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Abstract

We consider a social choice setting in which agents and al-
ternatives are represented by points in a metric space, and the
cost of an agent for an alternative is the distance between the
corresponding points in the space. The goal is to choose a
single alternative to (approximately) minimize the social cost
(total cost of all agents) or the maximum cost of any agent,
when only limited information about the preferences of the
agents is given. Previous work has shown that the best pos-
sible distortion one can hope to achieve is 3 when access to
the ordinal preferences of the agents is given, even when the
distances between alternatives in the metric space are known.
We improve upon this bound of 3 by designing determinis-
tic mechanisms that exploit limited cardinal information. We
show that it is possible to achieve distortion 1 + v/2 by using
the ordinal preferences of the agents, the distances between
alternatives, and a threshold approval set per agent that con-
tains all alternatives for whom her cost is within an appropri-
ately chosen factor of her cost for her most-preferred alter-
native. We show that this bound is the best possible for any
deterministic mechanism in general metric spaces, and also
provide improved bounds for the fundamental case of the line
metric.

1 Introduction

Social choice theory is concerned with aggregating the het-
erogeneous preferences of individuals over a set of out-
comes into a single decision (Brandt et al. 2016). Besides
its many applications in traditional domains, such as polit-
ical elections or voting for policy issues, social choice the-
ory has also been at the epicenter of areas such as multi-
agent systems (Ephrati and Rosenschein 1991), recommen-
dation systems (Ghosh et al. 1999), search engines (Dwork
et al. 2001), and crowdsourcing applications (Mao, Procac-
cia, and Chen 2012). Aggregation methods inspired from so-
cial choice theory have also been used in relation to machine
learning, such as for regression and estimation tasks (Cara-
giannis, Procaccia, and Shah 2016; Chen et al. 2018; Chen,
Shen, and Zheng 2020; Kahng, Kehne, and Procaccia 2020),
as well as virtual democracy (Noothigattu et al. 2018; Kahng
et al. 2019; Peters et al. 2020).

A central theme underpinning many of these applications
is the interplay between the amount of available information
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and the efficiency of the implemented decisions (Xia 2022;
Zhao and Xia 2019; Mandal et al. 2019; Amanatidis et al.
2022a; Boutilier et al. 2015). Indeed, it is often the case that
access to the preferences of the participants (or agents) is
restricted due to lack of enough statistical data, or due to
computational or cognitive limitations in the elicitation pro-
cess. This leads to the natural question of whether we can
design aggregation rules (or mechanisms) that achieve high
efficiency even when presented with informational restric-
tions.

This is the main question studied in the literature of dis-
tortion (Procaccia and Rosenschein 2006; Anshelevich et al.
2021), which measures the deterioration of an aggregate so-
cial objective due to limited information about the prefer-
ences of the agents. In its original setup (e.g., see (Boutilier
et al. 2015)), limited information is interpreted as having ac-
cess only to the ordinal preference rankings over the pos-
sible outcomes, instead of a complete cardinal utility struc-
ture that fully captures the intensity of the preferences. Over
the years, the notion of distortion has been refined to cap-
ture different kinds of informational limitations, including
restricted ordinal information (Gross, Anshelevich, and Xia
2017; Kempe 2020), communication complexity (Mandal
et al. 2019; Mandal, Shah, and Woodruff 2020), and query
complexity (Amanatidis et al. 2021, 2022a).

The literature on metric distortion considers scenarios
where the agents and the outcomes exist in a (possibly high-
dimensional) metric space, and the costs (rather than utili-
ties) are given by distances that satisfy the triangle inequal-
ity. The economic interpretation of these distances is typi-
cally in terms of the proximity for political or ideological
issues along different axes (e.g., liberal to conservative, or
libertarian to authoritarian). The metric distortion of social
choice mechanisms, firstly studied in the works of Anshele-
vich and Postl (2017) and Anshelevich et al. (2018), is one
of the most well-studied settings in the context of this litera-
ture, with many variants of the main setting being considered
in recent years (see Section 3 of the survey of Anshelevich
et al. (2021) for an overview). Since its inception in 2015
(the conference version of (Anshelevich et al. 2018)), the
“holy grail” of this literature was a mechanism with a metric
distortion of 3 for the social cost objective (i.e., the sum of
costs of all agents), which would match the corresponding
lower bound shown by Anshelevich et al. (2018). The up-
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per bound was finally established by Gkatzelis, Halpern, and
Shah (2020) via the PLURALITY MATCHING mechanism,
and then later also by Kizilkaya and Kempe (2022) via the
much simpler PLURALITY VETO mechanism. For the other
most natural objective, that of minimizing the maximum cost
of any agent, the best possible bound can also easily be seen
to be 3.

