We denote the “flowout”
of RA

KTðeÞ :¼ T TðRAðeÞÞ

where RAðeÞ denotes the fattened version of RA defined in (19). Finally, define CH :
C1ðMÞ ! C1ðHÞ which restricts functions on M to H.
To prove Theorem 1.2 we begin by using a cutoff v to localize to the respective sup-

ports of our mutually singular measures, �A and kA: Thus we seek to understand how
terms like hOphðvÞ/h,whiL2ðHÞ

�� �� grow as h ! 0þ: We control such terms in the follow-

ing proposition.

Proposition 2.1. There exist T0,R0 > 0 such that for all 0 < T � T0, 0 < e � R0, and

v 2 C1
c ðT�MÞ with Hpv � 0 on K2TðeÞ, there exists a constant Cn,k > 0 depending only

on n and k such that

lim sup
h!0þ

h
k�1
2 hOphðvÞ/h,whiL2ðHÞ
�� �� � Cn,k �Aðsupp vjRAÞ

ð
RA
ð1� jn0 j2gHðx0 ÞÞ

k�2
2 jvj2dlA

� �1=2

:

To use Proposition 2.1, we need to work with cutoff functions v 2 C1
c ðT�MÞ in

which are flow invariant, meaning Hpv � 0 on K2TðeÞ: In the following lemma, we

show that a cutoff ~v 2 C1
c ðRAðeÞÞ can be extended to T�M in this way.

Figure 1. A schematic of the hypersurface L transverse to the flow containing RA and a tube
T TðUÞ, which is constructed by flowing U � L for time T.
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Lemma 2.2. For e > 0 and ~v 2 C1
c ðRAðeÞ; ½0, 1
Þ there exists an extension v 2

C1
c ðT�M; ½0, 1
Þ such that supp v � K3TðeÞ and Hpv � 0 on K2TðeÞ:

Proof. Since RAðeÞ � L is transverse to the flow, for T small enough, we can use the
map X : ð�4T, 4TÞ �L ! T�M defined by

Xðt, qÞ ¼ utðqÞ
as coordinates. Let f 2 C1

c ðRÞ with supp f � ð�3T, 3TÞ and f � 1 on ½�2T, 2T
: Then
take v ¼ ðX�1Þ�ðf ðtÞ~vÞ: w

We first prove Theorem 1.2 assuming the proposition holds. The proof of
Proposition 2.1 is saved for Section 4.

2.2. Proof of Theorem 1.2

Fix d > 0: Since �A and kA are mutually singular Radon measures on RA there exists
Kd � RA compact and Ud � RA open and containing Kd such that

�AðUdÞ � d and kAðRA n KdÞ � d:

Let ~jd 2 C1
c ðRA; ½0, 1
Þ such that

~jd � 1 on Kd and supp ~jd � Ud:

Furthermore, let jd 2 C1
c ðT�M; ½0, 1
Þ be a flow invariant extension of ~jd as defined in

Lemma 2.2. We split the inner product

lim sup
h!0þ

h
k�1
2 h/h,whi
�� �� � lim sup

h!0þ
h

k�1
2 ð hOphðjdÞ/h,whiL2ðHÞ
�� ��þ hOphð1� jdÞ/h,whiL2ðHÞ

�� ��Þ:
(20)

Next, we use Proposition 2.1 with v ¼ jd on the first term to obtain

lim sup
h!0þ

h
k�1
2 hOphðjdÞ/h,whiL2ðHÞ
�� �� � Cn,k �Aðsupp jdjRAÞ

ð
RA
ð1� jn0j2gHðx0ÞÞ

k�2
2 jjdj2dlA

� �1=2

� Cd1=2: (21)

The last inequality follows from the fact that �Aðsupp jdjRAÞ ¼ �Aðsupp ejdÞ
� �AðUdÞ � d:
Next, to bound the second term in (20), we use Proposition 2.1 with v ¼ 1� jd and

the Radon-Nikodym decomposition of our measures, lA ¼ f �A þ kA: We have

lim sup
h!0þ

h
k�1
2 hOphð1� jdÞ/h,whiL2ðHÞ
�� ��

� Cn,k�
Aðsupp ð1� jdÞjRAÞ1=2

ð
RA
ð1� jn0j2gHðx0ÞÞ

k�2
2 j1� jdj2ðfd�A þ dkAÞ

� �1=2

� Cn,k�
AðRAÞ1=2

ð
RA
ð1� jn0j2gHðx0ÞÞ

k�2
2 fd�A þ Cd

� �1=2

, (22)

where, in the last line, we used that ~jd � 1 on Kd and so ð1� jdÞjRA is supported on

RA n Kd: Thus, since kAðRA n KdÞ � d, the dkA integral is bounded by Cd: Since
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�AðRAÞ ¼ 1, and (21) and (22) hold for all d > 0, combining the above we have

lim sup
h!0þ

h
k�1
2 h/h,whi
�� �� � Cn,k

ð
RA
ð1� jn0 j2gHðx0 ÞÞ

k�2
2 fd�A

� �1=2

giving the bound in (13) as desired. w

2.3. Proof of Theorem 1.3

Let Kd,Ud, and jd be as in the proof of Theorem 1.2. We similarly split the inner prod-
uct:

lim sup
h!0þ

h
k�1
2 h/h,whi
�� �� � lim sup

h!0þ
h

k�1
2 ð hOphðjdÞ/h,whiL2ðHÞ
�� ��þ hOphð1� jdÞ/h,whiL2ðHÞ

�� ��Þ
¼: I þ II:

Then applying Proposition 2.1 to I, we have

lim sup
h!0þ

h
k�1
2 h/h,whi
�� �� � Cd1=2 þ II:

By the Besicovitch-Federer Covering Lemma, there exists a constant cd > 0 depending
only on d, the dimension of RA and R so that for all 0 < r < R, there exist a cover of
open balls Bðq1, rÞ, :::,BðqnðrÞ, rÞ

� �
¼ B1, :::,BnðrÞ
� � � RA of radius r centered at

q1, :::, qnðrÞf g with

nðrÞ � cdr
�d and mðBjÞ � cdr

d

where m is Lebesgue on N � RA: Furthermore RA �
SnðrÞ

j¼1Bj and each point in RA lies

in at most cd balls. Then we let ~hj be a partition of unity associated to BjðeÞ and hj the

flowed extensions into T�M such that supp Hphj � T 3TðBjðeÞÞ n T 2TðBjðeÞÞ andPnðrÞ
j¼1 hj � 1 on K2TðeÞ: Define H :¼

PnðrÞ
j¼1 hj: Next we split II :

lim sup
h!0þ

h
k�1
2 hOphð1� jdÞ/h,whiL2ðHÞ
�� ��

� lim sup
h!0þ

h
k�1
2 ð hOphðHð1� jdÞÞ/h,whiL2ðHÞ
�� ��þ hOphðð1�HÞð1� jdÞÞ/h,whiL2ðHÞ

�� ��Þ
� lim sup

h!0þ

XnðrÞ
j¼1

h
k�1
2 hOphðhjð1� jdÞÞ/h,whiL2ðHÞ
�� ��

þ lim sup
h!0þ

h
k�1
2 hOphðð1�HÞð1� jdÞÞ/h,whiL2ðHÞ
�� ��: (23)

Taking h ! 0þ we can apply Proposition 2.1 to both terms. Using the support proper-
ties of H, we find that the second term in (23) goes to 0. For the first term in (23), we
have
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lim sup
h!0þ

