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Abstract: The cell surface metalloprotease ADAM17 (a disintegrin and metalloprotease 17) and its
binding partners iRhom?2 and iRhom1 (inactive Rhomboid-like proteins 1 and 2) modulate cell-cell
interactions by mediating the release of membrane proteins such as TNF« (Tumor necrosis factor o)
and EGFR (Epidermal growth factor receptor) ligands from the cell surface. Most cell types express
both iRhoms, though myeloid cells exclusively express iRhom2, and iRhom1 is the main iRhom in
the mouse brain. Here, we report that iRhom?2 is uniquely expressed in olfactory sensory neurons
(OSNSs), highly specialized cells expressing one olfactory receptor (OR) from a repertoire of more
than a thousand OR genes in mice. iRhom2-/- mice had no evident morphological defects in the
olfactory epithelium (OE), yet RN Aseq analysis revealed differential expression of a small subset of
ORs. Notably, while the majority of ORs remain unaffected in iRhom2-/- OE, OSNs expressing ORs
that are enriched in iRhom2-/- OE showed fewer gene expression changes upon odor environmental
changes than the majority of OSNs. Moreover, we discovered an inverse correlation between the
expression of iRhom?2 compared to OSN activity genes and that odor exposure negatively regulates
iRhom?2 expression. Given that ORs are specialized G-protein coupled receptors (GPCRs) and
many GPCRs activate iRhom2/ADAM17, we investigated if ORs could activate iRhom2/ADAM17.
Activation of an olfactory receptor that is ectopically expressed in keratinocytes (OR2AT4) by its
agonist Sandalore leads to ERK1/2 phosphorylation, likely via an iRhom2/ADAM17-dependent
pathway. Taken together, these findings point to a mechanism by which odor stimulation of OSNs
activates iRhom2/ADAM17 catalytic activity, resulting in downstream transcriptional changes
to the OR repertoire and activity genes, and driving a negative feedback loop to downregulate
iRhom?2 expression.

Keywords: iRhom?2 (inactive Rhomboid-like protein 2); ADAM17 (a disintegrin and metalloprotease
17); G-protein coupled receptor (GPCR); olfactory sensory neuron (OSN); olfactory receptor (OR);
olfactory epithelium (OE); RNAseq; RNAScope in situ hybridization (ISH); single-cell RN Aseq analysis
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1. Introduction

Inactive Rhomboid 2 (iRhom?2) and the related iRhom1 are seven membrane-spanning
proteins that regulate the function of the cell surface metalloprotease a disintegrin and
metalloprotease 17 (ADAM17) [1-11]. Both iRhoms are widely expressed, with two notable
exceptions: iRhom1 expression is low or absent in myeloid cells, and iRhom?2 expression
is low or absent in the brain in mice, except for microglia [5,12]. ADAM17 has important
roles in development and disease by regulating the TNF«-, EGFR- and other signaling
pathways [12-17]. Since iRhom? is required for the activity of ADAM17 in myeloid cells,
mice lacking iRhom?2 are protected from endotoxin shock and inflammatory arthritis [1,12],
like mice lacking ADAM17 in myeloid cells [12]. Moreover, a double knockout mouse strain
lacking both iRhom1 and 2 resembles ADAM17-knockout mice in that they die shortly
after birth and have open eyes, heart valve defects and growth plate defects [5]. Proteomic
analysis has discovered substrates for iRhom1 in the mouse brain [18], yet little is currently
known about the role of iRhom?2 in the nervous system.

Using an iRhom?2-LacZ reporter mouse, we identified prominent iRhom? expression in
olfactory sensory neurons (OSNs), which was unexpected due to the otherwise low iRhom?2
expression in the mouse brain. OSNs, unique neurons undergoing lifelong regeneration
with a typical lifespan of six to eight weeks, detect odors via activation of olfactory receptors
(ORs) and are directly exposed to the external environment, unlike the rest of the brain [19].
ORs, the largest family of G-protein coupled receptors (GPCRs), comprise about 400 genes
in humans and about 1200 in mice [20]. During development, immature OSNs co-express
multiple ORs, then undergo positive and negative selection, resulting in mature OSNs
expressing a single OR type [21,22]. Furthermore, the OR composition in the olfactory
epithelium (OE) undergoes activity-dependent sculpting, allowing neurogenesis and/or
OSN survival to be modulated based on activity [23,24]. This process, often studied through
unilateral naris occlusion in mice, enables adaptation to specific olfactory environments by
adjusting the population of OSNs expressing individual ORs.

The selective iRhom?2 expression in OSNs prompted questions about its OE func-
tion. We conducted histopathological analyses of the OE of iRhom2-/- mice to assess
changes in OSN maturation or turnover. We used an unbiased RNAseq approach to ex-
amine how iRhom2 inactivation affects OR and non-OR expression in the OE, focusing
on activity-dependent genes. Additionally, we probed whether OR signaling activates
iRhom2/ADAM17 by utilizing the HaCaT keratinocyte cells line, which endogenously
expresses the receptor OR2AT4. Our findings provide evidence for a role of iRhom2 in OR
landscape regulation and activity-dependent OSN expression programs.

