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Let (M, g) be a smooth, compact, Riemannian manifold and {¢,} a Received 6 May 2022
sequence of [*normalized Laplace eigenfunctions on M. For a Accepted 15 January 2023
smooth submanifold H C M, we consider the growth of the

restricted eigenfunctions ¢,|, by testing them against a sequence of KEYWORDS )
. 7 * : Eigenfunctions; Laplacian;
functions {y;,} on H whose wavefront set avoids S*H. That is, we o= .. ™

study what we call the generalized Fourier coefficients: (¢p, Yp),2)-
We give an explicit bound on these coefficients depending on how
the defect measures for the two collections of functions ¢, and
relate. This allows us to get a little- o improvement whenever the
collection of recurrent directions over the wavefront set of y, is
small. To obtain our estimates, we utilize geodesic beam techniques.

1. Introduction and main results

On a smooth, compact, n-dimensional Riemannian manifold (M, g), we consider a
sequence of L>-normalized Laplace eigenfunctions {¢,} satisfying

(WA= 1), =0 and gl epy = 1. (1)

From a quantum mechanics perspective, we can think of ¢, (x) as the wave function for
a free quantum particle with fixed energy h~2. Thus |¢,(x)|* gives the probability dens-
ity for finding the quantum particle at x € M. Understanding how these high-energy
particles behave, corresponding to sending h — 07, is a well-studied problem in math-
ematical physics. We are particularly interested in exploring how ¢, on average, con-
centrates and grows on our manifold.

In this article, we lay the foundations for the defect measure approach to generalized
Fourier coefficients of ¢, when restricted to a smooth, closed submanifold H. The
Fourier expansion allows one to express ¢,|, in terms of any complete orthonormal
basis of L?>(H). It is well known Laplace eigenfunctions on H can be used to build such
a basis of L*(H). Particularly, there exists such an orthonormal basis consisting of
eigenfunctions on H, {y, }jeN, which satisfy

— h* Ay, = E(h) ¥,
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where g is the Riemannian metric on H induced by g. Thus we can express

Pul = D (Dulo ¥n )2, = Z(JHd)h‘Zhde'H) W, ()

jeN jeN
where doy is the volume measure on H induced by the metric gg. We study the
Fourier coefficients in (2), (d)h,x//hj) 2y to gain an understanding of the restricted

eigenfunctions ¢,|,. To extract more information we instead study the growth of
‘<¢h7¢h> LZ(H)} where {y,} is any collection of functions on H. We will call these the

generalized Fourier coefficients.

1.1. Summary of existing results

The growth of averages and weighted averages of eigenfunctions over a submanifold
H has been widely studied. Much work has been done in the case where H is a
smooth, closed curve, v, and (M, g) is a surface. Good [1] and Hejhal [2] showed for
7 a periodic geodesic and (M, g) a hyperbolic surface that there is a C>0 such that
as h— 0"

<C. (3)

[ i

The integral in (3) is typically called a period integral. Further, for y a unit length geo-
desic, Chen and Sogge [3] showed that ‘f”qﬁhday < Cl\éulli2(ar)- Reznikov [4] showed

that on a compact hyperbolic surface, and y a periodc geodesic, the Fourier coefficients,
also called generalized periods, satisfy

jmmmwmwkqm”
v

for any |n| < ¢,h~'. Without needing to make any global assumptions on the surface M
or curve y, this was generalized by Xi [5] who proved for 0 < ah < ¢ < 1 that

jmwwwmutsqn )
Y

where |y| is the length of 7.
More generally, for M an n-dimensional manifold and H a submanifold of codimen-
sion k, Zelditch [6] proved the sharp bound

J dydon| = 0(H7) (5)
H

which generalizes (3). This bound has since been improved under various assumptions
on M and H by Canzani, Galkowski, Sogge, Toth, Wyman, Xi, and Zhang [5, 7-15].
Particularly in [8], Canzani and Galkowski show for a weight w € C*°(H) that

J opw doy
H

. ko1
lim sup h 2
h—0*

< Cn,kJ |wl f‘HPRHrldO'SN*H:
SN'H
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where SN*H is the unit conormal bundle of H, H,Ry is a function measuring how fast
geodesics flow out of the submanifold, and f is related to the defect measure of ¢,,.
They actually prove a stronger result for {¢,} quasimodes of a wide class of semiclassi-
cal operators. To obtain their estimates, they develop a new technique that involves
localizing ¢;, near a family of geodesics emanating from points in H. Using this frame-
work, they improve many existing results without needing global geometric conditions
on their manifold.

Under various assumptions the standard restriction bound (5) has been logarithmic-
ally improved. In [11], Sogge, Xi, and Zhang study weighted period integrals on geode-
sics and show that there is a C> 0 such that

anh wdo)| < Cllog (/)2 h<1,
M

for M a hyperbolic surface, y a geodesic, and w € C;°. Wyman extends this to the case
where M is a surface with nonpositive curvature in [14] and further extends this to k—
codimensional submanifolds in [15]. There he shows for manifolds with negative sec-
tional curvature that

W
=0 <710g (1/h_)> . (6)

In [7], Canzani and Galkowski give conditions on (H, M) for which (6) holds. This has
also been extended to the Fourier coefficient case on surfaces by Wyman and Xi [16].
For example, under the condition that M has nonpositive curvature, they show

[ a| < o

where o is an integer multiple of 27|y| ™' and o is roughly size h~".

JH¢hdJH

In this article, we work in any dimension, and allow the “weight” w or (e”™ as in
[5, 16]) to be any collection of functions on H depending on h. We will utilize
Canzani and Galkowski’s technique to obtain our results. However, we face new chal-
lenges here as we must take into account the semiclassical behavior of both

sequences.

1.2. Statement of results

Let H C M be a closed, embedded submanifold of codimension k. Let {,} be a collec-
tion of L*>-normalized functions on H,

Wonll2y = 15 (7)

and let A := WF,(y,) C T*H (see [17, pg. 188] for definition of the semiclassical wave-
front set, denoted WEF;,). We will use the coordinates (¥, ¢') in T*H.

We assume {1} has defect measure v (see [17, pg. 100] for definition of a defect
measure). Note that supp v C A. Further, assume

WE, () = A€B'H (®)
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where B*H denotes the coball bundle in T*H. Using the coordinates on T*H we can
also write this as A € {(x’ &), < 1} where gy is the metric induced by g on H.
We define

Yi={peSHM i npup €A} C T'M 9)

where S;;M denotes the cosphere bundle with footprints in H and 77y is the projection
from T*M onto T*H. We use the defect measure v to define a measure v* on Z?.
Essentially 2 is an extension of the defect measure v to 4. We later define »* more
explicitly in (15).

In what follows we denote the recurrent set of T4 by R4 (see Section 5 for explicit

definition). Roughly, the recurrent set of >4 is the collection of points p € >4 which,
under the geodesic flow, return to =* infinitely often and eventually get arbitrarily close
to the initial point p.
Theorem 1.1. Let {¢,} be a sequence of Laplace eigenfunctions on M satisfying (1). Let
H C M be a closed, embedded, smooth submanifold of codimention k, and let {y,} C
L*(H) be a sequence of L*—normalized functions on H with defect measure v, satisfying
WE,, () =: A€ B*H. If v*(R4) = 0, where v* is defined in (15), then

(G V)| = oHT), h— 0", (10)

Wyman, Xi, and Zelditch studied sums of Fourier coefficients of restricted eigenfunc-
tions using the dynamics of the geodesic flows on M and H [18,19]. Here, we impose
additional conditions on the dynamics to obtain improvements. A comparable result,
[8, Theorem 2] due to Canzani and Galkowski, gives conditions on the recurrent set of
SN*H for which the period integral [,,¢,doy is o(h'=) as h — 0. If we take the collec-
tion ¥, = 1 we recover their result (see Example 1.9). In Examples 1.4 and 1.5 we dem-
onstrate how Theorem 1.1 can be used in two different ways: to study the generalized
Fourier coefficients and to understand the size of the recurrent set.

Next, instead of taking {¢;} to be exact Laplace eigenfunctions, we further generalize
by considering quasimodes of the form

(=I*Ag — 1)y, = op2ary(h) as h— 07 and Pnllzan) = 1. (11)
We also assume ¢ is compactly microlocalized. That is, there exists a cutoff y €
CX(T*M) such that
(1 = Opy,(x))bn = Oc (h).