Crucially, these tight bounds of 3 are achieved by mecha-
nisms without access to any information of a cardinal na-
ture, i.e., they work by using only the ordinal preference
rankings of the agents. It can also be observed (e.g., see
(Anshelevich and Zhu 2021)) that if one also assumes ac-
cess to the distances between the outcomes in the met-
ric space, then 3 is still the best bound one can hope for.
At the same time, a growing recent literature advocates to
take the natural next step, and study the distortion when
a small amount of cardinal information about the prefer-
ences is also available, which, in many cases, is reasonable
to elicit (Abramowitz, Anshelevich, and Zhu 2019; Amana-
tidis et al. 2021, 2022b,a; Benade et al. 2021; Bhaskar, Dani,
and Ghosh 2018). This motivates the following question:

Is it possible to beat the barrier of 3 on the metric dis-
tortion if we also have access to limited information
of a cardinal nature?

1.1 Our Contribution

We consider a setting in which a set N of agents and a set
A of alternatives are positioned on a metric space, and the
preferences of the agents are captured by the distances be-
tween their positions and that of the different alternatives.
We are interested in the distortion of deterministic mecha-
nisms in terms of the social cost and the maximum cost ob-
jectives, i.e., the ratio of the cost of the alternative chosen by
the mechanism over the smallest possible cost over all alter-
natives, taken over all possible instances. Note that with full
cardinal information, achieving an optimal distortion of 1 is
trivial.

We answer the main question posed above in the affirma-
tive, by assuming access to the ordinal preferences, the dis-
tances between the alternatives in the metric space, and some
additional limited cardinal information about the costs of the
agents. In particular, for each agent ¢ € N, we have access
to an a-threshold approval set (a-TAS) A;, which contains
all the alternatives for which the agent has cost at most a
factor « times the cost for her most-preferred alternative,
with a being a value that can be chosen by the mechanism
designer. For general metric spaces, we design mechanisms
that achieve a distortion of 1+ /2 in terms of the social cost
and the maximum cost objectives, thus beating the afore-
mentioned barrier of 3. We complement these results with
lower bounds on the distortion of any deterministic mecha-
nism that uses this amount of information.

For the fundamental special case of a line metric, we pro-
vide refined tight bounds on the distortion for both objec-
tives, showing an even larger separation from the bound of
3 that holds in the absence of any cardinal information and
even when the metric is a line. More generally, we fine-tune
our analysis to the presence/absence of all three types of in-
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formation (i.e., only a-TAS, a-TAS + ordinal preferences,
a-TAS + known alternative distances, or a-TAS + ordinal
preferences + known alternative distances) and show that, in
most cases, the best possible distortion bounds can be ob-
tained even when only using two types of information. Our
results are summarized in Table 1. Due to space constraints,
some proofs and statements are deferred to the full version.

1.2 Related Work and Discussion

The distortion literature is rather extensive and has been ex-
posed in the recent survey of Anshelevich et al. (2021). Be-
low we discuss the works that are mostly relevant to the set-
ting that we study here.

The term “approval threshold” (in fact, “approval thresh-
old vote”) was introduced in the conference version of the
paper of Benade et al. (2021) (and was later also used by
Bhaskar, Dani, and Ghosh (2018)) to refer to an elicitation
device that returns a set of alternatives that an agent val-
ues higher than a given threshold. Amanatidis et al. (2021)
introduced a setting in which limited cardinal information
is elicited via a set of value or comparison queries, where
an agent is asked to provide their value for a given alter-
native, or indicate whether she prefers one alternative over
another by more than a given factor, respectively. An ap-
proval threshold in their setting can be constructed via a sin-
gle value query (for the agent’s most-preferred alternative),
and then a number of comparison queries which is logarith-
mic in the number of alternatives.