XnðrÞ
j¼1

h
k�1
2 hOphðhjð1� jdÞÞ/h,whiL2ðHÞ
�� ��

� Cn,k

XnðrÞ
j¼1

�Aðsupp ðhjð1� jdÞÞjRAÞ1=2
ð
RA
ð1� jn0 j2gHðx0 ÞÞ

k�2
2 jhjð1� jdÞj2dlA

� �1=2

� Cn,k

XnðrÞ
j¼1

ð
Bj

u dm

 !1=2 ð
RA
ð1� jn0 j2gHðx0 ÞÞ

k�2
2 jhjð1� jdÞj2ðfu dmþ dkAÞ

� �1=2

, (24)

where we used that supp hjjRA � Bj and �A ¼ um: As in the proof of Theorem 1.2, the

dkA integral can be bounded by Cd, and we thus focus on the dm integral. Since u is
uniformly continuous on RA, we can find an R> 0 such that if q 2 Bðqj,RÞ then

uðqÞ � uðqjÞ
�� �� � d: Therefore,ð

Bj

u dm �
ð
Bj

ðuðqjÞ þ dÞ dm ¼ ðuðqjÞ þ dÞmðBjÞ � cdr
dðuðqjÞ þ dÞ

for each Bj provided r<R is small enough. Thus we can bound (24) by

Cn,k,d rd=2
XnðrÞ
j¼1

ð
RA
ðuðqjÞ þ dÞð1� jn0 j2gHðx0 ÞÞ

k�2
2 jhjð1� jdÞj2fu dm

� �1=2

þ Cd1=2:

Since supp hjjRA � Bj we can use the bound uðqjÞ þ d � uðqÞ þ 2d: Continuing, we find

Cn,k,d rd=2
XnðrÞ
j¼1

ð
RA
ðuðqjÞ þ dÞð1� jn0 j2gHðx0 ÞÞ

k�2
2 jhjð1� jdÞj2fu dm

� �1=2

� Cn,k,d

XnðrÞ
j¼1

mðBjÞ1=2
ð
RA
ð1� jn0 j2gHðx0 ÞÞ

k�2
2 jhjj2fu2 dm

� �1=2

þCn,k,d rd=2nðrÞ1=2
ð
RA
dfu dm

� �1=2

� Cn,k,d

ð
RA

XnðrÞ
j¼1

1
mðBjÞ

ð
Bj

ð1� jn0 j2gHðx0 ÞÞ
k�2
2 fu2 dm

 !1=2

1Bj dmþ Cd1=2:

Therefore, combining the above steps we have

lim sup
h!0þ

h
k�1
2 h/h,whiL2ðHÞ
�� ��

� Cd1=2 þ Cn,k,d

ð
RA

XnðrÞ
j¼1

1
mðBjÞ

ð
Bj

ð1� jn0 j2gHðx0 ÞÞ
k�2
2 fu2 dm

 !1=2

1Bj dm,

(25)

and since the left side does not depend on r, we may bound

lim suph!0þ h
k�1
2 h/h,whiL2ðHÞ
�� �� by the limit of the right side of (25) as r ! 0: We will

use the Dominated Convergence Theorem to bring the limit inside the integral. To sim-
plify our computations, we will write
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FðqÞ :¼ ð1� jn0j2gHðx0ÞÞ
k�2
2 fu2:

First we calculate the limit of the integrand in (25). Using the Lebesgue Differentiation

Theorem [22, Theorem 3.21] and that each point in RA lies in finitely many balls of the
cover, we see that

lim sup
r!0

XnðrÞ
j¼1

1
mðBjÞ

ð
Bj

F dm

 !1=2

1Bj � Cn,k,d

ffiffiffi
F

p
¼ Cn,k,d uj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� jn0j2gHðx0ÞÞ

k�2
2 f

q
m� a:e:

Lastly, to justify the use of the Dominated Convergence Theorem we need to show that
the integrand in (25) is dominated by an L1 function. We note that

XnðrÞ
j¼1

1
mðBjÞ

ð
Bj

F dm

 !1=2

1Bj �
XnðrÞ
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HFðqjÞ

q
1Bj � C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
HFðqÞ

p
m� a:e:

where H denotes the Hardy-Littlewood Maximal Functional. Furthermore, by the
Maximal Theorem [22, Theorem 3.17] there exists a constant C so that for all t> 0

m q 2 RA : HFðqÞ 
 t
� �� �

� C
t

which implies that
ffiffiffiffiffiffiffi
HF

p
2 L1ðRA,mÞ: To see this we computeð

RA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
HFðqÞ

p
dm ¼

ð
RA

ð ffiffiffiffiffiffiffiffiffi
HFðqÞ

p

0
dt dm ¼

ð
RA

ð
1 0�t�1f g dt dmþ

ð
RA

ð
1

1�t�
ffiffiffiffiffiffiffiffiffi
HFðqÞ

p� � dt dm

� mðRAÞ þ
ð1
1

ð
RA
1 ffiffiffiffiffiffiffiffiffi

HFðqÞ
p


t
� � dm dt

¼ C þ
ð1
1
m

�
q 2 RA :

ffiffiffiffiffiffiffiffiffiffiffiffiffi
HFðqÞ

p

 t

n o�
dt

� C þ
ð1
1

C
t2

dt < 1,

where we use the Fubini-Tonelli Theorem to change the order of integration in the
second line. Therefore, we are justified in applying the Dominated Convergence
Theorem and we conclude that

lim sup
h!0þ

h
k�1
2 h/h,whi
�� �� � Cd1=2 þ Cn,k,d

ð
RA
juj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� jn0j2gHðx0ÞÞ

k�2
2 f

q
dm

which holds for all d > 0 and hence we obtain (14). w

3. Localizing to RA

We first present two technical results which will be needed in the proof of Proposition
2.1. First, Lemma 3.1 tells us how to construct a cutoff ~v 2 C1

c ðT�HÞ such that
Ophð~vÞCHOphðvÞ/h is Oðh1Þ: Next, Lemma 3.2 shows that the contributions of the

inner product are negligible away from RA: This section can be omitted on a first read.
Once again, throughout this section we assume /hf g is a compactly microlocalized
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collection of quasimodes on M satisfying (11) with defect measure l. We also assume
that the sequence of functions whf g on H have defect measure � and satisfy (7)
and (8).
The following lemma gives a condition for which the composition

Ophð~vÞCHOphðvÞ/h is Oðh1Þ where ~v 2 C1
c ðT�HÞ:

Lemma 3.1. Let ~v 2 C1ðT�H; ½0, 1
Þ and v 2 C1
c ðT�M; ½0, 1
Þ. Then

Ophð~vÞCHOphðvÞ/h ¼ OL1ðHÞðh1Þ

provided q 2 T�
HM : q 2 supp v, pT�Hq 2 supp ~vf g ¼ ;:

Proof. We write Ophð~vÞCHOphðvÞ/h in coordinates:

Ophð~vÞCHOphðvÞ/h

¼ ð2phÞk�2n
ð ð ð

e
i
hhx0 ,g0ie�

i
hhy,ni/hðyÞ

ð
e
i
hhz0,n

0�g0i~vðz0, g0Þvðz0, 0, n0, �nÞdz0
� �

dy dn dg0:

Consider the operator

L :¼ hhn0 � g0,Dz0 i
jn0 � g0j2

which satisfies

L e
i
hhz0 ,n

0�g0i ¼ e
i
hhz0 ,n

0�g0i:

We use L to repeatedly integrate by parts in the inner most integral. This is only pos-
sible provided n0 6¼ g0 on the support of ~vvj�x¼0: However, we assumed that there are no

points such that ðz0, 0, n0, �nÞ 2 supp v and ðz0, n0Þ 2 supp ~v: Thus integrating by parts N
times using L in the dz0 integral we haveð

e
i
hhz0 ,n

0�g0i~vðz0, g0Þvðz0, 0, n0, �nÞdz0
���� ����
¼
ð
LNe

i
hhz0 ,n

0�g0i~vðz0, g0Þvðz0, 0, n0, �nÞdz0
���� ����

¼
�

h

jn0 � g0j2
�N���� ð ei

hhz0 ,n
0�g0i

X
i1,:::,iN

ðn0i1 � g0i1Þ:::ðn
0
iN � g0iN ÞDz0i1 ,:::,z

0
iN
ð~vvÞdz0

����
�
�

h

jn0 � g0j2
�N ð

CN jn0 � g0jN DN
z0 ð~vvÞ

�� ��dz0 ¼ CN

�
h

n0 � g0
�� ��

�N ð
jDN

z0 ð~vvÞ dz0:j

Furthermore we have

Ophð~vÞCHOphðvÞ/h

�� ��
� CNh

Nþk�2n
ð ð ð

/hðyÞ
�� ��
jn0 � g0jN

ð
jDN

z0 ð~vðz0, g0Þvðz0, 0, n0, �nÞÞjdz0
� �

dy dn dg0

¼ CNh
Nþk�2nk/hkL1ðMÞ

ð ð ð
fNðn, g0Þjn0 � g0j�Ndn dg0

where fN ¼
Ð
jDN

z0 ð~vðz0, g0Þvðz0, 0, n
0, �nÞÞjdz0 is smooth and compactly supported in n

since v 2 C1
c ðT�MÞ: Furthermore, since ~vv is supported away from n0 ¼ g0 so is fN.
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Also, since ~vv is smooth and compactly supported in z0, we know the dz0 integral is

finite. Moreover, for N large enough jn0 � g0j�N is highly localized in n0 � g0
�� �� � 1
n o

:

The compactness in n and this localization is enough to see that the last integral is finite
and hence we have

Ophð~vÞCHOphðvÞ/h

�� �� � CN,Mh
Nþk�2n

and hence Ophð~vÞCHOphðvÞ/h ¼ Oðh1Þ as desired. w

Next, we show that away from RA the contributions from the generalized Fourier
coefficients are negligible.

