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1. Introduction

1.1. The Euler-alignment system

This paper focuses on the 1-dimensional Euler-alignment system, which describes
collective behavior among agents. It is a hydrodynamic analog of the celebrated
Cucker–Smale system of ODEs, which we discuss below. The system is represented
by the following equations:

⎧
⎨
⎩

∂tρ + ∂x (ρu) = 0 , (x, t) ∈ R × R+,

∂t (ρu) + ∂x (ρu2) =

∫

R

ρ(x, t)ρ(y, t)φ(x − y)(u(y, t) − u(x, t)) dy.
(1)

The two functions u and ρ represent the velocity and nonnegative density profile of
a group of agents. The communication protocol φ : R → R describes the strength
of the nonlocal alignment interactions. It is assumed to be nonnegative and even. The
system (1) is accompanied by initial data:

ρ(x, 0) = ρ0(x), u(x, 0) = u0(x).

The last decade has seen a rapid development in the theory for the well-posedness
and asymptotic behavior of the Euler-alignment system (1). As the nature of (1) de-
pends strongly on the behavior of the communication protocol φ near the origin, this
theory necessarily breaks into several different cases.When the communication proto-
col φ is strongly singular, meaning that it is non-integrable at the origin, the alignment
force on the right-hand side of (1)2 is known to exhibit dissipative properties and has a
nonlinear regularizing effect. Consequently, the system takes on a parabolic character.
Notably, research presented in [15,33–35] has demonstrated that the solution remains
globally regular for any smooth initial data with inf ρ0 > 0. In the case where the
initial data contains vacuum, we refer to [1,37] for discussions on singularity for-
mation and [16] for existence of weak solutions. Researchers have explored various
extensions of the system, incorporating features such as pressure [12], misalignment
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[30], and attraction–repulsion forces [23]. While progress has been made in the con-
text of the multi-dimensional system, it is less well-studied in comparison with the
one-dimensional case. Some partial results have been presented in [2,8,14,25,26,32].
We are interested in the case where the communication protocol φ is less singular,

specifically when it is integrable at the origin. In such instances, the alignment force
exhibits a nonlocal damping effect, and the system adopts a hyperbolic character. A
significant observation known as the critical threshold phenomenon was first reported
in [36]. This phenomenon highlights that the global regularity of solutions is contin-
gent on the initial data: ‘subcritical’ initial data lead to global well-posedness, while
‘supercritical’ initial data result in finite-time singularity formations. Numerous re-
search works have been dedicated to determining the critical threshold conditions for
the Euler-alignment system and related systems [3,6,10,11,18,21,27,38]. In the next
subsection, we will conduct a brief survey on the findings specifically related to the
one-dimensional Euler-alignment system (1).
Another celebrated feature of the Euler-alignment system is its asymptotic flocking

behavior. This behavior emerges under the assumption that the communication kernel
has a heavy tail, indicated by the condition:

∫ ∞

1
φ(r) dr = ∞. (2)

In such cases, solutions of the system converge to a flocking state as t → ∞: the
velocity u aligns with its average value, while the density ρ stabilizes into a traveling
wave form:

u(x, t) → ū :=

∫
R
(ρ0u0)(x)dx∫

R
ρ0dx

, ρ(x + ut, t) → ρ∞(x).

Here ρ∞ is the asymptotic density profile, which carries important information about
the emergent flocking phenomenon. However, the structure of ρ∞ is relatively less
understood. Relevant discussions on the flocking phenomenon can be found in works
such as [20,28,29,34,36].

1.2. Regular solutions and the critical threshold conditions

As mentioned above, the existence or non-existence of a global smooth solu-
tion (ρ, u) to the 1-dimensional Euler-alignment system (1) with smooth initial data
(ρ0, u0) can be determined from the critical threshold condition (CTC). The condi-
tions can be precisely characterized using an auxiliary quantity introduced in [6]:

e0(x) = ∂x u0(x) + φ ∗ ρ0(x), x ∈ R.

Here ‘∗’ denotes convolution in the spatial variable. Critical threshold conditions are
available for two types of communication protocols:

• Bounded communication.
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• Weakly singular communication: φ is unbounded but integrable at the origin.
More precisely, we say φ is weakly singular with order β ∈ (0, 1) if there exist
positive constants R > 0 and c > 0 such that the following lower bound holds:

φ(r) ≥ c r−β , ∀ r ∈ (0, R). (3)

A sharp CTC has been established in [6] for bounded communication protocols,
which says

I. If e0(x) ≥ 0 for all x ∈ R, then the solution is globally regular.
II. If e0(x0) < 0 for some x0 ∈ R, then the solution develops a singularity at

x(x0, T∗) for some finite time T∗.

In this context, we use the notation x(a, t) for the characteristic path originating from
a, which satisfies the following ordinary differential equation:

ẋ(a, t) = u(x(a, t), t), x(a, 0) = a.

For bounded protocols, these conditions are often referred to as ‘subcritical’ (I) and
‘supercritical’ (II).
When the communication protocol is weakly singular, another type of finite time

singularity formation was discovered in [38]. Under the subcritical CTC (I), we have
the following.

III. If e0(x0) = 0 for some x0 ∈ R, then the behavior depends on the type of
communication protocol:
(i) If φ is bounded, then the solution is globally regular.
(ii) If φ is weakly singular, then the solution might develop a singularity at

x(x0, T∗) for some finite time T∗.

An example was provided in [38] to illustrate the singularity formation, assuming φ

has a heavy tail. Note that this is the only scenario where the two types of protocols
can lead to different behaviors. We may refer it as the critical case.
The nature of the singularity in II and III(ii) is commonly known as a singular

shock, arisingwhen two characteristic paths collide and lead to a shock discontinuity in
velocity. Additionally, there is a concentration of mass, which we refer to as clustering

in this paper.
In [27], the author proved a refinement of the above results that renders the CTC

more meaningful in the presence of vacuum. When x /∈ supp ρ0, the physical velocity
u0(x) is undefined, making e0(x) ill-defined. To address this, the author introduced
an anti-derivative of e0, denoted as:

ψ0 = u0 + � ∗ ρ0, �(x) =

∫ x

0
φ(r) dr. (4)

The CTC are then expressed in terms of the monotonicity of ψ0 inside the support
of ρ0. For instance, if φ is bounded, the solution is globally regular if and only if ψ0

is nondecreasing in supp(ρ0). The theory presented in [27] was further developed in



J. Evol. Equ. Finite- and infinite-time cluster formation Page 5 of 45     8 

[24] through a comprehensive study of the evolution of characteristic paths; the latter
will inform the following discussion.
The characteristics are simplest for the degenerate protocol φ ≡ 0, for which the

Euler-alignment system (1) reduces to the well-studied pressureless Euler system. For
pressureless Euler, the characteristic paths of classical solutions are always straight
lines, leading to three possible scenarios: (I) separation linearly in time, (II) collision
in finite time, or (III) running parallel for all time. However, the introduction of the
alignment force leads to intriguing new asymptotic behaviors.
For bounded and heavy-tailed communication protocols, assuming ψ0 is nonde-

creasing in supp(ρ0), it was demonstrated in [24] that for any a, b ∈ supp(ρ0) with
a < b, the characteristic paths x(a, t) and x(b, t) are globally well-defined, and their
distance satisfies the following quantitative bounds (for some positive constants c and
C that do not depend on a, b, or t):

c(ψ0(b) − ψ0(a)) ≤ lim
t→∞

(
x(b, t) − x(a, t)

)
≤ C(ψ0(b) − ψ0(a)). (5)

The comparison (5) was then utilized to study the structure of the asymptotic density
profile ρ∞. One especially interesting situation occurs whenψ0(a) = ψ0(b), in which
case the distance between characteristic paths tends to zero as t → +∞:

lim
t→∞

(
x(b, t) − x(a, t)

)
= 0.

If there is anymass trappedbetween the two converging characteristics, a concentration
ofmasswill develop in the asymptotic density profileρ∞. This phenomenon is referred
to as infinite-time clustering, and it represents a distinctive feature of the alignment
interaction. A discrete version of this phenomenon was previously investigated in [19]
for the classical Cucker–Smale system (which we note often exhibits substantially
different behavior than its sticky particle version considered below, c.f. Remark 1.1).
A particular bi-cluster formation was studied in [9]. The theory is further developed
in [39] for the singular Cucker–Smale system, allowing particles to stick with each
other.
We summarize the key results cited above in a simplified form as follows:

Proposition 1.1. Suppose ρ0 ∈ C(R) is compactly supported and u0 ∈ C1(R). Let

φ be nonnegative, even, and locally integrable. Assume a < b.

I. Suppose ψ0 is nondecreasing and ψ0(a) < ψ0(b). Then there exists c > 0 such

that

x(b, t) − x(a, t) ≥ c > 0 for all t ≥ 0.

II. Suppose ψ0(a) > ψ0(b). Then u loses regularity in finite time.

III. Suppose ψ0 is nondecreasing and ψ0(a) = ψ0(b).

(i) If φ is bounded, then x(b, t) > x(a, t) for all t ∈ [0,∞).

(ii) If φ is bounded and heavy-tailed, then we have x(b, t) − x(a, t) → 0 as

t → ∞.
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(iii) If φ is weakly singular and heavy-tailed, and if ρ0
∣∣
[a,b]


≡ 0, then finite-time

blowup occurs.

The primary objective of this study is to investigate the phenomena of finite- and
infinite-time clustering and to derive predictions from the initial data. We seek to
extend the current theory by addressing the following gaps in Proposition 1.1:

• For finite-time clustering The current results only demonstrate finite-time singu-
larity formation in cases II and III(iii). However, the behavior after the clusters
form remains unknown as the classical solution ceases to exist. We aim to un-
derstand the subsequent evolution of these clusters once they have formed.

• For infinite-time clustering The existing results treat the infinite-time clustering
phenomenon only when the solution is globally regular, meaning that there is no
finite-time clustering. Moreover, the simple characterization of the infinite-time
clusters in terms of the monotonicity properties of ψ0 is not expected to survive
in the presence of finite-time clusters; we seek a suitable generalization of this
characterization.

To achieve our objective, we need to consider an appropriate class ofweak solutions.
For this purpose, we will build upon the theory recently established in [29], which
provides a valuable framework for our study. It will allow us to explore the intricate
dynamics of the Euler-alignment system and investigate the finite- and infinite-time
clustering phenomena in a comprehensive manner.

1.3. Weak solutions and the scalar balance law

Thewell-posedness theory for weak solutions to systems of conservation laws poses
significant challenges, particularly concerning uniqueness. In [29], the authors estab-
lish the well-posedness theory for weak solutions to (1) by employing the approach of
Brenier and Grenier [5] on the 1D pressureless Euler system (φ ≡ 0) to address this
issue. The key idea is to reduce the system to a single scalar balance law:

∂t M + ∂x (A(M)) = (� ∗ ∂x M)∂x M, �(x) =

∫ x

0
φ(r) dr, (6)

supplemented with initial conditions M(·, 0) = M0. Here M(t) : R →
[
− 1

2 ,
1
2

]
is

the cumulative distribution function for the density ρ(t) (shifted by a constant for
technical reasons) and the flux A is determined from ρ0 and u0. Unlike the situation
for (1), it is fairly straightforward to establish (though not trivial to justify) entropy
conditions for (6) that are sufficient to guarantee uniqueness (c.f. [29]). We therefore
refer to the solution (ρ, u) of (1) that we recover from (6) as the entropy solution of
(1).

Let us give an extremely brief description of the construction of an entropy solution
to (1). Startingwith initial data (ρ0, u0) ∈ Pc(R)×L∞(dρ0) (wherePc(R)denotes the
space of compactly supported probabilitymeasures onR), we define the corresponding
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cumulative distribution function M0 and its generalized inverse X0 as follows:

M0(x) = −
1

2
+ ρ0((−∞, x]), X0(m) = inf

{
x : M0(x) ≥ m

}
. (7)

We define the flux A :
[
− 1

2 ,
1
2

]
→ R of the scalar balance law (6) as

A(m) =

∫ m

− 1
2

ψ0 ◦ X0(m̃) dm̃, ψ0 = u0 + � ∗ ρ0. (8)

Note that A is Lipschitz, with A
(
− 1

2

)
= 0.Having determined (M0, A) from (ρ0, u0),

we evolve the scalar balance law (6). There is a unique entropy solution, which we
denote by M = M(x, t), associated with the initial data M0 and flux A. We generate
this entropy solution through a front-tracking approximation scheme; remarkably,
the positions and magnitudes of our fronts can be encoded using the Cucker–Smale
dynamics, supplemented with completely inelastic collision rules. (We will describe
this sticky particle Cucker–Smale system in detail in Sect. 2, and it will play a crucial
role in the proof of our main theorem.) Finally, we recover the solution to (1) via
ρ = ∂x M and P = −∂t M . The velocity u is then the Radon–Nikodym derivative of
the measure P with respect to ρ. It is shown in [29] that this pair (ρ, u) solves the
Euler-alignment system (1) in the sense of distributions and satisfies the initial data in
an appropriate sense.
We also set notation for the generalized inverse X (t) of M(t), which we will use

extensively below.
X (m, t) = inf {x ∈ R : M(x, t) ≥ m} . (9)

Note that M0 and M(t) are nondecreasing, right-continuous, and defined on R, while
X0 and X (t) are nondecreasing, left-continuous, and defined on

(
− 1

2 ,
1
2

]
. We refer to

elements of
(
− 1

2 ,
1
2

]
as mass labels.