The a-TAS that we consider are closely related to the
comparison query model of Amanatidis et al. (2021), in that
they do not encode information about any absolute value for
the cost of the agents, but rather only information that is rel-
ative to their cost for their most-preferred alternatives. In this
sense, these sets are relative, and can be viewed as the out-
comes of a single relative threshold query, or, equivalently,
the outcome of logarithmically-many comparison queries.
From a cognitive standpoint, this is an even more conceiv-
able elicitation device since the agents are only asked to per-
form (cardinal) comparisons rather than to come up with ab-
solute cost numbers. Such comparisons are motivated by and
rooted in the ideas of the Von Neumann-Morgenstern util-
ity theory (Von Neumann and Morgenstern 2007); see also
(Amanatidis et al. 2021).

A common characteristic of all aforementioned works is
that they do not consider the distortion in the metric setting.
Abramowitz, Anshelevich, and Zhu (2019) studied the met-
ric distortion of mechanisms that use limited cardinal infor-
mation, namely information about whether the ratio between
the costs of an agent for any two candidates is larger or
smaller than a chosen threshold 7. Their elicitation method
is different from ours, and requires information about the
relative costs for all pairs of alternatives. In contrast, our
«-TAS only require aggregate information about the set A;
of alternatives. The two settings coincide only in the case
where there are just 2 alternatives overall, which allows us
to obtain a lower bound of 2v/2 — 1 & 1.83 for the social
cost for the line metric from their work, for which we also
show a matching upper bound.
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TAS NORD N DIST | TASNORD | TASNDIST | TAS
. General 2,1+ /2] [1++v2,3] 1++2
Social cost ] O(n)
Line 2v2 -1 2 2v2 -1
Max cost Ger.leral 142 1+ V2, 3] 3
Line 1+ \/§

Table 1: An overview of our distortion bounds for deterministic mechanisms that use different types of information. TAS is used
to refer to the class of mechanism that have access to the ordinal preferences of the agents, DIST is used for mechanisms that
have access to the distances between alternatives, and TAS is used for the mechanism with access to the a-threshold approval

sets.

2 Preliminaries

We consider a single-winner social choice setting with a set
N of n agents and a set A of m alternatives. Agents and
alternatives are represented by points in a metric space. For
any z,y € N U A, let d(x,y) denote the distance between
the points representing x and y. The distances satisfy the
standard conditions for metric spaces, namely that d(z,y) =
d(y,z), d(z,y) = 0if z = y, and d(z,y) < d(z,z) +
d(z,y); the last condition is called the triangle inequality.
We will use the tuple I = (N, A, d) to denote an instance of
our setting, and will use Z to denote the set of all instances.

Input information. A (deterministic) mechanism M takes
as input some information related to the distances between
agents and alternatives, and outputs a single alternative as
the winner. We will consider combinations of the following
three types of information:

Inf.1 The ordinal preferences (~;),.  of the agents which
are induced by the distances, where >; is a complete
ordering over the elements of A, and = >; y implies
that d(i,2) < d(i,y) forany i € N and x,y € A.

Inf.2 The distances d(x, y) between any pair of alternatives
z,y € A.

Inf.3 A set of a-threshold approval sets (-TAS) (A;)ien

such that d(i,x) < - d(i, 0;) for any z € A;, where
0; is the most-preferred alternative of agent ¢ (i.e.,
0; »; y for any y € A). We will say that agent ¢

approves alternative x in case x € A;.

Clearly, all of Inf.1 to Inf.3 can be inferred from an instance
I. We will use the term Inf(]) to denote the information that
is available to a mechanism for instance I. For ease of refer-
ence, we classify mechanisms by the type(s) of information
that they use at inputs. We associate Inf.1 with ORD, Inf.2
with DIST, and Inf.3 with TAS. We say that a mechanism
- isin X € {ORD, DIST, TAS} if it has access only to the
information associated with X,
- isin X NY for some X,Y € {ORD, DIST, TAS} if it
has access only to the information associated with X and
Y, and
- isin ORDNDISTNTAS if is has access to all three types
of information.

