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Machine learning systems are deployed in domains such as hiring and healthcare, where undesired clas-
sifications can have serious ramifications for the user. Thus, there is a rising demand for explainable Al
systems which provide actionable steps for lay users to obtain their desired outcome. To meet this need,
we propose FACET, the first explanation analytics system which supports a user in interactively refining
counterfactual explanations for decisions made by tree ensembles. As FACET’s foundation, we design a novel
type of counterfactual explanation called the counterfactual region. Unlike traditional counterfactuals, FACET s
regions concisely describe portions of the feature space where the desired outcome is guaranteed, regardless
of variations in exact feature values. This property, which we coin explanation robustness, is critical for the
practical application of counterfactuals. We develop a rich set of novel explanation analytics queries which
empower users to identify personalized counterfactual regions that account for their real-world circumstances.
To process these queries, we develop a compact high-dimensional counterfactual region index along with
index-aware query processing strategies for near real-time explanation analytics. We evaluate FACET against
state-of-the-art explanation techniques on eight public benchmark datasets and demonstrate that FACET
generates actionable explanations of similar quality in an order of magnitude less time while providing critical
robustness guarantees. Finally, we conduct a preliminary user study which suggests that FACET’s regions
lead to higher user understanding than traditional counterfactuals.
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1 INTRODUCTION

Machine learning systems are increasingly deployed to support decision-making tasks that pro-
foundly affect people’s lives including in high-stakes domains such as hiring, healthcare, and
finance. As such, eXplainable AI (XAI) techniques are essential to examine the reasoning behind the
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decision-making of these systems [2, 34]. Indeed, requirements for lay user appropriate explanations
have even been codified into law [1, 38]. To meet these needs, counterfactual explanations [46] have
emerged as a promising strategy. These explanations answer questions of the form "why A rather
than B?" such as, "Why was my loan application rejected rather than accepted?”

Given an instance x predicted as class A, a counterfactual explanation alters the feature val-
ues of x to produce a hypothetical counterfactual example x" which would be predicted as class
B [46]. Such explanations satisfy regulatory requirements [47] and have been shown to be easily
understood by lay users [27, 34, 35]. To ensure the resulting example is relevant to x, state-of-art
techniques aim to minimize the distance between x and x” using a distance metric such as L1 or L2
norm [9, 12, 16, 37]. However, in practice simply minimizing explanation distance often leads to
unsatisfying counterfactual examples that fail to account for real-world factors such as the difficulty
or impossibility of precisely controlling some features [3].

In this work, we consider practical counterfactual explanations for widely deployed Al models,
namely, tree ensemble models such as Random Forests, Gradient Boosted Decision Trees, and Extra-
Trees. These models are popular due to their high accuracy and minimal need for hyperparameter
tuning [8], yet they unfortunately lack a standard for explanation capabilities suitable to lay users.

Why was my loan application REJECTED rather than ACCEPTED?

REJECTED ACCEPTED
Income| Rent |Savings| Debt |]Income| Rent [Savings| Debt

$5,000 | $2,000 | $8,000 | $4,000 | [ $6,000 | $1,000 |$10,000] $4,000

Classification Counterfactual Example
o | can’t get 9 I'd rather save e Okay, I'll try
araise than move my best!
REJECTED
Income| Rent |Savings| Debt

a

$6,000 | $1,000 | $9,999 | $4,000

Fig. 1. Motivating loan application scenario.

Motivating Example. Here, we illustrate shortcomings of state-of-art approaches using a loan
application example. As shown in Fig. 1, a user who receives an undesired loan rejection may
seek a counterfactual explanation to determine what changes they should make to get their loan
accepted. State-of-art XAl techniques typically generate a single (static) counterfactual example
as shown above. While sufficient for some users, this explanation would not be actionable for a
user who cannot alter the required features (User 1). Some users may also have strong preferences
for changing one feature versus another based on their personal real-world circumstances (User
2). Further, even when a user finds an explanation sufficient, their real-world alterations may
not exactly match the example (User 3). In this case, the user may expend a great deal of effort
making alterations yet still be denied a much-needed loan. These shortcomings combine to make
static counterfactual examples useless for the practical explanation of high-stakes decisions.
Challenges. Based on the motivating example above, we derive the following three key require-
ments for effective counterfactual explanation workflows.

e Explanation Personalization. As shown above, users’ unique real-world considerations render
certain counterfactual explanations unactionable. Rather than rigidly generating one arbitrary
counterfactual, XAI systems must generate personalized explanations specific to the user’s situa-
tion, constraints, and priorities. This is difficult as real users cannot painstakingly enumerate
every combination of explanation criteria they find acceptable. Instead, practical systems must
quickly generate initial explanations, and subsequently support efficient interactive explana-
tion refinement in collaboration with the user to swiftly hone in on a satisfying personalized
explanation. We coin this process explanation exploration.
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e Explanation Robustness. As shown above, a user who alters their instance to nearly (but not
exactly) match a counterfactual example may not receive their desired outcome. We coin the
term explanation robustness to refer to how tightly the user must match the prescribed changes,
with more robust explanations tolerating larger deviations from the proposed feature values.
Robustness is especially critical when features have large expected variations (e.g., savings). If an
explanation is not robust to these fluctuations, the outcome may essentially be left to random
chance. To overcome this, effective explanation systems must generate robust explanations.

e Explanation Efficiency. To generate actionable explanations, XAI systems must work interac-
tively with humans-in-the-loop. Unfortunately, users have a tendency to become discouraged
and cease interaction as response times increase [30]. Thus, XAI systems must work in near
real-time to prevent users from giving up and falsely concluding that no suitable explanation
exists for them. As classification is a function of all feature values, the number of possible coun-
terfactual points is extremely large. Further, as a model’s decision surface grows in complexity, it
is increasingly difficult to determine which portions of the feature space produce the desired
outcome. These factors make real-time explanation challenging, with optimal counterfactual
explanation of tree ensembles proven to be NP-Hard [9].

State-of-the-Art and its Limitations. Existing XAI techniques have fundamental limitations
which prevent them from meeting the above requirements. Model-opaque! techniques perform
counterfactual explanation for arbitrary model architectures. MACE [12], a technique which gener-
ates counterfactual examples using local predicted class probabilities, quickly reaches intractable
runtime due to repeated predictions (Sec. 7.2) failing the explanation efficiency requirement. Mean-
while, LORE [18] and LEWIS [17] are unable to guarantee the validity of explanations they generate,
a critical prerequisite for explanation robustness.

Model-transparent techniques exist for tree ensemble explanation. AFT [45] generates counter-
factual examples through exhaustive generation of altered instances, yet frequently fails to find a
valid explanation (Sec. 7.2). RFOCSE [16] generates counterfactuals by fusing the ensemble into
a single tree, but this is exponentially complex and runtime remains a significant issue (Sec. 7.2).
None of these methods allow users to interact with the XAI system or input constraints, and thus
fail to generate personalized explanations.

Recently, OAE [9] and OCEAN [37] transform ensemble explanation into an integer programming

(IP) task, optimizing explanation distance. The latter includes user considerations as static IP
constraints, but does not include humans-in-the-loop as required for personalization. Moreover,
as the number of IP parameters grows with ensemble complexity, the runtime of this approach is
exponential in the ensemble size (Sec. 7.7). Thus, these methods don’t fulfill the requirements of
explanation efficiency nor interactivity.
Proposed Solution. We propose FACET (Fast Actionable Counterfactuals for Ensembles of Trees),
the first interactive system for generating robust personalized counterfactual explanations. To ensure
explanation robustness, FACET introduces a novel type of counterfactual explanation, called the
counterfactual region, Counterfactual regions generalize counterfactual examples to n-dimensional
volumes which include a potentially infinite number of examples. Thus they provide a minimum
robustness guarantee for all examples within. FACET’s region explanations can be created for a
wide variety of models, with demonstrated implementations for decision trees, random forests, and
gradient-boosted tree ensembles (Sec. 4).

FACET, the first to provide explanation personalization, introduces rich explanation analytics.
These analytics empower users to interactively identify counterfactual regions that are guaranteed
to be both actionable and relevant to their real-world circumstances. During preprocessing, FACET
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produces a large set of promising counterfactual regions apt as explanation candidates. To manage
these regions, we design COREX, a custom counterfactual explanation index. COREX supports
compact spatial encoding of the high-dimensional counterfactual regions and accelerates query
execution. During explanation exploration, FACET provides index-aware processing strategies to
realize each analytic operator. This enables FACET to efficiently service the user with relevant
region explanations in near real-time, even when the explained model is complex and queries
involve multiple interacting constraints.

Contributions. Our key contributions include:

(1) Propose counterfactual regions, a novel abstraction which extends the idea of counterfactual
examples to provide a much needed guarantee of explanation robustness.

(2) Characterize counterfactual regions for ensembles of trees and develop a data-driven approach
for generating a set of high interest regions which accurately reflect the ensemble’s function.