1.4. Terminology and notation for cluster formation

The focus of this paper is on cluster formation of mass labels in solutions of the
Euler-alignment system (1). In particular, we would like to describe the phenomena
of finite- and infinite-time clustering by examining the initial conditions.
We begin by defining our clusters in terms of the function X (·, t), which encodes

the ‘location’ of each mass label.

Definition 1.2. (Clusters) Given m ∈
(
− 1

2 ,
1
2

]
, we say that there is a t-cluster at m

(or a finite-time cluster at m, if the value of t is not important) if there exists m′ < m

such that X (m′, t) = X (m, t). In this case, the t-cluster atm is defined to be the largest
interval of the form (m′, m′′], containing m, such that X (·, t) is constant on (m′, m′′].
We refer to 0-clusters as initial clusters.

We say there is an infinite-time cluster at m if there exists m′ < m such that
X (m, t) − X (m′, t) → 0 as t → ∞. In this case, the infinite-time cluster at m is
defined to be the largest interval of the form I = (m′, m′′] or I = (m′, m′′), containing
m, such that diam X (I, t) → 0 as t → ∞.
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It is worth noting that if (m′, m′′] is the t-cluster at m, then X (·, t) is constant
on (m′, m′′] by Definition 1.2, but either of the possibilities X (m′, t) = X (m′′, t)

or X (m′, t) 
= X (m′′, t) may occur. Nevertheless, we feel that the left-continuity
of X (·, t) provides us with a compelling reason to define our finite-time clusters as
half-open intervals.
Our definition above, and the analysis of [29], guarantee that existing clusters cannot

‘unstick.’ Hence, the size of a cluster can only grow in time, and if there is a finite-time
cluster at m, then there is an infinite-time cluster at m as well, with the infinite-time
cluster containing the finite-time cluster.
We say that there is no finite-time clustering at m if there is no t-cluster at m for

all t ∈ [0,∞), and we say that there is no infinite-time clustering at m if there is no
infinite-time cluster at m.
In what follows, we use A∗∗ to denote the lower convex envelope of the flux A. We

will give a brief reminder of some definitions related to convexity in Sect. 2.1.

Definition 1.3. We break up the interval
(
− 1

2 ,
1
2

]
into disjoint regions, on which we

will observe different clustering behavior, as follows:

• We define the subcritical region �+ by

�+ = {m ∈
(
− 1

2 ,
1
2

]
: A∗∗ is not linear on any interval of the form (m′, m]}.

• We define the critical region �0 by

�0 =
⋃

A is linear and
equal to A∗∗ on (m′,m′′]

(m′, m′′].

• We define the supercritical region �− as the (open) set on which A > A∗∗:

�− = {m ∈ ( 12 ,
1
2 ) : A(m) > A∗∗(m)}.

Let us provide some brief commentary on the definition above. Neglecting a set of
measure zero, we can understand the three regions in terms of the table below, which
provides amore intuitive picture. (Note that primes on A and A∗∗ will always represent
derivatives below.) We stress, however, that the formulation of Definition 1.3 is better
suited for our analysis, as will become clear below.

A(m) = A∗∗(m) A(m) > A∗∗(m)

(A∗∗)′′(m) > 0 �+ ∅

(A∗∗)′′(m) = 0 �0 �−

See Fig. 1 for an illustration of the three regions.
Let us also note that in the ‘typical’ case where each of�−,�0, and�+ has finitely

many connected components, both �+ and �0 are unions of half-open intervals.
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Figure 1. An illustration of the three regions of Definition 1.3, and
an example of a set L(m) that contains multiple connected intervals
in �0 and �−

Consequently, the disjoint union �+ ∪ �0 ∪ �− contains all points in
(
− 1

2 ,
1
2

]
except

for the right endpoints of the intervals that constitute the connected components of�−.
This ‘missing’ set necessarily has Lebesguemeasure zero (and one of our assumptions
below will actually force it to be finite for the cases we consider).
We set one more piece of notation before moving on.

Definition 1.4. For m /∈ �+, we define the set L(m) to be the largest half-open
interval (m′, m′′] containing m, such that A∗∗ is linear on L(m). For m ∈ �+, we
define L(m) = {m}.

Ignoring endpoints, we may simply view L(m) (for m /∈ �+) as the largest interval
containing m on which (A∗∗)′′ = 0. It may contain connected components of both
�0 and �−, as illustrated in Fig. 1.

Let us briefly discuss how some of the results of Sect. 1.2 translate to the present
framework, and (at an informal level) how we plan to extend them. For simplicity, we
assume in this discussion that our initial data is sufficiently regular, i.e., ψ0 and X0

are differentiable and X0 is strictly increasing. In this context, we have

A′′(m) =
d

dm
ψ0(X0(m)) = e0(X0(m)) · (X0)′(m).

Then, we have following equivalent representation of CTC:

I. e0(x) ≥ 0 for all x ∈ R ⇐⇒ A′′(m) ≥ 0 for all m ∈ (− 1
2 ,

1
2 ] ⇐⇒ �− = ∅,

II. e0(x0) < 0 for some x0 ∈ R ⇐⇒ A′′(m0) < 0 for some m0 ∈ (− 1
2 ,

1
2 ] ⇐⇒

�− 
= ∅.

Furthermore, under the subcritical CTC (I), or equivalently, ψ0 being nondecreasing,
for m′ < m′′, we have the following equivalences for the assumptions in Proposition
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1.1:

I. ψ0(X0(m′)) < ψ0(X0(m′′)) ⇐⇒ A′(m′) < A′(m′′)

⇐⇒ A is not linear on [m′, m′′]

⇐⇒ L(m′) 
= L(m′′),

III. ψ0(X0(m′)) = ψ0(X0(m′′)) ⇐⇒ A′(m′) = A′(m′′)

⇐⇒ A is linear on [m′, m′′]

⇐⇒ L(m′) = L(m′′).

Comparing the above discussion with Proposition 1.1, we arrive at the following
conjectures:

Conjecture 1.5. Mass labels from distinct L(m)’s never belong to the same cluster.

Conjecture 1.6. If φ is heavy-tailed, then mass labels from the same L(m) belong to

the same infinite-time cluster.

We will demonstrate later that these conjectures are indeed correct. More remark-
ably,we show they hold evenwhen�− 
= ∅. Indeed, the equivalences above holdwith-
out the assumption�− = ∅, if we replace A by A∗∗ and we assume that m′, m′′ /∈ �−.

Let us also provide commentary onpart II of Proposition 1.1. The conditionψ0(a) >

ψ0(b), a < b implies that finite-time cluster formation occurs ‘somewhere be-
tween a and b.’ However, the monotonicity of ψ0 itself does not provide com-
plete information about the clusters and their evolution over time. (For instance,
ψ0(X0(m′)) > ψ0(X0(m′′)), m′ < m′′ implies nothing about whether m′ and m′′

eventually belong to the same cluster.) Our framework allows us to obtain more de-
tailed information about finite-time clustering. One new finding is:
Any two mass labels from the same connected component of �− cluster together in

finite time.
We present precise versions of these statements in Theorem 1.7, along with other

features that extend Proposition 1.1.

1.5. Global assumptions and summary of results

Throughout our manuscript, we fix initial data (ρ0, u0) and make use of the follow-
ing global assumptions, except where explicitly stated otherwise:

(A1) The communication protocol φ is locally integrable, even, and radially nonin-
creasing.

(A2) (ρ0, u0) ∈ Pc(R) × L∞(dρ0), and (ρ, u) is the associated entropy solution.
(A3) M0, X0, A, and X are defined as in (7), (8), (9), and the sets �−, �0, �+, and

L(m) are defined accordingly as in the previous subsection.
(A4) A is convex in a neighborhood of every point m of the boundary S := ∂�− of

�−.
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The technical assumption (A4) is the only one we have not previously mentioned. It
will simplify the structure of the set �−, as will be spelled out below in Lemma 2.4;
it will also play a key role in our analysis of the clustering behavior in �−.

We now state our main result.

Theorem 1.7. Fix m ∈
(
− 1

2 ,
1
2

]
. The following statements describe the clustering

behavior at m.

I. If m ∈ �+, then there is no finite- or infinite-time clustering at m.

II. If m ∈ �−, then there is a t-cluster at m for all sufficiently large t ≥ 0.

Moreover, if (m−, m+) is the connected component of �− containing m, then

for any m̃ ∈ (m−, m+) there exists a time T ≥ 0 such that m and m̃ lie in the

same t-cluster for all t ≥ T .

III.(i) Suppose φ is bounded. If (m′, m′′] is a finite-time cluster at m, then either m ∈

�0 and (m′, m′′] is an initial cluster, or m ∈ �− and (m′, m′′] ⊆ (m−, m+],

where (m−, m+) is the connected component of �− containing m. No other

finite-time clusters are possible.

(ii) Suppose φ is heavy-tailed. If m /∈ �+, then there is an infinite-time cluster at

m, and it is equal to L(m).

(iii) Suppose φ is heavy-tailed and weakly singular. If m /∈ �+, then there exists

a finite time T such that L(m) is a t-cluster at m for all t ≥ T .

Remark 1.1. The theorem above is clearly a significant upgrade over Proposition 1.1,
which summarized the most relevant results on classical solutions. Indeed, our new
theorem satisfactorily addresses the gaps outlined in Sect. 1.2 and applies to very
general initial conditions. Let us clarify how it relates to two other lines of research
that we have not yet emphasized.
We brieflymentioned above the paper [19], where the authors gave a comprehensive

study of the limiting configurations associated with the 1DCucker–Smale systemwith
bounded communication. Their analysis is concerned with the ‘free-flow’ dynamics,
where agents follow the Cucker–Smale ODE’s for all time, without modification for
the occurrence of collisions. Their analysis, comprehensive though it is for the clas-
sical Cucker–Smale system, has no hydrodynamic analog except for the case when
no collisions occur. (The previously discussed work [28] is in this direction.) Once
collisions occur, the proper way to pass to a hydrodynamic limit is through the sticky

particle Cucker–Smale dynamics, as the present authors showed in our previous paper
[29]. As soon as collisions are allowed, the sticky particle Cucker–Smale dynamics
can differ drastically from those of their classical counterpart.
The one case where the free-flow dynamics do have substantial bearing on the sticky

particle dynamics is in the setting of degenerate communication φ ≡ 0, where (1) re-
duces to the 1D pressureless Euler equations. In this degenerate case, Theorem 1.7 can
be recovered from already-existing theory; see for example [4,7,22,31]. (The paper [4]
considers a more general systemwhich includes pressureless Euler and Euler–Poisson
as special cases.) Theseworks all rely implicitly or explicitly on the fact that the ‘sticky
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particle’ dynamics in that setting can be recovered from the ‘free-flow’ dynamics us-
ing a certain L2 projection onto the convex cone of nondecreasing functions. (This
is essentially the key observation of [31].) However, simple counterexamples show
that the sticky particle Cucker–Smale dynamics, discussed below, cannot be recovered
as such a projection. Consequently, the techniques of the above-cited works do not
appear to apply to our problem. In particular, even at the discrete level, the result of
applying the L2 projection to the analysis of Ha et al. [19] is in general unrelated to
the cluster formation described in Theorem 1.7.

1.6. Outline of the paper

Our proof relies on a discretization procedure from [29] involving the so-called
sticky particle Cucker–Smale dynamics; in Sect. 2, we review the salient parts of this
procedure for the convenience of the reader. We also establish conventions and review
some standard facts related to convex functions. The remaining Sects. 3, 4 and 5
contain all the new analysis. These sections essentially track the statements I, II, and
III, respectively, of Theorem 1.7, with some caveats spelled out below. We give a
slightly more detailed summary presently.
In Sect. 3, we prove Conjecture 1.5: mass labels from distinct L(m)’s cannot belong

to the same finite- or infinite-time cluster. Since L(m) is a singleton for everym ∈ �+,
this implies statement I of Theorem 1.7 as a special case. The greater generality of this
framework will pay dividends in the proofs of statement II and (especially) statement
III.
Section 4 concerns the supercritical region �−. We give the proof of part II of

Theorem 1.7, which relies strongly on assumption (A4). We also prove that if m lies
inside the connected component (m−, m+) of �−, then no t-cluster at m can extend
beyond (m−, m+] unless it contains all of (m−, m+]. Roughly speaking, this tells us
that the interval (m−, m+] can be treated as an indivisible unit for purposes of the
larger-scale clustering analysis.
In Sect. 5, we prove part III of Theorem 1.7 (including Conjecture 1.6, and more).