As we already explained in the Introduction, the bulk of
the metric distortion literature considers mechanisms that
are only in ORD, which results in a best-possible distortion
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of 3 (Anshelevich et al. 2018; Gkatzelis, Halpern, and Shah
2020; Kizilkaya and Kempe 2022) (see below for the formal
definition). For mechanisms in ORD N DIST, the best pos-
sible distortion is still 3 (Anshelevich and Zhu 2021). Our
main results are for the case of having access to all types of
information (i.e., mechanisms in ORD N DIST N TAS), but
we also provide results for mechanisms in ORD N TAS and
DIST N TAS independently, as well as TAS in isolation.

Objectives and Distortion. We will consider the two
well-known minimization objectives, the social cost SC and
the maximum cost MC, which for an alternative x are defined

as
SC(x) = > dli,x)
ieN
and
MC(z) = Igé&}\};{d(z,x).

Given an objective F € {SC, MC}, the distortion of a mech-
anism M for F is defined as

F(M (Inf(1))|I)
rez minjea F(j|1)’

where M (Inf(I)) denotes the alternative chosen by the
mechanism when given as input the information Inf(I) for
instance I. Clearly, the distortion is at least 1 for any mech-
anism, and our goal is to determine the best possible distor-
tion when given combinations of Inf.1 to Inf.3.

3 Social Cost

In this section, we show bounds on the distortion for the so-
cial cost objective for mechanisms in ORD N DIST N TAS.
Our main result is a mechanism, coined (1+4-1/2)-MINISUM-
TAS-DISTANCE, which achieves a distortion of 1 + /2 ~
2.42, thus breaking the barrier of 3, which is the best possi-
ble without access to the a-TAS. In fact, this mechanism
does not require access to the ordinal preferences of the
agents, i.e., it is in DIST N TAS. We complement this result
with a lower bound of 2 on the distortion of any determinis-
tic mechanism M € ORD N DIST N TAS.

For mechanisms in ORD N TAS and DIST N TAS, we
provide stronger lower bounds of 1 + V/2; this establishes
that (1 4+ 1/2)-MINISUM-TAS-DISTANCE is the best possi-
ble among mechanisms in DIST N TAS. We also prove that
the distortion of any mechanism in TAS is bound to be bad,
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Mechanism 1: «-MINISUM-TAS-DISTANCE

Input: Distances between alternatives, a-TAS;
Output: Winner w;

w € arg minge o { > ien Minjea, d(j, x)}

namely ©(n). For the special case of the line metric, we pro-
vide more refined fight bounds depending on the amount of
information available in the input.

3.1 Results for General Metric Spaces

We start by showing an upper bound of 1 + /2 for general
metric spaces using a mechanism to which we refer as a-
MINISUM-TAS-DISTANCE. This mechanism is quite intu-
itive and does not require any information about the ordinal
preferences, i.e., it is in the class DIST N TAS. The mecha-
nism chooses as the winner an alternative that minimizes the
sum of distances from the «-TAS of the agents, where the
distance between an alternative x and a set A; is defined as
the distance of x from its the closest alternative in A;. See
Mechanism 1 for a description using pseudocode.

Theorem 3.1. In general metric spaces, the distortion of a-
MINISUM-TAS-DISTANCE for the social cost objective is
at most max {a, 2+ é}

Proof. Recall that o; is the most-preferred alternative of
agent ¢; hence, d(i,j) < « - d(i,0;) for any j € A;. Let
o be the optimal alternative (i.e., the alternative with the
smallest social cost) and let w be the alternative chosen by
the mechanism. For any agent ¢, denote by z; € A; the
alternative that is closest to w, and by y; € A; the alter-
native that is closest to o. By the definition of w, we have
that ),y d(zs,w) < >, nd(ys,0). Using the triangle
inequality, we now have:

= d(i,w)
<> dli ) + Y d(wi,w)

1€EN 1EN

< Z d(i,z;) + Z d(ys,0)

iEN iEN
We make the following observations:

- For every agent i such that o € A;, y; = o, and thus
d(y;,0) = 0, as well as d(i, 0;) < d(i,0).

- For every agent 4 such that o ¢ A;, d(y;,0) < d(0;,0)
and d(i,0;) < 1 -d(i, o).

