
Recurrent axion stars collapse with dark radiation emission and their
cosmological constraints

Patrick J. Fox,1 Neal Weiner ,2 and Huangyu Xiao 3

1Particle Theory Department, Theory Division, Fermilab, Batavia, Illinois 60510, USA
2Center for Cosmology and Particle Physics, Department of Physics, New York University,

New York, New York 10003, USA
3Astrophysics Theory Department, Theory Division, Fermilab, Batavia, Illinois 60510, USA

(Received 13 March 2023; revised 14 June 2023; accepted 30 October 2023; published 27 November 2023)

Axionlike dark matter whose symmetry breaking occurs after the end of inflation predicts enhanced
primordial density fluctuations at small scales. This leads to dense axion minihalos (or miniclusters)
forming early in the history of the Universe. Condensation of axions in the minihalos leads to the formation
and subsequent growth of axion stars at the cores of these halos. If, like the QCD axion, the axionlike
particle has attractive self-interactions there is a maximal mass for these stars, above which the star rapidly
shrinks and converts anOð1Þ fraction of its mass into unbound relativistic axions. This process would leave
a similar (although in principle distinct) signature in cosmological observables as a decaying dark matter
fraction, and thus is strongly constrained. We place new limits on the properties of axionlike particles that
are independent of their nongravitational couplings to the standard model.
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I. INTRODUCTION

The stars in our galaxy are made of ∼1057 fermions
bound together by gravity and protected from collapse by
thermal pressure or fermion degeneracy pressure. In the
presence of a light, long-lived boson similar gravitationally
bound states of that boson may exist, but in the absence of
nuclear burning they are instead supported by gradient
pressure, which is a result of the uncertainty principle.
Axion stars are one such example of these bosonic objects.
In the Standard Model, stars convert approximately 0.1%

of their mass energy into radiation over their lifetime.
The small energy released (compared to rest mass) in the
pp-chain, for instance, is due to the relatively small binding
energy inside the star. Only very compact objects like
neutron stars are relativistic in nature. Moreover, because of
baryon number conservation, there is a limitation on overall
energy release given the (approximately degenerate) neu-
trons and protons which must remain in the final state.
However, in the dark sector, there are reasons to expect the

overall energy conversion could be much higher if a similar
process were to occur. Complete conversion of rest mass
from e.g., a 3 → 1 process is possible because there is
no “baryon number” conservation for bosonic dark matter.

For example, axion stars will collapse and emit relativistic
axions when they reach a critical mass. We call such
processes that drastically convert dark matter to dark
radiation as axinovae [1,2]. There is no mechanism to
quench the axionovae if axion stars form ubiquitously in
the Universe, as expected in the postinflationary scenario
where axion miniclusters form after matter-radiation equal-
ity. Therefore, a large formation rate of axion stars that lead
to axinovae is very constraining. We take the formation of
axion stars as a concrete example to study but the result can
apply to generic scalars whose self-interaction is attractive
(For studies in effects on large scale structure from axion
self-interactions, see Refs. [3–5]) since the properties of
axion stars do not depend on any interactions other than
gravity and the axion self-couplings.
Anatural cosmic history that canoccurgenerically for these

models is, after matter-radiation equality, these axions stars
form, grow, and finally explode as an axinova, converting a
significant fraction of energy into semirelativistic axions.
After this, the remnant can continue to grow, until it explodes
again. This process of recurrent axinovae can convert a
significant fraction of the dark matter into relativistic energy,
which is then constrained by cosmological observations.
This paper is organized as follows: In Sec. II, we discuss

the formation of enhanced structures at small scales due to
the axion perturbations and study the formation history of
axion stars inside those structures. In Sec. III, we study the
constraints on axion parameter space by requiring the decay
fraction of axion dark matter should not exceed an upper
bound. In Sec. IV, we present our conclusions.
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II. AXIONS, AXION MINIHALOS,
AND AXION STARS

The axion is a well-motivated dark matter candidate,
which can also leave unique fingerprint on the matter power
spectrum at small scales if the Peccei-Quinn (PQ) sym-
metry breaking occurs after inflation. In such scenarios,
different horizon patches have different matter densities
when the axion acquires its mass, leading to the formation
of axion miniclusters or axion minihalos at matter-radiation
equality [6,7]. More interestingly, coherent objects called
axion stars can form in the center of axion minihalos due to
Bose-Einstein condensation [8], which may eventually
accrete into a critical object and emit relativistic axions.
We call such phenomenon axinovae, which can occur with
an attractive axion self-coupling and the formation of axion
minihalos at matter-radiation equality.
Originally proposed to solve the strong CP problem

[9–11], the present-day landscape of axions and axionlike
particles (ALPs) is broad. One common feature across this
landscape is that the axion, ϕ, is a pseudo-Goldstone boson
of a global Uð1ÞPQ symmetry broken at a scale fa. The
Uð1ÞPQ is anomalous under a confining gauge group which
means that the axion’s potential is generated through
instanton effects occurring at the compositeness scale of
the gauge group, Λ, and takes the form

VðϕÞ ¼ Λ4

cud

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4cud sin2
"
ϕ
fa

#s

: ð1Þ

In the case of the QCD axion Λ ≈ 200 MeV and cud ≈
mumd=ðmu þmdÞ2 ≈ 0.2. In addition to the self-couplings,
coupling to gravity, and the anomaly-induced coupling to
QCD (or QCD-like group), the axion may have model-
dependent couplings to other SM gauge bosons and
fermions. We focus here on the self- and gravitational
couplings only, which can already lead to interesting
dynamics such as axinovae.