2. Results
2.1. iRhom?2 Is Prominently Expressed in the Olfactory Sensory Neurons

Previous studies have demonstrated that iRhom? is required for the maturation of
ADAM17 and TNF« release from microglia but that it cannot support the maturation of
ADAM]17 in all major areas of the mouse brain in the absence of iRhom1 [5]. To learn
more about the expression of iRhom? in the brain, we utilized a reporter mouse, in which
the expression of the LacZ gene is driven by the iRhom2 promoter. The iRhom2-LacZ
reporter revealed little, if any expression in most of the brain, except for the olfactory
bulb, where strong blue staining was evident (Figure 1A). Closer analysis of X-gal-stained
sections of the olfactory bulb (OB) showed that the expression of iRhom2 was localized to
a subset of glomeruli concentrated in the dorso-medial aspect of the OB (Figure 1B) [25].
The glomeruli of the OB contain the axon terminals of olfactory sensory neurons (OSNs)
that originate in the olfactory epithelium (OE). X-gal-stained sections of the OE lining the
nasal turbinates revealed high and specific expression of the iRhom2-LacZ reporter in the
OSN layer (Figure 1C). The expression patterns of iRhom?2 in the OE were independently
corroborated by an mRNA in situ hybridization (ISH) analysis on sections of WT and
iRhom2-/- mice (Figure 1D). A similar analysis of iRhom1 expression by mRNA ISH (in situ
hybridization) showed little, if any, expression in the OE, except in the submucosal layer
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in the olfactory epithelium (OE). X-gal-stained sections of the OE lining the nasal turbi-
nates revealed high and specific expression of the iRhom2-LacZ reporter in the OSN layer
(Figure 1C). The expression patterns of iRhom2 in the OE were independently corrobo-
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(scalebars = 10 um). iRhom2-/- mice have no functlonal iRhom?2 protem but express exons 1 and 2 as
part of the targeting constructs [20], resulting in low levels of transcript presence in the iRhom2-/-
OE. (E) mRNA ISH staining of OE with probe Mm-Rhbdf1 showed that no iRhom1 is expressed
in WT OSNs, although iRhom1 is expressed in the sustentacular cells (indicated by black arrows,
scalebars = 10 um). (F~H) Analysis of single-cell RN Aseq data of OE cells showed high expression of
iRhom?2 in immature and mature OSNs (iOSN, mOSN) (F,G), but minimal expression of iRhom1 in
these cells (H). iRhom1 is expressed in non-OSN cells in the OE, such as sustentacular cells (SUS).
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of the targeting constructs [20], resulting in low levels of transcript presence in the iRhom2-/- OE. (E)
mRNA ISH staining of OE with probe Mm-Rhbdfl showed that no iRhom1 is expressed in WT
OSNs, although iRhoml is expressed in the sustentacular cells (indicated by black arrows, scalebars
=10 pum). (F-H) Analysis of single-cell RN Aseq data of OE cells showed high expression of iRhom?2
in immature and mature OSNs (iOSN, mOSN) (F,G), but minimal expression of iRhom1 indthfae
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To determine when iRhom2 expression first appears in the OF during development,
we assessed iRhom2-LaeZ expression in the OF of newbern pups (Pestnatal day 0, P0)
and mice that were 2, 4 or 6 days old. We found minimal expression of the iRhom2-LacZ
teporter at PO but observed gradually increased expression over the first postnatal week

from P2 to P6 (Supplementany Figure $2).
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to identify apoptotic cells (E, black arrows) revealed no significant differences in proliferation or
apoptosis, respectively (scalebars = 20 pm). (F) RNAseq analysis of OE isolated from WT and iRhom?2-
/- mice (n = 12 each) showed no difference in the expression of markers for mature OSN (mOSN) or
immature iOSN (iOSN).
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2.3. RNAseq GO Analysis

To investigate the role of iRhom?2 in the OE in a high-throughput, unbiased manner,
we performed bulk RNAseq on OE tissue isolated from iRhom2-/- and WT mice at different
ages (5, 8, 10 and 30 weeks; 3 mice/ages/genotypes; combined n = 12 per genotype).
Expression analysis of markers for distinct cell types present in the OE showed no major
differences across mature or immature OSN markers (Figure 2F, mOSN, iOSN), consistent
with the histological analyses described above.

To determine whether specific biological pathways are altered in iRhom2-/- mice, we
conducted a gene ontology (GO) analysis. Unexpectedly, the GO analysis showed en-
richment of pathways for olfactory receptor activity, G-protein coupled receptor (GPCR)
signaling and detection of stimuli involved in smell in the iRhom2-/- OE (Figure 3A). As ex-
pected, we observed a significant downregulation in genes associated with innate immune
responses, likely reflecting the well-characterized consequences of the loss of iRhom?2 on
macrophage function, including the release of the pro-inflammatory cytokine TNF« [1,2,12]
(Figure 3A, Supplementary Figure S4A,B). The genes contributing to the altered GO path-
ways are highlighted among other differentially expressed genes (FDR < 0.1, Figure 3B).
Cell types that contributed to the downregulated GO terms were mainly non-OSN cells
(immune, sustentacular ventral cells, HBCs (horizontal basal cells), Figure 3C, Supplemen-
tary Figure S4A). In contrast, contributions to the upregulated GO terms derived mainly
from mOSNs and iOSNs (Figure 3D).