Combining the above with the fact that d(i, z;) < «-d(i, 0;)
and using the triangle inequality, we obtain

w) <> d(iz) + Y d(yi,0)

iEN 1EN
= 5 (dtio + o))
1:0€A;
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i:0€A;
< > dia)+ Y (d(z ;) + d(o;, ))
1:0€A; i:0¢A;
<a- Z d(i, 0;)
:0€A;
+ Z (a d(i,0;) + d(i,0;) + d(i, 0))
1:0€A;
<a- Y dio0)+ <2+1> > d(i,o)
1:0€A; a i:0€A;

1
< max {a,? + } - SC(0).
a

Hence, the distortion is at most max {a,2 + X }. O

By optimizing over «, we obtain the following corollary.

Corollary 3.2. In general metric spaces, the distortion of
(14+/2)-MINISUM-TAS-DISTANCE for the social cost ob-
Jective is at most 1 + V2.

We complement the upper bound of 1 + 1/2 by a nearly
tight lower bound of 2 for mechanisms that use all three
types of information. We state the main theorem here and
defer its proof and the details to the full version.

Theorem 3.3. For the social cost objective, the distortion of
any mechanism M € ORD N DIST N TAS is at least 2.

Refined Bounds for General Metric Spaces

While the bounds of Theorem 3.1 and Theorem 3.3 are not
matching, we are able to show lower bounds of 1 + /2 for
mechanisms either in ORD N TAS or DIST N TAS. That
shows that a-MINISUM-TAS-DISTANCE is the best pos-
sible among mechanisms in the former class. We state the
lower bounds below.

Theorem 3.4. For the social cost objective, the distortion of
any mechanism M in either ORD N TAS or DISTNTAS is at
least 1 + /2.

Refined Bounds for the Real Line

For the real line metric, we are able to obtain tight bounds
for any subset of the different types of information. We sum-
marize those results in the following theorem.

Theorem 3.5. On the line metric, for the social cost objec-
tive, the best possible distortion for mechanisms in ORD N
DIST N TAS is 2v/2 — 1 ~ 1.83, and this is achieved by
a mechanism in ORD N TAS. The best possible distortion
for mechanisms in DIST N TAS is 2, and this is achieved by
(14 v/2)-MINISUM-TAS-DISTANCE.

The lower bound of 24/2 — 1 in Theorem 3.5 follows from
the work of Abramowitz, Anshelevich, and Zhu (2019), via
a connection between their setting and ours, when there
are only two alternatives. For the upper bound, we pro-
pose a mechanism that we refer to as a-ELIMINATION-
WEIGHTED-MAJORITY. It achieves a distortion of 2v/2 — 1
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as an upper bound for o = /2 — 1, and is thus best possible.
In fact, our mechanism does not need to have access to the
distances between alternatives, only to the a-TAS and the or-
dinal preferences of the agents. We describe the mechanism
and the intuition behind its performance below.

Remark 1. Since the metric space is a line, we may as-
sume that we have access to an ordering of the agents and
alternatives on the line, which is unique up to permutations
of identical agents and reversal; this ordering can be deter-
mined via the ordinal preferences of the agents (Elkind and
Faliszewski 2014).

Now, the mechanism works in two steps.

- Elimination step: It identifies the most-preferred alterna-
tive x of the median agent, the alternative ¢ that is directly
the left of x, and the alternative r that is directly to the
right of . It then eliminates one of ¢ and r by compar-
ing the number n(¢, ) of agents that prefer £ to = and
the number n(r, ) of agents that prefer r to = as in the
work of Anshelevich and Postl (2017). In particular, if
n(¢,x) < n(r,z), then it eliminates ¢, otherwise it elim-
inates 7, and stores the non-eliminated alternative as y.

- Weighted-majority step: Afterwards, the mechanism runs
a weighted majority between x and y by assigning a
weight of 1 to each agent ¢ such that x,y € A;, and
a weight of % to every other agent. This step will
be shown to be equivalent to the algorithm used by
Abramowitz, Anshelevich, and Zhu (2019) to show a
bound of 2¢/2 — 1 ~ 1.83 in their setting when there
are two alternatives.