Further, let p be a defect measure for ¢,. We note that u is supported in S*M. Similar
to [10, Lemma 6 & Remark 3] we use u to define a measure on X*, u#, by

A 1 A
C .
uiH(Q) == Thﬂnoq+ ST t|<T| 0,(Q) for Q C Z"Borel (12)

The following theorem gives our main estimate for controlling generalized Fourier coef-
ficients of quasimodes. Theorem 1.1 then follows as a corollary.
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Theorem 1.2. Let {¢,} be a sequence of compactly microlocalized quasimodes on M sat-
isfying (11) with defect measure u. Let H C M be a closed, embedded, smooth submani-
fold of dimension k, and let {,} C L*(H) be a sequence of L*—normalized functions on
H with defect measure v, satisfying WF;,(\y,,) = A @ B*H. Further, suppose we have a
Radon-Nikodym decomposition of the form

ph=ft+ 0

where vA 1% and f € L'(ZA,04). Then there exists a constant C,y > 0 depending only
on n and k such that

k=1 ’ k=2 1/2
lim sup b2 |(dps Y) 2y | < C””‘(LA(I — ¢ |§H(x,)) zfdyA) : (13)

h—0*

This gives much more explicit control on the constant in the standard restriction
bound (5) which gives us more insight into when (5) can be improved upon. For
example, if f=0 in (13) then we see that we have a little-o improvement. Showing that
f=0 under the assumptions of Theorem 1.1 is exactly how we obtain (10). We will see
how this bound on the generalized Fourier coefficients can be used to understand the

A

true Fourier coefficients in Example 1.6. In the special case where v* is a volume meas-

ure on X4, we can refine the proof of the theorem to get a finer bound as follows.
Theorem 1.3. Let {¢,} and {y,} satisfy the hypothesis of Theorem 1.2. Suppose T* C
N C T*M where N is a smooth submanifold of dimension d € N. Further, let m be the

volume measure on N induced from the Liouville measure on T*M. Moreover, suppose
we have

= A8 and A =um

where v L)%, f € LY(ZA,14) and u € C(Z*;R). Then there exists a constant C,q > 0
depending only on n, k, and d such that

i sup 5 )| < Cona|_ /(1= €5, 00) Frll . 19
—0t

ZA

When we take {i;,} to be an orthonormal collection of eigenfunctions on H the esti-
mate in Theorem 1.2 allows us to study the growth of the Fourier coefficients of
restricted eigenfunctions as we do in Example 1.6. We note that the theorem holds in
more generality than this, as the collection {i,} does not necessarily consist of eigen-
functions. To the best of our knowledge, the only existing results in this direction are
due to Wyman, Xi, and Zelditch [18,19], where the authors obtain asymptotics for sums
of the norm-squares of the generalized Fourier coefficients over the joint spectrum. If
we take our collection {y/,} independent of h, we recover the weighted averages result
in [8, Theorem 6], which we demonstrate in Example 1.9. We also show in Examples
1.7, 1.8 that we are able to recover the results of [5, Theorem 1.3] and [5, Theorem
1.4]. A similar argument to [8, Remark 1] could be used to show that we can use (14)
with H a single point to recover L* bounds of ¢,,. Using such L* bounds, if in add-
ition we take }y = 1, we could also recover the main result of [20].
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1.3. Examples

We next consider some examples to illustrate the use of Theorems 1.1,1.2, and 1.3. In
the first two examples, we make use of Theorem 1.1 in two different ways. In the first,
we show that the recurrent set has measure zero with respect to v, and hence we
obtain a little-o improvement. In the second example, we pick specific collections of ¢,
and Y, and explicitly compute the generalized Fourier coefficients. Then we use
Theorem 1.1 to obtain information on the size of the recurrent set. Next in Example
1.6, we show that when we take ¥, =, to be an orthonormal basis of eigenfunctions
on H, we can use Theorem 1.2 to find a bound on true Fourier coefficients in the case
where 1, has approximately the same frequency as ¢,,. In the last three examples we

use Theorems 1.2 and 1.3 to obtain bounds on the generalized Fourier coefficients in a
few different settings. First, we take an explicit collection of i, second, we assume the
collection of ¢,’s are themselves restricted eigenfunctions, and third, when the collec-
tion of ¢, does not depend on the semiclassical parameter h.

We will use the coordinates (x/,x) with respect to H such that H = {x =0} and
work with dual coordinates (&, &). In these coordinates we can write

A = {(x',x, 2,8zl =0, («,&) €4, |¢, = 1}.

Note that =4 is parametrized by (x, &, &) and that once (x/, &) are fixed, the remaining

coordinate lives on the k—1 dimensional sphere of radius /1 — |€|§H. We define the
measure 4, by

f*,&,8)
Lxr,a)eALl(xr,a) (1181207
dvol Skill_ (&)dv(«, &)

VI-IER,

where ¢ is such that v4(Z%) = v(A) = 1, = is the projection of Z* onto A, and f is any

J WAt (8.
(*,0,£,8)ex (15)

integrable function on X*. The process of constructing v* from v is sometimes referred
to as disintegration.

Example 1.4. (Extracting information from the dynamics). Consider the torus T =
{(x,y) €R?: (x,y) ~ (x+ 1,y) ~ (x,y + 1)} and a collection of L*-normalized eigen-
functions {¢,} on T. Furthermore, let H = {y = 0} and consider the collection

B i 1 1 |x—1/2)
W, = C(h) exp <ﬁ (x —§)> exp (—%7)6(1 —
on H where C(h) is such that [y[/2 = 1. The wavefront set for {y,} is A=
{(x,¢) : x=1/2,& =1/2}, and the defect measure is v = J{,_1/56-1/2}- Therefore
o4 = {(x,y,f,n) ix=1/2, y=0, £=1/2, n= t\/§/2}

and 1 is a point mass at both (1/2,0,1/2,1/3/2) and (1/2,0,1/2, —/3/2) with mass
1/2. Geodesics emanating from X never return back to X* since their directions have
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irrational slopes. Therefore the recurrent set of X* is empty and hence v4(R4) = 0.
Thus, Theorem 1.1 implies

(b Wiz | = 0(1) as h— 0"

Example 1.5. (Obtaining information on the recurrent set). Consider the torus T and

. . . i(V2, V2

the collection of eigenfunctions on T, ¢, = i) where h = ii and neN.

l\/_

Furthermore, let H = {y = 0} and consider the collection of functions on H, y;, = e
Then observe

! - li\/i iz
| Di> ¥n) 12(H ‘ —J ¢h|{y:0}¢h dx = J ente idx = 1. (16)
0

One can check that A = WE,{,,} = {(x, &) : ¢ = v2/2}, v = 5{é:ﬁ/2}dx,

A = {(x,y, &En)iy=0,<¢E= V2/2,n = i\f2/2},

and v* = dx, where we use (&) to denote the dual coordinates to (x,y). It is clear
from (16) that  |[(Pp Yp) 12| # of as h—0" and thus Theorem 1.1
implies 4(R4) > 0.

For this example we can actually compute the recurrent set since the geometry is
quite simple. Note that geodesics emanating from X# return to their starting point after
time nv/2, where n € Z. Therefore every point of X* is recurrent and
so VA(R4) = vA(Z4) = 1.

Example 1.6. (True Fourier coefficients). Take y, =, an orthonormal basis of eigen-
functions on H satisfying — hjzAngphj = E(h)’ Wy, Assume E(hj) — c € (0,1) as hj —

0". Then WE,(y,) C S;H = {(x’, &) eT"H |é’|gH o) = cz}. Since ¢ € (0,1) we see
that A = WF (), ) € B'H and hence we can apply Theorem 1.2 to obtain

k=2 12 k=2
Jwtnin| < Gt ([ ) < e -y

lim sup nr
h—0*

where we used that [|f|;i(za,4) < 1.

Example 1.7. (Reproducing [5, Theorem 1.4]). Consider the simple case where we have
a surface containing a smooth closed curve y parametrized by t. We consider

j’qsh(y(t))e"““”dt]

9y
v

lim sup
h—07

for ¢, eigenfunctions, and some function « satisfying 0 <a(h)h<c<
1, limy,_+ a(h)h = o, and such that 27a(h) is an integer multiple of |y|. We note that
this is a semiclassical version of [5, Theorem 1.4]. To apply our estimate, we need to
normalize the exponential, thus we instead consider
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Iy]"/*lim sup
h—0"

e*ioc(h)t 12y,
j¢h<v<t>>—|y|l/2 dt| =: [y|"tim sup| (4, ) 2
Y

h—0*

We note that the collection {y,} = {ei“(h>t|y|7l/2} has a defect measure v =

|y|715{1=a0}dt where 7 is dual to ¢t and dt denotes the Lebesgue measure on 7.
Furthermore, the wavefront set A = WF(i;,) = {t = op}. Now, using s to denote the
coordinate on M normal to y and ¢ dual to s, we have

>4 = {(t,s,r,a) 1s=0,T=0p0=*4/1 —aé}

which is one dimensional. Furthermore we compute v* = |y|~'dt where dt is Lebesgue
on X4,
Thus, applying Theorem 1.3, we have that there is a C> 0 such that

|y|‘/2h§1n sup|{¢h ¥) 2y | < Ch['? J FA—[) 2y .
—0t A

Next, using Hélder’s inequality and that [|f{|7i (x4 ,4) < 4 (Z*) < 1 we obtain

1/2 1/2
ot sup| | < CIl' (j wmldt) (j a —aé)l/wldr)
ot A A

— Cly|/? 1/2 1 2\-1/4 C|V|1/2
=Cll (f(Ll(EA,,,A)( — o) _m~
0

Finally since 0y < ¢ < 1 we have

eyl _ _chl'”

. 17
(1=ag) = (1) v

lim sup
h—0

jy¢h<y<t>>e-"°‘<h>fdt' <

We see from (17) that we are able to bound the Fourier coefficients by C|y|1/ * which
differs from Xi’s bound of C|y| stated in (4). This discrepancy is because our method
uses L? norms, while Xi uses L! norms. Actually, we believe that the wavefront set con-
dition in Theorem 1.2 can be weakened to the condition that v, = o(h'/*) near S*H.
Then we could take a(h) not necessarily an integer multiple of ||/2n in this example.
This would then be a more general version of what Xi considered in [5, Theorem 1.4].