A. Axion minihalos

In the postinflationary scenario, the present-day
Universe contains a large number of patches which were
causally disconnected at the time of QCD phase transition.
In each causally disconnected patch of the Universe, axion
field values are uncorrelated. Once the axion acquires a
mass, and Hubble friction is small enough, the axion
behaves as cold dark matter and isocurvature fluctuations
are present in the matter density. When the Universe
becomes matter dominated this small-scale structure will
start to collapse under gravity, leading to axion minihalos.
Furthermore, there may be large overdensities of axions at
even smaller scales arising from the evolution of the
network of axion strings and domain walls [12] set up
when the PQ symmetry breaks. Even for the much studied

case of the QCD axion, there is controversy [13–27] as to
what fraction of the relic dark matter axions arise from
misalignment or from the decay of topological defects.
Along with those topological defects, objects called oscil-
lons or axitons that can contribute to the small scale
overdensities will form after the axion accquires its mass
[19,20]. Those objects can form when the axion self-
interaction dominates over the Hubble expansion term,
which is easily satisfied in the early Universe when the self-
interaction is strong due to the high density. As the axion
density drops, the formation of oscillons will be turned off
and oscillons themselves will dissipate via emitting rela-
tivistic axions.
It is worth noting that the postinflationary scenario is not

essential for the axinovae. Any matter power spectrum
which is enhanced at small scales can lead to the formation
of axion minihalos around matter-radiation equality, but the
postinflationary scenario is a minimal realisation. We take a
simple ansatz for the spectrum of initial fluctuations in the
axion field, namely that the spectrum of isocurvature
fluctuations in the axion field follow a white-noise spec-
trum, cut off at small scales i.e.,

δρa
ρa

¼ A0

"
k
k0

#
3

Θðk0 − kÞ: ð2Þ

Here k0 ≈ aoscHosc is the (comoving) wave number deter-
mined by the horizon size at the time the axion starts to
oscillate, i.e., maðToscÞ ∼ 3Hosc. While here we consider a
pure white noise spectrum we extend this analysis to a more
general power law spectrum in Appendix C. In reality one
would expect a softening of the cutoff in the white noise
power spectrum at small scales. The exact details of how
this occurs is related to the dynamics of string network and
axitons, and is unknown. It will not affect our conclusions,
see Appendix C for details. As mentioned above, the
contribution of strings and domain walls to the abundance
of nonrelativistic axions is uncertain and will impact the
size of the power spectrum. Simulations typically show the
density perturbations have A0 ∼ 0.1 at k ¼ aoscHosc, but
they also show larger subhorizon (larger k) fluctuations.
These subhorizon fluctuations can collapse earlier than
those at the horizon scale, leading to high concentration
minihalos. These halos are at smaller scales, k ≥ aoscHosc,
and have larger δρa=ρa and lower axion speeds in the
minihalos, resulting in a faster star growth rate. We take the
conservative limit of holding k0 ¼ Hosc as the scale at
which A0 ¼ 1. With this white noise power spectrum (2)
the first structures, of mass M0, form at redshift zc ≈
A1=2
0 zeq and the characteristic structure mass, defined as the

peak in the distribution Mdn=d logM, occurs at

MpeakðzÞ ¼ M0

"
1þ zc
1þ z

#
2

; ð3Þ
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where

M0 ¼ 6π2ρ̄0

"
1

k0

#
3

ð4Þ

is the comoving mass in the horizon at the time the axion
starts to roll and ρ̄0 is the present-day cosmological axion
density. The minihalos have a distribution of masses but for
simplicity we use the characteristic massMpeak to provide a
measure of the overall behavior.
The growth continues till around z ∼ 10–20 when the

minihalos merge into standard cold dark matter (CDM)
halos and their growth stalls [28].
We take the minihalos to have a Navarro-Frenk-White

(NFW) [29] density profile, defined by a scale radius rs and
density ρs,

ρðrÞ ¼ ρs
r
rs
ð1þ r

rs
Þ2
: ð5Þ

At the scale radius the circular speed is given by

v2s ¼ 4πGNρsr2sðlog 4 − 1Þ: ð6Þ

This speed will be relevant for the calculation of axion
star formation rate, and in the minihalos that will form
axion stars this speed is much smaller than typical speeds in
the Milky Way. Numerical studies have shown that the dark
matter halos at the characteristic mass will first reach a
concentration factor [30] c ≈ 4 at the time of halo collapse
[31]. For lighter halos that grow more through accretion
than mergers, the halo concentration will grow linearly with
the scale factor due to the decreasing background density.
In the next subsections we discuss further structures that
can develop in the core of these minihalos. In addition to
the low speeds in minihalos, the scale density in the
minihalos that form early is large,

ρs ¼ ρ̄0ð1þ zÞ3 Δ200c3

3ðlogð1þ cÞ − c
1þcÞ

; ð7Þ

where Δ200 ≈ 200 in the spherical collapse model. For
minihalos that collapse at zeq this density is ρs ≈ 1014ρ̄0.

B. Lifecycle of an axion star

We now turn to the question of formation of axion stars
at the core of the minihalos discussed above. The sub-
sequent growth and explosion of axion stars (axinovae) will
also be studied. There are a few timescales we will discuss
that are relevant in the lifecycle of axion stars:

(i) The condensation timescale from gravitational
interactions;

(ii) The condensation timescale from axion self-
interactions;

(iii) The evaporation timescale of light axion stars;

(iv) The Hubble time when the axion star formation is
active.

We will discuss those timescales later in this subsection.
For the parameter space that axinovae can place meaningful
constraints on, the axion self-interaction always dominates
over gravity.
As discussed in Appendix A, there are two branches of

axion star configurations; the dilute branch, which, below a
certain mass, is stable and the dense branch which will
explode and emit relativistic axions. There is a critical star
mass (A5) that separates the two branches, which we denote
as Mmax

% . Therefore, if they continue to accrete mass, the
lighter dilute axion stars will eventually become unstable in a
minihalo environment. Axion minihalos are ideal environ-
ments for the axion star formation because they are dense and
cold, owing to the high collapse redshifts and small virial
masses.When the star formation rate is sufficiently large, stars
will form in the minihalo center and grow to a critical mass
star if the minihalo is massive enough. The critical star will
contract under self-interaction and gravity, converting a large
fraction of its mass to relativistic axions. Until the axinovae
consume most of the minihalo mass, axion minihalos remain
ideal environments for the axion star formation and axinovae
shall occur again within the same timescale. Thus, we
naturally expect the axinovae phenomenon to be recurrent,
when the growth timescale is fast enough. The crucial
calculation to determine the fate of axion stars is the formation
rate in the minihalo center and the corresponding star mass.
Once minihalos exist, gravitational interactions or self-

interactions can subsequently lead to the formation of
Bose-Einstein condensed axion stars at their center. The
timescale for this formation, and subsequent growth, in an
environment where the axions being captured have typical
number density n and speed v is determined [32–35] by

τ ∼ ðfBEnσvÞ−1; ð8Þ

with σ being the total scattering cross section. This
formation rate is Bose-enhanced from the naive expectation
due to the large phase-space density, fBE ¼ 6π2nðmavÞ−3.
The gravitational Rutherford transport cross section is
σgr ¼ 8πðGNmav−2Þ2 logðmavRÞ, where the Coulomb log-
arithm has been cut off at a characteristic length scale of the
minihalo, R. Attractive self-couplings can also lead to
formation and the scattering cross section is σself ¼
λ2m−2

a =128π. The total condensation time, considering
both gravity and self-interaction, is