4 Maximum Cost

In this section we consider the other most natural objective,
i.e., to minimize the maximum cost of any agent, abbrevi-
ated as MC. For mechanisms in ORDNDISTNTAS we show
a tight bound of 1 + V/2. In the real line metric, we show
that there in fact exist mechanisms in either ORD N TAS and
DIST N TAS that achieve the 1 + /2 distortion guarantee,
without having access to the third type of information. We
also show that the best distortion achievable by mechanisms
in TAS is 3.

4.1 Results for General Metric Spaces

We start by proving an upper bound of 1 + /2 for gen-
eral metric spaces. This is achieved by a novel mechanism
in ORD N DIST N TAS, which we refer to as a-MOST-
COMPACT-SET, for &« = 1 4+ +/2. In fact, the mecha-
nism requires less information than a typical mechanism in
ORD N DIST N TAS, as it only requires access to the most-
preferred alternatives of the agents, rather than their com-
plete ordinal preferences.

Before we define the mechanism, we will prove the fol-
lowing useful lemma relating the choices of any mechanism
with the distortion for the maximum cost objective. To dif-
ferentiate between alternatives that lie at minimum distance
from an agent ¢ and alternatives that appear first in the pref-
erence ranking of the agent (which might be different due to
ties), we will refer to the former as agent i’s min-distance
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Mechanism 2: «-MOST-COMPACT-SET
Input: Most-preferred alternatives of agents,
distances between alternatives, a-TAS;
Output: Winner w;
if 3x € A;,Vi € N then

| w < x;
else
for: € N do
| pi = maxgea, d(z,0;);

w € arg min;e v p; ;

alternative (rather than agent ¢’s most-preferred alternative).
In other words, a min-distance alternative for agent ¢ is an
alternative x for which d(i, ) < d(i,z’) for any 2’ € A.

Lemma 4.1. Consider a mechanism M that chooses the
winner to be an alternative w that satisfies at least one of
the following two conditions:

1. we Ajforallj € N.

2. w is a min-distance alternative for some agent i € N,
and o ¢ A;, where o is an alternative that minimizes the
maximum cost.

Then, for the maximum cost objective, the distortion of M is
at most max{a,2 + }.

Proof. For the first condition, if w € A; for all j € NV, then
d(]aw) S - d(j70j) S - d(j>0)7

where o; is the most-preferred alternative of agent j. This
implies that
MC(w) < a - MC(o0).

For the second condition, let ¢ be an agent that is at maxi-
mum distance from w. We have that

MC(w) = d(t, w)
< d(t,o0) + d(o,i) + d(i, w)

<d(t,o0) +d(i,o0) + é -d(i,0)

< (2 + ;) MC (o),

where the first inequality is due to the triangle inequality, and
the second inequality follows from the fact thato ¢ A;. O

Now, our mechanism, coined a-MOST-COMPACT-SET,
works as follows: It first checks if there exists some alter-
native x that is approved by all agents, and, if this is indeed
the case, it then chooses x as the winner w. Otherwise, for
each agent ¢, it computes the maximum distance p; of the
most-preferred alternative o; of ¢ to any other alternative in
Aj; then it chooses the most-preferred alternative o; of the
agent ¢ with minimum p;. Essentially, in the otherwise case,
the mechanism aims to choose the most-preferred alterna-
tive of an agent in order to minimize the radius to all other
alternatives approved by the agent. See Mechanism 2 for a
description using pseudocode.
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Theorem 4.2. In general metric spaces, for the max cost ob-
Jective, the distortion of a-MOST-COMPACT-SET is at most
max{c,2+ 1}

Proof. 1f there is an alternative w such that w € A; for all
7 € N, the mechanism chooses it as the winner w. In that
case, by Theorem 4.1, the distortion of a-MOST-COMPACT-
SET is at most max{c,2 + 1}. If such an alternative does
not exist, then the mechanism chooses the most-preferred
alternative of some agent ¢, in particular the agent with the
smallest p;, i.e., the smallest maximum distance from any of
her approved alternatives to her most-preferred alternative
0;. If o ¢ A;, then by Theorem 4.1, the distortion of the
mechanism is again at most max{c«, 2 + é} Therefore we
will consider the case when o € A;. By the definition of p;,
this implies that d(o, 0;) < p;.