Lemma 3.2. Let vS�M 2 C1
c ðT�MÞ such that vS�M � 1 on a neighborhood of S�M and

supported in a neighborhood of S�M. Similarly let vA 2 C1
c ðT�HÞ such that vA � 1 on a

neighborhood of A and supported in a neighborhood of A. Then

h
k�1
2 h/h,whiL2ðHÞ ¼ h

k�1
2 hCHOphðvS�MÞ/h, OphðvAÞwhiL2ðHÞ þ oð1Þ as h ! 0þ: (26)

Proof. First we use OphðvS�MÞ, Ophð1� vS�MÞ, OphðvAÞ and Ophð1� vAÞ to split up the
inner product:

h
k�1
2 h/h,whiL2ðHÞ

¼ h
k�1
2 hCHOphðvS�MÞ/h,whiL2ðHÞ þ h

k�1
2 hCHOphð1� vS�MÞ/h,whiL2ðHÞ

¼ h
k�1
2 hCHOphðvS�MÞ/h, OphðvAÞwhiL2ðHÞ þ h

k�1
2 hCHOphðvS�MÞ/h, Ophð1� vAÞwhiL2ðHÞ

þ h
k�1
2 hCHOphð1� vS�MÞ/h,whiL2ðHÞ

¼: I þ II þ III: (27)

We just need to show that both II and III are o(1) as h ! 0þ: We begin with III: First,
since /h is compactly microlocalized, there exists a cutoff v 2 C1

c ðT�MÞ such that
Ophð1� vÞ/h ¼ OC1ðh1Þ: Using v, we split III once more,

III ¼ h
k�1
2 hCHOphð1� vS�MÞOphðvÞ/h,whiL2ðHÞ þ h

k�1
2 hCHOphð1� vS�MÞOphð1� vÞ/h,whiL2ðHÞ

� h
k�1
2 kCHOphð1� vS�MÞOphðvÞ/hkL2ðHÞ þ h

k�1
2 kCHOphð1� vS�MÞOphð1� vÞ/hkL2ðHÞ,

where we also used that kwhkL2ðHÞ ¼ 1: Using that /h is compactly microlocalized, we

observe that the term with Ophð1� vÞ/h is Oðh1Þ: Next, for the other term, we use an
elliptic parametrix to rewrite

Ophð1� vS�MÞ ¼ RðhÞ PðhÞ þ Oðh1ÞW�1 :

To do this, we need verify that WFhð1� vS�MÞ � ellhðPðhÞÞ: Since 1� vS�M does not
depend on h, WFhð1� vS�MÞ ¼ esssuppð1� vS�MÞ � ðS�MÞc: Moreover ellhðPðhÞÞ ¼
p 6¼ 0f g ¼ ðS�MÞc, and hence we have the inclusion necessary to use an elliptic parame-

trix. Therefore, we can write
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h
k�1
2 kCHOphð1� vS�MÞOphðvÞ/hkL2ðHÞ

¼ h
k�1
2 kCHRðhÞPðhÞOphðvÞ/hkL2ðHÞ þ Oðh1Þ

� h
k�1
2 kCHRðhÞOphðvÞPðhÞ/hkL2ðHÞ þ h

k�1
2 kCHRðhÞðhOphðHpvÞ þ Oðh2ÞÞ/hkL2ðHÞ þ Oðh1Þ

� Ckh
�1=2kPðhÞ/hkL2ðMÞ þ Ckh

1=2k/hkL2ðMÞ þ Oðh1Þ

where in the last line we used the standard restriction bound

kCHOphðjÞukL2ðHÞ � Cch
�k=2kOphðjÞukHc

hðMÞ � Ckh
�k=2kukL2ðMÞ (28)

for c > k=2, and j 2 C1
c ðT�MÞ: By (11) we know h�1kPðhÞ/hkL2ðMÞ ! 0 as h ! 0þ

and k/hk2LðMÞ ¼ 1, and thus we obtain

h
k�1
2 kCHOphð1� vS�MÞOphðvÞ/hkL2ðHÞ ¼ oð1Þ as h ! 0þ

as desired.
Next we show II is Oðh1Þ: To do so we first claim that there exists ~v 2

C1
c ðT�H; ½0, 1
Þ such that

CHOphðvS�MÞ/h ¼ Ophð~vÞCHOphðvS�MÞ/h þ Oðh1Þ: (29)

Using Lemma 3.1 we find that we get (29) if we take ~vðz0, n0Þ � 1 on a small neighbor-

hood, U , of jn0jgH � 1
n o

and supported in a small neighborhood of U: Using (29) we

show II is Oðh1Þ: We rewrite

II ¼ hOphð~vÞCHOphðvS�MÞ/h, Ophð1� vAÞwhiL2ðHÞ þ Oðh1Þ (30)

Next observe

hOphð~vÞCHOphðvS�MÞ/h, Ophð1� vAÞwhiL2ðHÞ
�� ��
� kCHOphðvS�MÞ/hkL2ðHÞkOphð~vÞ

�Ophð1� vAÞwhkL2ðHÞ

� Ckh
�k

2kOphð~vÞ
�Ophð1� vAÞwhkL2ðHÞ

where the last inequality follows from the standard restriction bound (28). Recall A ¼
WFhðwhÞ and ~vðx0, n0Þ is compactly supported in a neighborhood of jn0jgH � 1

n o
: Let K

denote the support of ~v: There exists qj 2 Ac \ K for j ¼ 1, :::N and hj 2
C1
c ðT�H; ½0, 1
Þ supported sufficiently close to qj such that

kOphðhjÞwhkL2ðHÞ ¼ Oðh1Þ,

and moreover

H :¼
XN
j¼1

hj � 1 on Ac \ K:

We use an elliptic parametrix to rewrite

Ophð~vÞ
�Ophð1� vAÞ ¼ RðhÞ OphðHÞ þ Oðh1ÞW�1
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which we are allowed to do since WFhðOphð~vÞ
�Ophð1� vAÞÞ � ellhðHÞ: To see this,

note by properties of wavefront sets

WFhðOphð~vÞ
�Ophð1� vAÞÞ ¼ WFhðOphð~vÞÞ \WFhðOphð1� vAÞÞ � K \ Ac:

Furthermore, ellhðHÞ � Ac \ K, and hence we have the inclusion needed to use the
elliptic parametrix. Lastly, we have

kOphð~vÞ
�Ophð1� vAÞwhkL2ðHÞ ¼ kRðhÞ OphðHÞwhkL2ðHÞ þ Oðh1Þ

� kRðhÞkL2!L2

XN
j¼1

kOphðhjÞwhkL2ðHÞ þ Oðh1Þ ¼ Oðh1Þ:
w

4. Localization to geodesic tubes: proof of Proposition 2.1

In this section we finally present the proof of Proposition 2.1. Once again, throughout
this section we assume /hf g is a compactly microlocalized collection of quasimodes on
M satisfying (11) with defect measure l. We also assume that the sequence of functions
whf g on H have defect measure � and satisfy (7) and (8). In the following we use coor-
dinates x ¼ ðx0, �xÞ such that H ¼ �x ¼ 0f g: Furthermore we write �x ¼ ð�x1, �x2, :::,
�xkÞ ¼ ð�x1, ~xÞ:

We will need a few lemmas before proving the Proposition.