τ ¼
τselfτgr

τgr þ τself
ð9Þ

with each individual process having a timescale of

τgr ¼
b

48π3
mav6

G2
Nn

2 log ðmavRÞ
; ð10Þ
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for gravity, and

τself ¼
64dm5

av2

3πn2λ2
: ð11Þ

The parameters b; d ∼Oð1Þ are numerical coefficients
that are extracted from numerical simulations [36].
Comparing these two timescales, (10) and (11), we see that
the self-interactions will determine the axion star formation
rate if fa ≲Mplv. Furthermore, if the relevant speed is
determined by gravitational collapse of a minihalo (6) then
self-interactions dominate in the limit f2a ≲ ρsr2s . When
determining the gravitational relaxation timescale for for-
mation of axion stars in minihalos we take, as typical, the
densities and speeds at the scale radius, see Eqs. (5) and (6).
In addition to the timescale for axion star growth there is

also a rate for evaporation of the star. Axions in the halo that
are not part of the star can collidewith bound axions causing
them to be ejected. The rate for this process shrinks
with axion star mass and is approximately [37] Γevap ∼
ðmavR%Þ2τ−1. The competition between growth and evapo-
ration means only axion stars above a certain mass will gain
mass by gathering axions from the halo. As observed in
numerical simulations [32,37] such stars first appear after
time τ and then proceed to grow. The growth is initially fast
(d logM=dt is constant) but once the virial velocity of the
minicluster falls below the speed of the axions in the axion
star the rate of growth slows, d logM=dt becomes inversely
proportional to (a power of) the star mass [37] which results
in themass growingwith time as a power law. The character-
istic axion star mass where this change in behavior occurs is
obtained by equating the virial velocity of the minicluster
with that of the axion star [32,33,36–39] is

M% ≈ 3ρ1=6a G−1=2
N m−1

a M1=3
h ; ð12Þ

whereMh is the halo mass. The behavior of the growth rate
once the axions in the star are moving faster than those in the
halo is not definitively known, and there is evidence that it
may continue to evolvewith starmass [37]. Thiswould result
in the mass growing as a power law with a running index.
However, to simplify our analysis and to partially account
for the numerical uncertainties, we will use a single power
law but consider a range of possible powers. In particular,
we parametrize the power-law mass growth as M% ¼
M%ðt=τÞ1=α and vary α in the range of 1 to 5. With initial
exponential growth followed by constant power law growth,
the timescale to form an axion star at critical mass Mmax

%
depends in which regime the critical mass falls. Thus,

tcrit ¼ τ ×
$
log ðM%=Mmax

% Þ þ 1; Mmax
% ≤ M%

ðMmax
% =M%Þα; Mmax

% > M%
: ð13Þ

The numerical simulations discussed above have mostly
been carried out assuming a homogenous gas of axions as

the initial background upon which an axion star forms. For
stars that form in minihalos the gas has a density and
velocity profile. In Appendix B we argue that for an NFW
profile the exponential growth is replaced with a power law,
and the whole growth becomes a single power law, with
α ¼ 3=2 when self-interactions dominate. Postinflationary
PQ breaking results in a white noise power spectrum which
leads to a minihalo mass function with characteristic mass
MpeakðzÞ ∼ ð1þ zÞ−2, see Appendix. C for more detailed
discussions in the minihalo evolution. For simplicity we
use the characteristic mass Mpeak to provide a measure of
the overall behavior. The growth continues till around
z ∼ 10–20 when the minihalos merge into standard CDM
halos and their growth stalls [28]. Although axion starts
will form at the center of minihalos we conservatively
evaluate the timescales of (10) and (11) at the minihalo
scale radius. As explained in Appendix B taking into
account the interior NFW profile hints at a single power
law, with α ¼ 3=2, when self-interactions dominate.
Given that the majority of the dark matter has collapsed

into axion minihalos with a characteristic mass MpeakðzÞ,
the total fraction of dark matter rest mass that has been
converted to kinetic energy per unit time can be calcu-
lated as

dfdecay
dt

¼ κMmax
%

MpeakðzÞtcrit
; ð14Þ

where κ is the fraction of the axion star’s mass that is
converted to relativistic axions during axinovae. From
simulations of these processes [40], it is seen that approx-
imately 50% of the star’s mass is lost during the nova and of
this about 20% is in the form of relativistic axions, so
κ ≈ 0.1. The time to reach a critical star given in (13)
assumes the star grows from an undistorted minihalo. After
the first axinova there is a remanent of mass ∼0.5Mmax

%
already present and the time for this to grow to Mmax

% is
slightly shorter than for the first star. For the power law
considered here this correction is small and we ignore it,
assuming all subsequent stars take time tcrit to explode.

III. COSMOLOGICAL CONSTRAINTS

A. The decay rate of axion stars

The process of forming axion stars which subsequently
become nova converts nonrelativistic dark matter axions
into boosted (γ ∼OðfewÞÞ axions. The kinetic energy of the
outgoing axions will redshift away after the scale factor has
grown by ∼ ffiffiffi

γ
p

and thus the dark matter’s contribution to
the matter-energy budget is depleted. Here we study the
impact of the cumulative loss of mass in the dark sector but
it is possible that the temporary existence of a new
relativistic species may lead to a measurable effect on
large-scale structure and is worthy of future study.
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This process is closely related to the scenario of decaying
dark matter, which is well constrained by recent cosmo-
logical data [41–43]. For dark matter which decays after
recombination, the decrease of the dark matter fraction will
increase the angular diameter distance to the last scattering
surface over time. Furthermore, the amount of cosmic
microwave background (CMB) lensing is reduced due to a
smaller gravitational potential than expected. This scenario
is constrained by a combination of CMB [44] and, for very
long lived dark matter, SDSS [45] data. If the decay of dark
matter occurs well before recombination or even before
matter-radiation equality, the primary effect of the decaying
dark matter is to enhance Neff since the decay products
behave as dark radiation. In the short-lived situation the
constraints are primarily from CMB measurements. We
will be interested in the long-lived case, and in particular
decays which occur after matter-radiation equality but are
no longer ongoing. The equivalent bound [43] for decaying
dark matter on the fraction of the initial amount of dark
matter that can decay is

fdDM ≡ ΩdDM

ΩdDM þ ΩDM
≤ 2.62% ðat 2σÞ: ð15Þ

Although the cosmological evolution of the dark sectors for
decaying dark matter and axinovae are not identical they
are similar and since the above constraint is independent of
decaying dark matter lifetime over a wide range of lifetimes
we will use it to constrain axions. We leave a more detailed
numerical analysis, and an investigation of other possible
signals, for future work. Converting (15) to the case of
axinovae leads to the requirement that