Since there is no alternative = such that x € A; for all
i € N, there must exist at least one agent j such thato ¢ A;.
Also, let ¢ be the agent that has the maximum distance from
w. We have that

MC(w) = d(t, 0;)
< d(t,0) + d(o,0;)
< MC(o0) + p;
< MC(o) + p;-
where the last inequality follows from that fact that
i was chosen to be an agent that minimizes py

maXge 4, d(x,o0r) by the mechanism. Let y be an alterna-
tive in A; with maximum distance from o;. Then,

pj = d(y,0;)
<d(j,05) +d(4,y)

< (1 + i) MC(o),

where the first inequality is due to the triangle inequality,
and the second one is follows since d(j,0;) < d(j,0) <
MC(0), and since 0 € A; implies that d(j, 0;) < Ld(j,0) <
LMC(0). Putting everything together, we obtain

MC(w) < (2 + ;) MC (o).

Overall, the distortion of the mechanism is at most
max{e, 2 + 1}, as desired. O

By optimizing over «, we obtain the following corollary.

Corollary 4.3. In general metric spaces, for the max cost
objective, the distortion of (1 + ﬂ)-MOST-COMPACT-SET
is at most 1 + /2.

Next, we prove that the bound of 1 + V/2 is the best pos-
sible for the maximum cost objective, even when all three
types of information are available, and even when the metric
space is as simple as a line.

Theorem 4.4. For the max cost, the distortion of any mech-
anism M € ORD N DIST N TAS is at least 1 + \/2, even on
a line metric.
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(a) Instance I.
1/2 L

(a2)
&/

@ 1/2

Figure 1: The line metrics used in the proof of Theorem 4.4.
Agents are represented by rectangles and alternatives are
represented by circles. A value above an edge represents the
distance between the edge’s endpoints.

—
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(b) Instance Io.

Proof. Consider any mechanism M that has access to all
three types of information. To show the lower bound, we will
consider the following two cases depending on the value of
o that M uses.

Case 1: @ < 1 + /2. Consider an instance I; with two
agents {1, 2} and two alternatives {a1, as}. We have

- A ={a};
- Ay ={as};
- ai ~1 a2;
- as > aq.

The distance between the two alternatives is equal to 14+ a+
¢, for some infinitesimal ¢ > 0. Given this information, M
may choose any of the two alternatives as the winner, say
a1. We define the following line metric (see Fig. 1a):

- Alternative aq is at 0;

Agent 1is at 1;

- Alternative as isat1 + a +¢
Agent2isatl+ 2a +e¢.

It is not hard to verify that these positions of the agents
and the alternatives are consistent to the information given to
the mechanism for any a < 1 + 1/2: Agent 2 approves only
alternative ag as d(2,a1) = 14+2a+¢ > o? = a-d(2,az);
all other information is clearly consistent. We have that

MC(a;) =142a+¢
and
MC(ag) = a +¢,
thus obtaining a lower bound of 2 + 1/ > 1 + V2 when e
tends to 0.

Case 2: @ > 1+ /2. Consider an instance I with two
agents {1, 2} and two alternatives {a1, a2 }. We have

- A =4 = {01,02};
- a1 »1 a2;
- Qg2 >2 aq.

The distance between the two alternatives is equal to 1.
Given this information, M may choose any of the two alter-
natives as the winner, say a;. We define the following line
metric (see Fig. 1b):
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- Alternative a is at O;

- Agent lisat1/2;

- Alternative as is at 1;

- Agent min{3/2, 2+ }.

It is not hard to verify that these positions of the agents and
the alternatives are consistent to the information given to the
mechanism for any o > 1+ /2: Agent 1 is at distance 1/2
from both a1 and as. When =2~ < 3/2 & o < 3, agent
2 is at distance %5 — 1 = ﬁ from a and distance %5
from ay; clearly, the ratio of these distances is exactly a.
When -2 > 3/2 < o > 3, agent 2 is at distance 1/2 from
ay and distance 3/2 from a,; the ratio of these distances is
exactly 3, and thus at most a. Since ﬁ <1l/2< ﬁ for