Example 1.8. (Reproducing [5, Theorem 1.3]). As in [5, Theorem 1.3] we consider the
case where ¢, are eigenfunctions on M and ), are the restrictions of a eigenfunctions
on M to a hypersurface H. Let

‘Ph|H

Vi = T
! ||Th||L2(H)

where ), satisfies (—h*A, — a(h)*)¥, =0 on M.

We also assume that 0 < a(h) < ¢ <1 as in [5, Theorem 1.3] and suppose o(h) — o,

taking a subsequence if necessary. Since WEF,(¥;) = {\§|g = oco} one can see that
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WEF, () C {|5/|gH < oco} where we use coordinates x = (x/,x) on M such that H =

{x = 0}, and dual coordinates & = (¢, &). Applying Theorem 1.2 we have

/2

i s ()| < o (£ 1 )“2duA)

h—0*

Furthermore, since |¢'|, < oy on Z*, Iflliz,4) < 1, and o < ¢ < 1, we obtain

g =
1/2 - G
hm sup| o i) 2| < Cnl”fHL{ $404) (1 —og) V< (1— )/t

Thus, we find that for h small

Cot a2y C(l + #)1/4
2 < <
“qﬁh’l}’h)L (H)’ T - 62)1/4 - oa- 62)1/4
where we use [21, Theorem 3] to bound |['Wp||;z (). In this case we recover the bound
in [5, Theorem 1.3 (1.23)].

Example 1.9 (Reproducing [8, Theorem 6]). We study the case where our collection
{¥,} does not depend on h. We consider

lim sup h%‘ (D> W>LZ(H)‘

h—0"
where ¢, are compactly microlocalized quasimodes, and w € C*°(H) is independent of
h. We must normalize w to apply the theorem. We instead consider w = w||w||;21(H). A
short calculation shows that v = ||w||L_22(H)|w(x’ )|25{é/:0}dx’ is the defect measure for w

where we use coordinates x = (x,x) on M such that H = {x = 0}, and dual coordi-

nates ¢ = (&, &). Furthermore we observe that A = WF;,(w) = N*H. Therefore X* =
SN*H, which is n — 1 dimensional. Next we note

A = ||W||222(H)|W(x/)|2dGSN*H

where ogy-y is the measure on SN*H induced by the Sasaki metric on T*M. Applying
Theorem 1.3 we have

n n— / k=2
lim suph' 7 |{ [ (b W) 12| < kol J \/f(1 - ¢ |§H(X/)) * |lwldosy-n
h—0" HWHL (H) JSN*H
Cn,k
= 72J VW dosvn
||W||L2(H) SN*H

since ¢ =0 on SN*H. Note that in the notation of Theorem 1.3 we have u =

||w|\iZ(H>|w|2. In addition, since the dimension of £* is # — 1 we just have that our con-

stant depends on 7 and k. Thus, for the inner product with w, we have

. k-1 an —
lim suph'= ’<¢h’ LZ(H)‘ = J \/J?|W|2d°'SN*H = Cn,kJ f||W||L22(H)|W|2|W|d°'SN*H~
W|| SN*H SN*H

h—0"
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The last equality matches with the bound in [8, Theorem 6], since under the square
root is the Radon-Nikodym derivative of pu? with respect to ogy-y, which in this case

is fu = fllwll () wl

1.4. Organization of the paper

The remaining sections of our paper are organized as follows: Section 2 contains the
proofs of Theorems 1.2 and 1.3 assuming a key quantitative estimate given in Proposition
2.1. Section 3 contains a few of the more technical lemmas, which focus on localizing to
24, needed to prove Proposition 2.1. Section 3 can be omitted on a first read. Section 4 is
dedicated to the proof of Proposition 2.1 in which the key idea is to first localize the gener-
alized Fourier coefficients to geodesic tubes emanating from *. In Section 5 we define
the recurrent set of * and use Theorem 1.2 to prove Theorem 1.1.

2. Proof of Theorem 1.2 and Theorem 1.3

In this section we present the proofs of Theorems 1.2 and 1.3. We first introduce nota-
tion that will be used throughout the paper. Then we state the main estimate,
Proposition 2.1, which is central to the proof of Theorem 1.2, but we save its proof for
Section 4. Assuming the proposition, we prove Theorem 1.2 and then modify its proof
to obtain Theorem 1.3.

Throughout this section we assume {¢,} is a compactly microlocalized collection of
quasimodes on M satisfying (11) with defect measure p. We also assume that the
sequence of functions {y,} on H have defect measure v and satisfy (7) and (8).

2.1. Preliminaries

We let P(h):= —h*A, — 1 with principal symbol p(x,¢) = |£|§— 1. Then we can
rewrite the quasimode equation for ¢, as, P(h)$, = op2()(h). Using properties of
defect measures, we know that

supp pC {p=0} = {|f|§ - 1} — §'M C T'M,

so {¢;} is localized near S*M. Also, since A = WFy(});,), we note that >4, defined in
(9), can be thought of points where ¢, are concentrated which project onto where
are concentrated. Therefore, it is reasonable to expect contributions from ’<¢>h Vi) 2|

to be small away from X*. We prove this in Lemma 3.2.

We use H, to denote the Hamilton vector field associated to p and ¢, := exp (tH,)
to denote the geodesic flow. Let & C T*M be a smooth, embedded hypersurface con-
taining =* which is transversal to the flow, so

H,¢T¥ and Z'C¥

as depicted in Figure 1. For p € % and R >0 define
By (p,R) :=B(p,R)NZ.



262 M. M. BROWN

Flow

TI(U)

Figure 1. A schematic of the hypersurface % transverse to the flow containing =* and a tube
T (U), which is constructed by flowing U C . for time T.

We use the geodesic flow to form tubes in T*M by flowing out of .#. For time T>0
and U C ¥ we define the tube

T'(U) == | ¢,(U). (18)
lt|<T
Sometimes when U is a ball, we will write T;O (R) := T"(B(py,R)). For U C X and
& > 0 we define
Ue) := | JBo(pe) C & (19)

peU

which is a version of U that has been thickened by ¢ into . We denote the “flowout”
of =4

AT(e) = T (Z4(e))

where X% (¢) denotes the fattened version of X defined in (19). Finally, define Ty :
C*(M) — C*(H) which restricts functions on M to H.
To prove Theorem 1.2 we begin by using a cutoff y to localize to the respective sup-

ports of our mutually singular measures, 24 and /*. Thus we seek to understand how
terms like |(Opy, (%) #n> Wi 12(ar)| row as b — 07. We control such terms in the follow-
ing proposition.

Proposition 2.1. There exist To,Rg > 0 such that for all 0 < T < Ty, 0 < & < Ry, and

7 € CX(T*M) with Hyy =0 on A*" (&), there exists a constant Cnx > 0 depending only
on n and k such that

. kL : k2 12
lim sup h |<0Ph(X)¢h’¢h>L2(H)’ < Cuk <VA(S‘1PP X|2A)J (1—1¢ |§H(x/)) ’ |X|2dﬂA> :

h—07 >4

To use Proposition 2.1, we need to work with cutoff functions y € C>°(T*M) in
which are flow invariant, meaning H,y =0 on A*"(¢). In the following lemma, we
show that a cutoff 7 € C(Z%(¢)) can be extended to T*M in this way.
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Lemma 2.2. For ¢>0 and 7€ CX(Z*(¢);[0,1]) there exists an extension y €
CX(T*M; [0,1]) such that supp y C A*"(¢) and Hpy =0 on A (e).

Proof. Since ZA(.S) C Z is transverse to the flow, for T small enough, we can use the
map X : (—4T,4T) x ¥ — T*M defined by

X(tp) = ¢:(p)
as coordinates. Let f € C°(R) with supp f C (—3T,3T) and f =1 on [—2T,2T]. Then

take y = (X~)"(f(£)7)- O
We first prove Theorem 1.2 assuming the proposition holds. The proof of
Proposition 2.1 is saved for Section 4.