2.4. Activation of iRhom2/ADAM17 by OR Signaling in a Non-OSN Cell Type

Among the top pathways enriched in iRhom2-/- OE, OR activity and GPCR signaling
were particularly interesting, since iRhom?2 has been implicated in the crosstalk between
the GPCR receptor for lipophosphatidic acid (LPA) and EGFR/ERK (extracellular signal-
regulated kinases) signaling in mouse embryonic fibroblasts [27]. Moreover, signaling
through many GPCRs is known to stimulate the activity of ADAM17 [28-33]. In addi-
tion, the stimulation of GPCRs in several cell types, including keratinocytes, can activate
ADAM17-dependent shedding of EGFR ligands (e.g., HB-EGF, heparin-binding epidermal
growth factor like growth factor) and thus the EGFR/ERK pathway [27,29,34] (see model
in Figure 4A). ORs are GPCRs, yet it is not known whether ORs activate iRhom2/ADAM17.
Primary mouse OSNs are challenging to isolate and culture and we are not aware of
available OSN cell lines. Therefore, in order to study whether OR signaling activates
iRhom2/ADAM17, we turned to a cell line that expresses an OR with a known odorant
ligand and is easy to culture. Specifically, we employed the human keratinocyte HaCaT cell
line, which expresses the OR OR2AT4, which can be activated by addition of its odorant
ligand, Sandalore. As a positive control for GPCR/ERK crosstalk, LPA (lysophosphatidic
acid) was utilized; this is known to activate iRhom2 and ADAM17 [21,25]. Treatment of
HaCaTs with LPA (10 uM) for 5 min caused rapid phosphorylation of ERK1/2 that was
prevented by the metalloprotease inhibitor marimastat (MM, 5 uM) (Figure 4B). Treatment
of HaCaT cells with 1 mM Sandalore for 5 min also triggered rapid phosphorylation of
ERK1/2, in agreement with a previous report [35]. ERK phosphorylation induced by San-
dalore was blocked by treatment with marimastat (Figure 4B), indicating that OR OR2AT4
activates a metalloprotease, most likely iRhom2/ADAM17, to elicit crosstalk leading to
phosphorylation of ERK1/2.

2.5. Change in Differential Expression of ORs in iRhom2-/- over Time

Bulk RNAseq revealed that a subset of 14 ORs were significantly upregulated (red
dots, FDR (false discovery rate) < 0.05) and 16 ORs were significantly downregulated (blue
dots, FDR < 0.05) in the iRhom2-/- OE, whereas most ORs (grey dots, >1000 ORs detected)
were not differentially expressed (DE) (Figure 5A, n = 12 data from combined ages 5, 8, 10
and 30 weeks). We found that the differential expression of these 30 ORs varies across ages
(5, 8,10 and 30 weeks, Figure 5B). A pairwise correlation for ORs that were significantly DE
between iRhom2-/- and WT mice (FDR < 0.05) indicated substantial correlations between 5
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To determine whether specific biological pathways are altered in iRhom2-/- mice, we
conducted a gene ontology (GO) analysis. Unexpectedly, the GO analysis showed
enrichment of pathways for olfactory receptor activity, G-protein coupled receptor
(GPCR) signaling and detection of stimuli involved in smell in the iRhom2-/- OE (Figyrg
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while pathways downregulated were related to innate immune function. (B) Volcano plot of genes
differentially expressed between WT and iRhom2-/-. Individual genes that contributed to the GO terms
are labelled in pink (upregulated) and green (downregulated) plotted by the logFC and —log(FDR).
Only genes with FDR < 0.1 were considered for the GO analysis, all others are labelled in gray.
(C,D) Aggregated counts of the top 4 GO terms in WT and iRhom2-/- were plotted on a UMAP of OE
cell types. Downregulated GO terms in the iRhom2-/- OE are predominantly localized to non-neuronal
tissues, including immune cells (C). Upregulated GO terms in the iRhom2-/- OE are predominantly
localized to mOSNs and iOSNs (D).

2.6. iRhom2 Expression Negatively Correlates with Neuronal Activity

We analyzed a publicly available single-cell RNAseq database of mouse OSNs [36] and
stratified OSNs into five subsets, based on the expression level of iRhom?2, including a subset
of OSNs with no detectable iRhom?2 (referred to as iRhom2-). In the subset with no detectable
iRhom2 expression, the top upregulated transcripts included the neuronal activity genes
5100a5, DIg2, Pcp4l1, Kirrel2 and Lrrc3b [37-39] (Figure 6A). A step-wise inverse correlation
exists between OSNs with increasing levels of iRhom2 and reduced S100a5 expression
(Figure 6B). On UMAP (Uniform Manifold Approximation and Projection), OSNs with the
highest 5100a5 expression overlapped with those showing the lowest iRhom2 expression
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2.6. iRhom2 Expression Negatively Correlates with Neuronal Activity

We analyzed a publicly available single-cell RNAseq database of mouse OSNs [36]
and stratified OSNs into five subsets, based on the expression level of iRhom?2, including a
subset of OSNs with no detectable iRhom2 (referred to as iRhom2-). In the subset with no

detectabhle 1RMhhm? ovireoccion the o 11vreotilated trancerinte inelitded the netironal



with no detectable iRhom?2 (single-cell RN Aseq, see above) were expressed at lower levels
in the iRhom2-/- OE, with significantly lower expression of DIg2, Lrrc3b and Kirrel2
(Supplementary Figure S7), suggesting that iRhom2 activity is required for the normal
expression of these genes. Taken together, these findings suggest that iRhom?2 and most
Int. ] Mol. Sci. 2024, 25, 6079 hkely ADAM17 have a functlonal role downstream of OR 51gna11ng that may ﬁrst promcﬁtm
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5100a5 expression is significantly increased upon ACE exposure. The solvent is the vehicle control
dipropylene glycol. (E) UMAP from single-cell RN Aseq of OSNs dissected from naris occlusion
experiments. Data are integrated computationally while retaining their open or closed naris tags to
create a single UMAP (left panel). iRhom2 expression is most prominent in the OSNs from the closed
naris (middle panel), while S100a5 expression is most prominent in the OSNs from the open naris
(right panel).