This is the only place in the paper where we specialize our assumptions on φ beyond
(A1). The previously mentioned statement on the ‘indivisibility’ of the connected
components of �− becomes extremely useful for proving III(i); in particular, it is
essential when dealing with the situation where a connected component of�− borders
an initial cluster or another connected component of �−. Finally, the framework we
have developed by the time we reach the proofs of statements III(ii) and III(iii) allows
us to write the latter as adaptations of known arguments.

2. Preliminaries

In this section, we collect some preliminary results on the 1D Euler-alignment
system (1) and the corresponding role of the ‘sticky particle Cucker–Smale’ dynamics.
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First, however, we recall a few standard definitions and facts related to convex
functions of a single variable, andwe set a fewconventions.Wealso justify our previous
claim that �− has only finitely many connected components, as a consequence of the
convexity assumption (A4).

2.1. Convex functions

Definition 2.1. (Convexity) Let 	 be an interval in R. We say that A : 	 → R is
convex if for every m′, m′′ ∈ 	 and every λ ∈ (0, 1), we have

A((1 − λ)m′ + λm′′) ≤ (1 − λ)A(m′) + λA(m′′)

We say A is strictly convex if the above inequality is strict for all m′, m′′ ∈ 	 and
all λ ∈ (0, 1). If I ⊆ 	 is a subinterval of 	, then we say that A is (strictly) convex
on I if the restriction of A to I is (strictly) convex. Finally, we say that A is (strictly)
convex in a neighborhood of m ∈ 	 if there exists an interval I , open relative to 	,
such that m ∈ I and A is (strictly) convex on I .

The lower convex envelope of A : 	 → R is the largest convex function A∗∗ :

	 → R whose graph lies below that of A:

A∗∗(m) = sup
{

Ã(m) | Ã is convex and Ã ≤ A on all of [− 1
2 ,

1
2 ]

}
.

We also recall the following very useful Lemma, which is a direct consequence of
the definition.

Lemma 2.2. Suppose A is convex in an interval I . Let [m̃′, m̃′′] and [m′, m′′] be two

sub-intervals of I such that m̃′ ≤ m′ and m̃′′ ≤ m′′. Then,

A(m̃′′) − A(m̃′)

m̃′′ − m̃′
≤

A(m′′) − A(m′)

m′′ − m′
. (10)

The following elementary lemma will be used several times in Sect. 3.

Lemma 2.3. Let A be a real-valued function defined on an interval containing [m′, m′′].

Suppose that for some θ ∈ (m′, m′′), it holds that

(m′, A(m′)), (θ, A∗∗(θ)), and (m′′, A(m′′)) are collinear. (11)

Then A(m′) = A∗∗(m′) and A(m′′) = A∗∗(m′′), and consequently, A∗∗ is linear on

[m′, m′′].

Proof. Pick λ ∈ (0, 1) such that θ = (1 − λ)m′ + λm′′. Then

(1 − λ)A(m′) + λA(m′′) = A∗∗(θ)

≤ (1 − λ)A∗∗(m′) + λA∗∗(m′′)

≤ (1 − λ)A(m′) + λA(m′′).
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Since the left and right sides are equal, this forces

(1 − λ)(A(m′) − A∗∗(m′)) + λ(A(m′′) − A∗∗(m′′)) = 0.

Since λ ∈ (0, 1) and A − A∗∗ ≥ 0, we must have A(m′) = A∗∗(m′) and A(m′′) =

A∗∗(m′′). Linearity of A∗∗ on [m′, m′′] then follows from Lemma 2.2. �

The convexity assumption (A4) guarantees that the supercritical region�− has only
finitely many connected components, as we establish presently.

Lemma 2.4. The set �− has only finitely many connected components.

Proof. Suppose not; then the set Sr consisting of the right endpoints of the connected
components of �− must have a limit point m in

[
− 1

2 ,
1
2

]
. Let (m j )

∞
j=1 be a sequence

in Sr that converges to m; we may assume without loss of generality that (m j )
∞
j=1

is strictly increasing. By assumption (A4), there exists an interval I containing m on
which A is convex. This interval contains [m j−1, m j ] for large enough j . We know
that A(m j−1) = A∗∗(m j−1), A(m j ) = A∗∗(m j ), and A is convex on [m j−1, m j ];
therefore, A = A∗∗ on [m j−1, m j ], whence m j ∈ �0. This is impossible, since
�0 ∩ Sr = ∅. �

This lemma has the following obvious but useful consequence:

Corollary 2.5. The set �+∪�0 is a union of half-open intervals of the form (m′, m′′].

In particular, if m ∈ �+ ∪�0, then there exists m′ < m such that A = A∗∗ on [m′, m].

2.2. The sticky particle Cucker–Smale dynamics

The entropic solution to the Euler-alignment system (1) is compatible with the
Cucker–Smale system of ODEs [13]

dxi

dt
= vi ,

dvi

dt
=

N∑

j=1

m jφ(x j − xi )(v j − vi ), i = 1, . . . , N . (12)

subject to a sticky particle collision rule (described below). The masses mi are fixed;
the positions xi and velocities vi satisfy some initial conditions

xi (0) = x0i , vi (0) = v0i , i = 1, . . . , N ,

with

x01 ≤ x02 ≤ · · · ≤ x0N .

We do not require the x0i ’s to be distinct, but we insist that

v0i = v0j whenever x0i = x0j . (13)
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Wenow specify the collision rules. Define the index cluster Ji (t) to be the collection
of indices associated with the agents which are stuck to agent i at time t ; let i∗(t) and
i∗(t) denote the minimum and maximum of Ji (t), respectively:

Ji (t) = { j : x j (t) = xi (t)} = {i∗(t), i∗(t) + 1, . . . , i∗(t)}.

A collisionoccurswhen Ji (t) changes cardinality.We impose ‘stickyparticle’ collision
rules as follows:

• Each collision is completely inelastic, and agents stick to each other after colli-
sions:

Ji (t) ⊇ Ji (s), whenever t ≥ s ≥ 0; (14)

• Collisions conserve momentum:

vi (t) =

∑
j∈Ji (t)

m jv j (t−)
∑

j∈Ji (t)
m j

. (15)

For convenience, we also assume that the velocities are right continuous, i.e., vi (t) =

vi (t+).We also frequently use standard notation for time derivatives to indicate deriva-
tives from the right, which always exist under our conventions, even though vi (t) may
experience jump discontinuities.
Next, we introduce an important quantity

ψi (t) = vi (t) +

N∑

j=1

m j�(xi (t) − x j (t)), i = 1, . . . , N . (16)

It is conserved in time, in the sense described by the following Lemma.

Lemma 2.6. (Conservation of ψi ) For any non-collision time t, we have

d

dt
ψi (t) = 0, ∀ i = {1, . . . , N }. (17)

For any collision time t (and in fact, any time), we have

ψi (t) =

∑
j∈Ji (t)

m jψ j (t−)
∑

j∈Ji (t)
m j

=

∑
j∈Ji (t)

m jψ
0
j∑

j∈Ji (t)
m j

, ∀ i = {1, . . . , N }. (18)

The following lemma describes the behavior at a collision.

Lemma 2.7. (Barycentric lemma) For any i ∈ {1, . . . , N } and any t ≥ 0, we have

∑ j

�=i∗(t)
m�ψ�(t−)

∑ j

�=i∗(t)
m�

≥ ψi (t) ≥

∑i∗(t)
�= j+1 m�ψ�(t−)
∑i∗(t)

�= j+1 m�

, ∀ j = {i∗(t), · · · , i∗(t)}.

(19)
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A different version of the barycentric Lemma was previously used by Brenier and
Grenier [5,17] to analyze the 1D pressureless Euler equations. The latter can be re-
covered as a special case of (1) when φ ≡ 0, in which case we also have ψi = vi .
The inequality (19) then means that when collision occurs, the average velocity of
the left group of particles has to be larger than the average velocity of the right group
of particles. As noticed by the authors in [29], the barycentric lemma extends to the
case of general (locally integrable) communication protocols φ; this extension is the
statement recorded in Lemma 2.7.
The properties detailed in Lemmas 2.6 and 2.7 endow the quantities ψi with cru-

cial information about collisions and cluster formation for the discrete sticky particle
Cucker–Smale system. The consequences of these properties will be thoroughly in-
vestigated in this paper.
Before moving on, we pause to record a simple identity we will use repeatedly:

d

dt
(x j (t) − xi (t)) = ψ j (t) − ψi (t)

−

N∑

�=1

m�

∫ x j (t)

xi (t)

φ(y − x�(t)) dy, ∀i, j ∈ {1, . . . , N }.

(20)

2.3. Atomic solutions of the Euler-alignment system

We recall the following connection between the Euler-alignment system (1) and the
sticky particle Cucker–Smale dynamics (12).

Proposition 2.8. ( [29]) Consider the Euler-alignment system (1) with atomic initial

data

ρ0
N (x) =

N∑

i=1

mi,N δ(x − x0i,N ), P0
N (x) := ρ0

N u0
N (x) =

N∑

i=1

mi,N v0i,N δ(x − x0i,N ).

(21)
There exists a unique entropic solution

ρN (x, t) =

N∑

i=1

mi,N δ(x − xi,N (t)),

PN (x, t) = ρN uN (x, t) =

N∑

i=1

mi,N vi,N (t)δ(x − xi,N (t)), (22)

where (xi,N (t), vi,N (t))N
i=1 is the solution to the sticky particle Cucker–Smale dynam-

ics (12) with initial data (mi,N , x0i,N , v0i,N )N
i=1.

For initial data of the form (21), the cumulative distribution function M0
N and its

generalized inverse X0
N (defined as in (7)) are piecewise constant functions. We write
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out their formulas presently. Define

θi,N = −
1

2
+

i∑

j=1

m j,N , i = 0, . . . , N , (23)

so that
mi,N = θi,N − θi−1,N , i = 1, . . . , N . (24)

Then, the corresponding initial data for the scalar balance law (6), and its generalized
inverse, are

M0
N (x) = −

1

2
+

N∑

i=1

mi,N1[0,∞)(x − x0i,N )

= −
1

2
1(−∞,x01,N )(x) +

N∑

i=1

θi,N1[x0i,N ,x0i+1,N )(x), (25)

X0
N (m) =

N∑

i=1

x0i,N1(θi−1,N ,θi,N ](m). (26)

Here, we use the convention x0N+1,N = +∞. From Definition 1.2, the initial data

include a cluster of size
∑

j∈Ji (0) m j,N located at each x0i,N . The blue step function in
the left subplot of Fig. 2 shows a typical scenario.
Using the atomic initial data (21) in the formula (8) for the flux yields a piecewise

linear function AN with the formula

AN (m) =

i−1∑

j=1

m j,N ψ0
j,N + (m − θi−1,N )ψ0

i,N ,

θi−1,N < m ≤ θi,N , i = 1, . . . , N , (27)

for m ∈
(
− 1

2 ,
1
2

]
, and AN (− 1

2 ) = 0. Here the ψ0
i,N ’s are defined by:

ψ0
i,N = v0i,N +

N∑

j=1

m j,N �(x0i,N − x0j,N ), i = 1, . . . , N . (28)

We also define ψi,N (t) analogously to (16):

ψi,N (t) := vi,N (t) +

N∑

j=1

m j,N �(xi,N (t) − x j,N (t)), i = 1, . . . , N . (29)

Note that we have

mi,N ψ0
i,N = AN (θi,N ) − AN (θi−1,N ), i.e., ψ0

i,N =
AN (θi,N ) − AN (θi−1,N )

θi,N − θi−1,N

.

(30)
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Hence,ψ0
i,N is the slopeof the line segment comprising thegraphof AN in [θi−1,N , θi,N ].

For discrete initial data, the flux AN (together with the masses (mi,N )N
i=1) therefore

carries the information of (ψ0
i,N )N

i=1. See the blue piecewise linear curve in the right
subplot of Fig. 2 for an illustration. We also note that this process yields initial veloc-
ities which satisfy (13), as can be easily checked.

When collisions occur, we apply (18) and (30) to get

ψi,N (t) =

∑
j∈Ji (t)

m j,N ψ0
j,N∑

j∈Ji (t)
m j,N

=
AN (θi∗(t),N ) − AN (θi∗(t)−1,N )

θi∗(t),N − θi∗(t)−1,N

. (31)

In other words, ψi,N (t) is the slope of secant line through the graph of AN between
the two points (θi∗(t)−1,N , AN (θi∗(t)−1,N )) and (θi∗(t),N , AN (θi∗(t),N )). For instance,
as illustrated in Fig. 2, if agents 2 and 3 stick at time t (and are not stuck to any other
agents at time t), then

ψ2,N (t) = ψ3,N (t) =
m2,N ψ0

2,N + m3,N ψ0
3,N

m2,N + m3,N

is the slope of the red secant line through (θ1,N , AN (θ1,N )) and (θ3,N , AN (θ3,N )).