(3) Design COREX, a compact custom bit vector index which manages a large number of high-
dimensional counterfactual regions for efficient near real-time explanation querying.

(4) Develop a rich set of analytic operators which support users to interactively identify the best
counterfactual explanation for them subject to actionability and robustness requirements.

(5) Evaluate FACET on eight public benchmark datasets. We demonstrate that FACET can explain
complex ensembles an order of magnitude faster than the state-of-the-art while achieving
similar explanation quality and substantially higher robustness.

(6) Perform a between-subjects pilot user study comparing FACET’s regions to counterfactual
examples and show that our regions may lead to better user understanding.

2 FACET EXPLANATION PARADIGM

Here we introduce FACET’s fundamentally new type of explanation: counterfactual regions. We also
overview FACET’s query language for identifying personalized counterfactual region explanations.

2.1 Problem Setup

Given a classifier model f : X — Y which maps an instance x (e.g., a loan application) from the
feature space X € R" to a given class ¢ in the set of classes C (e.g., C = {reject, accept}) [26, 47].
Let y = f(x) be the observed factual class ¢, for x (e.g., loan reject), and ¢, the user’s desired
counterfactual class (e.g., loan accept), ¢y # ¢o.

Definition 1. (Counterfactual Example x’). Given an instance x with f(x) = c,, a counterfactual
example x’ corresponds to an altered version of x such that f(x") = cg4. To ensure that x’ is relevant to
x (i.e., requires only a few or small alterations), x’ is chosen to minimize its distance to x according to
a function § such that:

x' = argmi}n{é(x,x;) | f(x) =co A fx}) = Cd}

Thus, a counterfactual example can be conceptualized as a recommendation for the smallest set
of changes that a user should make to transform their instance x into x” and achieve the desired
outcome. In principle, many design options are feasible for § [26, 34]. Here we work with the
popular and commonly adopted L1 (Manhattan) and L2 (Euclidean) norms [12, 16, 37, 45].

Remark 1. (Limitation of Counterfactual Examples). By Def. 1, a counterfactual example x’
will be of the desired class f(x") = cq. However, if a user fails to make changes in the real world to
exactly transform x into x’, then the behavior of the model is not guaranteed. Indeed, deviating even
a small amount from x’ to some other point x”’ could result in an unknown outcome f(x’") which
may not be counterfactual to x. Thus static counterfactual examples are unfortunately not robust to
real-world feature value variations.
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Definition 2. (Counterfactual Robustness /(x")). Given x with f(x) = ¢,, and x" with f(x’) =
cq. Let v € R™ represent a variation (i.e., a small change in feature values) such that x’” = x" + v. The
robustness of the example (x") is defined as the scale of the minimal variation v such that x” is no
longer counterfactual to x.

Y(x') = [largmin{8(x',x") | F(x") = con 5 = x' + v} |

Remark 2. (Robustness Relevance Trade-Off). Comparing Def. 2 to Def. 1, we see that the goal
of having relevant counterfactual examples is in tension with having robust counterfactuals. Indeed,
choosing x” to minimize §(x, x") (increasing relevancy) also unwantedly minimizes (x") resulting in
a decreased robustness of the resulting explanation.

Objectives. Considering Rem. 2, we aim to design a counterfactual explanation system that supports
users in the following ways

(1) Understand what variations may result in non-counterfactual outcomes as some variations are
more likely than others (e.g., a user may expect more variations in savings than in rent.)

(2) Empower them to trade-off between explanation relevance (requiring a larger more difficult
change) and explanation robustness (allowing for more variation in the exact final value).

2.2 Abstraction of a Counterfactual Region

To achieve the objectives above (Sec. 2.1), we now design a novel type of counterfactual explanation
called the counterfactual region.

Definition 3. (Counterfactual Region R). Given a counterfactual example x" for an instance x,
let a € R be a relaxation factor. Let R be the set of all points x; within distance o from x’. Then, R is
called counterfactual if and only if all points within R are guaranteed to be counterfactual to x in the
desired class cg (w.r.t. model f).

R={x/ € X | 8(x',x]) < a} s.t.Vx, € R f(x}) = cq

Forming a counterfactual region explanation for x per the above definition provides the three
following beneficial properties.

Property 1. (Class Homogeneity). Given a counterfactual region R as in Def. 3, all points x] € R
are guaranteed to be members of the desired counterfactual class f(x]) = cq.

Per Prop. 1, a counterfactual region compactly represents a large number of counterfactual
examples. This provides the user with much needed flexibility in choosing their exact targeted
feature values. E.g., if x” requires income = $4732.12 and a = $100, the user could target getting a
raise to a point x; € R with income = $4750. We can denote the homogeneous class c of region R as
R¢ with the user selecting the desired class for their instance ¢ = ¢4,¢ € C.

Property 2. (Minimum Robustness Guarantee). A counterfactual region R as in Def. 3 provides
a minimum robustness guarantee for x’. That is, given a real-world variation in feature values
v € R* with ||v|| < a, it is guaranteed that f(x’ + v) = cq. Thus the robustness of x’ (per Def. 2) is at
least o, Y (x') = a.

The minimum robustness guarantee indicates to the user how much they can deviate from
x” while remaining assured that they will achieve the desired outcome. For example, for a loan
explanation with a = $100, a user could target x” with savings = $10,000 + $100. This allows users
to plan for expected feature variations and achieves Objective 1 by describing what variations are
guaranteed to result in the desired outcome.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 242. Publication date: December 2023.



242:6 Peter M. VanNostrand et al.

Property 3. (Subset Consistency). Given a counterfactual region Ry with a; centered on point x7. If
the user selects a point x; € Ry, a new region R, can be created centered on x; with ay = oy — 6(x7, x3).
Then, Ry is guaranteed to be counterfactual per Def. 3.

Prop. 3 can be easily proven by showing that R, will be a subset of Ry, i.e., R, C Ry. As ap < a3
Prop. 3 also implies that subsets of regions must have smaller minimum robustness guarantees.

Remark 3. (Region Robustness) Given counterfactual region explanations Ry, R, with radii ay, az,
the region with the larger radius is more robust to variations and therefore preferred.

Remark 4. (Region Relevancy) Given counterfactual region explanations Ry, Ry centered on points
X1, X,, the region with the smaller distance 5(x, x) is more relevant and therefore preferred.

Considering the Robustness Relevancy Trade-Off in Rem. 2, Remarks 3 and 4 present conflicting
notions of region desirability. We address this in part by leveraging Prop. 1. By presenting the user
aregion explanation R, and allowing them to select their preferred counterfactual example x; € Ry,
we empower the user to balance this trade-off for their circumstances (Objective 2). For example,
if Ry has x| with savings = $10,000 and a; = $100, a user prioritizing a counterfactual with low
distance may choose a point x; € R; which is closer to x than x] (say x; = $9,950). This could result
in a region R; with a, = $50. The user would then target altering their savings = $9,950 + $50.

To maximize the flexibility afforded to users, FACET provides counterfactual explanations in
the form of a tuple (R, x*), where x* is the nearest point to x in R and indicates the minimum
effort alteration required to fall in R. The user can then select a value x; € R with sufficient
robustness. In Sec. 4.4, we design algorithms for generating the initial region that maximizes «
without substantially impacting the explanation distance.

Counterfactual Regions as Hyperrectangles. While the above (radial) « provides a strong
guarantee of region robustness, it may lead to some misunderstanding as it causes the acceptable
variations in one feature to be dependent on the observed variations in all other features. For
example, given R centered on x” with a = $100, x’ is robust to a variation of +$100 in income OR
+100 in savings, but not both. This could make it hard for a user to plan effectively, especially
in higher dimensions. To make the robustness guarantee for each feature independent and easy
to comprehend, we refine the concept of counterfactual regions to correspond to n-dimensional
axis-aligned hyperrectangles H as below.

Definition 4. (Hyperrectangular Counterfactual Region H.) Given a counterfactual region R
as in Def. 3. For each feature j, let 01 and 0;u specify a lower and upper bound. Then {0;; < x[j] <
0ju}Vj describes the set of points x whose j'* feature value falls within these bounds. Let 0,1, 0;u be
selected such that all points within the bounds are also in R. We can represent these bounds as:

H= O 6 ... O

Oww b ... O
This representation naturally fits user understandings of feature ranges such as $1,000 <
income < $5,000. Further, as all points in H are also in R (H C R) they are guaranteed to be
of homogeneous class (Prop. 1). Thus, a user can still select x; € H as a counterfactual example
(Prop. 3) and recover a minimum robustness guarantee (Prop. 2). Representing regions as hyper-
rectangles also allows the minimum robustness guarantee specified by « to be divided among each
feature to provide feature independence while maintaining the region properties from Def. 3. In
theory any set of bounds which fits Def. 4 is sufficient, but per Rem. 3 large regions are desirable.
Therefore, we can select the maximum H that is fully contained in the hypersphere defined by
radius « around x” of R. This creates a hypercube which divides the minimum robustness equally
across all axes. As some features may vary more or hold more importance to the user than others,

we consider algorithms that generate non-square hyperrectangular regions in Sec. 4.4.
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2.3 FACET Explanation Query Language

As motivated in Sec. 1, the selection of the best counterfactual explanation depends on a user’s
real-world situation. Thus, to assure personalized explanation, FACET generates counterfactual
region explanations in an interactive dialog with the user. To do this, we design a query language
to express explanation preferences. A FACET example query is shown in Fig. 2.