Z
z¼20

zc
dz

dfdecay
dz

≤ 2.62%: ð16Þ

Here zc is the collapse redshift when axion miniclusters
initially form, which is approximately matter-radiation
equality. We cut off the integral at z ¼ 20 since large-scale
structures start to affect the evolution of miniclusters at this
time. In the scenario of axinovae, the decay of dark matter
occurs when axion miniclusters start to form, which is
always after matter-radiation equality. To avoid the con-
straint of (16) requires either that the formation rate of
axion stars is too small to be cosmologically relevant or that
the formed axion star mass is smaller than the critical mass
so there are no axinovae. Note that this bound does not rely
upon there being a coupling to any SM particles e.g.,
photons, gluons, or SM fermions. However, our constraints
do rely on the assumption that axions do make up the dark
matter relic abundance and that the fluctuations in the axion
field are isocurvature in nature and approximately power
law. If axions make up a fraction of the dark matter, this can
be encoded as a reduction of κ, see (14), and a delay on the

axion minicluster formation, resulting a corresponding
weakening of the bounds.
For normal misalignment production of axions, where

hθ2i ≈ 4 [46], the typical initial halos that form have a mass
that depends upon the horizon size when the axion starts to
oscillate maðToscÞ ¼ 3HðToscÞ=2. For the QCD axion,
where the temperature dependence of the axion mass is
known, this oscillation time is uniquely determined.
However, in more general axion scenarios the oscillation
temperature, and therefore M0, is a free parameter. In the
radiation-dominated era HðTÞ¼πð8πg%ðTÞ=90Þ1=2T2=MPl
and the halos form with mass,

Mh ¼
4π
3

"
1

aðToscÞHðToscÞ

#
3

ρ̄0

≈ 2 × 108M⊙

"
keV
Tosc

#
3

: ð17Þ

The existence of DM structure down to small scales
requires that the axions behave as dark matter by the time
the temperature of the Universe is∼keV, i.e., Tosc ≳ 1 keV.
Thus, there is an upper bound on the initial halo mass. More
sophisticated analysis of the constraints on the axion
isocurvature power spectrum at small scales can be found
in Ref. [47].
Going forward we will assume that the axion makes up a

sizable fraction of the dark matter abundance and place a
bound on its self-coupling, equivalently fa, through recur-
rent axinovae. There are four parameters that determine the
amount of axion dark matter that is converted to dark
radiation; the axion mass ma, the axion self-coupling λ
which in simple models is determined by the decay
constant fa, the structure mass M0 [or equivalently
MpeakðzcÞ], and the redshift at which minihalos first form
zc. Numerical simulations [19,20] indicate that the white
noise spectrum has large amplitude at small scales A0 ∼
Oð1Þ and thus minihalos form as early as possible zc ∼ zeq,
with mass given by (17).
As times evolves, the characteristic mass grows as Mh ∼

ð1þ zÞ−2 as minihalos merge with each other. Since a
characteristic mass halo has concentration c ≈ 4 its scale
radius and density vary with redshift as rs ∼ ð1þ zÞ−5=3,
ρs ∼ ð1þ zÞ3 and consequently the speed at the scale radius
depends on redshift as vs ∼ ð1þ zÞ−1=6. From Eqs. (10)
and (11) this implies that the time scales for collapse scale
as τgr ∼ ð1þ zÞ−7, τself ∼ ð1þ zÞ−19=3. This rapid length-
ening of the axion star formation time as the Universe ages
means that the dominant DM mass loss occurs as soon as
the minihalo mass is larger than the critical star mass, and
the earlier that occurs the greater the fraction lost. More
precisely, assuming tcrit is in the power law regime, the
decay rate for halos of mass M0 which initially form at
redshift zc is
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dfdecay
dz

∼ 76500π2=3κ
M3

plρ̄
2
col

M0f5am4
a

"
1þ z
1þ zc

#
8 1

ð1þ zÞ5=2H0

×
%
1þ 75π4=3

"
fa

M1=3
0 ρ̄1=6col

#
4
"
1þ z
1þ zc

#
2=3

&

×
"

M%
Mmax

%

#α−2
ΘðMpeakðzÞ −Mmax

% Þ; ð18Þ

where we have suppressed the logarithmic corrections to
the Rutherford cross section in (10), taken b ¼ d ¼ 1, and
ρ̄col ¼ ð1þ zcÞ3ρ̄0 is the background density at the time of
initial collapse.
The from of (18) makes clear that the rate is peaked to

early redshift and this rate is enhanced by decreasing both
ma and fa. If the timescale for scattering is set by self-
interactions, i.e., fa ≲M1=3

0 ρ̄1=60 , then along curves where
fa ∼m−4=5

a the decay rate is constant. Furthermore, for any
choice of parameters there is a maximal fa above which
there is not enough time to form a critical mass star in a
minihalo. This leads to a region, bounded from below
(above), in ma − fa (ma − f−1a ) space which is constrained
by the cosmological data discussed above (14).
In Fig. 1, we plot the region that is constrained by the

axinovae, for various assumptions. The gray regions are
excluded by black hole superradiance constraints [48–51].
The most conservative (weakest) constraint, shown in
green, comes from assuming that the oscillation temper-
ature is low and that the time to reach a critical star is given
by (13). Over most of the green region the critical star mass
is low and the growth (d logM=dt) is still in the constant
regime. Given constraints on large scale structure we take
the lowest possible oscillation temperature to ∼1 keV. The
later an axion starts oscillating the larger the mass of the
initial axion miniclusters, which leads to a longer axion star
production time τ, suppressing the resulting appearance of
axinova.
In the red region we again assume the lowest possible

oscillation but now assume that the star growth is power
law, M ∼ ρsr3sðt=τÞ2=3, for all star masses, as discussed in
Appendix B. At masses below ρsr3s the power law predicts
faster growth than the constant growth assumed in (13) and
the green region. This makes the bound stronger. For fa ≳
1015 GeV the axion star’s critical mass is larger than where
exponential growth transitions to power law in the green
and the two constraints coincide.
Finally, the blue region is the strongest constraint and is