2.4. The sticky particle approximation

We now reinstate assumptions (A1)–(A4) and consider a sequence of atomic solu-
tions (ρN , uN )∞N=1 that approximate the solution (ρ, u) of interest. As outlined in the
previous subsection, generating an atomic solution (ρN , uN ) for any given N amounts
to choosing initial data (mi,N , x0i,N , v0i,N )N

i=1 and running the dynamics for the sticky
particle Cucker–Smale system. We now present our choice of sticky particle initial
data and make precise the sense in which the corresponding (ρN , uN ) approximates
(ρ, u).

We choose our mi,N ’s in such a way that

lim
N→∞

max
1≤i≤N

mi,N = 0. (D1)

Then, we define θi,N as in (23). For large enough N (say N ≥ N0), we may always
choose the mi,N ’s to satisfy the following additional hypothesis:

S = ∂�− ⊂ {θi,N }N
i=0, N ≥ N0. (D2)

We define the remaining sticky particle data in terms of (M0, A) (which we recall are
defined in (7)–(8)), and the mi,N ’s:

x0i,N = inf{x ∈ R : M0(x) ≥ θi,N } = X0(θi,N ), (D3)
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Figure 2. An illustration of the discretization and the flux, with
N = 6. We have dropped a subscript N on most of the discretized
quantities. Left: M0 (dashed) and its piecewise constant discretiza-
tion MN (solid). Right: The flux A (dashed) and its piecewise linear
discretization AN (solid). The slope of A between the breakpoints
θ j−1 and θ j determines the value of ψ j . If agents j and j + 1 col-
lide, the values of ψ j (t) and ψ j+1(t) are adjusted accordingly; for
example, the figure shows the value of ψ2(t) = ψ3(t) after agents
2 and 3 have collided

and finally

ψ0
i,N =

A(θi,N ) − A(θi−1,N )

θi,N − θi−1,N

, (D4)

v0i,N = ψ0
i,N −

N∑

j=1

m j,N �(x0i,N − x0j,N ), i = 1, . . . , N .

This gives us all the information we need in order to define M0
N , X0

N , and AN , for
each N ∈ N, using exactly the formulas of the previous subsection.

Our discretization scheme has several crucial properties. First of all, (D1) and (D3)
guarantee that

‖M0
N − M0‖L1(R) = ‖X0

N − X0‖L1(− 1
2 , 12 )

→ 0, as N → ∞. (32)

Next, (D4) guarantees that AN (defined in (27)) agrees with A at the breakpoints θi,N

and is linear in between:

AN (θi,N ) = A(θi,N ), i = 0, . . . , N ;

and AN is linear on [θi−1, θi ], ∀i ∈ {1, . . . , N }. (33)

Therefore, AN → A uniformly as N → ∞. See Fig. 2 for an illustration of the
approximation: For initial data (M0, A) indicated by the dashed curves, the solid blue
graphs of (M0

N , AN ) serve as approximations.
As the authors proved in [29], the entropy solutions generated by discretized initial

data satisfying (D1), (D3), (D4) are a good approximation of the true solution. Letting
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(xi,N (t), vi,N (t))N
i=1 denote the sticky particle Cucker–Smale dynamics associated

with the initial data (mi,N , x0i,N , v0i,N )N
i=1, the entropy solution of (6) associated with

the initial data M0
N and flux AN defined above is

MN (x, t) = −
1

2
+

N∑

i=1

mi,N1[0,∞)(x − xi,N (t)).

Its generalized inverse is

X N (m, t) =

N∑

i=1

xi,N (t)1(θi−1,N ,θi,N ](m).

We have the following statement from [29]:

Proposition 2.9. For any fixed t ≥ 0, the solutions MN (·, t) approximate M(·, t) in

the following sense:

MN (·, t) − M(·, t) → 0 in L1(R). (34)

The convergence (34) is equivalent to saying that (ρN (t))∞N=1 converges to ρ(t) in
theWasserstein-1 metric, and it was also proved in [29] that (ρN uN (t))∞N=1 converges
weak-∗ in the sense of measures to ρu(t). The convergence (34) is what we use below.
More precisely, we note that since

‖X N (·, t) − X (·, t)‖L1(− 1
2 , 12 )

= ‖MN (·, t) − M(·, t)‖L1(R),

the convergence (34) implies the existence of a subsequence (X Nk
(·, t))∞k=1 such that

X Nk
(m, t) → X (m, t) as k → ∞, for almost every m ∈ (− 1

2 ,
1
2 ]. (35)

We will be able to leverage this almost-everywhere convergence, combined with the
monotonicity of X (·, t), to analyze the formation of clusters in the sense of Definition
1.2.

We end this subsection by discussing the significance of the requirement (D2) in
our approximation scheme. It guarantees that

{m : A(m) > A∗∗(m)} = {m : AN (m) > A∗∗
N (m)}, (36)

so that the supercritical region of mass labels associated with (ρN , uN ) is the same as
the one for (ρ, u).

On account of (33) and (36), it becomes superfluous for our purposes to set additional
notation for the discretized flux; we write our analysis below in terms of A only.

2.5. A maximum principle

We record one final preliminary statement here; it is a uniform-in-N maximum
principle for the velocities associated with our discretization.
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Lemma 2.10. Given a sequence of discretizations satisfying (D1)–(D4), there exist

N-independent constants u0
max and u0

min such that

u0
min ≤ min

1≤i≤N
v0i,N ≤ vi,N (t) ≤ max

1≤i≤N
v0i,N ≤ u0

max, ∀ i ∈ {1, . . . , N}, t ≥ 0.

(37)

We refer to [29] for the details of the proof. Furthermore, we denote the initial
velocity variation

V
0 := u0

max − u0
min. (38)

3. The subcritical regime

In this section, we prove part I of Theorem 1.7 by establishing a more general
statement, namely that mass labels from distinct L(m)’s can never belong to the same
finite- or infinite-time cluster. Now, it may of course happen that L(m′) 
= L(m′′)

without either of m′ or m′′ belonging to �+, but such labels are ‘related subcritically,’
so to speak, in that their images remain separated under X (·, t) for essentially the
same reasons as do different mass labels in �+. As already noted above, L(m) is a
singleton for each m ∈ �+, so establishing the statement mentioned above proves in
particular that there can never be any finite- or infinite-time clusters in �+.

We begin by proving a discrete version of this more general statement. The finite-
time part (Proposition 3.1) can be deduced from the barycentric lemma only—no
explicit reference to the equations governing the dynamics is required. We bootstrap
our finite-time statement into an infinite-time one with the aid of (20), proving that
the distance between agents associated to different L(m)’s does not tend to zero, and
thus that agents from different L(m)’s cannot be part of the same infinite-time cluster
either. Lemma 3.4 gives a time-independent lower bound on the distance between such
agents; we use it in the proof of the continuum version of our statement, which we
establish in Sect. 3.2.

In this section, we work with a fixed entropically selected solution (ρ, u) of (1)
associated with initial data (ρ0, u0), and we assume throughout that (A1)–(A4) hold.

3.1. The discrete setting

In this subsection, we fix N ∈ N large and a discretization (mi,N , x0i,N , v0i,N )N
i=1

of (ρ0, u0) satisfying (D2)–(D4). We let (xi,N (t), vi,N (t))N
i=1 denote the associated

sticky particle Cucker–Smale dynamics.
Our first main statement of this subsection is the following proposition.

Proposition 3.1. Fix i ∈ {1, . . . , N } and t ≥ 0. If i∗(t) < i∗(t), then

A∗∗ is linear on [θi∗(t)−1,N , θi∗(t),N ].

This proposition says that, at the discrete level, finite-time collisions between agents
are confined to a single L(m). In particular, no discrete finite-time clustering can
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occur anywhere in �+. Most of the work involved in proving the proposition goes
into establishing the case considered in the following lemma. The slightly stronger
conclusion available in this case will also be useful later in Sect. 4.

Lemma 3.2. If i < i∗(t) and θi,N /∈ �−, then θi∗(t)−1,N , θi∗(t),N /∈ �− as well, i.e.,

A(θi∗(t)−1,N ) = A∗∗(θi∗(t)−1,N ) and A(θi∗(t),N ) = A∗∗(θi∗(t),N ). (39)

Consequently, we have that

A∗∗ is linear on [θi∗(t)−1,N , θi∗(t),N ]. (40)

The ‘consequently’ claim here follows fromLemma 2.3. Note that i < i∗(t) implies
that X N (·, t) is constant on some interval containing (θi−1,N , θi+1,N ]. In particular,
θi,N lies in the interior of this interval. This is why we assume i < i∗(t) rather than
i∗(t) < i∗(t) here.

Using Lemma 3.2, we give the short proof of the rest of Proposition 3.1. Then we
prove the lemma.

Proof of Proposition 3.1. If θ j,N ∈ �− for all j ∈ {i∗(t), . . . , i∗(t)−1}, then assump-
tion (D2) implies that (θi∗(t)−1,N , θi∗(t),N )must lie in a single connected component of
�−, on which A∗∗ is linear, so we are done. Otherwise, we have θ j,N /∈ �− for some
j ∈ {i∗(t), . . . , i∗(t) − 1}. Then since j < i∗(t) = j∗(t), the conclusion of Lemma
3.2 holds, with i replaced by j . But since agents i and j have collided at time t , the
intervals [θi∗(t)−1,N , θi∗(t),N ] and [θ j∗(t)−1,N , θ j∗(t),N ] are the same. This completes
the proof. �

Proof of Lemma 3.2. Let t1 denote thefirst time satisfying i < i∗(t1), and let t2, . . . , tm

denote any subsequent times (if any) where agent i is involved in a collision. We prove
that (39) holds at each time tn , n = 1, . . . , m, which will prove that (39) is valid on
[t1, t2), [t2, t3), . . . , [tm,+∞) and thus at any time t such that i < i∗(t). We argue
inductively on n ∈ {1, . . . , m}, splitting our ‘base case’ into two subcases, namely
t1 = 0 and t1 > 0.
If t1 = 0, then our discretization procedure ensures that ψ0

i∗(0),N = · · · = ψ0
i∗(0),N ,

which guarantees that the points (θi∗(0)−1,N , A(θi∗(0)−1,N ), (θi,N , A(θi,N )), and
(θi∗(0),N , A(θi∗(0),N ) are collinear. Remembering that A(θi,N ) = A∗∗(θi,N ) and ap-
plying Lemma 2.3 implies that (39) holds at time t1 = 0.
If t1 > 0, then

∑i∗(t1)
j=i+1 m j,N ψ j,N (t1−)

∑i∗(t1)
j=i+1 m j,N

=

∑i∗(t1)
j=i+1 m j,N ψ0

j,N∑i∗(t1)
j=i+1 m j,N

=
A(θi∗(t1),N ) − A(θi,N )

θi∗(t1),N − θi,N

and similarly

∑i
j=i∗(t1)

m j,N ψ j,N (t1−)
∑i

j=i∗(t1)
m j,N

=
A(θi,N ) − A(θi∗(t1)−1,N )

θi,N − θi∗(t1)−1,N

.
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The barycentric lemma then tells us that

A(θi∗(t1),N ) − A(θi,N )

θi∗(t1),N − θi,N

≤
A(θi,N ) − A(θi∗(t1)−1,N )

θi,N − θi∗(t1)−1,N

.

On the other hand, our assumption that A(θi,N ) = A∗∗(θi,N ), the fact that A ≥ A∗∗

in general, and Lemma 2.2 combine to give us

A(θi∗(t1),N ) − A(θi,N )

θi∗(t1),N − θi,N

≥
A∗∗(θi∗(t1),N ) − A∗∗(θi,N )

θi∗(t1),N − θi,N

≥
A∗∗(θi,N ) − A∗∗(θi∗(t1)−1,N )

θi,N − θi∗(t1)−1,N

≥
A(θi,N ) − A(θi∗(t1)−1,N )

θi,N − θi∗(t1)−1,N

.

The inequalities here thus must actually be equalities. This forces (39) to hold at time
t1.
Assume inductively that (39) holds at time tn for some n < m. Denote j = i∗(tn)−1.