WITH R AS COUNTERFACTUAL-REGIONS(F)

SELECT TOP-EXPLANATIONS(k) FROM R

WHERE R.Class = DesiredClass

WITH UNALTERED FEATURES: R.Gender, R.Rent

WITH WHAT-IF SPECULATION
R.Income > $6,000 AND R.Income < $10,000
AND R.Rent = $2,000

ROBUST BY R.Widths »>= 2v

ORDER BY DISTANCE(X) WITH WEIGHT W

Fig. 2. Example query for FACET’s explanation analytics.

We adopt a SQL-like syntax as it is more precise than natural language, easily understood by
users, and allows for powerful chaining of query clauses. We tailor each clause to meet one of the
following FACET design criteria for effective explanation analytics.

¢ Explanation Relevancy: For an explanation to be useful, the generated counterfactual should
be substantially similar to the user’s instance as measured by §. Given a set of counterfactual
regions of the desired class R“? and an instance x, the user may want to find the counterfactual
region R* that is closest to x.
R* = argmin 6(x, R;) (1)
R;eRC
where &(x, R;) is the distance between x and the nearest point in R;. As the user may want to
compare several regions of similar distance, FACET supports querying for the k nearest regions.
These semantics are expressed in Lines 1-3 and 9 of Fig. 2.

e Unalterable Features: The user can restrict a set of features whose values should not be altered
during explanation as expressed in the UNALTERED FEATURES clause in Line 4 of Fig. 2. These
could include factors meaningfully not within their control such as race and gender or features
such as rent which they may deem too costly to alter. We specify that a counterfactual region
meets the condition for not altering a feature when at least one point in the region matches the
existing restricted feature value. For example, given an applicant with rent = $3,000, a region H
with bounds $1,000 < rent < $5,000 would not alter their rent.

e What-If Restrictions. A user may also want to restrict the value of one or more features
to a specific value or range of values. These semantics naturally model "what-if" querying.
Such as "what if I got a raise?". Constructing these as "ranged conditional queries" using the
WHAT-IF SPECULATION clause allows users to account for the non-exact nature of such hypothet-
icals, e.g., not knowing the exact dollar amount of a possible raise. An example of this is shown
in Lines 5-7 in Fig. 2. If a user overly constrains a query, e.g., requiring income < $1, FACET may
not find an explanation and will prompt the user to relax their constraints.

e Feature Prioritization. As users may have more difficulty (or a preference for) affecting the
values of some features over others, FACET’s analytics allow the user to assign a weight w; to
each feature to prioritize explanations which alter easily changeable features first. Given this
weight vector w, FACET’s explanation analytics incorporate this user preference as an optional
weighting in the ordering of results as shown in Line 9 of Fig. 2.
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e Explanation Robustness. To account for feature value fluctuations (e.g., varying savings bal-
ance), users may require an explanation be robust to a certain scale of perturbation in one or
more features. FACET s analytics allow the user to specify the minimum required robustness for a
region. Given hyperrectangular regions, robustness corresponds to the width of the hyperrectan-
gle along a given feature axis. FACET supports this through the ROBUST BY clause as in Line 8 of
Fig. 2. As a syntactic shortcut, an equal minimum robustness guarantee p € R on all dimensions
can be expressed by R.MinWidth >= 2p. For features with different expected variations, FACET
supports the condition R.Widths >= 2v, where v € R" is a vector representing the minimum
required robustness along each feature axis.

3 FACET EXPLANATION ANALYTICS SYSTEM

Fig. 3 depicts the FACET framework. To ensure near real-time interactivity of explanation ex-
ploration in spite of the complexity of the explanation space, FACET adopts a database-inspired
approach of precompute-and-index followed by query-by-lookup. Preprocessing Stage: First, the

CLASSIFIER MODEL FACET

1 1

1 | Counterfactual Counterfactual Region | |
| I%I% I'"} " Region Generator [ "®] Manager |
| 1 1 A 1
1 [ . . 1
e o __ o Analytics Engine : H
I P e i Counterfactual |,

o Explanation 1 | Exploration i Region Storage 1
< T Interface |€=|: Counterfactual : 1

1 H Region Loader 1

1 1

. ! Counterfactual !

| Personalized Query L H ; o

> i Region Explanation :| |

- - 1 Index (COREX) i 1
Preprocessing  User Querying_ | =il

Fig. 3. Overview of FACET explanation system.

model creator provides FACET with the trained tree ensemble and a set of representative domain
data, e.g., the model’s training data. Then, FACET’s Counterfactual Region Generator (Sec. 4) in-
telligently creates a set of regions representative of the model’s learned behavior. While multiple
approaches are feasible and could be plugged into our FACET framework, FACET’s generation
algorithm leverages the provided domain data to identify the portions of the feature space which
have realistic feature value combinations. FACET prioritizes the generation of regions in these
areas and stores them in the Counterfactual Region Manager.

Next, we construct FACET’s counterfactual region explanation index (COREX) on these regions
(Sec. 5). COREX is a bitvector-based index for compactly encoding the high dimensional spatial
data used to represent counterfactual regions. By encoding information on the location and size of
each counterfactual region, COREX is able to efficiently retrieve regions from any arbitrary portion
of the input space efficiently, even for large explanation spaces.

Exploration Stage: During online exploration, users submit explanation queries which include
their personalized constraints and priorities via FACET’s explanation query language (Sec. 2.3).
These queries are processed by the FACET Analytics Engine (Sec. 6). During query execution,
the Analytics Engine uses COREX to quickly narrow down on a set of relevant counterfactual
regions as candidates for consideration. These candidate regions are then fetched by the FACET
region manager and a counterfactual example is selected from each region. A final selection of
region-example pairs are returned to the user. Upon examining the returned explanations, the user
may choose to adapt their explanation request to incorporate more refined considerations and
interactively explore until they find the best personalized explanation for their needs.
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4 COUNTERFACTUAL REGION GENERATION
4.1 Counterfactual Regions in Trees

For simplicity, we first describe the process of generating counterfactual region explanations for
decisions of binary decision trees.

Remark 5. (Decision Tree Partitioning.) In a decision tree, each internal node creates a partition
of the feature space, i.e., the node splits the set of all possible points between its two children nodes. As
these nodes split on a single feature, each partition is aligned with an axis of the feature space. This
continues until a leaf node is reached where all points in that partition are assigned the same class.

x[i]

0,
Fig. 4. Example of FACET’s tree region generation.

Therefore, by walking each path from the root to a leaf, we can generate a set of rules that
describe a portion of the input space of a homogeneous class. For example, in Fig. 4, the path p;
from the root to the leftmost leaf defines the rule set {x[i] < 6; Ax[j] < 6;} and creates a partition
of points assigned class A. Further, as each split of the space is axis-aligned, the resulting partition
must be a hyperrectangle in the feature space. We can treat this partition as a counterfactual region
of class A as abstracted in Def. 3 as all points falling into this region are guaranteed to be of class A
and can represent counterfactual examples for an instance with y = f(x) = B.

Remark 6. (Tree Region Extraction.) For each leaf, the set of decision rules that define its region
is a conjunction of all internal nodes leading to that leaf. There will be at least one and at most D such
rules distributed across the n features, where D is the depth of the leaf. Through simplification, we can
obtain at most 2n rules. The resulting rule set can be compactly represented as a matrix H of the form
in Def. 4, with the acceptable values for feature j bounded by 0;; < x[j] < 8;u. For features j not
constrained by the rule set in question, we set 0y and 0, to +co.

Algorithm 1 FACET Decision Tree Explanation

1: procedure ExpLAIN(t, X)

2 Regions = EnumerateLeaf Regions(t)

3 BestDist = oo, BestR = None

4: for R € Regions do

5 L if R.Class == ¢4 A 6(R, x) < BestDist then
6 . BestDist = 5(R, x), BestR = R

7: | return BestR

1: procedure ENUMERATELEAFREGIONS(?)

2 Paths = EnumeratePaths(t), Regions = []

3 for P € Paths do

4: L R = SimplifyRules(P) > Extracts Hyperrect. Region
5 Regions.append(R)

6 return Regions
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Counterfactual Region Explanation in Trees. Following the observations above, FACET can
generate counterfactual region explanations for decision trees. A simple algorithm for the nearest
region explanation of a decision tree ¢ is shown in Alg. 1. In practice, the set of all hyperrectangular
regions H can be enumerated once during preprocessing, and be indexed and stored separated by
class, (H = H” U H?B). This can easily be extended to support an arbitrary number of classes.