To understand why iRhom2 expression is inversely correlated with OSN activity
genes, we examined a dataset generated from single-cell Act-seq of the OSNs of mice
that were exposed to the odorant acetophenone or solvent only for 2 h [36]. Single-cell
Act-seq is a technique that identifies transcriptomic changes due to neuronal activation. We
found iRhom2 expression significantly decreased (p = 0.028), whereas 5100a5 expression
significantly increased (p < 0.01) in OSNs activated by acetophenone; however, exposure to
the control solvent did not significantly affect iRhom2 expression and had a minimal effect
on 5100a5 expression (Figure 6D). Furthermore, analysis of a single-cell RNAseq dataset of
OSNs from the open and closed naris of naris occlusion experiments showed that the OSN
cluster in UMAP with the lowest S100a5 activity had the highest iRhom2 expression and
vice versa (Figure 6E). Collectively, these findings suggest that iRhom2 is downregulated
by odor stimulation. However, all five activity genes enriched in OSNs with no detectable
iRhom?2 (single-cell RN Aseq, see above) were expressed at lower levels in the iRhom2-/- OE,
with significantly lower expression of DIg2, Lrrc3b and Kirrel2 (Supplementary Figure S7),
suggesting that iRhom? activity is required for the normal expression of these genes. Taken
together, these findings suggest that iRhom?2 and most likely ADAM17 have a functional
role downstream of OR signaling that may first promote the expression of activity genes
but subsequently feeds back to downregulate iRhom?2.
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2.7. OSNs Expressing ORs Upregulated in iRhom?2-/- Maintain Unusually Stable Gene Expression
Amid Environmental Odor Changes

We examined whether OR populations that are upregulated or downregulated in
the iRhom2-/- OE exhibit unique gene regulatory patterns in response to environmental
odor changes using existing scRNAseq data derived from unilateral naris occlusion ex-
periments in mice [36]. To determine the overall transcriptomic changes between the
open and closed naris, we conducted pairwise Euclidean distance measurements between
every mOSN expressing the same ORs, as outlined in Figure 7A. Euclidean distance is a
readout of overall gene expression change in the OSNs between conditions. The Principle
Component Analyses (PCA) in Figure 7A provide examples of ORs with relatively small
(Olfrs 1346 and 536) or large (Olfrs 1366, 655 and 1028) Euclidean distances between the
open and closed naris. Most OSNs, including the OR subsets that are downregulated
in the iRhom2-/- OE (KO- ORs), showed significant gene expression changes upon naris
occlusion (Figure 7B). This includes reduced expression of known neuronal activity genes
such as $100a5 (Figure 7C) and increased expression of iRhom?2 (Figure 7D). In contrast,
ORs enriched in iRhom2-/- (KO+ ORs) have relatively small Euclidean distances (KO+ OR
in Figure 7B) and show minimal change in 5100a5 (Figure 7C) and iRhom2 (Figure 7D)
expression despite naris occlusion. In an effort to explore the impact of naris occlusion on
the olfactory receptor repertoire, we next examined the fold change in the expression of
ORs between nares (Figure 7E). Our findings align with previous research [23], indicating
a significant decrease in most OR transcript levels following naris occlusion. However,
again, the mOSNs expressing ORs upregulated in the iRhom2-/- were the exception to the
rule as the group exhibited no significant change in OR transcript levels between the open
and closed naris. This phenotype underscores the specialized regulatory mechanisms
of the subset of ORs enriched in iRhom2-/-, implying their independence from activity-
dependent gene expression modifications. Overall, these results point to critical roles
of iRhom?2 in the fine-tuning of the olfactory landscape and activity in response to odor
stimulation and deprivation.

2.8. Gene Expression Changes in iRhom2-/- OE Mimic Changes Occuring in Naris Occlusion

Previous work by Tsukahara et al. [36] characterized a subset of genes upregulated
by naris occlusion (GEP low) and a subset downregulated by naris occlusion (GEP high).
We found that the same subset of genes upregulated by naris occlusion was significantly
upregulated in the iRhom2-/- OE (Figure 8A). The gene subset downregulated by naris
occlusion was also downregulated in the iRhom2-/- OE at age 10 weeks and 30 weeks
(Supplementary Figure S8). Moreover, a group of genes described in a review article [40]
to be consistently up- or downregulated in an activity-dependent manner across several
unilateral naris occlusion studies responded in a similar manner to the inactivation of
iRhom?2 as in the occluded naris. The genes that are downregulated by activity and
upregulated upon naris occlusion are also upregulated in the iRhom2-/- OE (Figure 8B).
These results indicate that gene expression changes in iRhom2-/- OE mirror changes
occuring after naris occlusion, further corroborating that iRhom?2 regulates activity-
dependent gene transcription.
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2.8. Gene Expression Changes in iRhom2-/- O% Mimic Changes Occuring in Naris Occlusion

Previous work by Tsukahara et al. [36] characterized a subset of genes upregulated
by naris occlusion (GEP low) and a subset downregulated by naris occlusion (GEP high).
We found that the same subset of genes upregulated by naris occlusion was significantly
upregulated in the iRhom2-/- OE (Figure 8A). The gene subset downregulated by naris
occlusion was also downregulated in the iRhom2-/- OE at age 10 weeks and 30 weeks
(Supplementary Figure S8). Moreover, a group of genes described in a review article [40]
to be consistently up- or downregulated in an activity-dependent manner across several
unilateral naris occlusion studies responded in a similar manner to the inactivation of
iRhom2 as in the occluded naris. The genes that are downregulated by activity and
upregulated upon naris occlusion are also upregulated in the iRhom2-/- OE (Figure 8B).