If agent i collides with an agent on its left at time tn+1, then tn+1 is the first time when
agent j collides with agent j + 1 = i∗(tn), and furthermore, we have A(θ j,N ) =

A∗∗(θ j,N ) by our inductive assumption.
Applying the conclusion from our ‘base case’ to agent j , we conclude that A∗∗ is

linear on the interval [θ j∗(tn+1)−1,N , θ j∗(tn+1),N ], which is the same as [θi∗(tn+1)−1,N ,

θi∗(tn+1),N ], since agents i and j collide at time tn+1. Furthermore,

A(θi∗(tn+1)−1,N ) = A(θ j∗(tn+1)−1,N ) = A∗∗(θ j∗(tn+1)−1,N ) = A∗∗(θi∗(tn+1)−1,N ),

and similarly A(θi∗(tn+1),N ) = A∗∗(θi∗(tn+1),N ). We have thus proved the inductive
step in the case where agent i experiences a collision from its left at time tn+1. The
case of a collision from the right is entirely similar. �

We now turn our attention to (the absence of) infinite-time clustering, for which we
must rely on equation (20). The following corollary of Lemma 3.2 will help us control
the difference ψ j,N (t) − ψi,N (t) when θi,N and θ j,N belong to different L(m)’s (and
in particular when they lie in �+).

Corollary 3.3. Assume that θi,N /∈ �−. Then

ψi,N (t) ≤
A∗∗(θi,N ) − A∗∗(θi−1,N )

θi,N − θi−1,N

, ∀t ≥ 0, if i ∈ {1, . . . , N }; (41)

ψi+1,N (t) ≥
A∗∗(θi+1,N ) − A∗∗(θi,N )

θi+1,N − θi,N

∀t ≥ 0, if i ∈ {0, . . . , N − 1}. (42)

Proof. We prove only (41); the proof of (42) is similar. Choose t ≥ 0. If i∗(t) = i ,
then

ψi,N (t) =
A(θi,N ) − A(θi∗(t)−1,N )

θi,N − θi∗(t)−1,N

≤
A∗∗(θi,N ) − A∗∗(θi∗(t)−1,N )

θi,N − θi∗(t)−1,N

≤
A∗∗(θi,N ) − A∗∗(θi−1,N )

θi,N − θi−1,N

.
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If i∗(t) > i , then the previous lemma implies that A∗∗ is linear on [θi∗(t)−1,N , θi∗(t),N ],
which of course contains [θi−1,N , θi,N ]. Therefore,

ψi,N (t) =
A(θi∗(t),N ) − A(θi∗(t)−1,N )

θi∗(t),N − θi∗(t)−1,N

≤
A∗∗(θi∗(t),N ) − A∗∗(θi∗(t)−1,N )

θi∗(t),N − θi∗(t)−1,N

=
A∗∗(θi,N ) − A∗∗(θi−1,N )

θi,N − θi−1,N

.

This completes the proof. �

The following lemma is our second main statement of this subsection. It gives a
time-independent lower bound on the distance between agents from different L(m)’s
and in particular shows that such agents cannot belong to the same infinite-time cluster.

Lemma 3.4. Fix i, j ∈ {1, . . . , N } with i ≤ j . Assume that there exists σ > 0 such

that

A∗∗(θ j+1,N ) − A∗∗(θ j,N )

θ j+1,N − θ j,N

−
A∗∗(θi,N ) − A∗∗(θi−1,N )

θi,N − θi−1,N

≥ 2σ > 0. (43)

Then agents i and j + 1 never collide. In fact, we have the lower bound

x j+1,N (t)− xi,N (t) ≥ max

{
x0j+1,N − x0i,N − tV0,min{tσ, η}

}
≥ c > 0, ∀t ≥ 0,

(44)
where V0 is defined in (38) and η > 0 is chosen so that |

∫ w

z
φ(r) dr | < σ whenever

|z − w| < η.

Proof of Lemma 3.4. The fact that agents i and j + 1 do not collide in finite time
is a consequence of Proposition 3.1, since (43) implies that A∗∗ is not linear on any
interval containing both θi−1,N and θ j,N . We need only to prove the lower bound. In
fact, it is clear that

x j+1,N (t) − xi,N (t) ≥ x0j+1,N − x0i,N − tV0.

We therefore concentrate on proving that

x j+1,N (t) − xi,N (t) ≥ min{tσ, η}. (45)

We first give the proof under the additional assumption that θi,N , θ j,N /∈ �−. In
this case, Corollary 3.3 tells us that

ψ j+1,N (t) − ψi,N (t) ≥ 2σ > 0, ∀t ≥ 0.

Therefore, if τ is any time such that x j+1,N (τ ) − xi,N (τ ) < η, then the identity (20)
and the previous step tell us that

d

ds
(x j+1,N (s) − xi,N (s))

∣∣∣∣
s=τ

= ψ j+1,N (τ ) − ψi,N (τ )

−

N∑

�=1

m�,N

∫ x j+1,N (τ )

xi,N (τ )

φ(y − x�,N (τ )) dy ≥ σ.
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It follows immediately that

x j+1,N (t) − xi,N (t) ≥ min{x0j+1,N − x0i,N + tσ, η}, ∀t ≥ 0, (46)

which in particular implies (45).
In the more general setting where one or both of θi,N , θ j,N may belong to �−,

we replace i and j with the closest indices I and J satisfying i ≤ I ≤ J ≤ j and
θI,N , θJ,N /∈ �−. This is possible since θi,N and θ j,N cannot belong to the same con-
nected component of �−; otherwise A∗∗ would be linear on [θi−1,N , θ j,N ], contrary
to our assumption.
More specifically, if θi,N ∈ �−, we choose I so that θI,N is the right endpoint

of the connected component of �− to which θi,N belongs. If θ j,N ∈ �−, then we
choose J so that θJ,N is the corresponding left endpoint. The point is that now we
have θI,N , θJ,N 
∈ �− and

A∗∗(θJ+1,N ) − A∗∗(θJ,N )

θJ+1,N − θJ,N

−
A∗∗(θI,N ) − A∗∗(θI−1,N )

θI,N − θI−1,N

=
A∗∗(θ j+1,N ) − A∗∗(θ j,N )

θ j+1,N − θ j,N

−
A∗∗(θi,N ) − A∗∗(θi−1,N )

θi,N − θi−1,N

,

so that, applying the logic of the previous case, we have

x j+1,N (t) − xi,N (t) ≥ xJ+1,N (t) − x I,N (t) ≥ min{x0J+1,N − x0I,N + tσ, η}

≥ min{tσ, η},

as needed. This completes the proof. �

Remark 3.1. If θi,N , θ j,N ∈ �+ and i ≤ j , then the hypotheses of Lemma 3.4 are
satisfied automatically for some σ > 0. Indeed, if the left side of (43) were equal to
zero, it would force A∗∗ to be linear on [θi−1,N , θ j+1,N ] contradicting the definition
of �+.

3.2. The continuum setting

We are now ready to prove the full continuum version of the statement that mass
labels from distinct L(m)’s never belong to the same cluster. We first show in Lemma
3.5 that this is true at time zero; then, we give the full statement in Theorem 3.6.

Lemma 3.5. Let (ρ, u) and all related notation be defined as in assumptions (A1)–

(A4). Fix m′′ ∈ (− 1
2 ,

1
2 ] and define m′′

L = inf L(m′′). Then

(i) A(m′′
L) = A∗∗(m′′

L). (I.e., m′′
L /∈ �−.)

(ii) If m′ < m′′
L , then X0(m′) < X0(m′′).

Proof. (i) If A(m′′
L) > A∗∗(m′′

L), then m′′
L ∈ �−. Let (m−, m+) denote the con-

nected component of �− containing m′′
L . Then A∗∗ is linear on the nontrivially

overlapping intervals [m−, m+] and [m′′
L , m′′], hence on their union [m−, m′′].

Since m− < m′′
L , this contradicts the definition of m′′

L .
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(ii) We again argue by contradiction. Suppose X0(m′) = X0(m′′); then, the defini-
tion (8) of A implies that A is linear on [m′, m′′]. In particular, (m′′

L , A(m′′
L)) =

(m′′
L , A∗∗(m′′

L)) lies on the segment joining (m′, A(m′)) and (m′′, A(m′′)); by
Lemma 2.3, it follows that A∗∗ is linear on [m′, m′′], contradicting the definition
of m′′

L .
�

Theorem 3.6. Let (ρ, u) and all related notation be defined as in assumptions (A1)–

(A4). Fix m′′ ∈ (− 1
2 ,

1
2 ]. If m′ < inf L(m′′), then there exists a time-independent

constant c > 0 such that

X (m′′, t) − X (m′, t) ≥ c > 0, ∀ t ≥ 0. (47)

Proof. Define

m′′
L := inf L(m′′).

There are two cases to consider, namely m′′
L ∈ �+ and m′′

L /∈ �+. In either case,
we choose a discretization satisfying (D1)–(D4) and additionally, m′′

L ∈ {θi,N }N
i=0 for

sufficiently large N . (This will only be actually used in the second case.) For each
such N , we choose � such that θ�,N = m′′

L . (This � will of course depend on N , but
we suppress this in the notation.) Proposition 3.1 guarantees that agents � and � + 1
can never collide.
We split the remainder of the argument into the two cases mentioned above.
Case 1: m′′

L ∈ �+. In this case, we may assume without loss of generality that
m′′ = m′′

L ∈ �+ and that A = A∗∗ on [m′, m′′].
Step 1.1. Fix m̃′ and m such that

m′ < m̃′ < m < m′′.

Then by Lemma 2.2, together with the fact that A is not linear on [m̃′, m′′], we deduce
that

A(m′′) − A(m)

m′′ − m
>

A(m) − A(m̃′)

m − m̃′
.

Choose m̃′′ ∈ (m, m′′) close enough to m′′ so that

A(m̃′′) − A(m)

m̃′′ − m
>

A(m) − A(m̃′)

m − m̃′
,

and let 2σ denote the difference between the left and right sides:

2σ :=
A(m̃′′) − A(m)

m̃′′ − m
−

A(m) − A(m̃′)

m − m̃′
> 0. (48)

Step 1.2. For each N ∈ N, let (mi,N , x0i,N , v0i,N )N
i=1 be a discretization of (ρ0, u0),

and assume that these discretizations satisfy (D1)–(D4). Using the notation of Sect. 2,
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let us fix a time t > 0 and choose a corresponding subsequence (Nk)
∞
k=1 such that the

a.e. convergence (35) holds at time zero and time t . Then we can find θ ′ ∈ (m′, m̃′)

and θ ′′ ∈ (m̃′′, m′′), such that

X Nk
(θ ′, t) → X (θ ′, t), X Nk

(θ ′′, t) → X (θ ′′, t),

X0
Nk

(θ ′) → X0(θ ′), X0
Nk

(θ ′′) → X0(θ ′′),
as k → ∞. (49)

For each large enough N , we choose indices i, j so that

θ ′ ∈ (θi−1,N , θi,N ] ⊂ (m′, m̃′), θ ′′ ∈ (θ j,N , θ j+1,N ] ⊂ (m̃′′, m′′).

Note that i and j depend on N , but we suppress this dependence in the notation. The
point is that for all sufficiently large N ∈ N, we have

X N (θ ′, s) = xi,N (s), X N (θ ′′, s) = x j+1,N (s), ∀s ≥ 0, (50)

so we can track the approximate positions of mass labels θ ′ and θ ′′ at time t by looking
at xi,N (t) and x j+1,N (t), which are simpler to analyze.

Step 1.3. Since A = A∗∗ is convex on [m′, m′′], it follows from Lemma 2.2 and our
choice of i, j that

A∗∗(θi,N ) − A∗∗(θi−1, N )

θi,N − θi−1,N

≤
A(m) − A(m̃′)

m − m̃′
, since θi−1,N < θi,N < m̃′ ≤ m,

A∗∗(θ j+1,N ) − A∗∗(θ j , N )

θ j+1,N − θ j,N

≥
A(m̃′′) − A(m)

m̃′′ − m
, since m < m̃′′ < θ j,N < θ j+1,N .

Taking the difference of these inequalities and recalling our definition of σ from (48),
we see that the hypotheses of Lemma 3.4 are satisfied. Then, in accordance with
Lemma 3.4, we have the following lower bound at time t :

x j+1,N (t) − xi,N (t) ≥ max

{
x0j+1,N − x0i,N − tV0,min{tσ, η}

}
.

(Actually, a slightly better lower bound holds; c.f. the proof of Lemma 3.4, but we
use themore general version above so that this step generalizes to Case 2.) Substituting
(50) into this lower bound yields

X N (θ ′′, t) − X N (θ ′, t) ≥ max

{
X0

N (θ ′′) − X0
N (θ ′) − tV0,min{tσ, η}

}
.

Then taking N → ∞ along the subsequence (Nk)
∞
k=1, we conclude that

X (θ ′′, t) − X (θ ′, t) ≥ max

{
X0(θ ′′) − X0(θ ′) − tV0,min{tσ, η}

}
.