Remark 7. (Tree Region Coverage.) As every point in the feature space falls in exactly one leaf,
H will fully tile the space with a total of 2P hyperrectangular regions. Any valid counterfactual region
will be a subset of the regions in H as per Prop. 3.

4.2 Counterfactual Regions in Tree Ensembles

Next, we characterize counterfactual regions in tree ensembles. Here we consider explanation of
ensembles aggregated by majority vote and later generalize to other decision procedures (Sec. 7.1).

Remark 8. (Hyperrectangles in Tree Ensembles.) Given a tree ensemble T = {t,...tr} aggre-
gated by majority vote, a point x is classified as class c when at least [T /2] trees predict t(x) = c. As
the leaves of each tree represent a hyperrectangle of the form in Def. 4 in the feature space (Sec. 4.1),
every point of class ¢ must fall into at least [T/2] hyperrectangles of class ¢ (and at most T such
hyperrectangles). Fig. 5 shows an example of this for an ensemble of T = 3 trees.

B B

A A

ti(x) to(x) ts(x) Tx)
Fig. 5. Example leaf hyperrectangles for an ensemble.
Per Rem. 8, we denote the set of leaf hyperrectangles which x falls into as H, with |H| =
[|'T /2], T]. Then, to generate valid counterfactual regions of a homogeneous class (Prop. 1), we
take the intersection of [T /2] of these hyperrectangles as in Eq. 2.

[T/2]
¢ _ |0 b .. Onr
Rir = QH’_[HlU b ... Onu @)

Remark 9. (Hyperrectangle Intersections.) Let H° denote a set of overlapping hyperrectangles
of class c. We can intersect H® by taking the smallest upper bound 0;y = min; H;.juy and largest lower
bound 01, = max; H;.j; from all H; € H® along each dimension j.

Rem. 9 rests on the properties that (1) the intersection of two hyperrectangles is also a hyper-
rectangle, and (2) leaf hyperrectangles are axis-aligned. While intersecting more than [T /2] leaf
hyperrectangles will generate a valid counterfactual region, we note that the intersection of any
two hyperrectangles is at most the size of the larger. Therefore, taking additional intersections only
reduces the size and robustness of the resulting region (Rem. 3).

Remark 10. (Region Existence.) From Rem. 8, we saw that every point in the feature space is
contained in at least [T /2] leaf hyperrectangles. Rem. 9 finds that intersecting [T /2] such hyperrect-
angles creates a counterfactual region. Thus we can create a counterfactual region of the observed class
at any arbitrary point in the feature space.

In Sec. 4.4, we will exploit Rem. 10 to intelligently select the location and number of counterfactual
regions we generate to prioritize realistic counterfactual explanations.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 242. Publication date: December 2023.



FACET: Robust Counterfactual Explanation Analytics 242:11

4.3 Complexity of Region Set

As we established in Eq. 2, a counterfactual region for an ensemble of trees is defined as the
intersection of [T/2] leaf hyperrectangles. Here we consider the feasibility of enumerating all
possible such regions for an ensemble as we did in Alg. 1 for a single tree.

Remark 11. (Complexity of Region Space.) For an ensemble with L leaves, there are approximately
LCr1/21 intersections of [T /2] leaf hyperrectangles. This results in a number of possible counterfactual
regions which is exponential in the number of leaves, which is itself exponential in the tree depth. With
L ~ 2PT for balanced binary trees of depth D we find the possible number of regions to be:

2PT!
Niegions <
T 2112PT ~ [T/2])!
For an ensemble of T = 100, D = 5, Ny¢gions > 10'%° which is far too many regions to reasonably

check. Additionally, applying branch-and-bound to progressively intersect leaf hyperrectangles is
intractable as this requires computing the “C, pairwise intersections of leaves, an even larger value.

4.4 FACET Region Generation

As analyzed in Sec. 4.3 the number of possible counterfactual regions is too large to fully enumerate.
However, as our goal is to generate actionable explanations, it is not necessary to generate all
intractably many possible counterfactual regions. Instead, we propose a heuristic for selectively
generating a large, but tractable, subset of regions of high utility.

Remark 12. (Realistic Region Utility.) For a region explanation to be actionable for a user, it
must contain realistically achievable combinations of feature values, e.g., a loan explanation that
requires $1 < income < $100 and $10M < rent < $50M is unlikely to be useful to any real user. An
explanation is considered realistic when it lies on or near the data manifold of real instances [11, 12, 37].

Selective Region Generation. Per Rem. 10, we can generate a counterfactual region of the
majority class at any point. Further, Rem. 12 finds that regions are of high utility when they contain
realistic feature value combinations as determined by proximity to the data manifold. Therefore,
given a set of seed points X which follow the realistic data manifold, we can generate a set of
counterfactual regions which contain realistic feature value combinations. While many seed point
selection strategies are possible, if explanation is done in collaboration with the model owner
(e.g., the bank approving loans) it is reasonable to select X as ensemble training data or other
domain-provided representative data. With each seed point used to generate one counterfactual
region, we can augment X as in Eq. 3 to generate an arbitrary number of regions.

~ iid

X; ~ Unif{X} + N (g, 6%), i=1,...,N, (3)
Algorithm 2 FACET Ensemble Region Generation

1: procedure GENERATEREGIONS(7, X)

2 LeafRects = [[] * T], Regions = []

3 fori=1,...,Tdo

4:  LeafRects[i] = EnumerateLeafRegions(t;)

5: for ¥ € X do

6 PredLeaves = Predict(7, x)

7 PredRects = MatchRects(PredLeaves, LeafRects)
8 R = IntersectRects(PredictedRects)

9 if R not in Regions then Regions.append(R)

10: return Regions

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 242. Publication date: December 2023.



242:12 Peter M. VanNostrand et al.

The data augmentation approach of Eq. 3 incentivizes the generation of a diverse set of regions
which fall on or just off the data manifold to provide good coverage of the feature space. The value of
o can also be adjusted for each dataset to control the explanation diversity. Using these augmented
seed points X, we selectively generate regions for ensemble 7~ = {t;...t7} as in shown Alg. 2. Here
Predict identifies the leaf each tree predicts for x, and MatchRects selects the hyperrectangle
which corresponds to that leaf. The result of this is a total of T hyperrectangles Hz, where at least
[T/2] are of the observed class 7 (x;) = ¢,. We denote this set WCO To obtain a Counterfactual

region of class c,, we can take the intersection of [T /2] hyperrectangles from ?{f" as in Eq. 2.

Intersection Selection. As there are exponentially many (*C rr/21) valid selections of intersections
to choose from in Alg. 2, we design IntersectRects using the following size maximizing heuristic
(per Rem. 3). For each hyperrectangle H;, we apply a selection priority function p(H;) as the total
number of unbounded edges, i.e., the number of axis directions along which the hyperrectangle
makes no restrictions (of the 2n total edges per region).

p(H;) = iHi:jU =00+ iHi:jU = —00 (4)

j=1 j=1

We then sort 7{;_" by largest p and take the intersection of the first [T/2] hyperrectangles.
This minimizes the number of restrictions placed on the region (and therefore the user) and
encourages generation of large regions with strong minimum robustness guarantees. The final
set of counterfactual regions #(s can then be indexed and analyzed using FACET’s explanation
analytics. We experiment with generating between 10% and 10° regions in Sec. 7.6.

4.5 Generalizing FACET to Other Ensembles

FACET’s region generation in Alg. 2 is designed to be extensible to other ensemble types by simply
altering the Intersect Rects procedure (Sec. 4.2) to suit the ensemble aggregation technique.
This allows FACET’s other explanation indexing and querying processes to remain the same.

Soft Voting. If the ensemble from Sec. 4.2 is aggregated by soft voting — i.e., the outcome is the class
with largest average probability across predicted leaves — we alter Intersect Rects as follows.
Rather than intersecting exactly [T /2] hyperrectangles, hyperrectangles are intersected in order of
Eq. 4 until class ¢ reaches a majority probability. The resulting regions will match Def. 3.

Gradient Boosting Trees. Given an ensemble 7 trained by gradient boosting (as in XGBoost),
each tree t; is a regression tree predicting the errors of t;_;. If we assume 7 is trained with log loss
for binary classification, the class 7 (x) = ¢, € {ca,cp} of a point x is determined as follows. Let
T(x) = to(x) + Zl 1 nti(x) be the log-odds of x where 7 is a scalar learning rate, and ,(x) some
initial prediction (typically class priors). Then 7 (x) = c4 when sigmoid(r(x)) > 0.5, cg otherwise.
In this case, many options are possible for Intersect Rects, but we propose two strategies. 1) the
Complete Intersection of the predicted leaf rects, and 2) the Progressive Relaxation of this intersection.
In the relaxation case we compute the class probabilities from intersecting all leaves and then
progressively remove intersections in reverse ensemble order until the probability can no longer
guarantee 7 (x) = c,. Both produce regions meeting Def. 3. We evaluate these strategies in Sec. 7.3.