found by optimizing over the oscillation temperature. The
maximum possible oscillation temperature arises when the
axion starts oscillating with its zero temperature mass,
Tosc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
maMpl

p
. These high temperatures will lead to the

lightest axion miniclusters and the shortest star production
times, but such miniclusters may not be massive enough to
contain a critical star. At each point in the parameter space,
we select the highest possible Tosc that leads to a massive

enough minicluster. Since, Mh ∼ T−3
osc this selected temper-

ature is still close to
ffiffiffiffiffiffiffiffiffiffiffiffiffi
maMpl

p
. In Fig. 2, in Appendix D we

show the constraint for M% ∼ t1=5, when the leading order
the decay rate is independent of Tosc.
In the excluded regions an Oð1Þ fraction of all dark

matter has passed through an axionova. This may lead to
other observables in axion experiments or in cosmological
observations. Given the high powers that appear in (18) if
the constraints on decaying dark matter are improved in the
future the region of parameter space excluded will not be
greatly altered. Note that our axion limit is only applicable
if the axion accounts for the total density of dark matter,
otherwise, axion perturbations in the postinflationary sce-
nario cannot form dense axion miniclusters. A natural
question to ask is whether such parameter space can
produce the right amount of dark matter. For the simplest
case where the axion mass is temperature independent, the
relic density is underproduced. However, as shown in
Appendix D, even the vacuum misalignment mechanism
can produce a large enough relic density if the axion mass is
temperature dependent, which is similar to the QCD axion.
A first-order phase transition in the dark sector that couples
to axions will introduce a sudden change in the axion mass

FIG. 1. The exclusion region from axinovae for different
assumptions for axion parameters, see text for more details.
The axion limits derived here only apply to the scenario where the
axion accounts for the dark matter density in the Universe. See
Appendix D for extensive discussions on the axion-relic abun-
dance from vacuum misalignment. The parameter space con-
strained by axinovae can produce viable dark matter density with
a temperature-dependent axion mass. Existing limits from the
black hole superradiance are shown in gray. The green region is
the most conservative bound using a constant rate of d logM=dt
atMmax

% ≤ M% and a late Tosc, with a formation timescale given in
Eq. (13) The red region uses a power-law growth (PL) with M ∝
t2=3 over all the mass ranges and it also assumes the lowest
oscillation temperature. The blue region presents the bound after
optimizing over oscillation temperature.
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as temperature varies, which will greatly enhance the relic
density. There are also many other models or cosmological
scenarios that can enhance the axion-relic density or the
self-coupling, such as a clockwork axion [52], friendship
axion [53], axions from dilute domain walls [54,55], and
kinetic misalignment mechanism [56,57]. We expect our
bound will have important implications for those models
that can produce the correct axion-relic abundance in the
parameter space that leads to recurrent axinovae.

IV. CONCLUSIONS

We obtain new bounds on axion dark matter parameters
ma, fa assuming the formation of dense axion minihalos,
motivated by the postinflationary scenario. Assuming the
axion is responsible for the dark matter in the Universe,
axion perturbations in the postinflationary scenario will
lead to the formation of dense substructures known as axion
miniclusters or minihalos after matter-radiation equality,
which can subsequently form coherent objects known as
axion stars at the core of axion minihalos. The axion
parameter space discussed in this work can naturally
produce the dark matter relic abundance if the axion mass
is temperature dependent, which will greatly enhance the
axion relic density compared to the temperature indepen-
dent case. There are also many other scenarios that can
enhance the axion relic density or the axion self-couplings.
Low-mass dilute axion stars, supported by gradient

pressure, can be cosmologically stable. However, they will
accrete more axions from minihalos and continue to grow
in mass until the axion self-coupling becomes important
and the gradient pressure can no longer stop them from

collapsing and emitting relativistic axions, in an axinova.
The remnant of an axinova is a less massive star which will
again grow, leading to recurrent axinova.
If the recurrent formation rate is large enough and

axinovae are active, they can convert a significant fraction
of dark matter into radiation which can be constrained by
measurements of large scale structure formation. Our
constraint only depends on the axion self-coupling and
gravity. The self-coupling can be mapped to axion-photon
and axion-neutron couplings in specific models. Those
constraints are obtained by requiring the population of
dense axion stars formed in axion minihalos at high
redshifts shall not dominate the mass of dark matter. If
the axion is only a fraction of dark matter or only a few
percent of axion dark matter is decaying, the conversion to
dark radiation may be cosmologically significant in future
observations but consistent with the current data.
Alternatively, if the axinova has a branching fraction into
standard model states there may be observables in the
region or parameter space close to our bound. We leave a
more detailed study of the cosmological evolution or
possible visible signals to future work.
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APPENDIX A: AXION STAR CONFIGURATIONS

The stable axion-field configuration for the gravitational
bound-state of nonrelativistic axions can be found by
solving the Gross-Pitaevskii-Poisson equations, which
must be done numerically. For a thorough review, see
Ref. [58] and references therein. However, it has been
shown that a good approximation of these solutions is
obtained by using a Gaussian ansatz for the field profile
[59–61]. Doing so gives some insight into the competing
effects driving the physics [62]. Expanding the axion
potential (1) to quartic order one finds an attractive self-
interaction

V ¼ 1

2
m2

aϕ2 −
λ
4!
ϕ4; ðA1Þ

FIG. 2. The exclusion plot of axion parameters from axinovae.
The colored region represents the exclusion region assuming the
axion star growthM ∝ t0.2, where the exclusion is independent of
Tosc. The gray regions are the existing limits from the black hole
superradiance. Dashed curves are the axion parameters giving the
correct relic abundance assuming axion mass behaves as
maðTÞ ¼ maðΛ=TÞb, where Λ ¼

ffiffiffiffiffiffiffiffiffiffiffi
mafa

p
is the dark confinement

scale. A large b can naturally come from a first-order dark QCD
phase transition.
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with λ ¼ ð1 − 3cudÞm2
a=f2a. An axion star of mass M% and

radius R% has energy

E% ¼ −
GNM2

%
R%

þ c1
M%

2m2
aR2

%
− c2

λM2
%

12m4
aR3

%
: ðA2Þ

In order, these terms correspond to the gravitational self-
energy, the gradient pressure, and the internal energy from
self-interactions. The numerical coefficients, ci, depend
upon the details of the field profile and are found numeri-
cally [62–64] to be c1 ¼ 9.9, c2 ¼ 0.85. The mass-radius
relation for axion stars, found by minimizing E%, has two
solutions