Step 1.4. Recalling that

m′ < θ ′ < m̃′ < m̃′′ < θ ′′ < m′′,
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we may conclude from the previous step that

X (m′′, t) − X (m′, t) ≥ max

{
X0(m̃′′) − X0(m̃′) − tV0,min{tσ, η}

}
. (51)

Since A∗∗ is not linear on [m̃′, m̃′′] (by (48)), we have m̃′ < inf L(m̃′′). Lemma 3.5
then guarantees that X0(m̃′) < X0(m̃′′), so that the quantity on the right side of (51)
is strictly positive. The proof of Case 1 is now complete.

Case 2: m′′
L /∈ �+. In this case, we may assume without loss of generality that A∗∗

is linear on [m′, m′′
L ]. We note also that we must have m′′

L < m′′, with A∗∗ linear on
[m′′

L , m′′]. (Indeed, the only way for m′′
L and m′′ to be equal is if L(m′′) = {m′′}, in

which case m′′
L = m′′ ∈ �+, contrary to the case we are considering.) Of course, the

slopes of A∗∗ on [m′, m′′
L ] and [m′′

L , m′′] are different.

Step 2.1. As in Case 1, choose t > 0 and a corresponding subsequence (Nk)
∞
k=1;

choose m̃′ ∈ (m′, m′′
L), m̃′′ ∈ (m′′

L , m′′), and then θ ′ ∈ (m′, m̃′), θ ′′ ∈ (m̃′′, m′′) such
that (49) holds.

For each large enough N , we choose indices i, j so that

θ ′ ∈ (θi−1,N , θi,N ] ⊂ (m′, m̃′), θ ′′ ∈ (θ j,N , θ j+1,N ] ⊂ (m̃′′, m′′).

Step 2.2. Recall that we have chosen � ∈ N to satisfy θ�,N = m′′
L . Whenever N is

chosen large enough so that m′ ≤ θ�−1,N and θ�+1,N ≤ m′′, we must have

A∗∗(θ j+1,N ) − A∗∗(θ j,N )

θ j+1,N − θ j,N

−
A∗∗(θi,N ) − A∗∗(θi−1,N )

θi,N − θi−1,N

=
A∗∗(m′′) − A∗∗(m′′

L)

m′′ − m′′
L

−
A∗∗(m′′

L) − A∗∗(m′)

m′′
L − m′

=: 2σ > 0.

Thus, Lemma 3.4 applies. From this point onward, the argument is identical to that of
Case 1. �

4. Finite-time clustering in the supercritical region

In this section, we turn to the supercritical region �−, where the flux A is detached
from its convex envelope A∗∗. We prove part II of Theorem 1.7, which guarantees that
any compact subinterval of�− becomes part of a finite-time cluster; this phenomenon
is completely new in the study of (1). We also show that clusters inside a given
connected component (m−, m+) of �− cannot protrude from (m−, m+] unless they
contain all of (m−, m+]. This will be useful in the proof of part III(i) of Theorem 1.7,
which we give in Sect. 5. We begin by establishing discrete versions of these facts
before bootstrapping to the full continuum versions of the statements.

As before, we fix a solution (ρ, u) of (1) and assume (A1)–(A4) hold.
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4.1. The discrete supercritical setting

Proposition 4.1. Let (mi,N , x0i,N , v0i,N )N
i=1 be a discretization of (ρ0, u0) satisfying

(D2)–(D4). Assume that (θi,N , θ j,N ) is a connected component of �−, so that A > A∗∗

on (θi,N , θ j,N ) and A(θ�,N ) = A∗∗(θ�,N ) for � = i, j . Then, the following statements

hold:

(i) Agents i + 1, . . . , j will collide in finite time.

(ii) Let TN be the first time when agents i + 1 and j collide. Then agents i and

i +1 cannot collide before time TN ; similarly, agents j and j +1 cannot collide

before time TN .

Proof. We start with statement (ii), which is actually a special case of something we
have already proven. If agents i and i + 1 ever collide (say at time t ≥ 0), then the
hypotheses ofLemma3.2 are satisfied, so that in particularwemust have θi∗(t),N /∈ �−.
As j is the smallest index exceeding i such that θ j,N /∈ �−, and since i∗(t) > i by
assumption, we must have i∗(t) ≥ j . Furthermore, TN = inf{s : i∗(s) ≥ j}, and
therefore t ≥ TN , as claimed. The situation is the same for agents j and j + 1.
Now we prove statement (i), arguing by contradiction. Assume that agents i + 1

and j never collide. Then for any t ≥ 0, we have (i + 1)∗(t) < j ; furthermore, by
statement (ii), agents i and i + 1 cannot collide, so we also have (i + 1)∗(t) = i + 1.
Set

hN = min
i+1≤�≤ j−1

(A − A∗∗)(θ�,N ); cN =
hN

θ j,N − θi,N

.

Then,

ψi+1,N (t) =
A(θ(i+1)∗(t),N ) − A(θi,N )

θ(i+1)∗(t),N − θi,N

=
(A − A∗∗)(θ(i+1)∗(t),N ) − (A − A∗∗)(θi,N )

θ(i+1)∗(t),N − θi,N

+
A∗∗(θ(i+1)∗(t),N ) − A∗∗(θi,N )

θ(i+1)∗(t),N − θi,N

≥ cN +
A∗∗(θ j,N ) − A∗∗(θi,N )

θ j,N − θi,N

.

(In the last line, we used linearity of A∗∗ on [θi,N , θ j,N ]). Similarly,

ψ j,N (t) ≤ −cN +
A∗∗(θ j,N ) − A∗∗(θi,N )

θ j,N − θi,N

.

Putting the two estimates above together, we obtain a strictly positive lower bound on
the difference:

ψi+1,N (t) − ψ j,N (t) ≥ 2cN > 0, (52)
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Note in particular that cN is independent of t . Therefore, we can compute using (20)
that for all t ≥ 0,

d

dt

(
x j,N (t) − xi+1,N (t)

)
= ψ j,N (t) − ψi+1,N (t)

−

N∑

�=1

m�,N

∫ x j,N (t)

xi+1,N (t)

φ(y − x�,N (t)) dy ≤ −2cN < 0.

Here, we have used (52) and the fact that φ is nonnegative. Therefore, agents i + 1
and j must collide at some finite time TN ≤ D0/(2cN ), where D0 = diam supp(ρ0).
This finishes the proof. �

4.2. Finite-time clustering for the Euler-alignment system

Next, we use the sticky particle approximation to extend our result to the continuum
system. The difficulty is the dependence of the constant cN in (52) on N . In fact,

lim
N→∞

hN = 0, lim
N→∞

cN = 0.

Consequently, our upper bound on TN tends to infinity with N . The argument of the
previous subsection therefore does not prove that a connected component (m−, m+)

of �− (or more precisely, its image under X (·, t)) collapses to a point in finite time,
and in fact, this is not true in general. However, as we will show below, any compact
subset K of (m−, m+) will collapse to a point in a finite time T that we can bound from
above. In order to streamline the proof of this theorem, we first state an elementary but
technical lemma that will help us obtain a uniform-in-N adaptation of the statement
and argument of Proposition 4.1.

Lemma 4.2. Let f : [0, 1] → R be a Lipschitz function, and let K̃ be a compact

subset of (0, 1). Assume that

(a) f (0) = f (1) = 0, and f > 0 on (0, 1),
(b) f is convex in a neighborhood of 0 and a neighborhood of 1.

Then there exists h0 > 0 such that whenever 0 < h ≤ h0, the following holds:

(i) f −1(h) consists of exactly two points, call them ah and bh , with ah < bh , and

K̃ ⊆ [ah, bh].

(ii) f > h on (ah, bh) and f < h on [0, ah) ∪ (bh, 1].
(iii) Whenever

0 ≤ α < ah ≤ β < γ < bh ≤ δ ≤ 1, (53)

we have the following estimate

f (β) − f (α)

β − α
−

f (δ) − f (γ )

δ − γ
≥ h > 0, (54)

See Fig. 3 for an illustration of the statement of the Lemma. Later on, we will apply
the Lemma with f equal to a rescaled version of A − A∗∗.
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Proof. First, we choose a0 and b0 such that K̃ ⊆ [a0, b0] ⊂ (0, 1), and f is convex
in [0, a0] and [b0, 1]. By assumption (a), f must be strictly increasing in [0, a0] and
strictly decreasing in [b0, 1]. Since f > 0 in [a0, b0], its minimum on this interval
must be positive. We denote

h0 =
1

2
min

x∈[a0,b0]
f (x) > 0. (55)

For any h in (0, h0], we define ah ∈ (0, a0) by ah = f −1(h). Note that ah is well-
defined, as f is strictly increasing on [0, a0] and 0 = f (0) < h < f (a0). Similarly,
we define bh ∈ (b0, 1) by bh = f −1(h). It is clear that (i) and (ii) hold, and that
furthermore, for α, β, γ, δ satisfying (53), we must have

f (β) − f (α)

β − α
> 0 >

f (δ) − f (γ )

δ − γ
, which implies

f (β) − f (α)

β − α
−

f (δ) − f (γ )

δ − γ
> 0.

We need to improve this to a positive lower bound that is uniform in α, β, γ, δ. We do
this by considering the following three cases.
Case 1: β < a0. Using the convexity of f on [0, a0], we have

f (β) − f (α)

β − α
−

f (δ) − f (γ )

δ − γ
≥

f (ah) − f (0)

ah − 0
− 0 =

h

ah

> h.

Case 2: a0 ≤ β < γ ≤ b0. From the definition of h0 in (55), we have f (β) ≥ 2h0

and f (γ ) ≥ 2h0. Hence,

f (β) − f (α)

β − α
−

f (δ) − f (γ )

δ − γ
≥

2h0 − h

1 − 0
−

h − 2h0

1 − 0
≥ 2h.

Case 3: γ > b0. Using the convexity of f on [b0, 1], we obtain

f (β) − f (α)

β − α
−

f (δ) − f (γ )

δ − γ
≥ 0 −

f (1) − f (bh)

1 − bh

=
h

1 − bh

> h.

This completes the proof. �

Remark 4.1. The technical assumption (b) on the convexity near the boundary is to
make sure that there exists a small h such that (ii) holds. We want to eliminate the
possibility of highly oscillatory functions like

f (x) = x
(
2 + sin 1

x

)

near 0.Wewill not attempt to treat fluxes that exhibit this sort of pathological behavior.

We now prove part II of Theorem 1.7, restated here in slightly modified but equiv-
alent form.
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Figure 3. Illustration of Lemma 4.2 (with h = h0) and its (rescaled)
application in the proof of Theorem 4.3

Theorem 4.3. Let (ρ, u) and the accompanying functions and sets be as in (A1)–(A4).

Assume (m−, m+) is a connected component of �−, i.e.,

A(m) > A∗∗(m), ∀ m ∈ (m−, m+), and

A(m−) = A∗∗(m−), A(m+) = A∗∗(m+).

We also recall that (A4) requires A to be convex in a neighborhood of m− and m+.

Let K be a compact subset of (m−, m+). Then there exists a finite time T > 0 such

that

X (m, t) = X (m′, t) ∀ m, m′ ∈ K and ∀ t ≥ T .

Proof. Our plan is to approximate the system by the discrete dynamics, apply Lemma
4.2 to obtain uniform bounds, and then pass to the limit.

Step 1: Define the linear bijection m : [0, 1] → [m−, m+] via

m(x) = m− + (m+ − m−)x .

Then define f : [0, 1] → R by

f (x) = A(m(x)) − A∗∗(m(x)), (56)

and define K̃ ⊂ (0, 1) by K̃ = m−1(K ). It is easy to check that f satisfies all the
assumptions in Lemma 4.2, as a consequence of assumption (A4). Choose h0 as in
the conclusion of the Lemma. Then for any h ∈ (0, h0], we have that

K ⊆ [m(ah), m(bh)],

and whenever we have

m− < α < m(ah) ≤ β < γ < m(bh) ≤ δ ≤ m+,
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then the following estimate holds:

(A − A∗∗)(β) − (A − A∗∗)(α)

β − α
−

(A − A∗∗)(δ) − (A − A∗∗)(γ )

δ − γ

≥
h

m+ − m−

=: c(h) > 0. (57)

Simplifying the left side of (57) using the linearity of A∗∗ on [m−, m+], we obtain

A(β) − A(α)

β − α
−

A(δ) − A(γ )

δ − γ
≥ c(h) > 0. (58)

Step 2: Form a sequence of approximating systems (mi,N , xi,N (·), vi,N (·))N
i=1 via

the procedure in Sect. 2. (In particular, assume (D1)–(D4) are satisfied). For N large
enough, assumption (D2) says that S ⊂ {θi,N }N

i=0, so that in particular m− and m+

are breakpoints.
Define

T :=
X0(m+) − X0(m−)

c( h0
2 )

, (59)

where c(h) = h
m+−m−

, as defined in (57). Fix any t ≥ T , and choose a subsequence
(Nk)

∞
k=1 such that the a.e.convergence (35) holds at time t . Then we may in particular

choose h ∈ ( h0

2 , h0] so that, putting

θ ′ = m(ah), θ ′′ = m(bh), (60)

we have

X Nk
(θ ′, t) → X (θ ′, t) and X Nk

(θ ′′, t) → X (θ ′′, t), as k → ∞. (61)

Note that the subsequence (Nk)
∞
k=1, and hence, our choice of h depends on t .