5 FACET INDEX: DESIGN AND ALGORITHMS

Next, we describe FACET’s counterfactual region index COREX which is designed to support the
execution of FACET’s analytics queries over a large number of counterfactual regions.
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5.1 Index Design Requirements

As outlined in Sec. 2.3, FACET’s analytics seek the nearest region subject to a set of personalized
constraints and weights. As each region is represented as an n-dimensional hyperrectangle (where
n is the dimensionality of the input data), the explanation analytic task is equivalent to a high-
dimensional personalized spatial k-nearest neighbor search. An index for this task must be

e Expressive to handle complex user considerations such as feature value constraints, unalterable
features, and feature prioritization

o Scalable in the number of dimensions to support high dimensional decision spaces with multiple
restrictions per dimension, yet

o Lightweight to work inside memory and service queries in real time per the need for human-in-
the-loop interactivity.

As we discuss in Sec. 9, lightweight indexing for high dimensional spatial data is understudied,

with off-the-shelf indices failing to meet the above set of requirements. Thus we develop COREX

(counterfactual region explanation index) to enable the selection of arbitrary subsets of the generated

counterfactual regions based on their location in the feature space. This enables FACET’s index-

aware queries to identify regions that are proximal to the explained instance and constraints. To

achieve this, COREX develops a set of predicates that intelligently partition the feature space and

encodes the location of each region with respect to these predicates as a set of bit vectors. As we

show in Sec. 7.6, this approach leverages the efficient bitwise operations of modern CPUs to support

kNN searching in near real-time.

5.2 FACET’s COREX Region Encoding

We design a highly efficient bit vector based encoding of counterfactual region locations using the
following strategy.

Definition 5. (Partitioning Predicate P.) Given a counterfactual region H, let a predicate P
partition the feature space on feature j by some threshold 0 such that P(H) = True if and only if some

point in H meets P.
P(H) — dx; € H | xi[j] <0

Definition 6. (Bit Vector Region Encoding b.) Given a set of counterfactual regions H and a
predicate P. Let a bit vector b = bitvector(H, P) be a sequence of bits of length |H| where b[i] = 1
indicates that P(H;) = True and b[i] = 0 indicates P(H;) = False.

Tab. 1 shows example bit-vector values for the predicate P; = (Income < $5,000). As counterfac-
tual regions are represented as bounded axis aligned hyperrectangles, P = (j < 0) can be evaluated
simply with respect to the upper bound of the region 6 < H;.jy, while P = (j > ) with respect
to the lower bound 6 > H;.jr. This allows for efficient computation of a predicate’s value without
explicitly checking every point in the region.

Income, Predicate, .
Record (6L, 00) Py Income < $5.000 Bit Vector
H; (0,1500) True 1
H, | (1700,5700) True 1
Hs | (7000,9000) False 0

Table 1. FACET bit encodings for counterfactual regions.

In COREX, we create several predicates for each feature and precompute their values for all
regions during preprocessing. This allows COREX to rapidly evaluate the location of regions by
performing bitwise operations on the bit vectors for each predicate.
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Remark 13. (Bidirectional Predicate Indexing.) Given two predicates Py, P, with associated bit
vectors by, by precomputed over a set of counterfactual regions H. If the predicates partition a feature j
s.t. Py =(j < 61), P, = (j > 0,) and 0, < 01. We can identify the set of counterfactual regions which
fall in this area as P3 = P A P, which can be efficiently computed as the bitwise AND, b5 = by AND b;.

By parsing conditional constraints into bit vector lookups, FACET can search for matching
regions substantially faster than via direct evaluation. For example, if j = income, 68; = $2,000
and 6, = $5,000, the constraint $2,000 < income < $5,000 can be converted into P; and evaluated
via index lookup. Evaluating P; directly on the records in Tab. 1 requires subtracting 6 from each
region’s bounds and checking the result. This totals four operations per region compared to a single
bitwise AND for the lookup. Further, as the bit vector value for each region is a single bit, they
can be packed into words. This allows COREX to compute a predicate on up to 64 regions in one
operation compared to the 256 operations otherwise needed. By creating multi-word bit vectors,
COREX can manage arbitrarily many regions with comparison costs scaling in the number of
words. This grows much slower than the number of regions and remains highly efficient due to CPU
pipelining of simple operations and the execution of multiple bitwise operations per instruction.

While not every query will precisely match these predicates, we can intelligently select the split
values and use precomputed bit vectors to greatly reduce the number of regions we must consider.
For example, if the user conditioned income < $4,000 rather than $5,000 in their query, we could
select the nearest larger predicate (still P;) to compute P; as before, and filter the resulting small set
of regions to ensure they meet the constraint. We can also check if the defined region is non-empty
with a single bit count operation. This is exploited in FACET’s query processing to efficiently check
if the lookup finds any matching regions. In Sec. 5.3, we detail COREX’s strategy for predicate
selection, while in Sec. 6 we describe how COREX is leveraged for use in additional analytics.

5.3 FACET’s COREX Layout

To enable rapid selection of counterfactual regions based on their location, COREX generates a set
of predicates which partition the feature space along each dimension. These predicates are then
encoded in bit vectors and stored such that ANDing together bit vectors from multiple axes selects
just the regions which fall in a specific portion of the feature space. COREX selects split values
along each axis to evenly distribute the regions for optimal efficiency. We also create a separate
index for regions of each class.

X[2] . —_ —_
Hl! E H, b
|LHe b |
S22 T .E ...... .I__I..'----.--. -
4 7 H9
9| Hs| | H, 4H8|::|| 4
’ , ] b2,2U
10 i i bZ.lU
H E H., E

S11 S12 X[1]
Fig. 6. FACET bit vector index with |H¢| = 13 and m = 2.
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Definition 7. (Selected Split Values S;.) Given a feature space X € R" and a set of hyperrectangular
counterfactual regions of class c, H®. Let Sj = sj1 ...sjm be a set of m split values along dimension
j- Let B; be the set of unique upper and lower bounds along dimension j sorted in increasing order
(IBj| < 2|H|). Then select a split value s; . as every |B;|/(m + 1) bounds, distributing the remaining
|B|%(m + 1) bounds evenly among the first intervals.

Repeating this for each axis results in an n-dimensional grid structure of non-zero width intervals
with an approximately equal number of hyperrectangles along each row and column. An example
of the partitioned space is shown in Fig. 6 for a set of twelve hyperrectangles. Note how the width
of each interval is adjusted to contain approximately two regions in each grid cell.

Bi-directional Predicate Construction. To partition the feature space based on these split
values, we construct two predicates per split. For the kth split value of feature j, s, we define
the predicate bounded below by the split as Pjx;, = (x[j] > s;x) and the space bounded above as
Pjxu = (x[j] < sjk). This corresponds to 2m predicates which can be applied to H¢, to generate
2m bit vectors each of length |H¢|. As some hyperrectangles span across the split values, they will
have points on either side of 8. Thus, the lower bound bit vector bj x; = P; x1 () is not necessarily
the inverse of upper bound bit vector b; = Pj v (HC).

COREX Access Operation. The bit vectors COREX constructs can then be used to quickly look up
hyperrectangles that fall into a particular portion of the feature space. For example, in Fig. 6, the grey
region denotes the portion of the feature space that matches the predicate P = (551 < x[2] < s2.2)
selected by the bit vector computation (by 2 AND by 11). Our index returns the hyperrectangles
{Hy, Hs, Hg, H7, Hg, Ho }, as they match this predicate.

6 FACET EXPLANATION QUERY PROCESSING

We now introduce our analytics execution engine that leverages FACET’s COREX to efficiently
process user interaction queries to serve explanations in real time.

6.1 KNN Explanation Search

As in Sec. 2.3, the user may want to find relevant counterfactual regions as those near the explained
instance. We offer two processing strategies for kNN explanation search. (1) a custom low-overhead
strategy for k = 1, and (2) a general strategy for kNN with k > 1. As computing the distance
between x and every region in H is prohibitively expensive, FACET leverages COREX to look-up
regions in the neighborhood of x. Then, we compute the precise distance to these nearby regions
and return the k-nearest.

X[2] D |:| x[2]
] DE” L] @
[]
[]

- []

L]

s

x[1] X[1]

Fig. 7. Example of FACET progressive radius kNN search.
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Definition 8. (Neighborhood Hypersphere HS.) Given an instance x, let the neighborhood of x
be defined by a hypersphere HS of radius r centered on x such that HS = {x; € R" | §(x,x;) <r}.

To search COREX for counterfactual regions in this neighborhood, we find the set of predicates
which minimally enclose HS by choosing the nearest smaller/larger split value along each axis.