2.2. Proof of Theorem 1.2
Fix 6 > 0. Since »* and /* are mutually singular Radon measures on I* there exists
K5 C X4 compact and U; C =# open and containing K; such that
A (Us) <0 and JAZA\K;) < 0.
Let 5 € C°(Z4;0,1]) such that
Ks =1 on Kj and supp k5 C Us.

Furthermore, let x5 € C°(T*M;[0,1]) be a flow invariant extension of ks as defined in
Lemma 2.2. We split the inner product

lim sup 1| (¢, )| < lim sup h%(KOPh(Ké)%J Vi) 2 | + [{OPR(L = K5) Dpo Wn) 12 |)-

h—0" h—0"

(20)
Next, we use Proposition 2.1 with y = ks on the first term to obtain

1/2
. k=1 k=2
lim suph'> |{Opy, (i¢5) Pps Vi) 21| < Cnk (VA(SHPP Kale)LA(l — 1&g ? IKrs|2duA>

h—0"
< Co'2. (21)
The last inequality follows from the fact that v*(supp Ks|sa) = v (supp x5)
<vA(Us) < 0.
Next, to bound the second term in (20), we use Proposition 2.1 with y =1 — ks and
the Radon-Nikodym decomposition of our measures, u* = fv4 4+ J*. We have

lim suphk_gl|<0ph(1 — 16) P Vi) 2 |

h—0*

. 1/2
< G (supp (1= 5)|5)"/” <LA(1 1) T 1 = reo P (fl + dﬂA))

s 1/2
< G (22 <LA(1 — &2, ) T S+ ca) , (22)

where, in the last line, we used that ks =1 on K;s and so (1 — ks)|ss is supported on
4\ Ks. Thus, since 1*(Z4\ Ks) <9, the di* integral is bounded by C&. Since
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vA(Z4) =1, and (21) and (22) hold for all § > 0, combining the above we have
' . / e 1/2
i s 2 )| < Co( [ (1= 161,07
h—0 A

giving the bound in (13) as desired. O

2.3. Proof of Theorem 1.3

Let K5, Us, and ks be as in the proof of Theorem 1.2. We similarly split the inner prod-
uct:

lim suph'>| (¢, )| < lim suph™= (|(Opy, (1cs) by V) 1241y | + | (OPH(L — K)o i) 2an |)
h—0" h—0"

=:1+1II
Then applying Proposition 2.1 to I, we have
lim sup ' | (¢, )| < COY% + 11

h—0"

By the Besicovitch-Federer Covering Lemma, there exists a constant ¢; > 0 depending
only on d, the dimension of >4 and R so that for all 0 < r < R, there exist a cover of
open balls {B(p,7), ... B(pu(r> 1)} = {B1, s Bu(n } C >4 of radius r centered at

{P1> 0> P} With
n(r) < car and m(B;) < cqr?

where m is Lebesgue on N O X4, Furthermore £* C U 1B and each point in =* lies

in at most ¢, balls. Then we let 9] be a partition of unity associated to Bj(e) and 0; the
flowed extensions into T*M such that supp H,0; C T3T(Bj(8)) \ 7*"(Bi(¢)) and

Z;‘:(rl)ﬁj =1 on A*"(¢). Define © := Z}i?ej. Next we split IT :

) koL
lim suph 2 ’(Oph(l - K5)¢h’lph>L2(H)’

h—0*
< hin zlfphk%(’(Oph(@(l = 55)) P W) 12 ey | + (0P ((1 = ©) (1 = 55))bpes ¥i) 2 |)
n(r)
< 11121 zfpzh (0P, (0;(1 — 15)) > i) 12 )|
+ hzn suph }<0Ph((1 —0O)(1 —Ks)) by l//h>L2(H)}~ (23)
—0*

Taking h — 0" we can apply Proposition 2.1 to both terms. Using the support proper-
ties of ®, we find that the second term in (23) goes to 0. For the first term in (23), we
have
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lim suth (Op,(6;(1 — Ko))¢h)Wh>L2 |

h—0* j=1
n(r)

/ 1/2
< anZl/A supp (0;(1 — K5))|g) 2 (LA(l —|¢& \gH ) |9 (1 —x5)|*du )
i=
1/2

Sck,ZO dm>1/2(j (=120 100 = k)P dmtd)) 2

where we used that supp 0j|szs C Bj and v* = um. As in the proof of Theorem 1.2, the
d)* integral can be bounded by Cd, and we thus focus on the dm integral. Since u is
uniformly continuous on X%, we can find an R>0 such that if p € B(p;,R) then
‘u(p) - u(pj)’ < J. Therefore,

Lu deJB(u(pj)+5) dm = (u(p;) + 3)m(B;) < car’(u(p;) + 9)

j j
for each B; provided r <R is small enough. Thus we can bound (24) by

n(r) s 1/2
Con rd/zz(j (u(py) +6)(1 — €, o) 10,1 — 1c5) P dm) s,
ZA

j=1

Since supp 0;|x1 C Bj we can use the bound u(p;) + 6 < u(p) + 26. Continuing, we find

. 1/2
Cos rd/zz(j (o) + 1 = 1€ ) 7101 = x5) i )

o 1/2
< andzm )2 <J (1- |f| ) 701w dm)
1/2
+Chid rd/zn(r)m(J ofu dm>
EA

n(r) 1/2
1 12 ) 1/2
< Cn,k,dJ —J L= ) 2 fu” dm lg, dm+ Co/~.
ZAjz;(m(Bj) Bj( | |gH( )) f B;
Therefore, combining the above steps we have

lim Suphlﬂ (P> i) 2| (25)
h—0t n(r) ) ) 1/2
<C8+ C”’“J Z(m(B-)J (1= 1)) = fi dm) o
B;

T j

and since the left side does not depend on 7, we may bound
lim sup,, o b7 |(bn W) 12| by the limit of the right side of (25) as r — 0. We will

use the Dominated Convergence Theorem to bring the limit inside the integral. To sim-
plify our computations, we will write
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F(p) = (1= &3 00)) T il

First we calculate the limit of the integrand in (25). Using the Lebesgue Differentiation
Theorem [22, Theorem 3.21] and that each point in £# lies in finitely many balls of the
cover, we see that

lim sup Z (

r—0

1/2
2
J F dl’l’l) HBj < Cn,k,d\/ﬁ = Cn,k,d|u|\/(1 — |é/|§H(’C/)) Zf m — a.e.
B;

Lastly, to justify the use of the Dominated Convergence Theorem we need to show that
the integrand in (25) is dominated by an L' function. We note that

n(r) 1/2 n(r)
1
F 1z < HF(p)1p < HF —a.e.
EIQ@%L‘M> n <D HR) 1y < CVARG)  m—ae

j=1 )

where H denotes the Hardy-Littlewood Maximal Functional. Furthermore, by the
Maximal Theorem [22, Theorem 3.17] there exists a constant C so that for all t>0
C

m({p € 24 HF(p) > t}) <~

which implies that v/HF € L'(Z4,m). To see this we compute

\/HEF(p)
LA\/HF(p) dm — LAJO dt dm = LAJH{O“‘} dt dm—i—J J (e iy} e dm

00

<@ | f 1

— C—l—rcm(p ex*: { VHF(p) > t}) dt

1

<C+ 9 dt < oo,

1 B
where we use the Fubini-Tonelli Theorem to change the order of integration in the
second line. Therefore, we are justified in applying the Dominated Convergence
Theorem and we conclude that

lim sup i [ (¢, )| < C3'2 + C, de M|\/ 1= &2, )Ezf dm

h—0*

which holds for all 6 > 0 and hence we obtain (14). O

3. Localizing to X*

We first present two technical results which will be needed in the proof of Proposition
2.1. First, Lemma 3.1 tells us how to construct a cutoff 7 € C>*(T*H) such that
Op, ()T HOpP, (1) is O(h™). Next, Lemma 3.2 shows that the contributions of the
inner product are negligible away from X*. This section can be omitted on a first read.
Once again, throughout this section we assume {¢,} is a compactly microlocalized
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collection of quasimodes on M satistying (11) with defect measure p. We also assume
that the sequence of functions {y,} on H have defect measure v and satisfy (7)
and (8).
The following lemma gives a condition for which the composition
Op, (1) TuOp,(x) ¢y, is O(h>®) where 7 € C*(T*H).
Lemma 3.1. Let y € C*(T"H;[0,1]) and y € C*(T*M;|[0,1]). Then
Op,,()THOP, (1) b1, = O~ (hoo)

provided {p € T{;M : p € supp i, nr-gp € supp x} =

Proof. We write Op,,(7)T'nOp;,(x)¢; in coordinates:
Opy ()T HOP, (1) b,
= Gt [ | [onento, 00 [ 4t u(2.0.¢ 8 )y

Consider the operator
K¢ —n.Dy)
G
which satisfies
L @) — gl =)

We use L to repeatedly integrate by parts in the inner most integral. This is only pos-
sible provided &’ # 1’ on the support of yy|._,. However, we assumed that there are no
points such that (2,0, &, &) € supp  and (2, &) € supp 7. Thus integrating by parts N
times using £ in the dz’ integral we have

() (2,0,¢, E)dz

%

U K3 (0,8, By

(77 )
(5 3 - )Njcmz’—n'|N|Df’J<~

Furthermore we have

|0Ph )THOP, (1 )¢h|

chhN+k2"”j| ;‘ﬁh(y" ([ o8 0.2. 0012 )ay az a

— O J”fw(é, N = Vae dyf

where fy = [|DY(7(2,7)x(2,0,&,&))|dZ is smooth and compactly supported in ¢&
since y € C°(T*M). Furthermore, since 7y is supported away from & =1 so is fy.