However, h0 is of course time-independent.
Our goal is to show that

X (θ ′, t) = X (θ ′′, t). (62)

Since K ⊆ [θ ′, θ ′′] and t ≥ T is arbitrary, establishing (62) will prove the theorem.
Step 3: For each N ∈ N, choose i, j ∈ {1, . . . , N } such that θ ′ ∈ (θi−1,N , θi,N ]

and θ ′′ ∈ (θ j−1,N , θ j,N ]. Using (60) and (58) (with α = θi∗(s)−1,N , β = θi∗(s),N ,
γ = θ j∗(s)−1,N , and δ = θ j∗(s),N ), we have the following uniform lower bound for all
s ≥ 0:

ψi,N (s) − ψ j,N (s) =
A(θi∗(s),N ) − A(θi∗(s)−1,N )

θi∗(s),N − θi∗(s)−1,N

−
A(θ j∗(s),N ) − A(θ j∗(s)−1,N )

θ j∗(s),N − θ j∗(s)−1,N

≥ c(h) ≥ c( h0
2 ) > 0.

It follows that for each N ∈ N and each time s prior to the collision of agents i and j ,
we have

d

ds
(x j,N (s) − xi,N (s)) ≤ −

(
ψi,N (s) − ψ j,N (s)

)
≤ −c( h0

2 ). (63)
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Integrating this equation and recalling the definition of T , as well as the fact that
X N (θ ′′, ·) − X N (θ ′, ·) = x j,N − xi,N , we deduce that

X N (θ ′′, s) − X N (θ ′, s) = 0, ∀s ≥ T .

Then, setting s = t and taking N → ∞ along the subsequence (Nk)
∞
k=1 finishes the

proof. �

4.3. Confinement of ‘incomplete’ clusters in supercritical intervals

We now upgrade Proposition 4.1(ii) to the full continuum version, as previewed at
the beginning of this section.

Theorem 4.4. Suppose (m′, m′′] is a T -cluster containing m ∈ �−, and let (m−, m+)

be the connected component of �− containing m. If (m′, m′′] contains points outside

of (m−, m+] then (m′, m′′] must also contain all of (m−, m+].

Proof. We assume, for purposes of obtaining a contradiction, that m− < m′ < m+ <

m′′. (The case where m′ < m− < m′′ < m+ is similar.) Since A is not linear on
(m′, m′′], the function X0 cannot be constant on this interval, so we may assume
without loss of generality that T > 0.

Step 1. We define the relevant parameters as follows. Choose a0, b0 ∈ (m−, m+)

such that A is convex on [m−, a0] and [b0, m+]. Put h0 = 1
2 min[a0,b0](A − A∗∗);

for any h ∈ (0, 2 h0), let ah ∈ (m−, a0) and bh ∈ (b0, m+) denote the two points in
the inverse image of h under A − A∗∗ that lie in (m−, m+). Take h1 ∈ (0, h0) small
enough so that a2 h1 < m′ < bh1 .
As usual, consider a sequence of discretized systems satisfying (D1)–(D4), and ad-

ditionally m−, m+ ∈ {θi,N }N
i=1 for sufficiently large N . Let (Nk)

∞
k=1 be a subsequence

such that the a.e. convergence (35) holds at time t = T . Choose θ ′ ∈ (bh1 , m+) and
θ ′′ ∈ (m+, m′′) such that

X Nk
(θ ′, T ) → X (θ ′, T ) and X Nk

(θ ′′, T ) → X (θ ′′, T ), as k → ∞.

Fix h ∈ (0, h1) such that bh = θ ′. And finally, for each sufficiently large N ∈ N,
choose indices I < i < J such that

m− = θI,N , θ ′ ∈ (θi−1,N , θi,N ] ⊂ (m′, m+), m+ = θJ,N .

For convenience, we review the ordering of the relevant quantities before proceeding:

m− = θI,N < a2h < m′ < θi−1,N < bh = θ ′ < θi,N < m+ = θJ,N < θ ′′ < m′′.

Step 2. We will now reason similarly to the proof of Lemma 4.2 and prove that

(A − A∗∗)(θi∗(t),Nk
) − (A − A∗∗)(θi∗(t)−1,Nk

)

θi∗(t),Nk
− θi∗(t)−1,Nk

< −
h

m+ − m−

. (64)
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Since θ ′ lies in the T -cluster (m′, m′′] at m but a2h < m′ does not, we have
X (θ ′, T ) > X (a2h, T ); consequently,wemayassume that X Nk

(θ ′, T ) > X Nk
(a2h, T )

for all k, so that
θi∗(t)−1,Nk

≥ a2h ∀t ∈ [0, T ], ∀k ∈ N. (65)

There are two cases to consider. If θi∗(t)−1,Nk
≤ b2h , then

(A − A∗∗)(θi∗(t)−1,Nk
) ≥ 2h and (A − A∗∗)(θi∗(t),Nk

) < h.

The inequality (64) follows immediately. On the other hand, if b2h < θi∗(t)−1,Nk
< bh ,

then by convexity of A − A∗∗ on [b0, m+] we get

(A − A∗∗)(θi∗(t),Nk
) − (A − A∗∗)(θi∗(t)−1,Nk

)

θi∗(t),Nk
− θi∗(t)−1,Nk

≤
(A − A∗∗)(m+) − (A − A∗∗)(bh)

m+ − bh

< −
h

m+ − m−

,

as claimed.
Step 3. We will use (64), together with Proposition 4.1(ii), to prove the following

lower bound:

ψJ+1,N (t) − ψi,N (t) ≥
h

m+ − m−

=: 2σ > 0.

This is, in a sense, the key step of the proof, since it is here that we leverage the discrete
version of the statement we want to prove.
Recalling (65), we know that

θI,Nk
< a2h ≤ θi∗(t)−1,Nk

≤ θJ∗(t)−1,Nk
, ∀t ∈ [0, T ],

which implies that J∗(t) > I + 1, i.e., agents I + 1 and J do not collide on the time
interval [0, T ]. Consequently, Proposition 4.1(ii) tells us that agents J and J + 1 also
do not collide on [0, T ]. Therefore, for any time t ∈ [0, T ], we thus have the following:

ψi,Nk
(t) =

A(θi∗(t),Nk
) − A(θi∗(t)−1,Nk

)

θi∗(t),Nk
− θi∗(t)−1,Nk

=
(A − A∗∗)(θi∗(t),Nk

) − (A − A∗∗)(θi∗(t)−1,Nk
)

θi∗(t),Nk
− θi∗(t)−1,Nk

+
A∗∗(θi∗(t),Nk

) − A∗∗(θi∗(t)−1,Nk
)

θi∗(t),Nk
− θi∗(t)−1,Nk

≤ −
h

m+ − m−

+
A∗∗(θ(J+1)∗(t),Nk

) − A∗∗(θJ,Nk
)

θ(J+1)∗(t),Nk
− θJ,Nk

≤ −
h

m+ − m−

+
A(θ(J+1)∗(t),Nk

) − A(θJ,Nk
)

θ(J+1)∗(t),Nk
− θJ,Nk

= −
h

m+ − m−

+ ψJ+1,Nk
(t).

This proves the desired lower bound.
Step 4. We derive a contradiction. Using (20) and arguing as in (the beginning of)

the proof of Lemma 3.4, we obtain

xJ+1,Nk
(t) − xi,Nk

(t) ≥ min{x0J+1,Nk
− x0i,Nk

+ tσ, η}, ∀t ≥ 0,
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where η > 0 is chosen small enough so that |
∫ w

z
φ(y) dr | < σ when |z − w| < η. It

follows that

X Nk
(θ ′′, T ) − X Nk

(θ ′, T ) ≥ xJ+1,Nk
(T ) − xi,Nk

(T ) ≥ min{T σ, η} > 0.

Taking k → ∞ and recalling that m′ < θ ′ < θ ′′ < m′′, we conclude that

X (m′′, T ) − X (m′, T ) ≥ min{T σ, η} > 0,

which contradicts our initial assumption that (m′, m′′] is a T -cluster and therefore
finishes the proof of the theorem. �

5. Protocol-dependent behavior: clustering and non-clustering in the critical

regime

So far, we have shown that X (·, t) exhibits two distinct behaviors in the subcritical
region �+ and the supercritical region �−. We have also shown that clustering does
not occur across different L(m)’s. In this section, we study the clustering behavior
within a single L(m). In contrast to the analysis we have presented thus far, the results
of this section depend on properties of φ beyond those assumed in (A1); in that sense,
the situation we consider in this section constitutes a sort of ‘critical’ regime (which
includes in particular the behavior in the entire critical region�0 but may also concern
intervals in �−).

The three subsections here track statements (i), (ii), and (iii) of part III of Theorem
1.7. The first statement, which concerns bounded protocols φ, places limitations on the
kinds of finite-time clusters that can occur within a given L(m) and is the most delicate
of the three results discussed in this section. The reason is that, unlike the situation
in Sect. 3, it is possible for mass labels within a given L(m) to belong to the same
infinite-time cluster without belonging to the same t-cluster for any finite time. Ruling
out finite-time clustering is therefore more subtle here than in the subcritical regime.
The final two subsections show that under the heavy-tail assumption (2), each L(m)

becomes an infinite-time cluster, and is actually a finite-time cluster if φ is weakly
singular.

As always, we assume throughout this section that (ρ, u) is an entropy solution of
(1) and that (A1)–(A4) hold.

5.1. Bounded communication

In this subsection, we assume that φ is bounded, and we prove statement III(i) of
Theorem 1.7. As usual, we will start with a discrete (partial) analog of our target
statement.
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5.1.1. The discrete setting

Lemma 5.1. Suppose that φ ∈ L∞(R). Let (mi,N , x0i,N , v0i,N )N
i=1 be a discretization

of (ρ0, u0) satisfying (D2)–(D4). Assume that i, j ∈ {1, . . . , N } are such that i ≤ j

and θi,N , θ j,N /∈ �−.

Then

x j+1,N (t) − xi,N (t) ≥ (x0j+1,N − x0i,N )e−‖φ‖∞t , ∀t ≥ 0. (66)

Proof. Assume without loss of generality that x0i,N < x0j+1,N . Since θi,N , θ j,N /∈ �−,
Corollary 3.3 guarantees that

ψ j+1,N (t) − ψi,N (t) ≥ 0, ∀t ≥ 0.

Since φ is bounded, we can use an improved estimate on the sum in (20):

N∑

�=1

m�,N

∫ x j+1,N (s)

xi,N (s)

φ(y − x�,N (s)) dy ≤ ‖φ‖∞

(
x j+1,N (s) − xi,N (s)

)
.

Consequently,

d

ds

(
x j+1,N (s) − xi,N (s)

)
≥ −‖φ‖∞

(
x j+1,N (s) − xi,N (s)

)
,

which becomes (66) after integration. �

5.1.2. The continuum setting

We now turn to the proof of statement III(i) in Theorem 1.7. Under the assumption
that φ ∈ L∞(R), we want to show that there are only two possible kinds of clusters.
First, there might be initial clusters—intervals (m′, m′′] on which X0 is constant. And
second, there might be clusters that are contained in some (m−, m+], where (m−, m+)

is a connected component of �−. We will show that no other finite-time clusters are
possible. With this in mind, we make the following notation, which we will use in the
proof of our theorem.

Definition 5.2. Fix m ∈ (− 1
2 ,

1
2 ]. Define the set C(m) as follows.

• If there is an initial cluster at m, let C(m) denote this initial cluster.
• If m ∈ �−, define C(m) = (m−, m+], where (m−, m+) is the connected com-

ponent of �− that contains m.
• Otherwise, put C(m) = {m}.

We also define the function R(m, t) as follows.

R(m, t) =

⎧
⎨
⎩

1
|C(m)|

∫

C(m)

X (m̃, t) dm̃, if m ∈ �−

X (m, t), otherwise.

Here |C(m)| denotes the Lebesgue measure of the interval C(m).
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The following theorem is a more precise version of statement III(i) in Theorem 1.7.

Theorem 5.3. Assume φ ∈ L∞(R).

(i) If C(m′′) = {m′′} is a singleton and m′ < m′′, then there exists a constant c > 0
such that

X (m′′, t) − X (m′, t) ≥ ce−‖φ‖∞t , ∀t ≥ 0. (67)

(ii) If C(m′′) is an interval and m′ < inf C(m′′), then

R(m′′, t) − R(m′, t) ≥ ce−‖φ‖∞t , ∀t ≥ 0. (68)

In either case, m′ and m′′ do not belong to the same t-cluster for any finite time t.