4.1. A technical lemma

Lemma 4.1. Fix q0 2 RA and let q 2 C1
c ðR�x1 � R

k�1
~n

Þ. There exists T0,R0 > 0 such that

for all 0 < T < T0 and 0 < R < R0, if v 2 C1
c ðT�MÞ is such that supp v � T 3TðUÞ and

supp Hpv � T 3TðUÞ n T 2TðUÞ, where U � BLðq0,RÞ, then we have,

kOphðqÞOphðvÞ/hðx0, 0, ~xÞkL2
x0 ,~x

� C
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T @�n1pðq0Þ
�� ��q þ

ffiffiffiffiffiffi
2T

p0@ 1AkOphðvÞOphðqÞ/hkL2x

þ C
ffiffiffiffiffiffi
2T

p

h
ðkP/hkL2x þ kOphðvÞ P, OphðqÞ

� �
/hkL2xÞ þ CTh

1=2k/hkL2x :

The proof of Lemma 4.1 is very similar to [8, Lemma 13], but we include it for
completeness.

Proof. Fix q0 2 RA: Then, as before, we have @�n1pðq0Þ > 0: Let O be an open neighbor-

hood of q0 such that @�n1p > 0 on O: Furthermore, let T 3TðUÞ be a tube contained in
O: Then we can write

pðx, nÞ ¼ eðx, nÞð�n1 � aðx, n0, ~nÞÞ for ðx, nÞ 2 O

where e is elliptic on O: Thus for ~v � 1 on T 3TðUÞ and supported in O we have

pðx, nÞ~vðx, nÞ ¼ eðx, nÞð�n1 � aðx, n0, ~nÞÞ~vðx, nÞ:
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Using the notation P ¼ OphðpÞ, observe
POphðvÞ ¼ POphð~vÞOphðvÞ þ Oðh1Þ

¼ Ophðp~vÞ þ hOphðr1Þ
� �

OphðvÞ þ Oðh1Þ

¼ OphðeÞOphðð�n1 � aðx, n0, ~nÞÞ~vÞ þ hOphðr2Þ þ hOphðr1Þ
� 


OphðvÞ þ Oðh1Þ

¼ OphðeÞðhD�x1 �Ophðaðx, n0, ~nÞÞÞOphðvÞ þ hOphðrÞOphðvÞ þ Oðh1Þ:

Thus

ðhD�x1 �Ophðaðx, n0, ~nÞÞÞOphðvÞOphðqÞ/h ¼ OphðeÞ
�1ðPOphðvÞOphðqÞ

� hOphðrÞOphðvÞOphðqÞÞ/h

where OphðeÞ
�1 denotes a microlocal parametrix for OphðeÞ near supp v: Since a is a

real symbol, we know that Ophðaðx, n0, ~nÞÞ is an error of order h away from being self

adjoint. Therefore we can replace OphðaÞ with ~Aþ h~R where ~A is self adjoint.
Therefore we have

ðhD�x1 � ~AÞOphðvÞOphðqÞ/h ¼ OphðeÞ
�1ðPOphðvÞOphðqÞ � hOphðrÞOphðvÞOphðqÞÞ/h

þ h~ROphðvÞOphðqÞ/h

We set

u :¼ OphðvÞOphðqÞ/h

f :¼ OphðeÞ
�1ðPOphðvÞOphðqÞ � hðOphðrÞ �OphðeÞ~RÞOphðvÞOphðqÞÞ/h:

To later utilize the fact that P/h ¼ oL2ðMÞðhÞ we rewrite f as

f ¼ OphðeÞ
�1ðOphðvÞOphðqÞP þ P, OphðvÞ

� �
OphðqÞ þOphðvÞ P, OphðqÞ

� �
� hðOphðrÞ �OphðeÞ~RÞOphðvÞOphðqÞÞ/h:

Thus we have a differential equation for u:

@�x1 �
i
h
~A

� �
u ¼ i

h
f :

To simplify notation, we write x̂ to denote both x0 and ~x and similarly n̂ for n0, ~n: First
we define

Aðt, s, x̂Þ :¼
ðs
t

~Að�x1, x̂, n̂Þd�x1:

We obtain

uðs, x̂Þ ¼ e
i
hAðt,s,x̂Þuðt, x̂Þ þ i

h

ðs
t
e�

i
hAðs,s,x̂Þf ðs, x̂Þds: (31)
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Next, define d :¼ T @�n1pðq0Þ
�� �� and note for T> 0

0 < d ¼ T @�npðq0Þ
�� �� ¼ 2T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jn00j

2
gHðx00Þ

q
< 2T where q0 ¼ ðx00, 0, n00, �n0Þ 2 RA:

Further, let UðtÞ 2 C1
c ðR; ½0, 2d�1
Þ with supp U � ½0, d
 and kUkL1t ¼ 1: Multiplying

(31) through by UðtÞ and integrating in t we have

uðs, x̂Þ ¼
ð
R

UðtÞuðs, x̂Þdt

¼
ð
R

UðtÞei
hAðt,s,x̂Þuðt, x̂Þdt þ i

h

ð
R

UðtÞ
ðs
t
e�

i
hAðs,s,x̂Þf ðs, x̂Þds dt:

Next, taking the L2x̂ norm

kuðs, x̂ÞkL2x̂ �
ð
R

UðtÞkei
hAðt,s,x̂Þuðt, x̂ÞkL2x̂ dt þ

1
h

ð
R

UðtÞ
ðs
t
ke� i

hAðs,s,x̂Þf ðs, x̂ÞkL2x̂ ds dt

¼
ð
R

UðtÞkuðt, x̂ÞkL2x̂ dt þ
1
h

ð
R

UðtÞ
ðs
t
kf ðs, x̂ÞkL2x̂ ds dt ¼: I þ II

where the last line follows from

@ske
i
hAðt,s,x̂Þuðt, x̂Þk2L2x̂ ¼ 2Re

�
i
h
~Ae

i
hAðt,s,x̂Þuðt, x̂Þ, ei

hAðt,s,x̂Þuðt, x̂Þ
�

L2x̂

¼ 0

since ~A is self adjoint. So kei
hAðt,s,x̂ÞkL2x̂ ¼ kei

hAðt,t,x̂ÞkL2x̂ ¼ 1: Using H€older’s inequality and

properties of U we bound I:

I � kUkL2t kuðt, x̂ÞkL2x̂,t �
4ffiffiffi
d

p kuðt, x̂ÞkL2x̂,t :

To find a bound for II, we first take the L1 norm in s and apply H€older’s inequality to
get

II � 1
h

ð
k1 0,d½ 
ðtÞ1 s,t½ 
ðsÞkL1t,skf ðs, x̂ÞkL2x̂ ds: (32)

Splitting f up into its components in (32) we see that the first term is

1
h

ð
k1 0,d½ 
ðtÞ1 s,t½ 
ðsÞkL1t,skOphðeÞ

�1OphðvÞOphðqÞP/hðs, x̂ÞkL2x̂ ds

which is bounded by C
ffiffiffi
d

p
h�1kP/hkL2x : We also have s � t � d < 2T, and recall that

supp Hpv � 0 on �x1j j � 2Tf g: Thus we can bound the second term by,

kOphðeÞ
�1 P, OphðvÞ
� �

OphðqÞ/hðs, x̂ÞkL2ðs2 �2T,2T½ 
,x̂Þ � CTh
2k/hkL2x̂ :
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Continuing we obtain