1

h N
CN<,—> J|D5<zx>ldz’.
&~

S (G )8, — M )Dy e ()
i1500IN
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Also, since Jy is smooth and compactly supported in 2/, we know the dz’ integral is
finite. Moreover, for N large enough |& — 5| ™ is highly localized in {|§’ —n| < 1}.

The compactness in £ and this localization is enough to see that the last integral is finite
and hence we have

|0p,, ()T HOP, (1) by | < CaaahN 2"
and hence Op;,(7)I'nOp;(x)¢), = O(h™) as desired. O

Next, we show that away from X* the contributions from the generalized Fourier
coefficients are negligible.

Lemma 3.2. Let yg € C°(T*M) such that ys\ =1 on a neighborhood of S*M and
supported in a neighborhood of S*M. Similarly let y, € C>°(T*H) such that y, =1 on a
neighborhood of A and supported in a neighborhood of A. Then

B (Ghs U)oy = 17 (TOPy (s-30) b1 O ()W) ooy +0(1) as b — 07 (26)

Proof. First we use Opj,(xs-a)> OP,(1 — %s:a1)> Opp(4) and Op, (1 — y,) to split up the
inner product:

k=1
W2 bp V) 12
k=1 k=1
= h > (TuOp;, (s m) P> Wh)LZ(H) + B 7 (TrOp, (1 = Zsm) Do l//h>L2(H)
= W7 (TOP, (s 1) b OPL (X )W) 20y + B {THOP, (st B OP (1 — £ )W) 2o

k-1
+ B (TuOp, (1 = Xsep) Pio W) 12an)
— T4 II+ 111 27)

We just need to show that both II and III are o(1) as h — 0". We begin with III. First,
since ¢, is compactly microlocalized, there exists a cutoff y € C>*(T*M) such that
Op, (1 — x)¢py = Oc=(h*). Using y, we split III once more,

il k1
I = h= (TrOpy, (1 = %5:0)OP (1) > i) 12ery + 7 (THOP; (1 = 25ea1)OP (1 — %) Do ¥h) 12
k=l k-1
< B2 [THOP, (1 = 25:a0)OPR (1) Pall 2y + 12 ITHOP, (1 = 25:a)OPy (1 = 2) Pl 12 a1y

where we also used that ||y ||z = 1. Using that ¢, is compactly microlocalized, we

observe that the term with Op, (1 — y)¢;, is O(h™). Next, for the other term, we use an
elliptic parametrix to rewrite

To do this, we need verify that WF;,(1 — yg.5) C ell,(P(h)). Since 1 — yg.,, does not
depend on h, WF;(1 — yg ) = esssupp(1 — ygp) C (S*M). Moreover ell,(P(h)) =

{p #0} = (§*M)", and hence we have the inclusion necessary to use an elliptic parame-
trix. Therefore, we can write
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B2 |Tu0py (1 = 75:00)OP (0l 2

= 7 [TuR()P(R)OP, (1) i 200 + O(H™)

< 17 |[CuR()OP, (2)P(h) il 2y + B TR (B) (hOPy, (Hp) + O(H)) byl sy + O(H)

< Ceh™ 2|1 P(h) Iz e +Ckh1/2||¢h||p )+ O(h™)
where in the last line we used the standard restriction bound

ITHOP, (1)l 12y < Cib™ 10y (Kl < Cick™ 2l ag (28)
for y > k/2, and k € C°(T*M). By (11) we know h_1||P(h)¢h||L2(M> — 0 as h— 0"
and ||¢,||? (M) = 1, and thus we obtain
B=TuOpy (1 — £5)OPy (1) billi2ny = 0(1) as h— 07

as desired.
Next we show II is O(h™). To do so we first claim that there exists } €
C*(T*H;[0,1]) such that

TaOpy, (s:m) P = OPy (1) THOP, (X5 m) 1 + O(h™). (29)

Using Lemma 3.1 we find that we get (29) if we take 7(2/,¢’) =1 on a small neighbor-
hood, U, of {|£’|gH < 1} and supported in a small neighborhood of Y. Using (29) we
show II is O(h™). We rewrite
11 = {Op;, ()T HOPy, (Xs:00) P> OP (1 = xu )W) 121y + O(R) (30)
Next observe
|<Oph()~()rHOph(XS*M)¢h’Oph<1 - 7A)¢h> ’

< ||rHOph(XS*M)¢h||L2 1 10p4 (% )"Opj,(1 —7A)‘//h”L2

< Gih™4[0py(7) Opy (1 — a¥ilize
where the last inequality follows from the standard restriction bound (28). Recall A =
WF, () and (', &) is compactly supported in a neighborhood of {|5' g < 1}. Let K

denote the support of . There exists p; € ANK for j=1,..N and 0;€
CX*(T*H; [0, 1]) supported sufficiently close to p; such that

10p;, (0)¥nll 2 1) = O(R),
and moreover
N —_—
0= Z()j =1 on A°NK.
=1
We use an elliptic parametrix to rewrite

Op,(7)°0p,(1 — 74) = R(h) Op,(©) + O(h™)y-
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which we are allowed to do since WF;,(Op,,(7)"Op,(1 — z4)) C ell(®). To see this,
note by properties of wavefront sets

WE,(Op,,(7)"Op, (1 = 24)) = WE4(Op,, (%)) N WE,(Op,(1 — z4)) € K NA°.

Furthermore, ell;(®) D A°N K, and hence we have the inclusion needed to use the
elliptic parametrix. Lastly, we have

10P4 (1) OP4(1 = xa)¥hll 2y = IR(R) Opy, (@)Wl 2y + O(R™)

< [IR(h ||L2—>LZZ||Oph Wnllizy + O(R™) = O(R).
O

4, Localization to geodesic tubes: proof of Proposition 2.1

In this section we finally present the proof of Proposition 2.1. Once again, throughout
this section we assume {¢,} is a compactly microlocalized collection of quasimodes on
M satistying (11) with defect measure . We also assume that the sequence of functions
{Y,} on H have defect measure v and satisfy (7) and (8). In the following we use coor-
dinates x = (¥,x) such that H = {x =0}. Furthermore we write X = (X;,%,...,
Xk) = (X1,%).

We will need a few lemmas before proving the Proposition.

4.1. A technical lemma

Lemma 4.1. Fix p, € % and let g € C*(Ry, x R’Ef*l). There exists To,Ry > 0 such that
for all 0 < T < Ty and 0 < R < Ry, if y € C°(T*M) is such that supp y C T°T(U) and
supp Hyy C T*T(U) \ T*"(U), where U C By(py, R), then we have,

”Oph(Q)Oph(X)({bh(x,’O’i)HLi,IX < C( + \/_> 0P, (1)Op () Pl 2

T|8 1P(Po)|

CV2T

+ T(\|P¢h|\p + 0P, (1) [P Oy ()] dulz) + Crh' 21y -

The proof of Lemma 4.1 is very similar to [8, Lemma 13], but we include it for
completeness.