any o > 1, we have that

a—1

. o
MC(a1) = min{3/2, ﬁ}
and
MC(az) = 1/2,

thus obtaining a lower bound of 3 when o > 3 and

2
2C s a>1+V2
a—1

when o € (1 ++/2,3]. O

We conclude the exposition of our results for general met-
ric spaces by showing that the very simple mechanism ANY-
APPROVED € TAS that chooses any alternative in the a-
TAS of some agent achieves a distortion bound of 2 4+ « in
terms of the maximum cost objective. By setting a@ = 1,
we obtain a distortion bound of 3, which is the best possible
for all mechanisms in TAS, and also matches the bound of
3 that is best possible for any mechanism in ORD N DIST.
We defer the corresponding statements and proofs to the full
version.

Refined Bounds for the Real Line

As in the case of the social cost objective, we also obtain
tight bounds on the line for the maximum cost objective.
The lower bound of Theorem 4.4 for mechanisms in ORD N
DIST N TAS already applies even to the line metric, so the
question is whether there is a mechanism in this class that
achieves a corresponding upper bound. We show something
stronger than this, namely that mechanisms in either ORD N
TAS or DIST N TAS indeed achieve this bound.

Theorem 4.5. When the metric space is a line, for the max-
imum cost, there are mechanisms in ORD N TAS and in
DIST N TAS with distortion 1 4 /2.

For ORDNTAS, the mechanism that achieves the bound is
coined MAX-TAS-LEFTMOST, and simply selects the left-
most alternative (which is possible to find given the ordinal
preferences, see Remark 1) from those alternatives that ap-
pear in the largest number of a-TAS. For DIST N ORD, the
natural translation of a.-MINISUM-TAS-DISTANCE, which
minimizes the maximum distance from the approval sets
(coined a-MINIMAX-TAS-DISTANCE) achieves this up-
per bound. Interestingly, this bound is achieved even by
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a-MINISUM-TAS-DISTANCE itself, although it is not de-
signed with the maximum cost objective in mind. We defer
the details to the full version.

5 Future Directions

The main problem that our work leaves open is that of iden-
tifying the best possible distortion bound in terms of the
social cost for general metric spaces and mechanisms in
ORD N DIST N TAS, for which we showed an upper bound
of 1 4+ /2 and a lower bound of 2. Another interesting open
question is to show whether 1 + /2 can be achieved with
a mechanism in ORD N TAS for general metric spaces. For
the maximum cost objective, we were able to obtain tight
bounds for the general class ORD N DIST N TAS, so the
open question is whether these bounds can be achieved by
mechanisms in ORD N TAS and DIST N TAS, as we proved
to be the case on the real line. For DISTNTAS, the (1+ ﬂ)-
MINIMAX-TAS-DISTANCE mechanism, which we showed
to achieve the tight bound of 1+ v/2 on the line, seems like a
very natural candidate. Unfortunately, however, we can con-
struct counterexamples where the distortion of this mecha-
nism is lower-bounded by 3 in general metric spaces. For
ORD N TAS, MAX-TAS-LEFTMOST is obviously not even
well-defined in general metric spaces, as the notion of a left-
most alternative is meaningless. That being said, we can de-
sign mechanisms in ORD N TAS that are based on very sim-
ilar principles and are not line-specific, which still achieve
a distortion of 1 + v/2 on the line. Unfortunately, once con-
sidered in general metric spaces, these mechanisms also fall
short, as similar examples to the aforementioned one show a
lower bound of 3 on their distortion.

More generally, our paper advocates the study of the in-
terplay between information and efficiency in the metric so-
cial choice setting, building on a growing literature that has
recently gained significant momentum. As a next step, one
could consider eliciting additional cardinal information, for
example, by using multiple approval thresholds a, ..., ay,
in conjunction with the other types of information that we
use here, and quantify the effect on the distortion. More gen-
erally, it would make sense to consider different types of in-
formation structures and combinations between them; note,
for example, that our a-MOST-COMPACT-SET mechanism
for the maximum cost uses the distances between alterna-
tives, the o-TAS, and information about the top-ranked al-
ternative of each agent. Finally, a very meaningful avenue is
to consider how randomization might aid in achieving even
more improved distortion bounds, in the presence of the a-
TAS.
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