II � C
ffiffiffi
d

p

h
ðkP/hkL2x þ CTh

2k/hkL2x̂ þ kOphðeÞ
�1OphðvÞ P, OphðqÞ

� �
/hkL2x

þ hkOphðeÞ
�1ðOphðrÞ �OphðeÞ~RÞOphðvÞOphðqÞ/hkL2xÞ

� C
ffiffiffi
d

p

h
kP/hkL2x þ Cd

ffiffiffi
d

p
h1=2k/hkL2x

þ C
ffiffiffi
d

p

h
kOphðvÞ P, OphðqÞ

� �
/hkL2x þ C

ffiffiffi
d

p
kOphðvÞOphðqÞ/hkL2x

where we used the standard estimate k/hkL2x̂ � Ch�1=2k/hkL2x in the last line. So finally,

combining the bounds for I and II and rewriting u as OphðvÞOphðqÞ/h we have

kOphðvÞOphðqÞ/hðx0, 0, ~xÞkL2
x0 ,~x

� C
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T @�n1pðq0Þ
�� ��q þ

ffiffiffiffiffiffi
2T

p0@ 1AkOphðvÞOphðqÞ/hkL2x

þ C
ffiffiffiffiffiffi
2T

p

h
ðkP/hkL2x þ kOphðvÞ P, OphðqÞ

� �
/hkL2xÞ þ CTh

1=2k/hkL2x :

(33)

Therefore, using a commutator and the bound in (33) we have

kOphðqÞOphðvÞ/hðx0, 0, ~xÞkL2
x0 ,~x

� kOphðvÞOphðqÞ/hðx0, 0, ~xÞkL2
x0 ,~x

þ k OphðqÞ, OphðvÞ
� �

/hðx0, 0, ~xÞkL2
x0 ,~x

� C
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T @�n1pðq0Þ
�� ��q þ

ffiffiffiffiffiffi
2T

p0@ 1AkOphðvÞOphðqÞ/hkL2x

þ C
ffiffiffiffiffiffi
2T

p

h
ðkP/hkL2x þ kOphðvÞ P, OphðqÞ

� �
/hkL2xÞ þ CTh

1=2k/hkL2x ,

where the estimate on the commutator term comes from the Sobolev embedding esti-
mate:

k OphðqÞ, OphðvÞ
� �

/hðx0, 0, ~xÞkL2
x0 ,~x

� hkOphðHqvÞ/hðx0, 0, ~xÞkL2
x0 ,~x

þ Oðh2Þk/hðx0, 0, ~xÞkL2
x0 ,~x

� Chk/hðx0, 0, ~xÞkL2
x0 ,~x

� Ch1=2k/hkL2x

which we regroup with the existing Oðh1=2Þ term. w

4.2. Further localizing to tubes

The proof of Proposition 2.1 relies on decomposing supp vjRA into many small
“rectangles.” Using the geodesic flow, we then extend the rectangles to create a collec-
tion of geodesic tubes covering supp vjRA : We get a much finer estimate on these tubes,
which is given in the lemma below (Figure 2).
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Lemma 4.2. Fix q0 ¼ ðx0, 0, n00, �n0Þ 2 RA. There exist T0,R0 > 0 such that for all 0 <

T < T0 and 0 < R < R0, if U � L is a neighborhood of q0 contained in BLðq0,RÞ, and
v 2 C1

c ðT�MÞ is such that supp v � T 3TðUÞ and supp Hpv � T 3TðUÞ n T 2TðUÞ, then
there exists a constant Ck depending only on k for which

lim sup
h!0þ

hk�1kOphðvÞ/hk2L2ðHÞ �
CkRk�1

2T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jn00j

2
gHðx00Þ

q ð
T�M

jvj2dl:

To prove Lemma 4.2 we will strategically pick the q’s from Lemma 4.1 to be func-
tions which vanish to order k� 1 on the geodesic emanating from q0. This will allow us
to get a much better estimate on the geodesic tubes.

Proof. We choose local Fermi coordinates near q0 2 RA with respect to H, ðx0, �xÞ such
that H ¼ �x ¼ 0f g and

jnj2g ¼ j�nj2 þ f ðx0, �xÞ n0j2:
��

Thus note for q0 we have @�npðq0Þ
�� �� ¼ 2 �n

�� ��ðq0Þ > 0 since �n 2 Sk�1ffiffiffiffiffiffiffiffiffiffiffiffi
1�jn0j2gH

p : We note the

importance of the assumption that A� ðx0, n0Þ : n0j j < 1
� �

since otherwise we cannot

assume �n
�� �� > 0 on RA: Next, since @�npðq0Þ

�� �� > 0 there exists a neighborhood O of q0

Figure 2. A diagram of the tube T 3T0ðUÞ sitting inside the tube T 3T
q ðRÞ.
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such that @�np
�� �� > 0 on O: Without loss of generality we assume that @�n1pðq0Þ ¼

@�npðq0Þ
�� �� > 0 where �n ¼ ð�n1, �n2:::, �nkÞ ¼ ð�n1, ~nÞ: Furthermore, in these coordinates we

have kukL2x � 2kukL2ðMÞ:

Let T0,R0 > 0 be such that T 3T0
q0

ðR0Þ � O, where the tube T is as defined in (18).

Note that for all 0 < R < R0 we still have T 3T0
q0

ðRÞ � O: Therefore, the “flowout” time

T0 is independent of the tube width R, for R < R0 small enough. Let cq0ðtÞ ¼
ðXðtÞ,NðtÞÞ denote a geodesic through q0. From Hamilton’s equations, we know the
geodesic flow must satisfy

�x_1 ¼ p�n1 )
d
dt

�x1ðtÞ ¼ @�n1pðXðtÞ,NðtÞÞ ¼ @�n1pðcq0ðtÞÞ > 0 for tj j < 3T0

as @�n1pðqÞ > 0 in O: Thus for all tj j � 3T0 we have d
dt �x1ðtÞ > 0: By the Inverse

Function Theorem we can locally write t ¼ tð�x1Þ and further we have

�x1ðcqoðtðsÞÞÞ ¼ s:

We define

X0ð�x1Þ :¼ x0ðcqoðtð�x1ÞÞÞ, �X1ð�x1Þ :¼ �x1ðcqoðtð�x1ÞÞÞ ¼ �x1
~Xð�x1Þ :¼ ~xðcqoðtð�x1ÞÞÞ, Nð�x1Þ :¼ nðcqoðtð�x1ÞÞÞ:

Therefore the geodesic through q0 is parametrized by

�x1 7!ðX0ð�x1Þ, �x1, ~Xð�x1Þ,Nð�x1ÞÞ ¼ ðx0ðcqoðtð�x1ÞÞÞ, �x1, ~xðcqoðtð�x1ÞÞÞ, nðcqoðtð�x1ÞÞÞÞ:

Moreover, we note that on the geodesic n ¼ nðcq0ðtð�x1ÞÞÞ ¼: n0ð�x1Þ: This will be crucial

in getting the improved estimate on the tubes.
In what follows, we write ~x to denote the normal coordinates to H which are not �x1,

so �x ¼ ð�x1, �x2, :::�xkÞ ¼ ð�x1, ~xÞ: We first use a version of the Sobolev Embedding
Theorem (see [23, Lemma 6.1] or [24, Corollary 8]):

kOphðvÞ/hðx0, �x1, ~xÞkL1
~x

� Ckh
1�k
2 kOphðvÞ/hðx0, �x1, ~xÞk

1=2
L2
~x

Xk
i¼2

kðhD�xi � �n0ið�x1ÞÞ
k�1OphðvÞ/hðx0, �x1, ~xÞk2L2~x

 !1=4

:

Squaring both sides, integrating with respect to x0 and applying H€older’s Inequality we
have

kOphðvÞ/hðx0, �x1, ~xÞk2L2
x0
�
ð
kOphðvÞ/hðx0, �x1, ~xÞk2L1~x dx

0

� Ckh
1�kkOphðvÞ/hðx0, �x1, ~xÞkL2

x0 ,~x

Xk
i¼2

kðhD�xi � �n0ið�x1ÞÞ
k�1OphðvÞ/hðx0, �x1, ~xÞk2L2

x0 ,~x

 !1=2

:
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Setting �x1 ¼ 0 and ~x ¼ 0 on the left we have

hk�1kOphðvÞ/hk2L2ðHÞ

� CkkOphðvÞ/hðx0, 0, ~xÞkL2
x0 ,~x

Xk
i¼2

kðhD�xi � �n0ið�x1ÞÞ
k�1OphðvÞ/hðx

0
, 0, ~xÞk2L2

x0 ,~x

 !1=2

:

(34)