These results indicate that gene expression changes in iRhom2-/- OE mirror changes
occuring after naris occlusion, further corroborating that iRhom2 regulates activity-
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The genes upregulated in iRhom2-/- OE align with the genes showing increased expres-
sion upon naris occlusion, suggesting a connection between odor signaling and iRhom?2.
The fine-tuning of the OSN repertoire through activity-dependent longevity control and/or
OR gene selection is an evolutionary strategy believed to enhance an organism’s environ-
mental adaptability [36]. Stimulating specific ORs can either promote or inhibit their OSN
survival [44]. Additionally, odor stimulation can boost the number of newly formed OSNs
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that express odor-responsive ORs [24]. Enhancing the abundance of particular OSNs is
thought to make the OE more responsive to odorant signaling, which can improve the
organism’s ability to forage for food, find mates and avoid predators, which are all key
activities that offer a survival advantage. In contrast, reducing the abundance of other OSN
subsets through odor stimulation is seen as an adaptation mechanism to specific olfactory
environments, favoring the survival of non-stimulated neurons for increased sensitivity to
new odors and stimuli. These insights, combined with the role of iRhom?2 in modulating
OR abundance and activity-dependent transcription, indicate multiple signaling pathways
activated by odor stimulation and iRhom?2 function.

Another perspective involves the development and maturation of the olfactory system.
Although the present study used mice with mature olfactory organs (age 5-30 weeks), it is
noteworthy that olfactory discrimination capabilities develop prenatally in humans [45] and
mice [46]. While fetal and neonatal development is not directly relevant here, it provides
context for understanding olfactory system maturation. Investigating the expression
pattern and consequences of iRhom2-deletion in murine fetuses and neonates could present
an interesting avenue for future studies [42].

Interestingly, previously reported single-cell sequencing of OSNs revealed an inverse
relationship between iRhom2 expression and neuronal activity-induced gene upregulation.
To reconcile our observation of iRhom?2 expression starting postnatally, presumably upon
exposure to air flow or odorants, yet being negatively influenced by neuronal activity
in mature OSNs, we propose some possible explanations. Firstly, iRhom2 expression in
embryonic OSNs might be activated by chemicals in the amniotic fluid or postnatally by
exposure to air flow or odorants or both. Alternatively, the initial onset of iRhom2 expression
in OSNs during the first postnatal week could be determined by the age of the mouse or
of individual OSNs, independent of odor stimulation. Secondly, iRhom2 expression could
become regulated by OR activity as a negative feedback mechanism in adult mice.

How can OR stimulation influence iRhom? activity and expression? Since ORs are part
of the GPCR family, we hypothesize that OR signaling activates iRhom2/ADAM17, simi-
lar to the established GPCR-ADAM17-EGFR/ERK signaling pathway [16,27,29,47]. Prior
research has highlighted the essential role of metalloproteases, especially ADAM17, in facil-
itating an interaction between GPCRs and the EGFR, which subsequently regulates cell mi-
gration and proliferation [32,34,47-49]. The crosstalk between a GPCR, iRhom2/ADAM17
and EGEFR forms a triple membrane-spanning signaling pathway, crucial for physiological
processes like hair growth, relying on ADAM17-mediated EGFR activation post-GPCR
stimulation by LPA [34]. Additionally, several GPCRs have been associated with the
ADAM17-driven release of the EGFR ligand TGFa [28]. Despite ORs being the largest
GPCR family [20], their involvement in iRhom2/ADAM17-mediated OR signaling within
OSNs remains unexplored. Intriguingly, our data and previous studies indicate that OR
stimulation by odorants can trigger ERK phosphorylation rapidly [50], suggesting a similar
triple membrane-spanning pathway might exist in OSNs. It is also recognized that ORs are
expressed in various cells beyond OSNs, such as keratinocytes and macrophages [35,51,52].
This study presents initial evidence that stimulating the keratinocytes OR OR2AT4 enhances
ERK activation via a metalloprotease, most likely iRhom2/ADAM17, akin to LPA-induced
stimulation [27] (see model in Figure 9). Further studies will be necessary to corroborate
whether OR signaling in primary OSNs also activates iRhom2/ADAM17.

Given the known role of iRhom?2 in immune cells, it was not surprising that we
found that the pathways downregulated in the iRhom2-/- OE related to the innate immune
response. Since OSNs are not known to have a role in innate immunity, this likely reflects
the absence of iRhom?2 function in the immune cells of the OE. Since all the mice in this
study were kept under homeostatic, non-inflammatory conditions, we would not expect
a difference in the OSN health or survival. Future studies will be necessary to determine
whether iRhom2-/- OSNs may be protected from olfactory inflammation and damage and
show enhancement of survival in an olfactory injury model.



Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 13 of 21

Int. J. Mol. Sci. 2024, 25, 6079 13 of 21
iRhom2/ADAM17 catalytic activity
WT WT iRhom2-/-
(closed naris)
AD_":MJ ! AREG?
Other
Odor / . \ substrate? ', “» O@
! Transcriptional Changes
vy wT Wr iRhom2-/-
EGFR (closed
o Other signaling ~ 2 naris)
+ .7 thway? '
Ca? pathway B » | OSN activity genes f ‘
Influx? ‘ERK1/2> "~ (e.g. DIg2, Kirrel 2) ‘

| iRhom2 mRNA ‘ ' ®
e > expression

______ N Genes enriched by ‘ f '
nares occlusion

Figugs - sShsmabo CORRGRROMHARAM MR A it inE dafatrliie aciviyuol fhe

yﬁé%%?OP&QJ@aé&ﬁﬁ@?1§ﬁ<daﬂf;Igeﬁﬁ@rempeﬁ%ﬁgeglgﬁsa%eﬁgwg%&erﬁanyqfeaagféﬂ
SioR SERESTRMG RN s Gt oFk Bk dhdlicate pesrentkns Rk Rehmashu) e sdh e seddrterigk
teettd e yhepdytopla stoindarofiR b ikhiniZcined qadesibtsphls phosplacndatisoru@RraR atibmp tind,
thredcihel eivelthna theakslcsélastnsbalboticdies tsathaR iR RIRA AroilRRbion P petebiraaeenudtpnesemnit
i v iR e