Definition 9. (Enclosing Hyperrectangle EH.) Given a hypersphere HS and a set of m split
values Sj along axis j. Select the nearest lower sj;, = max{s € S; | (x[j] —r) —s > 0} and nearest
higher split values sj;; = min{s € S; | s — (x[j] +r) > 0}. Then let EH be a hyperrectangle where

S1L SoL SnL
S1U  S2U . SpU

EH =

We can then select the counterfactual regions which fall into EH by ANDing together the bit
vectors from each axis as bgg = ANDj—; p, bji AND bjy where b;; and b;y are the bit vectors
corresponding to the predicates P(j > s;;) and P(j < sjy) respectively. Here bgg[i] = 1 iff the
counterfactual region H; falls within EH. By performing a bit-count on bgf;, we can determine the
number of regions in this space. Note that some regions may fall in EH but outside HS and are
filtered for exclusion from the neighborhood search. Examples of HS and EH are shown in Fig. 7.

Algorithm 3 FACET Region Neighborhood Search

: procedure COREXNN(x)
: BestDist = oo, BestR = None

1

2

3 r = rinit,bSearched = BitVector([0 * Nyegions])
4: while BestR is None A BestDist > r do

5: HS = HyperSphere(x,r)
6

7

8

9

EH = EnclosingSplits(HS)
bU,bL = COREXVectors(EH)
bMatches = BitVector([0 * Nyegions])
: forje1l...ndo
10: bAxisMatch = bL[j] AND bU[j]
11: . bMatches = bMatches AND bAxisMatch
12: bNew = bMatches XOR bSearched
13: if CountBits(bNew) > 1 then
14: Regions = COREXLoad(bNew)
15: for R € Regions do
16: L if 5(R, x) < BestDist then
17: | . BestDist = 5(R, x), BestR = R
18: . r=r+rstep
19: | return BestR

Neighborhood Search. Using this neighborhood concept, FACET searches for counterfactual
region explanations using the progressive radial search shown in Alg. 3. As regions are indexed
by class, we search the index for the desired class. By searching with increasing radii, we can
identify the nearest counterfactual region to x as shown in Fig. 7. Further, by tracking the bit vector
bSearched, we can determine which regions have already been checked. This allows FACET to
avoid recomputing the distance to the same region twice. To modify Alg. 3 to search for k-nearest
regions, we use a priority queue of tuples (distR, R), with the search completing when the queue
contains k elements and the k’* element has dist < r. Regions further than the k" element are
automatically discarded to minimize memory overhead.
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Fig. 8. Constrained and prioritized FACET searches.
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6.2 Explanation Refinement Processing

Users may want to constrain the features used in an explanation (Sec. 2.3). Constraints include
both unalterable features U (whose values can’t be changed) and restricted feature values when
the user provides a range of acceptable values along one or more features.

Definition 10. (Constraint Hyperrectangle CH.) Let A be a set of tuples (a;r, ajuy) provided
by the user where aj; and ajy represent the minimum and maximum allowed values for a feature
Jj. Let U be a set of user provided unalterable features. Then, for all featuresVj € U append a tuple
ajr = aju = x[j] to A. For all features not yet restricted in A, let aj;, = —oo, ajy = co. The result of
this is a set of minimum and maximum allowable values for all n features which defines a constrained
search area in the feature space. We can represent this as a constraint hyperrectangle CH.

alr asr, anl
CH = "
aiy au .- 4nU

To consider only this constrained area during the nearest neighbor search, CH can be intersected
with the neighborhood hypersphere HS, before the enclosing hyperrectangle EH is constructed.
The result is depicted in Fig. 8 for a constrained search from Fig. 7.

6.3 Prioritized Feature Explanations

As changing certain features may have different real-world difficulties for the user, FACET’s
analytics incorporate a set of feature prioritizations for the explanation search.

Definition 11. (Prioritized Explanation Distance (x, x’, w).) Given an instance x, explanation
x’, and a weight vectorw € R" where w; is proportional to the ease of altering feature j. Let 5(x,x’, w)
be a weighted distance function such that features with w; = 1 have a normal cost, and features with
w;j > 1 have a decreased cost.

Using this distance function, FACET defines the search area as {x; € X | 6(x, x;, w) < r}. This
alters the search region from a hypersphere to a hyper-ellipsoid whose semi-axes are scaled by the
weights vector. Fig. 8 shows this for w = [1 2]. The hyper-ellipsoid search region allows FACET to
seamlessly integrate feature prioritization into the kNN search and empowers users to search with
personalized weights without having to construct extra indices.
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Global Feature Weighting. If FACET is given non-normalized data, we include a global feature
weighting scheme to ensure that no feature is unwantedly favored for alteration. For this "equal
weighting" case, we compute a weights vector w(9) proportional to the range of each feature as
w9 = range(X) © min{range(X)}. w9 is then combined by element-wise multiplication with
the user weights during querying (w = w9 © w®)). Model designers also may set their own global
weights directly as desired using their knowledge of the specific domain.

6.4 Minimum Robustness Constraint

As shown in Sec. 2.2, counterfactual regions provide critical information about the robustness of
an explanation to perturbation. To incorporate users’ real-world robustness constraints, FACET
provides two levels of abstraction. The first strategy is a minimum radial perturbation requirement.
Given a user provided value p € R, FACET will return only counterfactual regions which include
at least one point that falls at least distance p from all of the containing region’s edges (Ix; €
R|Vjé(0r,x)) < p AS(Bju,x]) < p). In Alg. 3 this constraint is checked against regions which
fall within the search hypersphere. For features with different expected variations FACET also
supports a minimum robustness constraint along each axis. This takes the form of a vector v € R",
where v[j] specifies the minimum perturbation along each feature which the explanation must be
robust to. Querying with minimum robustness constraints is thus a straightforward but powerful
operation for ensuring that explanations are actionable for the user.

7 EXPERIMENTS
7.1 Experimental Setup and Methodology

Experimental Setup. Experiments are run on a virtual machine with 4 EPYC-7543 CPU cores and
16GB of RAM. All code is developed in Python 3 and is released on GitHub? for reproducibility.
Methods. We evaluate FACET against state-of-the-art model agnostic and model transparent
counterfactual explanation methods.

e MACE [12] is the state-of-the-art model agnostic method, it uses predicted class probabilities
to estimate the model’s behavior in the neighborhood of the explained instance.

e OCEAN [37] is the state-of-the-art model transparent method, it encodes explanation as a
mixed integer programming task solved via the Gurobi optimizer.

e RFOCSE [16] is a recent technique for explaining tree ensembles which produces sets of
counterfactual examples by fusing the ensemble into a single tree during explanation.

e AFT [45] is a popular method for explaining tree ensembles which generates an altered instance
for each tree leaf and checks to see if any hold as explanations for the ensemble.

Al Models and Datasets. To demonstrate FACET’s capacity to generate counterfactual explana-
tions, we train a Random Forest (RF) or Gradient Boosting Classifier (GB) ensemble using the Scikit
Learn [39] package on eight benchmark datasets. Results for the five datasets in Tab. 2 are shown
here, with an additional three on GitHub.” Data is preprocessed as in [12, 37] by one-hot encoding
categorical features, numeric encoding discrete features, and normalizing numeric features on [0,1].
Requirements for validity of these encodings are enforced by FACET and applied to all methods
except AFT (due to lack of support). For each dataset, we train ensembles of various configurations
using an 80/20 train/test split and sample a batch of 20 instances from the test set for explanation.
Training data is used as FACET’s seed data per Eq. 3 and Scikit parameters are left as default. We
set FACET’s number of regions and index granularity per the results of Sec. 7.6.

Zhttps://github.com/PeterVanNostrand/FACET
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Dataset Abbrv N n | nog
Adult [14] adult | 45222 | 11 41
Breast Cancer Wisconsin [14] cancer 699 9 9
Credit Card Default [14] credit | 29623 | 14 14
MAGIC Gamma Telescope [14] magic | 19020 | 10 10
Spambase [14] spambase | 4600 | 57 57

Table 2. Dataset characteristics, N instances and n features before and after one-hot encoding.

Metrics. Counterfactual examples are evaluated on ¢, the average time in seconds to explain a
sample; the average explanation sparsity s, i.e. the number of features changed; proximity §; and &,
the average L1 and L2 norm distances; and % validity, the percent of returned explanations which
are correctly counterfactual [35]. We report the average of these metrics for each batch and repeat
the training and explanation process 10 times, averaging the results.

7.2 Counterfactual Example Quality - Random Forest

We evaluate FACET against state-of-the-art explanation methods by comparing the nearest point in
FACET’s counterfactual regions to counterfactual examples generated by existing methods. As these
methods suffer from slow runtimes we select an ensemble with T = 10, D;,,5x = 5 (RF). The results
are shown in Tab. 3 with distances J;, §, reported as multiples of FACET’s. As MACE and RFOCSE
struggle to generate explanations in tractable time, we apply a 300 second max explanation time
per instance, after which explanation is terminated. We report the percentage of valid explanations
found in that time. For cancer and spambase RFOCSE had near 0% validity within the time limit, so
we rerun it for one test iteration with unlimited time. These results are marked with *.