Proof. Note first of all that Theorem 4.4 is the link between (68) and the last claim, in
the event that C(m′′) is an interval: If m′ and m′′ ever belonged to the same t-cluster,
then all of C(m′) and C(m′′) would need to belong to that t-cluster as well, by The-
orem 4.4. This would in turn imply that R(m′, t) = R(m′′, t), in direct contradiction
with (68).
We also note that, by Theorem 3.6, we may assume without loss of generality that

m′ ∈ L(m′′).
Proof of (i). Assume that C(m′′) = {m′′}. Then, we must have m′′ ∈ �0 (since

m′′ ∈ �+ would force L(m′) 
= L(m′′)), so we may assume without loss of generality
that the interval [m′, m′′] lies entirely in �0. Since X0 is left-continuous and X0 is
not constant on any interval of the form [m′′ − ε, m′′] for ε > 0, it follows that X0

must take infinitely many values on the interval [m′, m′′
−]. We may therefore choose

m̃′, m̃′′ ∈ [m′, m′′] such that

X0(m′) ≤ X0(m̃′) < X0(m̃′′) ≤ X0(m′′)

Consider as usual a sequence of discretizations satisfying (D1)–(D4); fix a time t > 0,
and choose a corresponding subsequence (Nk)

∞
k=1 such that the a.e. convergence (35)

holds at time t . Choose θ ′ ∈ (m′, m̃′), θ ′′ ∈ (m̃′′, m′′
−) such that

X Nk
(θ ′, t) → X (θ ′, t), X Nk

(θ ′′, t) → X (θ ′′, t),

X0
Nk

(θ ′) → X0(θ ′), X0
Nk

(θ ′′) → X0(θ ′′),
as k → ∞. (69)

For each sufficiently large N ∈ N, choose i, j ∈ {1, . . . , N } such that

θ ′ ∈ (θi−1,N , θi,N ] ⊂ (m′, m̃′); θ ′′ ∈ (θ j,N , θ j+1,N ] ⊂ (m̃′′, m′′
−).

Since [m′, m′′] ⊂ �0 (and in particular [m′, m′′] does not intersect �−), Lemma 5.1
implies that

x j+1,N (t) − xi,N (t) ≥ (x0j+1,N − x0i,N )e−‖φ‖∞t (70)

Recalling that xi,N = X N (θ ′, ·) and x j+1,N = X N (θ ′′, ·), we deduce that

X N (θ ′′, t) − X N (θ ′, t) ≥
(
X0

N (θ ′′) − X0
N (θ ′)

)
e−‖φ‖L∞ t .
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Then, taking N → ∞ along the subsequence (Nk)
∞
k=1 and recalling that

m′ < θ ′ < m̃′ < m̃′′ < θ ′′ < m′′ ≤ m′′,

we obtain the desired estimate, with c = X0(m̃′′) − X0(m̃′) > 0.
Proof of (ii). Assume that C(m′′) is an interval and that m′ < inf C(m′′). Define

m′′
− = inf C(m′′).

IfC(m′′
−) is a singleton, i.e.,C(m′′

−) = {m′′
−}, thenm′ < inf C(m′′) = m′′

− is upgraded
to m′

+ := supC(m′) < m′′
−. Then statement (i) can be applied, with m′′

− replacing
m′′, and m′

+ replacing m′, to yield

R(m′′, t) − R(m′, t) ≥ X (m′′
−, t) − X (m′

+, t) ≥ ce−‖φ‖∞t , ∀t ≥ 0.

Thus, we may assume that C(m′′
−) and C(m′′) are both intervals. In this setting, we

may further assume that m′ lies in the interval C(m′′
−), which implies that C(m′) and

C(m′′) are adjacent half-open intervals. Let us therefore write

m′
− = inf C(m′), m′

+ = supC(m′) = inf C(m′′) = m′′
−, m′′

+ = supC(m′′).

Consider a discretization satisfying (D1)–(D4), which additionally satisfies (for large
enough N , and i, j, � depending on N )

θi,N = m′
−, θ j,N = m′

+ = m′′
−, θ�,N = m′′

+. (71)

Note that θi,N , θ j,N , and θ�,N all belong to the complement of �−, so A(θp,N ) =

A∗∗(θp,N ) for p = i, j, �. Since A∗∗ is linear on [θi,N , θ�,N ], it follows that

A(θ j,N ) − A(θi,N )

θ j,N − θi,N

=
A(θ�,N ) − A(θ j,N )

θ�,N − θ j,N

.

Furthermore, Lemma 5.1 implies that no collisions occur between agents i and i + 1,
j and j + 1, or � and � + 1. Therefore, the following equality holds for all time:

∑ j
p=i+1 m p,N ψp,N (t)
∑ j

p=i+1 m p,N

=
A(θ j,N ) − A(θi,N )

θ j,N − θi,N

=
A(θ�,N ) − A(θ j,N )

θ�,N − θ j,N

=

∑�
q= j+1 mq,N ψq,N (t)
∑�

q= j+1 mq,N

. (72)

The quantities on the left and right side of (72) are analogous to ψi and ψ j in the
inequality (20). The analogs of xi and x j are

RN (m′, t) :=
1

|C(m′)|

∫

C(m′)

X N (m̃, t) dm̃ =

∑ j
p=i+1 m p,N x p,N (t)
∑ j

p=i+1 m p,N

,

RN (m′′, t) :=
1

|C(m′′)|

∫

C(m′′)

X N (m̃, t) dm̃ =

∑�
q= j+1 mq,N xq,N (t)
∑�

q= j+1 mq,N

.

(73)
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Using equation (72) and performing some elementary manipulations gives us the
identity

d

dt

(
RN (m′′, t) − RN (m′, t)

)

= −

∑N
r=1

∑ j
p=i+1

∑�
q= j+1 m p,N mq,N mr,N

∫ xq,N (t)

x p,N (t) φ(y − xr,N (t)) dy

∑ j
p=i+1

∑�
q= j+1 m p,N mq,N

Using the L∞ bound on φ and integrating then yields

RN (m′′, t) − RN (m′, t) ≥
(
RN (m′′, 0) − RN (m′, 0)

)
e−‖φ‖∞t , t ≥ 0.

By the L1-convergence of (X N (s))∞N=1 to X (s) at s = t and s = 0, we obtain (68),
with c = R(m′′, 0) − R(m′, 0). �

5.2. Heavy-tailed communication: infinite-time clustering

The lower bounds in the previous theorem are strictly positive for any finite time
t , indicating an absence of finite-time cluster formation within �0. However, the
theorem is silent with regard to the possibility of infinite-time cluster formation. The
infinite-time clustering phenomenonwas studied extensively in [24] for the casewhere
�− = ∅ and the velocity field is at least C1. Here we present a generalization for any
entropic solution. Just as in [24], we assume that φ satisfies the heavy-tail condition
(2). This assumption is sufficient to guarantee uniform global communication for all
time:

φ(x − y) ≥ φ > 0, ∀ x, y ∈ supp(ρ(·, t)), ∀ t ≥ 0. (74)

Indeed, when (2) holds, it is shown in [29, Theorem 7.2] that the entropic solution
to the Euler-alignment system (1) experiences flocking. That is, there exists a time-
independent constant D such that

diam supp(ρ(·, t)) ≤ D, ∀ t ≥ 0,

The assertion (74) follows immediately, with φ = φ(D) > 0.

Theorem 5.4. Assume that φ is heavy-tailed, and suppose that L(m′) = L(m′′), with

m′ < m′′. Then

X (m′′, t) − X (m′, t) ≤ D0e−φt ∀t ≥ 0, (75)

where D0 = diam supp ρ0 and φ is defined as in (74). Consequently, L(m′) = L(m′′)

is an infinite-time cluster.

Proof. Step 1: Denote

m− = inf L(m′), m+ = sup L(m′).

We note first of all that it suffices to prove the bound (75) in the case m′′ < m+, by
left-continuity of X (·, t).



J. Evol. Equ. Finite- and infinite-time cluster formation Page 41 of 45     8 

Consider a sequenceof discretizations satisfying (D1)–(D4), and additionally,m−, m+ ∈

{θi,N }N
i=0. For each N , choose i, j ∈ {0, . . . , N } such that θi,N = m− /∈ �− and

θ j,N = m+ /∈ �−. Then using Corollary 3.3 and the linearity of A∗∗ on L(m′), we
conclude that

ψi+1,N (s) ≥
A∗∗(θi+1,N ) − A∗∗(θi,N )

θi+1,N − θi,N

=
A∗∗(θ j,N ) − A∗∗(θ j−1,N )

θ j,N − θ j−1,N

≥ ψ j,N (s), ∀s ≥ 0.

Next, we use the estimate (74) to obtain

N∑

�=1

m�,N

∫ x j,N (s)

xi+1,N (s)

φ(y − x�,N (s)) dy ≥ φ
(
x j,N (s) − xi+1,N (s)

)
. (76)

Therefore, we have

d

ds

(
x j,N (s) − xi+1,N (s)

)
≤ −φ

(
x j,N (s) − xi+1,N (s)

)
,

whence

x j,N (s) − xi+1,N (s) ≤
(
x0j,N − x0i+1,N

)
e−φt ≤ D0e−φs, ∀s ≥ 0. (77)

Step 2: Fix a time t > 0 and a corresponding subsequence (Nk)
∞
k=1 such that the

a.e. convergence (35) holds at time t . Choose θ ′ ∈ (m−, m′) and θ ′′ ∈ (m′′, m+) such
that

X Nk
(θ ′, t) → X (θ ′, t) and X Nk

(θ ′′, t) → X (θ ′′, t), as k → ∞.

For large enough N , we have

m− = θi,N < θi+1,N < θ ′ < m′ < m′′ < θ ′′ < θ j−1,N < θ j,N = m+.

Therefore

X N (θ ′′, t) − X N (θ ′, t) ≤ X N (θ j,N , t) − X N (θi+1,N , t)

= x j,N (t) − xi+1,N (t) ≤ D0e−φt .

Taking N → ∞ along the subsequence (Nk)
∞
k=1 completes the proof. �

5.3. Heavy-tailed and weakly singular communication: finite-time clustering

As our final order of business, we consider weakly singular communication proto-
cols φ, i.e., those satisfying (3). These protocols are locally integrable but unbounded
near the origin.
In contrast to the case of bounded communication φ (c.f. Theorem 5.3), finite-time

cluster formation can occur in the critical region �0 as a consequence of the weak
singularity. This phenomenon was first discovered and analyzed in [38] for initial data
satisfying �− = ∅. The result is generalized in the following.
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Theorem 5.5. Assume φ is weakly singular (satisfying (3)) and heavy-tailed (in par-

ticular, satisfying (74)), and suppose that L(m′) = L(m′′). Then there exists a finite

time T such that L(m′) is a t-cluster for all t ≥ T , i.e., X (·, t) is constant on L(m′)

for t ≥ T .

Proof. Denote m− = inf L(m′), m+ = sup L(m′), and assume without loss of gener-
ality that m− < m′ < m′′ < m+. We prove that there exists a time T , which depends
on m− and m+ but not on m′, m′′, such that X (m′, T ) = X (m′′, T ). This is enough
to establish the theorem.
Choose a time T1 such that D0e−φT1 = R. We go through the proof of Theorem

5.4 and deduce from (77) that

x j,N (t) − xi+1,N (t) ≤ R, ∀ t ≥ T1.

This allows us to apply (3) and improve the estimate in (76) by

N∑

�=1

m�,N

∫ x j,N (t)

xi+1,N (t)

φ(y − x�,N (t)) dy ≥

j∑

�=i+1

m�,N

∫ x j,N (t)

xi+1,N (t)

φ(y − x�,N (t)) dy

≥

j∑

�=i+1

m�,N · c
(
x j,N (t) − xi+1,N (t)

)−β
·
(
x j,N (t) − xi+1,N (t)

)

= c(m+ − m−)
(
x j,N (t) − xi+1,N (t)

)1−β
.

Hence, we have

d

dt

(
x j,N (t) − xi+1,N (t)

)
≤ −c(m+ − m−)

(
x j,N (t) − xi+1,N (t)

)1−β
, ∀t ≥ T1,

and therefore

x j,N (t) − xi+1,N (t) ≤
(
Rβ − cβ(m+ − m−)(t − T1)

)1/β
, ∀ t ≥ T1.

It follows that x j,N (t) − xi+1,N (t) becomes zero no later than

T = T1 +
Rβ

cβ(m+ − m−)
,

where T is independent of N .
Finally, we proceed with the same argument as Step 2 in the proof of Theorem 5.4

to pass to the limit and finish the proof. �
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