Gaken thegetlernaotesifihohava inentifiededl syotevtornidtisomy isnpthdi bt guihd
tiehatilie gatihdaysedufudite gnid actiintyhd riRhorepresiiorelatediles, thiselyrthioirghnaativity-
shapresed Sivh o €OBA sirs nOh& ioversochuredaticol datvireantdRiamd i RN thike Vidlsl gnd lo5N
aatizboegenefeliressofufe:gorSithe, iNglirdévelR) dfrthli @ Ehstrike ail able actiocei QNS
saddigavBhokdpprebsidivpressblyi dodnitrifieimedsiorss ponditistesswas Raiif ABRekyEdE-
deprragantcdesensithsNionatihteg suairiaoflsienssirite cell 1IN Asedsdaty fortherravieal
Wiaédheprivasin-of OB\ imaasioprorshe-d gpechrsiFifcfapen ARHIAMAISR MR ,
FsonBaHyReIsitIBE snActNE AN DIAdHORIHYy SPedEE gene sets identified as upreg-
ulatephji theRaltded matiaiedrilergetsncley aind foy iRt/ imieriulasathare theae
findipghaarpetr RS dalwbE s PR aUBNER PR aekyaisAIRhRRMY MHPstYH 2 danEpsges
peridehRilisanchismstherenirieive kdeadingp lrdedwris sRiaienRRRIN &bk it gossand
£R)1F§%Bﬁ%‘je§i5?€§§§éﬁr(é’§g%‘1®éﬁés Brgbars sepsherbiniraciodedspacisE igyres hedie
RIS ERBYeIRHEY v6 fredbaskmasbapdspoihateaducesd Rugrigrtianscrintionto
gerersitigeastins ﬁ d g6 b IRRRBA/ MY HBNRUNS functionsas feheq-
fHab akiei e e mrer! ararasedRynitdbesa shals lsaehere enbances R ASRRRER!

O RAMAZAS It sRresalatenaRiiviby aepes it slopmreswater s iessiagf
%E&%SH‘%HH?&%@%T&H%& Ralavgs CiRéf’%‘TJS?Q Sﬂégcé‘l’ééfasc%lasﬁ{zﬁéh%ﬁf}d 1%?88“%‘65&%%? these
findin sX fgr easl%?o%el wher Efa HuiRE %% ﬁevalles 111%1?\%"1111 /A]%SASI\TW 8 8%%556 S
ﬁ&%ﬁ : a§ GRS In%g y ﬁféa%m SRR OB AT TS an*zfo{

ene eX s%l%nc arg Nric (P m SIOn(‘Z:IO I’&g ur
eost mo fgné% sefjeg ipa k@ﬁ?&ﬁn S OF afypic 333?‘@ $e Sl
1} te at éﬁ)u a4 SHRRSSFASRRTL Fegulatory models deb a%a
f*at a’f m AR 5%%&% eI OBidsRepient
1}??%@% m%ﬁ%% % t r3SDE ef“fes ut nfe ulates mt RIS
am a1 eéti?tt}i\)zﬁerl‘l :%

ng}\%r‘l Va Sltlz Cal:tl tzlc cﬁwt
t esu set atareu uate I\ u’ﬁlr sant ot ee ectso

and Cross- ks in an autocrine ash 1ve mn rac

S n
o fsprivai trzla%tgc%m?%?}'ﬂ RN SRR TIB hRSe &@rgﬁg tped Qs T 1R



Int. J. Mol. Sci. 2024, 25, 6079

14 of 21

feedback mechanism exists by which active OSNs can downregulate iRhom2 expression
to reduce the sensitivity of the OSNs to activity-dependent changes. iRhom2 may
thereby control the sensitization or desensitization of OSNs to odorant stimulation.
Additional research will be required to deepen our understanding of iRhom?2’s function
in modulating OSN abundance and function.

4. Materials and Methods
4.1. Mice

We employed iRhom2 KOMP ([53] Rhbdf2fmIPKOMPWESE - yeferred to as iRhom2-/-,
129Sv, C57BL/6 mixed genetic background) [53], in which the expression of LacZ is driven
by the endogenous iRhom2 promoter.

4.2. X-Gal Staining

Adult iRhom2-/- or iRhom1-/- mice of different ages (as indicated) were sacrificed by
CO2 euthanasia for adults or decapitation for neonates following the AVMA Guidelines
for the Euthanasia of Animals. Heads were fixed in 4% PFA overnight at 4 °C, decalcified
in 0.5 M EDTA, pH 7.4 (Boston Bioproducts, Milford, MA, USA, BM-711) for 2 weeks at
4 °C and cryoprotected in 30% sucrose/PBS for 2 days at 4 °C. Heads were then flash
frozen in OCT (Sakura Finetek, Torrance, CA, USA, 4583) and sectioned on a cryostat (Leica
Biosystems, Deerpark, IL, USA, CM3050S) using high-profile disposable blades 818 (Leica
Biostsystems, Deerpark, IL, USA, 14035838383) at —19 °C at 10 um thickness. X-gal solution
is composed of 100 mmol/L sodium phosphate, 1.3 mmol/L MgCl2, 3 mmol/L potassium
ferricyanide, 3 mmol/L potassium ferrocyanide and 1 mg/mL X-gal powder (Apex Bio
Tech LLC, Houston, TX, USA, A2539, Batch # 2) dissolved into DMSQO, diluted into ddH2O.
Sections were stained in X-gal solution for 17 h, washed with ddH2O, counterstained with
Eosin B, dehydrated, placed on superfrost plus microscope slides (Cardinal Health, Dublin,
OH, USA, M6146-PLUS) and covered with coverslips.