Next, we will use Lemma 4.1 to bound the L2 norms on the right side of (34). We

denote Tq0 :¼ T @�n1pðq0Þ
�� �� ¼ 2T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jn00j

2
gHðx00Þ

q
: For q 2 C1

c ðR�x1 � R
k�1
~n

Þ and 0 < T <

T0 we have

kqð�x1, hD~xÞOphðvÞ/hðx0, 0, ~xÞkL2
x0 ,~x

� C
1ffiffiffiffiffiffiffi
Tq0

p þ
ffiffiffiffi
T

p !
kOphðvÞqð�x1, hD~xÞ/hkL2ðMÞ

þ C
ffiffiffiffi
T

p

h
ðkP/hkL2ðMÞ þ kOphðvÞ P, qð�x1, hD~xÞ

� �
/hkL2ðMÞÞ þ CTh

1=2k/hkL2ðMÞ

where we have used that in our coordinates kukL2x � 2kukL2ðMÞ: Next, since P/h ¼
oL2ðMÞðhÞ we know h�1kP/hkL2ðMÞ ! 0 as h ! 0þ: We also have that

CTh1=2k/hkL2ðMÞ ! 0 as h ! 0þ since k/kL2ðMÞ ¼ 1: We regroup these two terms in a

o(1) error. Further, reordering the operators, we add an O(h) error which we regroup
with the o(1) term to get

kqð�x1, hD~xÞOphðvÞ/hðx0, 0, ~xÞkL2
x0 ,~x

� C
1ffiffiffiffiffiffiffi
Tq0

p þ
ffiffiffiffi
T

p !
kqð�x1, hD~xÞOphðvÞ/hkL2ðMÞ

þ C
ffiffiffiffi
T

p

h
k P, qð�x1, hD~xÞ
� �

OphðvÞ/hkL2ðMÞ þ oð1Þ:

(35)

First, taking q¼ 1 in (35) we get

kOphðvÞ/hðx0, 0, ~xÞkL2
x0 ,~x

� C
1ffiffiffiffiffiffiffi
Tq0

p þ
ffiffiffiffi
T

p !
kOphðvÞ/hkL2ðMÞ þ oð1Þ: (36)

Next, define Qi :¼ ðhD�xi � �n0ið�x1ÞÞ
k�1 ¼ OphðqiÞ where qi ¼ ð�ni � �n0ið�x1ÞÞ

k�1 þ OðhÞ:
Then, using this qi in (35) we have

kðhD�xi � �n0ið�x1ÞÞ
k�1OphðvÞ/hðx0, 0, ~xÞkL2

x0 ,~x

� C
1ffiffiffiffiffiffiffi
Tq0

p þ
ffiffiffiffi
T

p !
kQiOphðvÞ/hkL2ðMÞ þ

C
ffiffiffiffi
T

p

h
k P,Qi½ 
OphðvÞ/hkL2ðMÞ þ oð1Þ:

(37)

Next define ~v 2 C1
c ðT�MÞ such that supp ~v � T 3TðUÞ and ~v � 1 on supp v: We

rewrite

QiOphðvÞ/h ¼ QiOphð~vÞOphðvÞ/h þ Oðh1Þ:

Recall that on the geodesic cq0 we have n ¼ n0ð�x1Þ: Therefore, the principal symbol of

Qi, rðQiÞ, vanishes to order k� 1 on the geodesic. Furthermore, since ~v is supported in
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the tube T 3TðUÞ where U � BLðq0,RÞ, the distance between any point in supp ~v and
the geodesic is approximately at most R. Thus we have

sup rðQiOphð~vÞÞ
�� �� � 2Rk�1:

This implies that kQiOphð~vÞkL2!L2ðMÞ � 2Rk�1 þ OðhÞ and in particular that

kQiOphðvÞ/hkL2ðMÞ ¼ kQiOphð~vÞOphðvÞ/hkL2ðMÞ þ Oðh1Þk/hkL2ðMÞ

� ð2Rk�1 þ OðhÞÞkOphðvÞ/hkL2ðMÞ þ Oðh1Þk/hkL2ðMÞ:

We also have that HpðrðQiÞÞ ¼ Hpðð�ni � �n0ið�x1ÞÞ
k�1Þ ¼ ðk� 1Þð�ni � �n0ið�x1ÞÞ

k�2 Hpð�ni �
�n0ið�x1ÞÞ vanishes to order k� 1 on the geodesic cq0 : Since rð½P,Qi
Þ ¼
h
i Hpðð�ni � �n0ið�x1ÞÞ

k�1Þ, we similarly have

k P,Qi½ 
OphðvÞ/hkL2ðMÞ � hðCpR
k�1 þ OðhÞÞkOphðvÞ/hkL2ðMÞ þ Oðh1Þk/hkL2ðMÞ

where Cp is a constant which depends on p. Using these estimates in (37) we have

kðhD�xi � �n0ið�x1ÞÞ
k�1OphðvÞ/hðx0, 0, ~xÞkL2

x0 ,~x

� C
1ffiffiffiffiffiffiffi
Tq0

p þ
ffiffiffiffi
T

p !
ð2Rk�1 þ OðhÞÞkOphðvÞ/hkL2ðMÞ

þC
ffiffiffiffi
T

p
ðCpR

k�1 þ OðhÞÞkOphðvÞ/hkL2ðMÞ þ oð1Þ:

(38)

Finally, using (36) and (38) in (34) and taking h to zero, we have

lim sup
h!0þ

hk�1kOphðvÞ/hk2L2ðHÞ

� lim sup
h!0þ

CkR
k�1 1ffiffiffiffiffiffiffi

Tq0

p þ
ffiffiffiffi
T

p !
2ffiffiffiffiffiffiffi
Tq0

p þ Cp

ffiffiffiffi
T

p !
kOphðvÞ/hk2L2ðMÞ:

Using the defect measure l associated to /hf g and that T � 1 we obtain the desired
bound:

lim sup
h!0þ

hk�1kOphðvÞ/hk2L2ðHÞ � Ck
Rk�1

Tq0

ð
T�M

jvj2dl:
w

4.3. Key quantitative estimate: proof of Proposition 2.1

The main estimate used in the proof of Theorem 1.2 lets us control terms of the form
hOphðvÞ/h,whiL2ðHÞ
�� ��: To prove it we first cover supp vjRA with tubes and apply Lemma

4.2. After localizing to the tubes, we will need to estimate hOphðvjvÞ/h,whiL2ðHÞ where

vj is a cutoff localizing to a tube as in Lemma 4.2. If we use Cauchy-Schwarz to bound
this by the L2 norms,

hOphðvjvÞ/h,whiL2ðHÞ
�� �� � kOphðvjvÞ/hkL2ðHÞkwhkL2ðHÞ ¼ kOphðvjvÞ/hkL2ðHÞ

we lose all the information from wh since they are L2-normalized on H. Thus we need
to maintain the localization information of wh too. To do this, we will use vjv 2
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C1
c ðT�MÞ and Lemma 3.1 to find a new cutoff hj 2 C1

c ðT�HÞ such that

CHOphðvjvÞ/h ¼ OphðhjÞCHOphðvjvÞ/h þ Oðh1Þ

and thus

hOphðvjvÞ/h,whiL2ðHÞ ¼ hOphðvjvÞ/h, OphðhjÞ
�whiL2ðHÞ þ Oðh1Þ

� kOphðvjvÞ/hkL2ðHÞkOphðhjÞ
�whkL2ðHÞ:

Then we will be able to apply Lemma 4.2 to the first term and use the defect measure
for � in the second.