R&
% ¼ c1

2GNM%m2
a

"
1&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

c2
c21

λGNM2
%

r #
: ðA3Þ

The Rþ
% root corresponds to the so-called dilute branch and

the axion field value is small. On this branch gravitational
attraction is balanced by gradient pressure leading to a
stable configuration. As is typical for objects supported by
uncertainty pressure the product of the radius and mass of
the star is a constant,

Rþ
% ¼ 9.9

M2
pl

m2
aM%

: ðA4Þ

However, as one moves to larger axion star mass the self-
interactions cannot be ignored and if they are attractive (as
asummed above) they destabilize the star. There is a
maximal mass, beyond which axion stars are no longer
stable

Mmax
% ¼ 10.7ffiffiffi

λ
p Mpl: ðA5Þ

The two solutions (A3) meet at this maximal mass. The
second solution is one where gravity can be ignored and the
gradient pressure and the axion’s attractive self-interactions
are in unstable equilibrium. On this branch R% ∼M%.
The value of the axion field at the center of the star scales

as a20 ∼M%=ðm2
aR%

3Þ so that at the low mass end of the R−
%

branch a0 ∼ 1 and the axion field is not dilute. The axions
can no longer be thought of as nonrelativistic and the
solution is approximately constant density (ρ ∼m2

πf2π) and
thus R% ∼M1=3

% . However, it is believed that this field
configuration is also unstable, with a lifetime ∼103m−1

a
[62], although alterations to the axion potential can make
these solutions long lived [65–67].
The upshot of this is that if a dilute axion star with mass

below Mmax
% were to form and grow, by accumulation of

additional axions, to the maximal mass it would then shrink
in size and become a dense axion star which would survive
for a short period. During this time the dense axion star
goes through several oscillations and a density singularity

develops in the central core and this dense region emits
relativistic axions lowering the density [40,68,69]. This
process repeats and ∼30% of the initial star mass can be
emitted, leaving a dilute remnant which may in turn grow to
the maximal mass and emit more relativistic axions. Thus,
maximal mass stars are an engine to turn substantial
amounts of cold dark matter into radiation.

APPENDIX B: THE GROWTH OF AXION STARS
IN A LARGE MINIHALO

When the axion star mass larger than the characteristic
star mass M%, the mass growth is found to be well-
described by a power law, M% ∝ t1=α. However, the growth
rate at lighter masses in an axion minihalo is still unknown.
One would expect the growth rate is larger at smaller radius
in the minihalo environment due to the larger density and
smaller velocity. If a star is formed within a small radius,
the mass contained in this region is small. Therefore, lighter
objects always start to form with a greater rate. For an NFW
profile, the mass contained within r is

MðrÞjr→0 ¼ 4πρsr3s

"
ln
"
1þ r

rs

#
−

r
rþ rs

#

≈ 2πρsrsr2: ðB1Þ

The formation timescale given by self-interactions is
τself ∝ v2=ρ2. At small radius of an NFW halo, the density
and velocity scale as ρ ∝ 1=r and v ∝

ffiffiffi
r

p
. Therefore,

MðtÞ ∝ t2=3. Similarly, if the gravity dominates the axion
star formation, τgr ∝ v6=ρ2 ∝ r5 at small radius and we
obtain the mass growth power law MðtÞ ∝ t2=5. Since this
scaling is active at short distance scales within the minihalo
we consider a scenario where α ¼ 3=2 at all axion star
masses, see Fig. 1.

APPENDIX C: PRESS-SCHECHTER
WITH WHITE NOISELIKE POWER

AT SHORT DISTANCES

We consider the density perturbations, δ≡ δρ=ρ̄, to
consist of two contributions, conventionalΛCDM adiabatic
perturbations that are present at all scales and isocurvature
perturbations which are only become important over a
finite range of scales. We take the isocurvature contribution
to be a power low with a cutoff at very small scales,
corresponding to a wave number k0. For the case of the
axion it is believed the short-scale behavior has a power
spectrum that is approximately that of white noise, corre-
sponding to n ¼ 3 below. Modes from these two contri-
butions have different growth behaviors after they enter the
horizon, in particular the adiabatic perturbations have
logarithmic growth until matter-radiation equality while
the isocurvature modes do not. At late times, in the matter
dominated era, they have similar growth. Taking into
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account these different growth behaviors the two-point
function of the density perturbations is

hδ2i ¼ 2π2

k3

"
D2

adiI
2
1L

2As

"
k
ks

#
ns−1

þD2
isoA0

"
k
k0

#
n
Θðk0 − kÞ

#
: ðC1Þ

For a ΛCDM-like power spectrum As ≈ 2 × 10−9, ns ≈
0.97, and the pivot scale is ks ¼ 5 × 10−3 Mpc−1. At late
times Dadi ≈ Diso ≈ a=aeq ¼ ð1þ zeqÞ=ð1þ zÞ and the
exact forms can be found in standard references e.g.,
[70,71]. The constant I1 ≈ 9.1 and L ≈ logð0.1aeq=aÞ.
The Press-Schechter formalism assumes spherical col-

lapse of overdensities and that the probability for these
collapses follows a Gaussian distribution whose variance,
smoothed at some scale R, is given by

σ2ðz; RÞ ¼
Z

d3k
ð2πÞ3

hδ2ij eWðkRÞj2; ðC2Þ

where eWðkRÞ is the window function and can take various
forms. Here we focus on the so-called sharp k-filter where
eWðzÞ ¼ Θð1 − zÞ. For this choice of window function there
is not a well-defined mass, M, associated with the comov-
ing filter scale R, since the real space form of eW does not
have local support [72]. However, we will follow the oft-
used relation M ¼ 6π2ρ̄0R3 [73], where ρ̄0 is the present
day cosmological axion density. Note that for (C2) to be
well-defined we have to introduce an IR cutoff kIR and we
define M0 ¼ 6π2ρ̄0k−30 . We are typically interested in halo
masses and formation redshifts where the adiabatic per-
turbations are subdominant to the isocurvature perturba-
tions, As ≪ A0. In this regime, once structures can form
i.e., z < zeq, the variance has the simple form