4.3. RNA In Situ Hybridization

Specimens from WT and iRhom2-/- mice 8-12 weeks old were fixed in 10% neutral
buffered formalin for 7 days, decalcified in a freshly prepared 14% EDTA pH 7.2-7.4 solution
(EDTA 99% pure, Thermo Scientific, Cat # 118432500, Sodium hydroxide 10.0N, LabChem
Cat # LC245002) for 21 days, processed routinely in alcohol and xylene, and embedded in
paraffin. Five micron thick sections were cut from the paraffin blocks and mounted on glass
slides. Chromogenic in situ hybridization was performed on an automated stainer (Leica
Bond RX, Leica Biosystems, Deer Park, IL, USA) with RNAscope 2.5 LS Assay Reagent
Kit-Red (Advanced Cell Diagnostics, Newark, CA, USA, Cat. # 322150) and Bond Polymer
Refine Red Detection (Leica Biosystems, Buffalo Grove, IL, Cat. # DS9390) following
the manufacturer’s standard protocol. Slides were stained with appropriate RNA scope
2.5 LS Probes ordered from Advanced Cell Diagnostics (Newark, CA, USA) as follows:
Mm-Rhbdf2 (iRhom2), Cat No. 476168 (targeting region 760-1667 of NM_172572.3), Mm-
Adam17, Cat No. 479518 (targeting region 1383-2325 of NM_009615.6) and Mm-Rhbdf1,
Cat No. 476158 (targeting region 414-1421 of NM_010117.2). A positive control probe
detecting a housekeeping gene (mouse Ppib, Advanced Cell Diagnostics, cat # 313918) and
a negative control probe detecting the bacterial (Bacillus subtilis) dapB gene (Advanced Cell
Diagnostics, Cat. # 312038) were used to confirm adequate RNA preservation and detection,
and the absence of non-specific signal, respectively. The chromogen was fast red and the
counterstain hematoxylin. Positive RNA hybridization was identified as discrete, punctate
chromogenic red dots under brightfield microscopy.

4.4. Treatment of Keratinocytes with Sandalore and Phospho-ERK Western Blot

HaCaTs were cultured in DMEM with 10%FCS and 1%P/S. Cells were plated at
100,000 cells/well in full media in a 12-well format. The next day, cells were serum starved
for 17 h in DMEM without FCS. After starvation, the cells were washed once with pre-
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warmed PBS and treated with Sandalore (1 mM; Perfumer Supply House, Danbury, CT,
USA, CAS#65113-99-7) diluted in DMSO, or DMSO-only vehicle, for 5 min at 37 °C. Cells
were removed from the incubator, washed 2X with ice cold PBS and lysed in 100 puL/well
of lysis buffer composed of 1% Triton-X100, protease inhibitor cocktail (1:500; Roche, Basel,
Switzerland), marimastat (5 uM; Sigma Aldrich, St. Louis, MO, USA, 154039-60-8), 1,10-
Phenantroline (10 mM; Sigma Aldrich, St. Louis, MO, USA, P9375-259), Sodium Fluoride
(10 mM) and Sodium Orthovanadate (2 mM). Next, 6x SDS sample buffer and 50 mM DTT
were added to all samples. Samples were boiled for 7 min at 95 °C. Then, 20 pL of sample
was run per lane on 10% SDS-polyacrylamide gels. Gels were transferred in a Trans-blot SD
semi-dry transfer cell (BioRad, Hercules, CA, USA, 1703940) onto BioTrace Nitrocellulose
membranes (Cytiva, Marlborough, MA, USA, 66485). Membranes were blocked in 5%
milk, incubated in p-ERK antibody (1:1000; Cell Signaling Technologies, Danvers, MA,
USA, 9101S) or ERK1/2 antibody (1:5000; Sigma Aldrich, St. Louis, MO, USA, M5670)
overnight at 4 °C and stained with HRP-conjugated anti-rabbit IgG secondary antibody
(1:5000; Promega, Madison, WI, USA, W401B) for 30 min at room temperature. We used an
ECL detection system (Cytiva, Marlborough, MA, USA, RPN2106) and a Chemidoc image
analyzer (Bio-Rad, Hercules, CA, USA) to expose the blot for 30 s by chemiluminescence.

4.5. Immunohistochemistry

IHC was performed on a Leica Bond RX automated stainer using Bond bulk reagents
(Leica Biosystems, Buffalo Grove, IL, USA) and a polymer detection reagent kit (DS9800,
Novocastra Bond Polymer Refine Detection, Leica Biosystems). The chromogen was 3,3
diaminobenzidine tetrachloride (DAB), and sections were counterstained with hema-
toxylin. For Ki67, slides were heat induced at pH 9.0 for epitope retrieval, stained with
anti-Ki67 (Cell Signaling, Danvers, MA, USA, 12202, 1:500) and secondarily stained with
Leica Biosystems DS9800 kit, reagent #3, no dilution. For cleaved caspase-3, slides were
heat induced at pH 6.0 for epitope retrieval, stained with anti-cleaved caspase-3 (1:250,
Cell Signaling, 9661) and secondarily stained with Leica Biosystems DS9800 kit, reagent
#3, no dilution.

4.6. Slide Scanning and Cellular/Subcellular Quantification

Slides were scanned by brightfield imaging at 40X magnification on the Axioscan 7
Microscope Slide Scanner (Zeiss, Oberkochen, Germany). Images were analyzed using
Qupath 0.4.1 [54]. The olfactory epithelium layer was annotated manually and analyzed.
All cells were detected and included in the following analysis using Qupath Cell Detection
algorithm. For RNA ISH analysis, transcripts were detected using Qupath Subcellular
Detection algorithm with an expected, minimum and maximum spot size of 1.2, 0.5 and
1.2 um, respectively. The number of dots per cell included individual dots and estimated
dot numbers from clusters. For Ki-67 and cleaved caspase-3 quantification, positive cell
detection algorithm was used.