Proof of Proposition 2.1. Let v 2 C1
c ðT�MÞ with Hpv � 0 on K2TðeÞ: Consider sets of

the form:

Uj :¼ ðx0, 0, n0, �nÞ 2 RA : ðx0, n0Þ 2 BAðq0j,RjÞ, ðx0, 0, n0, �nÞ 2 BRAðrjðx0, n0Þ,RjÞ
n o

where Rj > 0, q0j ¼ ðx0j, n0jÞ 2 A and rj is a smooth section, that is rj : A ! RA and

pðrjðq0ÞÞ ¼ q0: These are essentially “rectangles” in RA constructed by crossing a ball in

A with balls in the spheres Sk�1: We note that the �A measure of these rectangles satisfy

�AðUjÞ 
 Cn,k

ð
ðx0 ,n0Þ2A

1BAðq0j ,RjÞ

ð1� jn0 j2gHðx0 ÞÞ
k�1
2

Rk�1
j d�ðx0, n0Þ

provided Rj is small compared to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jn0jgHðx0Þ

q
: Furthermore by uniform continuity of

log ð1� jn0j2gHðx0ÞÞ on jn0j2gHðx0Þ < c < 1
n o

, there exists an R> 0 independent of q0j such

that if ðx0, n0Þ 2 BAðq0j,RÞ then

1� k
2

log ð1� jn0jj
2
gHðx0jÞ

Þ � log ð2Þ � 1� k
2

log ð1� jn0j2gHðx0ÞÞ

� 1� k
2

log ð1� jn0jj
2
gHðx0jÞ

Þ þ log ð2Þ:

Thus for Rj < R, we have

�AðUjÞ 

Cn,k �ðBAðq0j,RjÞÞRk�1

j

2ð1� jn0jj
2
gHðx0jÞ

Þ
k�1
2

:

Fix d > 0: By outer regularity of �A there exist Ujf gNðdÞ
j¼1 covering supp vjRA such that

�Aðsupp vjRAÞ þ d 

XNðdÞ

j¼1

�AðUjÞ 
 Cn,k

XNðdÞ

j¼1

�ðBAðq0j,RjÞÞRk�1
j

2ð1� jn0jj
2
gHðx0jÞ

Þ
k�1
2

: (39)

To construct the cover of tubes, we first “thicken” the Uj’s into UjðeÞ � L as defined in

(19). Finally, we flow Ue
j ’s to form the collection of tubes T 3TðUjðeÞÞ

n o
where
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T � minj T0j
� � ¼: T0 and 3Rj � minjðR0jÞ ¼: R0 (40)

where the T0j ’s are the “T0’s” in the proof of lemma 4.2 and the R0j ’s are the “R0’s” in

the proof of lemma 4.2. We note that UjðeÞ � BLðqj, 3RjÞ where qj ¼ rjðq0jÞ: By lemma

2.2 (or [24, Lemma 3.5]), for each j, we can take vj 2 C1
c ðT�M; ½0, 1
Þ supported in

T 3TðUjðeÞÞ such that supp Hpvj � T 3TðUjðeÞÞ n T 2TðUjðeÞÞ and furthermore that

XNðdÞ

j¼1

vj � 1 on
[
tj j�2T

utððsupp vjRAÞðe=2ÞÞ:

Next we split the inner product into pieces localized to these tubes. We have

h
k�1
2 hOphðvÞ/h,whiL2ðHÞ
�� �� � h

k�1
2

�����Oph�XNðdÞ

j¼1

vjv

�
/h,wh

�
L2ðHÞ

����
þ h

k�1
2

�����Ophðð1�XNðdÞ

j¼1

vjÞvÞ/h,whiL2ðHÞj

¼: I þ II:

We claim II ¼ oð1Þ as h ! 0þ: We leave the proof of this to Lemma 4.3 at the end of
this section. The rest of this proof is dedicated to controlling I. By Lemma 3.1 there
exits hj 2 C1

c ðT�HÞ such that

CHOphðvjvÞ/h ¼ OphðhjÞCHOphðvjvÞ/h þ Oðh1Þ: (41)

Particularly, we need to take hj equal to 1 on BT�Hðq0j,Rj þ eÞ and supp hj �
BT�Hðq0j,Rj þ 2eÞ: Thus we have

I � h
k�1
2

XNðdÞ

j¼1

hOph vjvð Þ/h,whiL2ðHÞ

��� ��� � h
k�1
2

XNðdÞ

j¼1

hOphðhjÞCHOph vjvð Þ/h,whiL2ðHÞ

��� ���þ Oðh1Þ

� h
k�1
2

XNðdÞ

j¼1

kOph vjvð Þ/hkL2ðHÞkOphðhjÞ
�whkL2ðHÞ þ Oðh1Þ: (42)

(42)
We are now in position to apply Lemma 4.2 for “v” ¼ vjv:

lim sup
h!0þ

h
k�1
2 hOphðvÞ/h,whiL2ðHÞ
�� �� ¼ lim sup

h!0þ
h

k�1
2 ðI þ IIÞ

� lim sup
h!0þ

h
k�1
2

XNðdÞ

j¼1

kOph vjvð Þ/hkL2ðHÞkOphðhjÞ
�whkL2ðHÞ

�
XNðdÞ

j¼1

CkRk�1
j

2T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jn0jj

2
gHðx0jÞ

q ð
T�M

jvjvj2dl
0@ 1A1=2 ð

T�H
jhjj2d�

� �1=2

(43)

where we used that � is a defect measure associated to whf g: Next, to get �Aðsupp vjRAÞ
to appear, we work to make the second term in (43) look like the right side of (39).

(43)
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Moving the Rk�1
j over, multiplying and dividing by 2ð1� jn0jj

2
gHðx0jÞ

Þ
k�1
2 and applying

Cauchy-Schwarz we find that (43) is bounded by

Ck
1
T

ð
T�M

XNðdÞ

j¼1

2ð1� jn0jj
2
gHðx0jÞ

Þ
k�1
2 jvjvj2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jn0jj

2
gHðx0jÞ

q dl

0B@
1CA

1=2 XNðdÞ

j¼1

Rk�1
j

2ð1� jn0jj
2
gHðx0jÞ

Þ
k�1
2

ð
T�H

1BT�Hðq0j ,Rjþ2eÞd�

0@ 1A1=2

:

Next, since the vj’s are supported in the tubes, the first integral can be rewritten as an

integral over K3TðeÞ: Further, since the left side does not depend on e we can take the
limit as e ! 0 on the right side. Using the dominated convergence theorem to bring the
limit inside we have

lim sup
h!0þ

h
k�1
2 hOphðvÞ/h,whiL2ðHÞ
�� ��

� Ck
1
T

ð
K3T

jvj2
XNðdÞ

j¼1

ð1� jn0jj
2
gHðx0jÞ

Þ
k�2
2 vjj j2dl

0@ 1A1=2 XNðdÞ

j¼1

Rk�1
j �ðBAðq0j,RjÞÞ

2ð1� jn0jj
2
gHðx0jÞ

Þ
k�1
2

0@ 1A1=2

where K3T denotes T 3TðRAÞ: Next, since the second term is what we had in (39), we

can replace it with ð�Aðsupp vjRAÞ þ dÞ1=2: Noticing that the left side does not depend
on T, we take the limit as T ! 0 and use the definition of lA from (12) to get

lim sup
h!0þ

h
k�1
2 hOphðvÞ/h,whiL2ðHÞ
�� ��

� Cn,k

ð
RA
jvj2
XNðdÞ

j¼1

ð1� jn0jj
2
gHðx0jÞ

Þ
k�2
2 vjj j2dlA

0@ 1A1=2

�Aðsupp vjRAÞ þ d
� �1=2

:

Finally, since vjjRA

� �
formed a partition of unity for supp vjRA , vjj j � 1,

ð1� jn0 j2gHðx0 ÞÞ
k�1
2 is continuous, and since d > 0 was arbitrary, we have

lim sup
h!0þ

h
k�1
2 hOphðvÞ/h,whiL2ðHÞ
�� �� � Cn,k

ð
RA
jvj2ð1� jn0 j2gHðx0 ÞÞ

k�2
2 dlA

� �1=2

�Aðsupp vjRAÞ
� �1=2

as desired. w

Finally, we show that term II ¼ h
k�1
2 hOphðð1�

P
j vjÞvÞ/h,whiL2ðHÞj

��� in the proof of

proposition 2.1 is o (1) as h ! 0þ as claimed above.