σ2ðz;MÞ∼
"
1þ zeq
1þ z

#
2A0

n
×

(
1 M≤M0'
M0

M

(
n=3

M>M0

: ðC3Þ

In the Press-Schechter approach the halo mass function
is related to the probability to find δ > δc ≈ 1.686, with the
fraction of matter in objects of mass M given by

df
dM

¼
ffiffiffi
2

π

r
δc
Mσ

))))
d log σ
d logM

))))e−δ
2
c=σ2 : ðC4Þ

The exponential suppression means that the most massive
objects, with mass Mpeak, to have formed are those for
which σðz;MpeakÞ ¼ δc. If the isocurvature perturbations
were large enough, A0 > nδc, these objects would form at
zeq. Instead, for more typical isocurvature perturbations of

A0 ≈ 0.1, the first halos to form are of mass M0 and they
form at

zc ≈
ffiffiffiffiffi
A0

n

r
zeq
δc

; ðC5Þ

and subsequently grow, with the peak mass of the halo mass
function being

Mpeak ¼ M0

"
1þ zc
1þ z

#
6=n

¼ M0

"
A0

δ2cn

#
3=n

"
1þ zeq
1þ z

#
6=n

: ðC6Þ

APPENDIX D: AXION RELIC ABUNDANCE
FROM MISALIGNMENT

We consider the relic abundance from the misalignment
mechanism for an axion coupled to a dark confining gauge
group “DarkQCD”, which is taken to be SUðNCÞ with NF
vectorlike quarks. The temperature dependence of the mass
is understood in two limits. At low temperature the axion
mass is independent of temperature and at high temperature
the dilute instanton gas approximation is valid, leading to a
power-law dependence. In between there could be a first- or
second-order transition or a smooth cross over depending
on NF, NC [74,75]. For simplicity we take the temperature-
dependence mass to have the form

maðTÞ ¼

(
m0 T < Tc

m0

'
Tc
T

(
b

T ≥ Tc
: ðD1Þ

Here we take the critical temperature to be the same as
the confinement scale of DarkQCD, Tc ¼ Λ ¼

ffiffiffiffiffiffiffiffiffiffiffi
m0fa

p
.

The dilute instanton gas approximation gives b ¼
ð11NC þ NF − 12Þ=6. Taking b large for temperatures in
the vicinity of Tc also approximates the form of a first-order
phase transition. After PQ symmetry breaking, and before
the instantons generate a potential for the axion, the
misalignment angle θ ¼ a=f has a flat potential and is
free to take on any initial value in each causal patch. The
equation of motion for this angle is

θ̈ þ 3Hθ̇ þm2ðTÞθ ¼ 0: ðD2Þ

Assuming the cosmology is governed by a fluid with
equation of state p ¼ ωρ [Radiation Dominated (RD) is
ω ¼ 1=3] then the scale factor a ∼ t

2
3ð1þωÞ and H ¼ 2

3ð1þωÞt.
Combining this with the fact that temperature redshifts with
the scale factor, T ∼ a−1, (D2) becomes

θ̈ þ 2

ð1þ ωÞt
θ̇ þm2

0

"
Λ
Ti

#
2b
"
t
ti

# 4b
3ð1þωÞ

θ ¼ 0: ðD3Þ
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This equation can be solved exactly by noting that y ¼
xαJnðβxγÞ with Jn the nth Bessel function, satisfies the
equation

d2y
dx2

−
2α−1

x
dy
dx

þ
"
β2γ2x2ðγ−1Þ þα2−n2γ2

x2

#
y¼ 0: ðD4Þ

Thus, the solution to (D3) takes the form

"
ti
t

# 1−ω
2ð1þωÞ

J 3ðω−1Þ
2ð2bþ3ð1þωÞÞ

"
m0t

"
Λ
Ti

#
b 3ð1þ ωÞ
2bþ 3ð1þ ωÞ

"
t
ti

# 2b
3ð1þωÞ

#
:

ðD5Þ

Requiring that the argument of the Bessel function changes
by anOð1Þ amount before oscillation is deemed to have set
in, and identifying various powers of t with H and maðTÞ,
the oscillation temperature is implicitly defined by

mosc ∼
3þ 3ωþ 2b

2
Hosc: ðD6Þ

Notice that for large b, an axion mass that rapidly changes
from zero tom0 as can arise in a first-order phase transition,
this is different from the usualm ∼ 3H=2 requirement since
the rapid evolution of the axion mass provides its own
“friction”. From now on we consider the case of RD and
thus mosc ∼ ð2þ bÞHosc. We also consider the possibility
that the dark sector and the SM are at different

temperatures. Assuming there are no thermalizing inter-
actions between them, and ignoring the complication of
different thresholds in the two sectors we take the ratio of
temperatures to be a constant, TD ¼ ξTSM ≡ ξT. Thus, the
oscillation temperature and mass are found by solving

"
8π3g%ðTÞ

90

#
1=2 T2

Mpl
¼

8
<

:

2m0

3 ξT < Λ
m0

2þb

'
Λ
ξT

(
b

ξT ≥ Λ
: ðD7Þ

If the oscillation begins while the mass is temperature
dependent then

Tosc ¼ Λ
"
cðToscÞ

Mpl

fa

ξ−b

2þ b

# 1
2þb

⟶
b→∞ Λ

ξ
; ðD8Þ

where cðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
90=8π3g%ðTÞ

p
and, assuming the SM

dominates the energy density of the Universe,
0.06≲ cðTÞ ≲ 0.33. This solution is only consistent if
TD > Λ which places the restriction b≲ ξ2Mpl=fa [76].
For b, ξ in violation of this bound the oscillation starts after
the axion has attained its zero-temperature mass and
Tosc ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cðToscÞm0Mpl=3

p
¼ Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cðToscÞMpl=3fa

p
.