Proof. Fix p, € Z*. Then, as before, we have 0z p(py) > 0. Let O be an open neighbor-
hood of py such that 9; p > 0 on O. Furthermore, let T*T(U) be a tube contained in
O. Then we can write

P8 =e(x 8 —a(x Q) for (x¢) €O
where e is elliptic on @. Thus for 7 =1 on 7°7(U) and supported in © we have
P )7, &) = e(x, &) (& — a(x, &, )7 (% €).
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Using the notation P = Op,(p), observe
PO, () = POp,(7)0p,(7) + O(K™)
= (0p,(p7) + hOp; (1)) Opy (1) + O(h)
= (OpA(€)Op, (& — alx &, 8)7) + hOp, (r2) + hOp, (1) ) Op, (1) + O(k)
= Op, (¢) (hDs, — Opy (a(x, &, §)))Op, (1) + hOp, (r)Op (z) + O(K™).
Thus

(hDs, — Opy(a(x, &, )))Op4(2)Op;(4) 1 = Opy(e) ' (POP; (1) Opy ()
— hOp,,(r)Op,,(1)OP4(q)) b,
where Op, (e)”' denotes a microlocal parametrix for Op,(e) near supp y. Since a is a

real symbol, we know that Op,(a(x, &, &)) is an error of order h away from being self

adjoint. Therefore we can replace Op,(a) with A+ hR where A is self adjoint.
Therefore we have

(hDy, — A)Op,,(1)Opy,(q)dn = Opy(e) ™ (POP,(x)Op,(q) — hOPp,,(r)Op, (x)OP,,(9)) by
+ hROp;,(1)Op;,(9) ¢
We set

u = Op,(x)Op.,(q) P 3
f = Opy(e) ™' (POp,,(2)Op,(q) — h(Op,(r) — Op,(e)R)Op, (1) Op;,(9)) .-

To later utilize the fact that P, = 012(y)(h) we rewrite f as

f = 0p,(e) " (Op,(x)Op,(q)P + [P Op,,(x)]Op,(q) + Op, (%) [P Op,(q)]
— h(Op,(r) — Op,(e)R)Op,,(x)Op;,(q)) Ps-

Thus we have a differential equation for u:

i~ i

To simplify notation, we write X to denote both x’ and X and similarly E for &, E First
we define

S

Altys,%) = JA(xl,fc, 8)ds,.

t

We obtain

u(s,x) = eﬁA(t”)u(t,fc) +%J eiﬁA(”")f(r,fc)dr. (31)
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Next, define 0 := T|9; p(p,)| and note for T >0

0 <0 =T|p(py)| =2T4/1 |éo| ) <2T  where py = (x),0,&,&) € T4

Further, let ®(t) € C*(R;[0,26']) with supp ® C [0,9] and H(DHL} = 1. Multiplying
(31) through by ®(¢) and integrating in ¢ we have

u(s, %) = JRQ)(t)u(s, %)dt

= J D (1) et (t,ic)dt—l—%J (I)(t)J e AT (1, 3)dr dt.
R R

t

Next, taking the L2 norm

2 LA(t,5,%) s 1 —i srx
Juts )y < [ OISttt + | 000 e 6155y
1 S
= | ol Dl -+ | 00| I de de =141
R * R t *

where the last line follows from

Bl eI u(1,3) |5 = 2Re< L AefAs9) (1 7). ABSD (1, 5c)> =0

h 2
X

since A is self adjoint. So |||, = ||eA(*5¥)|| , = 1. Using Holder’s inequality and

properties of ® we bound I:
I < |[@flpz [[u(t X))z, < \[H u(t, %)z, -

To find a bound for II, we first take the L> norm in s and apply Holder’s inequality to
get

112 4 10 (0 Ly (i I D (32)

Splitting f up into its components in (32) we see that the first term is

i | 1000 10Ol 10p(e) 0PI Opu@) P (5.9

which is bounded by CvV/0h™!||Pé,||;2. We also have 7 <t < < 2T, and recall that
supp Hyy = 0 on {|x;| < 2T}. Thus we can bound the second term by,

||OPh(e)71 [p, OPh(X)] Op;,(q)Pu(7. %) ||L2(r€[—2T,2T],5c) < Crh? s ||L§-
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Continuing we obtain

< i(HPQ’)h”LZ + Crh? || gyl 2 + 110py (e) " Opy (1) [P, Opy(@)] il 2

+ h[|Op;, ()" (Op,,(r) — Op,(e)R)Op,(x)Op,(9) dyll2)
< i 1Pl + Cov/oh2 |y
c\/S
+ 9521109, [P, OBy (@] 94l: + CV310p, (1Op (0)11

where we used the standard estimate ||¢y,||;> < Ch/?||¢,||> in the last line. So finally,
combining the bounds for I and II and rewriting u as Op,(y)Op,(q) ¢, we have

10p,,(2)0p, () 1 (+, 0, %) |2, < C <\/—|‘1‘m| + Jﬁ) 10p, (2)OP (@) Pl 2
' 9:,p(po)

+ S (124, + 108, [P. Oy @] ull) + Co 2

(33)
Therefore, using a commutator and the bound in (33) we have

0P, (40P, ()4 (¥ 0, %)z, < 10P, (1), (@) B4, 0,5) 5,

+ 11 [Op, (4), Op, (1)) #4(x. 0,5) .,

< C<;+\/_) 101, (x)OP(9) Pull.2

4/ T"?EIP(PO)}

+ I (1Pl 2 + 0P, (1) [P, Opy(@)] dnll2) + Crh' Il byl 2

where the estimate on the commutator term comes from the Sobolev embedding esti-
mate:

1[OP4(a), 0P, (1)] dn (', 0. X)l1z, < hOp, (Hg) i, 0, %)z, + O(F*) [y, 0, %),

< Chlly (', 0, %)z, < ChYZ||pyl2

which we regroup with the existing O(h'/?) term. 0

4.2. Further localizing to tubes

The proof of Proposition 2.1 relies on decomposing supp y|ss+ into many small
“rectangles.” Using the geodesic flow, we then extend the rectangles to create a collec-
tion of geodesic tubes covering supp y|s4. We get a much finer estimate on these tubes,
which is given in the lemma below (Figure 2).
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(@]

(1

Figure 2. A diagram of the tube 7°™(U) sitting inside the tube 7' (R).

Lemma 4.2. Fix p, = (x0,0,&), &) € T4 There exist Ty, Ry > 0 such that for all 0 <
T <Tyand 0 <R <Ry, if UC & is a neighborhood of p, contained in By (py,R), and
7 € CX(T*M) is such that supp y C T°T(U) and supp Hyy C T°7(U)\ T*"(U), then
there exists a constant Cy depending only on k for which

) 3 CkRk71
tim sup " Op, (1), < | pepan

. 2
0 2T /1 = [&olgu(x)

To prove Lemma 4.2 we will strategically pick the g’s from Lemma 4.1 to be func-
tions which vanish to order k — 1 on the geodesic emanating from p,. This will allow us
to get a much better estimate on the geodesic tubes.

Proof. We choose local Fermi coordinates near p, € * with respect to H, (x,X) such
that H = {x = 0} and
[¢lg = 1€ + (< B)[ .

Thus note for p, we have |0:p(p,)| = 2|€|(py) > 0 since & € SW' We note the
’ ~IC gy
importance of the assumption that A € {(x, &) : |¢'| < 1} since otherwise we cannot

assume }a >0 on X% Next, since |5‘zp(p0)| > 0 there exists a neighborhood O of p,
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such that |85p} >0 on O. Without loss of generality we assume that 0z p(p,) =
|0ep(py)| > 0 where &= (&1,&.., &) = (¢,,&). Furthermore, in these coordinates we
have [ull 2 < 2]Jull2 ()

Let Ty, Ry > 0 be such that ’T;OTO (Ro) C O, where the tube 7 is as defined in (18).

Note that for all 0 < R < Ry we still have TZOTO (R) C O. Therefore, the “flowout” time
T, is independent of the tube width R, for R <Ry small enough. Let y, (t) =

(X(t),E(t)) denote a geodesic through p,. From Hamilton’s equations, we know the
geodesic flow must satisfy

: d
X1 =p = Ea‘cl(t) = 0 p(X(),E(t)) = 0¢,p(1,,(t)) > 0 for [t| < 3T,

as 0:p(p) >0 in O. Thus for all |t <3T; we have £x(t)>0. By the Inverse
Function Theorem we can locally write t = t(x;) and further we have

X1 (7, (£s))) = s.
We define
X(x) =20, (@) K@) =n0, (@) =5
X(x) := x(7,, (€(x1))), E(x1) = €1, (1(1)))-
Therefore the geodesic through p, is parametrized by

X (X (%1, %, X(31), E(x1)) = (¥ (7, (8(Z1))), %1, X(7,,, (£(Z1))), E(7,, (8(x1))))-

Moreover, we note that on the geodesic ¢ = ¢(y,, (t(x1))) =: &o(¥1). This will be crucial
in getting the improved estimate on the tubes.

In what follows, we write X to denote the normal coordinates to H which are not xi,
s0 X = (X1,%,..X¢) = (X1,%). We first use a version of the Sobolev Embedding
Theorem (see [23, Lemma 6.1] or [24, Corollary 8]):

0P (1)1 (¢ %1, )1

1/4
< G| Opy (1) by, 30, )14 (Zn WDy, — & (1)) Oph<x>¢h<xc»-c1,x>||ig) .