Lemma 4.3. For v, vj defined in the proof of proposition 2.1 we have

h
k�1
2

����hOph��1�X
j

vj

�
v

�
/h,whiL2ðHÞ

����! 0, as h ! 0þ:
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Proof. First, using Lemma 3.2 we obtain

h
k�1
2

�����Oph��1�Pj vj

�
v

�
/h,wh

�
L2ðHÞ

����
� h

k�1
2 jhOphðð1�

XNðdÞ

j¼1

vjÞvÞOphðvS�MÞ/h, OphðvAÞwhi þoð1Þ
��

� h
k�1
2

����OphðvAÞ�CHOph

��
1�

XNðdÞ

j¼1

vj

�
v

�
OphðvS�MÞ/h

����
L2ðHÞ

kwhkL2ðHÞ þ oð1Þ

where vS�M and vA are defined in the statement of Lemma 3.2. We show that

OphðvAÞ
�CHOph 1�

XNðdÞ

j¼1

vj

0@ 1Av

0@ 1AOphðvS�MÞ/h ¼ Oðh1Þ: (44)

To do so, we employ Lemma 3.1. We just need to verify the hypothesis of the lemma.
For contradiction, suppose there is a point ðz00, n

0
0Þ 2 supp vA and also ðz00, 0, n

0
0,
�n0Þ 2

supp ðð1�
P

j vjÞvvS�MÞ: First, we note that ðz0, 0, n00, �n0Þ 62 ðsupp vjRAÞðe=2Þ: However,

since also ðz00, 0, n
0
0,
�n0Þ 2 supp vS�M and ðz00, n

0
0Þ 2 supp vA we know that ðz00, 0, n00, �n0Þ 2

RAðaÞ ¼
S

q2RA BLðq, aÞ where a > 0 is small and depends on how tightly vS�M and vA
are localized. Furthermore ðz00, 0, n00, �n0Þ 2 supp v and so we have

ðz00, 0, n00, �n0Þ 62 ðsupp vjRAÞðe=2Þ and ðz00, 0, n00, �n0Þ 2 supp vjRAðaÞ (45)

but by taking vA and vS�M supported sufficiently close to A and S�M, we can find a
such that supp vjRAðaÞ � ðsupp vjRAÞðe=2Þ which contradicts (45). Thus use of Lemma

3.1 is justified and we have (44). w

5. Recurrence: proof of Theorem 1.1

In this section we prove Theorem 1.1 which gives the behavior of h/h,whiL2ðHÞ
�� �� as h !

0þ when the recurrent set of RA is �A-measure zero. First, we define the recurrent set
and introduce some notation. Although the following can be defined more generally, we
stick to defining loop set, recurrent set, etc., for RA only. First for each point q 2 RA we
define the first return time TA : RA ! R

S
1f g by

TAðqÞ ¼ inf t > 0 : cqðtÞ 2 RA
n o

where cqðtÞ is the geodesic emanating from q. This gives us the first time in which the

geodesic cqðtÞ returns to RA: If the geodesic never returns to RA, the return time will

be infinite. We will primarily be interested in the points which return to RA in finite
time. We call the collection of such points the loop set, denoted
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LA ¼ q 2 RA : TAðqÞ < 1
� �

:

Since points in the loop set return to RA in finite time, we denote the point in which
q 2 LA returns to by gðqÞ defined by g : LA ! RA,

gðqÞ ¼ cqðTAðqÞÞ:

Next, define the infinite loop sets

Lþ1
A ¼

\
k
0

g�kðLAÞ and L�1
A ¼

\
k
0

gkðLAÞ

which are essentially the loop set points that return to RA infinitely often forward and
backward in time, respectively. Finally, the recurrent set RA :¼ Rþ

A \R�
A where

R6
A :¼



q 2 L61

A : q 2
\
N>0

[
k
N

g6kðqÞ
�
,

which is essentially the collection of points q 2 RA which return infinitely often and
eventually get arbitrarily close to q.

Proof of Theorem 1.1. Suppose for contradiction that there is a sequence hj ! 0 such
that

h/hj ,whji
��� ��� 
 Ch

1�k
2
j : (46)

Taking a subsequence if necessary, there exists defect measure l for /hj

� �
: Further note

that � is still a defect measure for whj

� �
: Defining lA as in (12) we decompose lA ¼

f �A þ kA: Then applying Theorem 1.2 we have

lim
j!1

h
k�1
2
j h/hj ,whji
��� ��� � Cn,k

ð
RA
f ð1� jn0 j2Þ

k�2
2 d�A

� �1=2

¼ Cn,k

ð
RA\RA

f ð1� jn0 j2Þ
k�2
2 d�A þ

ð
RAnRA

f ð1� jn0 j2Þ
k�2
2 d�A

 !1=2

¼ Cn,k

ð
RAnRA

f ð1� jn0 j2Þ
k�2
2 d�A

 !1=2

where the last line follows from the fact that �AðRAÞ ¼ 0: Next, since �A and kA are
mutually singular there exists V and W such that �AðVÞ ¼ kAðWÞ ¼ 0 and RA ¼
V tW: Therefore we have
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lim
j!1

h
k�1
2
j h/hj ,whji
��� ��� � Cn,k

ð
RA\Rc

A

f ð1� jn0 j2Þ
k�2
2 d�A

 !1=2

¼ Cn,k

ð
ðRAnRAÞ\V

f ð1� jn0 j2Þ
k�2
2 d�A þ

ð
ðRAnRAÞ\W

f ð1� jn0 j2Þ
k�2
2 d�A

 !1=2

¼ Cn,k

ð
ðRAnRAÞ\W

ð1� jn0 j2Þ
k�2
2 dlA

 !1=2

� ClAðRA n RAÞ1=2

since �AðVÞ ¼ 0 and since kAðWÞ ¼ 0 on W, so we can rewrite lA ¼ f �A on W. Next,
we use that Lemma 5.1 below gives lAðRA n RAÞ ¼ 0: Thus

lim
j!1

h
k�1
2
j h/hj ,whji
��� ��� ¼ 0

which contradicts (46). w

Finally, we show that RA n RA is lA-measure zero, which will complete the proof of
Theorem 1.1.

Lemma 5.1. Let H � M and suppose that /hf g is a sequence of eigenfunctions with
defect measure l. Then

lAðRAÞ ¼ lAðRAÞ:

Proof. Let B � RA be an open set. For d > 0 sufficiently small, define

Bd ¼
[
tj j<3d

utðBÞ:

Since ðS�M, l,utÞ forms a measure preserving system, the Poincar�e Recurrence
Theorem implies that for l-a.e. q 2 Bd there exists t6n ! 61 such that ut6n

ðqÞ 2 Bd:

Moreover by definition of Bd there exists s6n such that s6n � t6n
�� �� < 2d and us6n

ðqÞ 2 B �
RA: Therefore, for l-a.e. q 2 Bd we have\

T>0

[
t
T

utðqÞ \ B 6¼ ; and
\
T>0

[
t
T

utðqÞ \ B 6¼ ; (47)

since the sets,
S

t
T u6tðqÞ \ B are non-empty, compact, and nested as T increases.

Next, we show that (47) also holds for lA-a.e. point in B � RA: For contradiction,
suppose that there is a set B0 � B with lAðB0Þ > 0 and for each q 2 B0, there exists a
T> 0 such that [

t
T

utðqÞ \ B ¼ ; or
[
t
T

u�tðqÞ \ B ¼ ;:

Similarly to [10, Lemma 6], we have ljBd
¼ lAdt: Therefore, extending B0 to B0

d=3 ¼S
tj j�d utðB0Þ we have that

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 283



lðB0
d=3Þ ¼ 2d � lAðB0Þ > 0:

However, this implies (47) does not hold on B0
d=3 � Bd which is a set of positive l

measure, which is a contradiction.
Finally, let Bkf g be a countable basis for topology on RA: For all k there exists a

B0
k � Bk of full lA measure such that for all q 2 B0

k (47) holds (with B replaced with

Bk). Let Xk :¼ B0
k

S
ðRA n BkÞ: Following the same argument as in [8, Lemma 15] we

find that \k Xk � RA: However, we note lAðXkÞ ¼ lAðB0
kÞ þ lAðRA n BkÞ ¼ lAðBkÞ þ

lAðRA n BkÞ ¼ lAðRAÞ: So each Xk has full measure and thus \k Xk has full measure
too. Therefore RA has full measure too, and we have

lAðRAÞ ¼ lAðRAÞ
as desired. w
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