Dataset ADULT CANCER* CREDIT MAGIC SPAMBASE*

tl Sl il &1 %7 tl Sl 6l &l %7 tl Sl &l &1 27| tl &l &l &1 %7 tl &l &l &1 %17
FACET |0.108 1.68 1.00 1.00 100 |0.094 4.33 1.00 1.00 100 |0.128 4.54 1.00 1.00 100 |0.003 2.99 1.00 1.00 100 | 0.201 4.47 1.00 1.00 100
MACE 107.4 5.69 70.5 81.4 6852222 30.00 21.2 8.88 100 |190.2 109 9.07 5.77 38.0|2.472 10.0 124 7.61 100 |19.91 57.0 1261 371 100
OCEAN | 0.586 2.44 3.26 297 100 |0.681 11.41 1.43 1.02 100 | 1.721 6.15 2.13 1.97 100 | 1.790 6.30 1.45 1.05 100 |0.464 7.50 0.69 0.64 100
RFOCSE | 56.59 1.40 0.54 0.58 90.5| 1936 4.65 1.29 1.07 100 |202.5 244 0.16 0.21 350 147.0 242 0.87 1.04 950 2208 3.30 4.25 4.51 100
AFT 0.003 1.46 0.76 0.80 96.0|0.002 1.86 0.92 1.26 37.0(0.002 242 1.12 1.22 855|0.004 1.65 0.99 1.24 99.0|0.003 1.98 2.00 3.03 76.0

Table 3. Comparison to state-of-the art counterfactual example generation techniques for random forest
(T =10, Dpgx = 5) in terms time ¢, sparsity s, L1-Norm 1, L2-Norm &2, and validity %.

In Tab. 3, we find MACE’s local permutation approach generates explanations with very poor
distance. Its best case is 6x FACET’s §, distance (credit) and as bad as >1200x FACET’s §; (spambase).
RFOCSE’s explanation distance is fair when it finds an explanation, but has intractable runtime for
some datasets (spambase, cancer). This likely results from the exponential complexity of fusing
the ensemble into one tree. It also frequently fails to find any explanation (failing up to 65% of the
time for credit). RFOCE’s small distance for credit and adult is due to it preferentially failing to
explain instances that lie further from the decision boundary. Thus if methods have % < 100, the
6 values are not directly comparable, but are included for completeness. Similarly, AFT quickly
returns explanations of adequate distance, but produces many invalid counterfactuals (up to 63%
for cancer), rendering it and RFOCSE unfit for practical use. FACET consistently outperforms the
state-of-the-art in explanation time, distance, and validity with only OCEAN being competitive.
We thus compare to OCEAN in more depth in Sec. 7.7.

7.3 Counterfactual Example Quality - Gradient Boosting

Tab. 4 examines FACET’s ability to generalize across different ensemble types including Random
Forest (abbreviated FCT-RF), and Scikit’s Gradient Boosting Classifier [29] with our Complete
Intersection (FCT-GB1), and Relaxed Intersection (FCT-GB2) region generation strategies (Sec. 4.5).
Ensembles here are larger than in Tab. 3 as we selected gradient boosting’s default of T = 100, Dyp,qx =
3 for all three cases. Results for §;, §; are reported as multiples of FCT-RF.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 242. Publication date: December 2023.



242:20

Peter M. VanNostrand et al.

Dataset

ADULT
tl Sl &l &l %17

CANCER
tl bl 6l &l %1

CREDIT
tl Sl &l &l %17

MAGIC
tl Sl &l &l %1

SPAMBASE
tl &l &l &l %1

FC-RF
FCT-GB1
FCT-GB2

0.233 392 1.00 1.00 100.0
0.368 2.60 0.11 0.15 100.0
0.342 2.50 0.08 0.12 100.0

0.110 11.86 1.00 1.00 100.0
0.059 8.08 0.50 0.60 100.0
0.048 7.54 0.47 0.58 100.0

0.129 6.31 1.00
0.129 4.15 0.13
0.128 4.10 0.12

1.00 100.0
0.14 100.0
0.14 100.0

0.007 4.24 1.00 1.00 100.0
0.006 4.86 0.78 0.68 100.0
0.006 4.83 0.78 0.68 100.0

0.036 11.04 1.00 1.00 100.0
0.056 7.75 0.51 0.61 100.0
0.056 7.66 0.49 0.59 100.0

Table 4. Evaluation of FACET explanation approaches on gradient boosting and random forest ensembles
(T = 100, Dppax = 3) in terms time ¢, sparsity s, L1-Norm 81, L2-Norm &2, and validity %.

Here we find that FACET generalizes well to other ensemble types with both approaches for the
gradient boosting ensemble having similar explanation time and lower explanation distances than
the random forest case, with the complete intersection approach being slightly more distant. Thus,
if seeking models for low cost explanation, designers may wish to consider using gradient boosting
ensembles in place of random forests when appropriate.

7.4 Explanation Robustness

Next, we compare the robustness of counterfactuals provided by FACET’s regions to the robustness
of counterfactual examples from state-of-the-art methods. To do this, we explain an instance with
each method and perturb the resulting counterfactual example 100 times along uniformly random
sampled vectors. We repeat this for varying perturbation sizes and record the ratio of perturbed
points which are valid explanations. We generate new perturbation vectors for each instance.
Counterfactual examples for FACET are selected to be centered in the returned region. The results
of this are shown in Fig. 9 averaged over 10 randomly selected instances (RF, T = 10, Dpqx = 5).

—4— FACET OCEAN =#= MACE =%= RFOCSE == AFT
(a) ADULT (b) CANCER (c) CREDIT (d) MAGIC (e) SPAMBASE
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Fig. 9. Evaluation of nearest explanation robustness to varying random perturbation size (percent of space).

Here we find that FACET’s explanations are substantially more robust than state-of-the-art
methods as seen in the much higher validity of the perturbed explanation set. Notably, only MACE
has comparable robustness to FACET. This is a result of MACE’s poor explanation distance which
causes its counterfactuals to be far from the nearest decision boundary. The same is true for OCEAN
on the credit dataset. Values for MACE and RFOCSE could not be generated for credit due to their
high failure rate on this data. All methods showed lower validity on credit compared to other
datasets, indicating that the ensemble has learned small segmented partitions. Overall, FACET
obtains higher robustness on average than its competitors without sacrificing explanation distance.

7.5 FACET Explanation Personalization

To demonstrate that FACET’s analytics can be personalized to meet user needs in interactive time,
we sample instances as in the batch methodology above (RF, T = 100, D,,,x = None). For each
batch, we query FACET to generate explanations for varying values of k and under varying sets of
feature-value and minimum robustness constraints.

Min Robustness. Fig. 10a-c show the effect of user provided minimum robustness constraints on
FACET’s explanation. We find that a user can easily obtain an explanation robust to perturbations
up to 10% of the feature space with negligible impact on explanation distance (10b), runtime (10a)
and sparsity (10c). This demonstrates FACET’s ability to provide users with the power to obtain
their desired outcome on even difficult datasets such as credit.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 242. Publication date: December 2023.



FACET: Robust Counterfactual Explanation Analytics 242:21
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Fig. 10. Evaluation of FACET’s explanation analytics with diverse query workloads.

Effect of Constraints. To evaluate user constraints, we vary the number of constraints applied,
N.. We randomly select features to constrain and the applied min and max allowable values. The
particular constraint values are selected from a random uniform distribution on [0.1, 0.49] for lower
bounds and [0.51, 0.99] for upper bounds for numeric features. This ensures the constrained region
has a non-zero volume. Discrete features were randomly constrained to one valid value; while binary
features were not constrained due to the limited options. The result of this is shown in Fig. 10d.
Here we observe that as N, increases, the time needed to execute FACET’s explanation search
decreases. This is because the application of constraints by FACET’s constraints hyperrectangle is
highly efficient when applied via COREX and the more constraints applied, the smaller the search
region. This is beneficial for users as COREX enables their subsequent explanation refinement
queries to execute increasingly quickly, allowing for easy fine-tuning.

Effect of k. Fig. 10e shows FACET’s query time for different values of k, the number of requested
explanations per instance. Here we find that FACET can service users with many counterfactual
regions with little additional latency compared to k = 1, empowering users to compare many
explanations using one query. The higher runtime for adult is a result of enforcing its many one-hot
encoded features, a process which is not yet optimized in our code.