Once the oscillation temperature is known, and using the
fact that ratio of axion number density to entropy density is
constant, the present-day axion mass fraction can be
determined,

Ωa ¼
m0moscf2ahθ2i

2ρcrit

g%ðT0ÞT3
0

g%ðToscÞT3
osc

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π3

90g%ðToscÞ

s
m0f2ahθ2i
ρcritMpl

g%ðT0ÞT3
0

Tosc

$ 3
4 ξTosc < Λ
2þb
2 ξTosc ≥ Λ

ðD9Þ

¼ g%ðT0ÞT3
0

ρcritMpl
m1=2

0 f3=2a hθ2i

8
<

:

3
4

'
8π3
90

(
3=4

'
3fa
2Mpl

(
1=2

g−1=4% ðToscÞ ξTosc < Λ

2þb
2

'
8π3
90

( 3þb
2ð2þbÞ

'
ð2þbÞξbfa

Mpl

( 1
2þbg

− bþ1
2ð2þbÞ

% ðToscÞ ξTosc ≥ Λ
: ðD10Þ

If the dark sector has roughly the same temperature as the
standard model sector (ξ ∼ 1), the confinement scale
corresponds to a Hubble of H ∼mafa=Mpl, which is
always smaller than ma because we require fa < Mpl
and the axion self-coupling is stronger than gravity. The
axion mass will not be turned on until the dark confinement
occurs. Therefore, Tosc is greatly delayed, which enhances
the relic abundance since it is less diluted. The blue dashed
curve in Fig. 2 shows the axion parameters that give the
dark matter relic abundance assuming a slightly colder dark
sector (TDS ¼ 0.5TSM) and axion mass to be turned on as
ma ∝ T−b. A large dark gauge group or a first-order phase
transition in the dark sector will be needed for a large b.

We also presented the Tosc independent constraint in Fig. 2
which assumes axion star mass grows like M ∝ t0.2,
corresponding to α ¼ 5. For this value of α the decay rate
(18) is independent of Tosc in the region of parameter space
dominated by self-interactions.
While we have been focusing on a QCD-like axion

model to study the relic abundance, there are other models
that can enhance the self-coupling of axions while giving
the correct relic abundance, such as a clockwork axion [52]
(discussed in Appendix E), friendship axion [53], axions
from dilute domain walls [54,55],and kinetic misalignment
mechanism [56,57]. In a clockwork axion scenario, a large
field range is naturally produced for the axion field in the
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low-energy theory. The axion potential can have two
confinement scales and two effective decay constants
which can give the relic abundance that is needed while
keeping the self-coupling strong. The friendship axion can
resonantly convert the energy density in the axion sector
with a larger decay constant to that with a lower decay
constant if the mass ratio of two axions is close to 1.
Therefore, the relic density of axions with a low decay
constant is greatly enhanced. Axion-relic density can be
greatly enhanced if the Peccei-Quinn symmetry is followed
by a period of inflation such that axion string networks are
inflated away but will eventually reenter the horizon
[54,55]. In this scenario, the decay of diluted domain walls
occurs very late, enhancing the relic density of axions. In
kinetic misalignment [56,57] the axion field does not start
at rest but instead has a nonzero initial velocity. The process
of the axion settling into a minimum of the periodic
potential, and generating an axion number density, is
delayed since it can only occur after its initial kinetic
energy has redshifted away. The initial velocity, θ̇i, for the
field is proportional to the net PQ charge and its generation
requires an explicit breaking of the PQ symmetry at some
scale. This breaking should not be present at later times
when the axion potential should be determined solely by
instanton effects as can occur, for instance, if the breaking
is from higher dimensional operators or arises from another
scalar field acquiring a vacuum expectation value. The
kinetic energy of the field becomes comparable to the
potential energy when θ̇iðai=aÞ3 ≈maðTÞ, so large initial
velocity and late generation both delay the onset of
oscillations and increase the relic abundance. Kinetic
misalignment tends to produce denser minihalos than
conventional misalignment [77,78] due to a parametric
resonance that enhances fragmentation [79]. If the frag-
mentation is not complete the power spectrum of axion
density perturbations has features at many scales and our
power-law ansatz will not be a good approximation.
However, if the fragmentation completes before the kinetic
motion is depleted the power spectrum is well-approxi-
mated by white noise [77]. In both cases the late-time halo
mass function is peaked such that most of the mass is in
minihalos of mass Mpeak. While there have been many
models that can enhance either the axion-relic abundance or
the self-coupling, diluting the relic abundance is also
possible in scenarios such as nonstandard thermal histories
that lead to entropy production [80].

APPENDIX E: ENHANCED
AXION SELF-COUPLING

The axion self-coupling is given by jλj ∼m2
a=f2a ∼

Λ4=f4a, assuming a cosine instanton potential. To obtain
the right relic abundance for axion dark matter, fa is
usually large since the relic abundance of axions is

proportional to f2a. However, axion self-couplings can be
enhanced without affecting the standard misalignment
mechanism or the formation of axion miniclusters. If the
axion couples to two confining sectors, which can be
naturally achieved with clockwork mechanism [52], the
axion potential is

VðaÞ ¼ V1ðaÞ þ V2ðaÞ

¼ Λ4
1

"
1 − cos

a
f1

#
þ Λ4

2

"
1 − cos

a
f2

#
: ðE1Þ

Here Λ1, Λ2 are the confinement scales of the two strongly
coupled sectors and f1, f2 are the corresponding decay
constants.
We consider the situation where the vacuum misalign-

ment mechanism is mostly set by V1ðaÞ and so we require
V 0
1ðaÞ ≫ V 0

2ðaÞ and V 00
1ðaÞ ≫ V 00

2ðaÞ which corresponds to
the requirements

Λ4
1

f1
≫

Λ4
2

f2
;

Λ4
1

f21
≫

Λ4
2

f22
: ðE2Þ

Satisfying these constraints will guarantee that the mis-
alignment mechanism and the axion mass term and the
rolling of axion field are solely determined by the strong
sector with a confinement scale of Λ1 and breaking scale
f1, which will be responsible for the relic abundance of the
axion particles. However, this does not fully determine the
axion self-couplings. If f1 ≫ f2, the self-coupling can be
dominated by the other strong sector, as long as the
following condition is satisfied

Λ4
1

f41
≪

Λ4
2

f42
: ðE3Þ

The conditions (E2) and (E3) can be consistent with each
other provided f1 ≫ f2. For instance, if Λ2=Λ1 ≡ ϵ ≪ 1
then f2=f1 ∼ ϵζ, with 1 < ζ < 2, will satisfy the condi-
tions. Assuming the strong coupling sectors satisfy these
requirements then m2

a ∼ Λ4
1=f

2
1 and jλj ∼ Λ4

2=f
4
2 and the

effective decay constant that labels the self-coupling
strength is

efa ¼
maffiffiffiffiffi
jλj

p ¼ f1

"
f2Λ1

f1Λ2

#
2

≪ f1: ðE4Þ

Therefore, the effective decay constant of an axion model
that gives the self-coupling strength can be much smaller
than the decay constant that is responsible for the relic
abundance. They can be considered as two independent
parameters.
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