Squaring both sides, integrating with respect to x’ and applying Holder’s Inequality we
have

10y ()4 (¢, %0, 2 2, < j||0ph<x>¢h<x',xl,foni;dx’

1/2
< Ckh17k||OPh( ()b (x, %1, X HLZ (ZH ))kIOPh(X>¢h<X/,X1,5C)||]2@,j) .
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Setting x; = 0 and X = 0 on the left we have
K10, (1) llzn

1/2
< Cil[Opy (1) (¥ 0.%) I, (ZH — ))"‘IOPh(x)%(x’,o,ic)lli;(,) :

(34)

Next, we will use Lemma 4.1 to bound the L> norms on the right side of (34). We

denote T, := T|0: p(py)| = 2Ty/1 — |§0| . For g € C*(Ry, x Rk Dand 0< T <

Ty we have

g1, kD20, (1) (50, ), < c(

1
Vi,
Cf

+ == (IPPll 2 ar) + 0Py (1) [P a(E1 D) bill 2 an)) + Crh Il pill ey

+ ﬁ) 10p, (2)a(%1, hDs) bl 2

where we have used that in our coordinates |lul|;. < 2[[ul[;2(). Next, since P¢, =
ozony(h)  we know ATY[Pgyllapy — 0 as h—0". We also have that
CTh1/2||¢h||L2<M) — 0 as h — 07 since [|}|| ;2 = 1. We regroup these two terms in a

o(1) error. Further, reordering the operators, we add an O(h) error which we regroup
with the o(1) term to get

Po

l(x1, hDx)Opy, (1) b1 (', 0, X) | 2, < C( + ﬁ) lla(x1 hDx)Opy, (7) Pl 2 ar)

(35)
CVT
Tt I[P, q(%1, hDs)] Opy, (1) Pull 2 agy + 0(1)-
First, taking g =1 in (35) we get
- 1
10p, () i (¥, 0’x)||Li,2 < C<\/T_ T> ||OPh(X)¢h||L2(M) +o(1). (36)
’ Po

Next, define Q;:= (hDs, — &, (J_CI))k*1 = Op,(q:) where gq; = (& — &, (9_61))k71 + O(h).
Then, using this ¢; in (35) we have

|(hD5, = &,(21))" " 0Py (1) (¥, 0, )z,
cf G7)

< C(\/IT—pO+ ﬁ) 1QiOP, (1) Pull 2 ary +—— I[P, QilOP;, (1) Pl 20y + 0(1)-

Next define 7 € C*(T*M) such that supp 7 C 7°7(U) and 7 =1 on supp 7. We
rewrite

QiOpy, (1) Pn = QiOp,(1)Opy () Py + O(h™).

Recall that on the geodesic y, we have ¢ = {y(x1). Therefore, the principal symbol of
Qi o(Q;), vanishes to order k —1 on the geodesic. Furthermore, since ¥ is supported in
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the tube 7°7(U) where U C By(py, R), the distance between any point in supp 7 and
the geodesic is approximately at most R. Thus we have

sup|a(Qi0p; (7))] < 2R,
This implies that [|QiOp, (%) l12— 12 < 2R*! 4+ O(h) and in particular that
1Qi0P, (1) Pl 2ar) = [1QiOPA(Z)OPL (1) Pull 2aa) + O @l 2 as
< (2R + O(h))||Op, (1) bal 2o +O(h°°)|\¢>h||p
We also have that Hy(a(Qi)) = Hy((& — &,(01))") = (k= 1)(& — &, (1)) Hy(& -
Co,(x1)) vanishes to order k—1 on the geodesic 7,. Since o([P,Qi]) =
BH,((& — &,(%1))"), we similarly have

1P, QOP; (1) ball 2ay < HCRE + O(h))1OP, (1) nllz2ar) + O | Billi2ag

where C, is a constant which depends on p. Using these estimates in (37) we have

I(hDs, = &, (51))" 0Py (1) (x', 0, 9) |,

< C( jT-* + ﬁ) (2R + O(1))0py, (1)l 2 (38)

+CVT(CR + O(h))0p;, (1) Pl 2 an) + 0(1)-
Finally, using (36) and (38) in (34) and taking h to zero, we have

lizn suilphk*1 |0p,, ()P, ||i2(H)
—0

1 2
< lim supCeR*™! T|(—=+GVT|lO 2
< h_)oklp k (\/T_po ) ( T, o 10p, (1) bl 22 a0
Using the defect measure u associated to {¢,} and that T < 1 we obtain the desired
bound:

. 3 kal
im sup b Op, () < Gl | 1P

h—0* 0o

4.3. Key quantitative estimate: proof of Proposition 2.1

The main estimate used in the proof of Theorem 1.2 lets us control terms of the form
|{OPy (1) bns W) 12(ar)| - To prove it we first cover supp y|s+ with tubes and apply Lemma

4.2. After localizing to the tubes, we will need to estimate (Opj,(%;x)®p Y1) 12y Where

¥ is a cutoff localizing to a tube as in Lemma 4.2. If we use Cauchy-Schwarz to bound
this by the L? norms,

’<Oph(/(] () P> V) L2(H ’ < 1Op, (12 )¢h||L2 ||¢h||L2(H) = ||0Ph(XjX)¢h||L2(H)

we lose all the information from 1), since they are L*-normalized on H. Thus we need
to maintain the localization information of , too. To do this, we will use 1 €
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CX(T*M) and Lemma 3.1 to find a new cutoff 0; € CX*(T*H) such that
rHOph(XjX)d)h = Oph(ej)rHOph(XjX)¢h + O(h™)
and thus
<0Ph(XjX)¢h’¢h>L2(H) = <0Ph(XjX)¢haOPh(Hj)*lPOLZ(H) + O(h™)
< 110ps (1) Dill 2 10P1 (03) Wil 21

Then we will be able to apply Lemma 4.2 to the first term and use the defect measure
for v in the second.

Proof of Proposition 2.1. Let y € C*(T*M) with Hyz =0 on A*"(¢). Consider sets of
the form:

U = {(x’,o, dHezt: (¢, e Ba(p)> Ry), (%0, &8 e BZA(aj(xl,i/),Rj)}

where R; >0, p; = (x] é) €A and o0; is a smooth section, that is 0;: A — Z* and

n(aj(p’)) = p'. These are essentially “rectangles” in * constructed by crossing a ball in

A with balls in the spheres S*~!. We note that the v* measure of these rectangles satisfy
Lp,(o.x
, %lef—ldy(xl’ fl)
(x,&)eA (l — |é |gH(X/)) 2

provided R; is small compared to /1 — |&’ |gu(x)- Furthermore by uniform continuity of
log (1 — |§'|§H<x,)) on {|§’|§H(x,) <c< 1}, there exists an R>0 independent of p; such
that if (', ') € Ba(p, R) then

1—k

AU > Cn,kJ

lOg(l - |é]/|§H(xj’)) - log (2) < log(l - |£,|gH x') )

10g(1 — &lgu()) + log (2)-

Thus for R; < R, we have
Cuk V(Ba(p)s ‘))R,k
201 —1E )

AU) >

Fix & > 0. By outer regularity of v there exist {U]}]N:(f> covering supp x|s4 such that
) Rk 1
>kT |

VA (supp ylga) + 6 > ZZ/A ) > C, Z (39)

1121_|é|

as defined in

()
To construct the cover of tubes, we first “thicken” the Uj’s into U; (8) C¥
(19). Finally, we flow U]-”’s to form the collection of tubes {’T 3T Ui(e)) } where
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T S mlnj{Toj} = TO and 3R] S mln](R())) =: RO (40)

where the Ty’s are the “Ty’s” in the proof of lemma 4.2 and the Ry,’s are the “Ry’s” in
the proof of lemma 4.2. We note that Uj(e) C B« (p;, 3R;) where p; = g;(p;). By lemma
2.2 (or [24, Lemma 3.5]), for each j, we can take y; € CX°(T*M;0,1]) supported in

T3T(U]-(8)) such that supp H,y; C T3T(Uj(8)) \ TZT(U]-(S)) and furthermore that

Zx]—l on ) @.((supp xls+)(¢/2)).

|t <2T

Next we split the inner product into pieces localized to these tubes. We have

N(S)
<Oph (Zm) Do ¢h>
= )

g N(9)
5 <Oph((1 =2 )0 i)z
=

h%KOPh( )bns Vi) L*(H { <

+h

= I+1I

We claim IT = o(1) as h — 0". We leave the proof of this to Lemma 4.3 at the end of
this section. The rest of this proof is dedicated to controlling I. By Lemma 3.1 there
exits 0; € C°(T*H) such that

LuOpy, (1%) 1 = Opy,(0;)TuOpy,(1j1) Pn + O(R™). (41)

Particularly, we need to take 0; equal to 1 on BT*H(p},R]-Jrs) and supp 0; C
Br(pj> Rj + 2¢). Thus we have

N(5) N(
k=1 k_ 0
I<h> (0P (2i2) P Vi) 12 (1 ‘ ? OPh DT HOP, (%) i W) 121y | + O(H™)
=1 =
k=1 e}
< BT 1100y (22l a0 |OPH(0) Wil sy + OR™). (42)

=1

We are now in position to apply Lemma 4.2 for “y” = y;7.

lim suph%|<0ph( )P ¥n) 12 | = lim suph (I+II)
h—07 h—0"
N(9)
< 111]31 suph ZHOPh (Zix )d)hHLZ ||OPh(6j)*¢h||L2(H)
—0"

1/2
j

N(9) Ck k—1 , , 1/2
< J 7" du (J 10;] dl/)
; 2T\ [1— (&, o Jrom T (43)
]

where we used that v is a defect measure associated to {1, }. Next, to get v (supp y|s4)
to appear, we work to make the second term in (43) look like the right side of (39).
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Moving the R{™' over, multiplying and dividing by 2(1 — \§;|§H<x(>)k_51 and applying
J
Cauchy-Schwarz we find that (43) is bounded by

N0 2(1 = &) T 2l Y v RE 12
1 T 15jlgn(x) j ;
Ck TJ Z d,u (Z—)%JXH]BT*H(p;’RJ+ZS)dV) .