7.6 FACET’s COREX Index Evaluation

To demonstrate FACET’s ability to efficiently generate and index a large number of candidate
counterfactual regions with COREX, we evaluate FACET’s performance while varying the number
of regions generated from N, = 100 to 100,000. We then explain samples according to the batch
methodology above. Here we use FACET’s kNN query (Sec. 6.1) with k = 1, m = 4. (RF, T = 100,
Dpax = None). Region seed points are generated via the augmentation strategy from Eq. 3.
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Fig. 11. Evaluation of FACET’s explanation analytics using COREX, our counterfactual region index.
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Fig. 12. Evaluation of query response time with and without COREX, FACET’s bit-vector based counterfactual
region explanation index. Varying Ny, the number of indexed counterfactual regions.
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Index Construction. Fig. 11a shows the total generation and indexing time for counterfactual
regions during preprocessing. Here we see that FACET can generate and index a very large number
of regions in just a few minutes, even on high dimensional data.

Region Distance. Fig. 11c shows the average explanation distance resulting from searching these
regions and Fig. 11d the average sparsity. We observe that FACET’s region generation algorithm
(Sec. 4.4) achieves a consistent explanation distance while selecting only a small subset of the
exponentially many possible regions. Based on these results, we select N, = 20,000 for cancer,
magic, and spambase, and N, = 50,000 for adult and credit.

Region Searchtime. Fig. 12 compares the average time needed to process a kNN query using
COREX as compared to a linear scan of the regions. Here we observe that COREX greatly accelerates
query execution and enables FACET to maintain real-time interaction even while searching up to
100,000 counterfactual regions.

Effect of Index Granularity. As the number of bit-vector intervals generated per feature (m)
affects explanation time we analyze this parameter in Fig. 11e. As larger values of m result in a
larger index, we progressively increase the value of m until addition of intervals does not benefit the
explanation time. We select a final value of m = 16 for all datasets which is used in all experiments.

7.7 Model Scalability Evaluation

Next, we evaluate the impact of varying Al model complexities to demonstrate that FACET is
capable of generating relevant counterfactuals in interactive time for even complex models. We
generate explanations for ensembles of size T = 10...500 (RF, D, = 5). Given the results of
Sec. 7.2, we select OCEAN as the closest competitor to FACET due to the poor explanation distance
of MACE, the frequent invalid explanations of AFT, and the extremely poor runtime of RFOCSE.
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Fig. 13. Explanation time as a function of model complexity. Varying number of trees T.
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Fig. 14. Explanation distance as a function of model complexity. Varying number of trees T.

Fig. 13 compares the average explanation time for FACET and OCEAN. Here we find that
OCEAN’s runtime is exponential in the ensemble size, making OCEAN unsuitable for real time
explanation and precluding OCEAN from being used as part of an interactive process. Indeed for
adult and credit, the runtime grows so rapidly that for T > 50 OCEAN hits its internal runtime
limit of 15 minutes for every instance and produces no valid explanations. Comparatively, FACET’s
index-aware queries leveraging COREX can generate explanation in interactive time regardless
of ensemble complexity. Further, Fig. 14 compares average §; distance for both methods. Here
we observe that FACET’s explanations are comparable to those generated by OCEAN in terms
of explanation distance, while providing the added guarantee of explanation robustness and the
flexibility of personalization via real-time explanation analytics.
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8 PRELIMINARY USER STUDY

To examine FACET’s explanations in a human context, we conduct a survey of 15 participants
examining the between-groups effect of explanation type (Region vs Example) on task performance.
Explanation Generation and Display. For the study, we use a Kaggle dataset [23] of loan approval
information and train a random forest model to predict Loan Approval (binary reject/accept)
from Applicant Income, Coapplicant Income, Loan Amount, and Loan Term. We then generate
Counterfactual Region explanations for a set of rejected instances using FACET. From each region
we also generate a traditional Counterfactual Example matching the state-of-the-art. We present
the explanations to users as a table of feature-values. Region explanations were presented as ranges
along each feature, e.g., $100 — $500, and Example explanations as its specific value, e.g., $300.
Study Design. In the survey, each respondent was introduced to the loan scenario, randomly
assigned to a group (7 for Examples, 8 for Regions), trained to read the explanations, and then
asked two evaluation questions. Attention checks were used to ensure respondents read the given
material and results discarded from those who failed a check, this left 6 respondents per group.
Evaluation of Understanding. To assess the effect of explanation type on understanding, respon-
dents were presented with a Region or an Example explanation for a rejected instance and a new
similar instance of unknown outcome. They were then asked to predict the model’s classification
for the new instance. We asked two such questions and scored respondents compared to the true
model behavior for an accuracy score ranging 0-2. On this score, respondents on average made
more accurate predictions of the model’s behavior using Regions (2.0) compared to Examples (1.83).
Overall Takeaway. These results suggest that FACET s novel Counterfactual Region explanations
may improve a user’s understanding of the model more than state-of-the-art Counterfactual
Example explanations. While these initial results are promising, an in-depth evaluation study
examining a larger cohort across a wider variety of metrics is needed for a full assessment.

9 RELATED WORK

Non-counterfactual Explanation. Explanation for tree ensembles traditionally identified feature
importance, namely, at an ensemble level using metrics like Gini Index [7] and an instance level
via model-opaque approximation techniques [32, 41]. However, these techniques cannot produce
counterfactuals. Approaches exist for fusing ensembles to single interpretable trees [10, 42], but
require approximation and are unfit for counterfactual explanation.

Counterfactual Explanation. A set of model-opaque methods generate counterfactual examples
via gradient access [11, 28, 35] but require differentiable models. Later works extend to non-
differentiable models using local approximation from predicted class probabilities [12, 18, 40].
Counterfactual generation has also been considered via genetic algorithms [19, 43, 44] similar to
adversarial attacks. Of model transparent approaches for tree ensembles, initial work AFT [45]
generated explanations via exhaustive enumeration of altered instances and often failed to generate
valid counterfactual examples (Tab. 3). A set of methods [9, 25, 37] convert ensemble explanation to
an integer programming task solved by optimization. These methods can locate distance-minimal
counterfactual examples, but lack suitable personalization and as shown in Fig. 13 have a runtime
exponential in the ensemble size. RFOCSE [16] attempts to generate sets of counterfactual examples
by merging the entire ensemble to a tree. Yet as shown in Table 3, it also reaches intractable runtimes
for some datasets on even small ensembles. Recent work [31] approximates tree ensembles via
differentiable neural networks and proceeds similar to gradient-based model-opaque methods. All
but [18] generate counterfactual examples and so lack the critical component of explanation robust-
ness. While [18] provides approximate counterfactual rule sets, the approximation process renders
it incapable of definitively specifying the class of points in the rule sets. Recent work [15] attempts
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to find counterfactuals which hold after model retraining, a different consideration of robustness
than FACET. This approach cannot provide the interactive user understanding of FACET’s analytics
nor guarantee robustness to perturbations as provided by FACET’s regions.

Indexing Techniques. Spatial nearest neighbor search has largely been driven by GIS systems.
There are a plethora of spatial indices for kNN search: Quad Trees [21], RTree-based methods [4,
5, 24], and others. However, most are designed for lower dimensional spaces and perform poorly
at high dimensions [5]. On the other hand, kNN methods for high dimensional data tend to
perform approximate nearest neighbors search via hashing [20, 22], partitioning [6, 36], and graph-
based [13, 33] approaches. Unfortunately, these works tend to operate on point data rather than
spatial data. As explanation region analytics necessitates high-dimensional spatial NN search, an
understudied field, with searches subject to personalization constraints, existing standard indices
are insufficient for use in FACET and we develop a custom-tailored solution.

10 DISCUSSION AND FUTURE WORK

FACET opens a new area of research in explanation analytics, namely in developing paradigms
for human-in-the-loop exploration of the explanation space rather than simply generating static
explanations. After all, explanations aim to help humans understand, gain trust, and affect change,
all processes which require human input. As such new modalities for communicating, exploring,
and interacting with explanations using visual and/or natural language models hold promise.
On the database side, FACET pushes the state-of-art in new classes of queries, query processing,
indexing, and optimization for realizing these novel explanation paradigms. Further work could
also study the generation of FACET’s region explanations for other model types; from traditional
techniques to more complex neural networks, and in new ways such as dynamic on-the-fly region
generation. This would bring FACET’s concept of robust user-centric explanation to a wider array
of systems. While FACET’s core counterfactual region abstraction, representation, indexing, and
analytic components may remain applicable, new research is needed into generating counterfactual
regions in new types of models and to explore the possibilities of explanation indexing.

11 CONCLUSION

We propose FACET, the first system for robust personalized explanation of decisions made by Al
models in general and tree ensemble-based models in particular. FACET’s explanation analytics,
backed by our custom bit-vector based explanation index COREX, empower users to identify
actionable explanations through iterative human-in-the-loop explanation refinement. Our novel
region explanations are simple to understand and provide guarantees of robustness critical for
the real-world application of explanations. Our experiments demonstrate that FACET generates
these robust explanations an order of magnitude faster than state-of-the-art XAl systems while
maintaining similar explanation quality and leading to improved user understanding.
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