M=t 24/1— \fj|gH<x]<) =1 2(1 |5,|g,,(;a)

Next, since the ;(j’s are supported in the tubes, the first integral can be rewritten as an

integral over A*’(¢). Further, since the left side does not depend on & we can take the
limit as ¢ — 0 on the right side. Using the dominated convergence theorem to bring the
limit inside we have

lim suph%} (Opy (1) P> Vi) 12y |

h—0*

1/2
N() ng—ly(BA(p]{’R.)) 12

j 1 Zu N ) | [ &

112(1—|f| )

where AT denotes T3T(ZA). Next, since the second term is what we had in (39), we

)+ 8)'/2. Noticing that the left side does not depend
on T, we take the limit as T — 0 and use the definition of y* from (12) to get

can replace it with (v4(

. kol
lim suph = ‘<0Ph( )P Wi 12 }
h—0"
1/2

L 1/2
< o j |x|21—|5’| D ppdit | (A (supp 7lse) + )

Finally, since {yjg1} formed a partition of unity for supp ylss,

(1-|¢ \;H(x/))k;_l is continuous, and since ¢ > 0 was arbitrary, we have

. k-1 2 /2 k2 o4 172 I/A 1/2

tim sup 1= | (Opy (1) Yidraqen| < Coe |_ 17171 = 1€ g, 00) * (v (supp zl5+))
-0+ A

as desired. O

Yl(Op,((1 = 2 4) %) ®w Vi) 2| in the proof of

proposition 2.1 is 0 (1) as h — 07 as claimed above.

Finally, we show that term II = 5

Lemma 4.3. For y, y; defined in the proof of proposition 2.1 we have

W (Op, ( (1 - Z Xj) X> P> lPh>L2(H)
j

—0, as h—0".
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Proof. First, using Lemma 3.2 we obtain

W <Oph<< -3 7]> )¢h»lﬂh>
L*(H)
N N(5)
< K7{Op,((1 - ZX] )7)OPy (1s:31) D1 OPs (14)¥s) | +0(1)
j=1

<h ||lph||L2(H) +o(1)

5 OPh(XA)*FHOph<< Z/@) >Oph 15:2) P

where yg.); and y4 are defined in the statement of Lemma 3.2. We show that

12(H)

N(9)
Op;,(74) TrOP;, 1- ZX]' % | Opy (s m) P = O(R™). (44)
=1

To do so, we employ Lemma 3.1. We just need to verify the hypothesis of the lemma.
For contradiction, suppose there is a point (z), &) € supp z4 and also (z),0, &, &) €
supp ((1 —>_; %) x%s-m)- First, we note that (2,0, &y, Eo) & (supp y|s4)(e/2). However,
since also (2,0, &), &) € supp ygu and (25, &) € supp y4 we know that (2,0, &), &) €
T4 (o) = U ezt B#(p, o) where o > 0 is small and depends on how tightly yg.); and y4

are localized. Furthermore (z), 0, &), &) € supp y and so we have
(200,85 &) & (supp zlsa)(e/2)  and (2,0, &) € supp xlsa,y  (45)
but by taking ya and yg.,; supported sufficiently close to A and $*M, we can find «

such that supp y[sa(, C (supp z[s4)(¢/2) which contradicts (45). Thus use of Lemma
3.1 is justified and we have (44). O

5. Recurrence: proof of Theorem 1.1

In this section we prove Theorem 1.1 which gives the behavior of |( | Ono Vi) 12ar | ash —

0" when the recurrent set of X* is v4-measure zero. First, we define the recurrent set
and introduce some notation. Although the following can be defined more generally, we
stick to defining loop set, recurrent set, etc., for A only. First for each point p € >4 we
define the first return time T, : * — R |J{oo} by

Ta(p) = inf{t >0:7,(t) € ZA}

where 7,(t) is the geodesic emanating from p. This gives us the first time in which the
geodesic y,(t) returns to T4, If the geodesic never returns to X*, the return time will

be infinite. We will primarily be interested in the points which return to =* in finite
time. We call the collection of such points the loop set, denoted
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La={peXt: Tu(p) < o0}

Since points in the loop set return to X in finite time, we denote the point in which
p € L4 returns to by 5(p) defined by n: L4 — T4,

n(p) =7,(Ta(p))-

Next, define the infinite loop sets

Cie=n*Ls) and  L£3*=()1"(La)

k>0 k>0

which are essentially the loop set points that return to X* infinitely often forward and
backward in time, respectively. Finally, the recurrent set R4 := R, N'R, where

RX:={p€£X°°:p€ ﬂm}

N>0 k>N

which is essentially the collection of points p € =* which return infinitely often and
eventually get arbitrarily close to p.

Proof of Theorem 1.1. Suppose for contradiction that there is a sequence h; — 0 such
that

1-k
> Ch?

= (46)

(10,

Taking a subsequence if necessary, there exists defect measure x for {¢j, }. Further note
that v is still a defect measure for {nphj}. Defining p* as in (12) we decompose u* =

fvA + 2%, Then applying Theorem 1.2 we have

Lk
lim ;*
jmoo

’ k=2 1/2
S an)

(Pnys ¥n,) ‘ < Gk (

1/2
= Cu ( |, SOl T+ LA\R f- |f’|2>72duf‘)

ZAI'TRA

k 12
= Cn,k< f1- |f/|2)TdVA>

TR

where the last line follows from the fact that v4(R4) = 0. Next, since v* and A* are

mutually singular there exists V and W such that v4(V)=A*W)=0 and X4 =
V U W. Therefore we have
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=
lim h;*
jmoo

A c
TANRY

1/2

1/2
= cn,k<L Fa—EP)TaA + fa- |£’|2)¥dv‘*>

INRANV J(E"\RA)DW
1/2
wN=
:C”’k(J <1—|f|2>2d“A> < G\ R
E"\Ra)NW

since 4(V) = 0 and since 2*(W) = 0 on W, so we can rewrite u* = fv* on W. Next,
we use that Lemma 5.1 below gives u4(X# \ R4) = 0. Thus

k=1
fim B {(, )

j—o0

=0

which contradicts (46). O

Finally, we show that ¥4 \ R4 is uA-measure zero, which will complete the proof of
Theorem 1.1.

Lemma 5.1. Let H C M and suppose that {¢,} is a sequence of eigenfunctions with
defect measure p. Then

W (Ra) = 1 (24).

Proof. Let B C * be an open set. For § > 0 sufficiently small, define

Bs = U QDt(B)‘

[t|<36

Since (S*M,p, ¢,) forms a measure preserving system, the Poincaré Recurrence
Theorem implies that for y-a.e. p € Bs there exists ¢, — *oo such that ¢ (p) € B;.
Moreover by definition of B there exists s, such that |s; — t,7| < 26 and ¢ (p) € BC
>4, Therefore, for y-a.e. p € Bs we have

AUenB£0 and [ Jei(p)nB#0 (47)
T>0t>T T>0t>T
since the sets, UQT ¢@+,(p) N B are non-empty, compact, and nested as T increases.

Next, we show that (47) also holds for p*-a.e. point in B C 4. For contradiction,
suppose that there is a set B C B with p#(B’) > 0 and for each p € B/, there exists a
T >0 such that

Uep)nB=0  or  [Jo_(p)nB=0.
t>T t>T

/

Similarly to [10, Lemma 6], we have u|, = (Adt. Therefore, extending B to B, =
Up<s @:(B') we have that



284 M. M. BROWN

w(Bj3) =26 - i (B') > 0.

However, this implies (47) does not hold on Bj /3 C Bs which is a set of positive u
measure, which is a contradiction.

Finally, let {B;} be a countable basis for topology on Z*. For all k there exists a
B, C By of full p? measure such that for all p € B, (47) holds (with B replaced with
By). Let X; := B, |J(Z* \ By). Following the same argument as in [8, Lemma 15] we
find that N; Xz C R4. However, we note u*(Xy) = u*(B,) + u*(Z* \ Bx) = pA(By) +
A (ZA\ By) = uA(Z*). So each X has full measure and thus M X; has full measure
too. Therefore R4 has full measure too, and we have

W (Ra) = 1 (2)

as desired. O
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