4.7. BrdU Injection, Tissue Harvest and Staining

BrdU (Sigma-Aldrich, St. Louis, MO, USA, B9285) was diluted to 10 mg/mL solution
in sterile PBS and aliquoted for storage at —80 °C. Mice were injected with 100 mg/kg
BrdU intraperitoneally and sacrificed either 1 day or 28 days post-injection. Heads were
harvested for fixation, decalcification, FFPE and sectioning. Slides were heat induced at pH
9.0 for epitope retrieval, stained with anti-BrdU (Abcam, Cambridge, UK, ab6326, 1:250),
post primary stained with Vector Laboratories Al 4001 (1:100) and secondarily stained with
Leica Biosystems DS9800 kit, reagent #3, no dilution.

4.8. Western Blot Densitometry

The Western Blot images were opened in Image] Version 1.53 [55]. Background signal
was removed by adjusting the brightness and contrast parameters. Bands were encapsulated
by rectangles, labelled with “select first lane” and quantified by analyze > gels > plot lanes.
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The wand function was used to select all lanes and quantify the densitometry of each band.
P-ERK bands were normalized to their corresponding total ERK bands. For representation
of data, the untreated, treated and treated + MM conditions were normalized to the treated
well (Sandalore or LPA). Statistical comparisons were conducted using Student’s t-tests with
the p value indicated above each of the conditions analyzed.

4.9. WOE Dissection, RNA Extraction and Library Prep

Mice were euthanized by CO, and the whole olfactory epithelium (WOE) from both
nares was dissected and placed into RNA Later Stabilization Solution (Fisher Scientific,
Waltham, MA, USA, AM7020). Tissues were homogenized in Buffer RLT by polytron. The
homogenized lysates were transferred to a gDNA Eliminator Spin column, and RNA was
extracted using the RNeasy Plus Kit (Qiagen, Germantown, MD, USA, 74134). After the
RW1 wash, we performed the DNasel (Qiagen, Germantown, MD, USA, 79254) on column
digestion step for 15 min, followed by a second RW1 wash. All other steps were carried out
according to the RNeasy Plus Kit’s standard protocol. Total RNA was submitted to the Weill
Cornell Medicine Genomics Core for library prep with the NEB Ultra II Directional RNA
Library Prep (plus poly A isolation module). QC was conducted using Agilent Bioanalyzer
Sample QC- Nanogel and NanoDrop Spectrophotometer. Samples were sequenced on the
NovaSeq6000 (Illumina, San Diego, CA, USA) on an 54 Flow Cell at 2 x 150 cycles.

4.10. RNAseq Alignment, Quantification and Differential Expression Analysis

Nextflow nf-core v3.10.1 (https://doi.org/10.5281/zenodo.1400710) was used for reads
alignment and quantification. More specifically, sequences were aligned with STAR [56]
against GRCm38, and gene-level read quantification was carried out via RSEM [57]. Dif-
ferential expression analysis between groups was performed against all genes or olfactory
receptors only using EdgeR v3.40.2 [58] in R (http:/ /www.R-project.org, accessed on 15
September 2023) and p-values were then re-corrected by FDR. Gene nomenclature was
retrieved from BioMart [59]. Data analysis, statistical testing and plotting were carried out
in python (https://ir.cwinl/pub /5008, accessed on 15 September 2023).

4.11. Principal Component Analysis

To calculate the principal component analysis (PCA) for our single-cell RNA sequenc-
ing data, we utilized the Scanpy library [60]. The AnnData object containing the prepro-
cessed gene expression matrix underwent normalization, scaling and selection of highly
variable genes. We then applied the PCA algorithm using the Scanpy function sc.tl.pca,
with the svd_solver parameter set to ‘arpack’ to perform the singular value decomposition
(SVD). This method projected the high-dimensional data into a lower-dimensional space,
retaining the most significant features in terms of variance. The resulting PCA coordinates
were stored and used to calculate Euclidean distances.

4.12. Visualization via UMAP

The scRNAseq data processing for UMAP dimensional reduction involved initial
loading of count data. Quality control steps were implemented to filter cells and genes
based on QC metrics, including a minimum of 200 genes per cell and a minimum of 3 cells
per gene. Normalization procedures, such as log transformation and identification of highly
variable genes, were performed with parameters set to minimum mean count of 0.0125,
maximum mean count of 3 and minimum dispersion of 0.5. Unwanted sources of variation,
including total counts and mitochondrial gene expression, were regressed out, and the
data were scaled and subjected to principal component analysis (PCA) with the number of
principal components (PCs) set to 40. Subsequently, nearest neighbor identification and
clustering were performed using the Leiden algorithm with a resolution of 0.2, and potential
lineage relationships between clusters were inferred via Partition-based Graph Abstraction
(PAGA). UMAP was then applied for dimensionality reduction and visualization with
the number of PCs set to 40, and clusters were visualized on the UMAP plot colored
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by metadata variables. Finally, UMAP coordinates were extracted and combined with
metadata for visualization of gene expression levels of specific genes of interest on the
UMAP plot.

4.13. Identification of the OR Expressed in Each OSN

The characterization of OR choice in each mOSN is conducted following the method
described previously [36]. Briefly, for each given mOSN, the highest expressing OR is
determined to be the sole expression OR.

4.14. OR Pair-Wise Comparison

The pairwise comparison of OR was conducted across two different measurements:
individual gene expression and Euclidean distance comparison between open and closed
nares. Firstly, the pairs of OR comparison are obtained by generating all matches of open
and closed naris cells expressing the same OR. First, for each given pair, the expression
levels of OR genes were analyzed between open and closed nares using log-fold change
calculations, providing insights into differential expression patterns. Secondly, Euclidean
distance measurements were employed to assess the overall similarity or dissimilarity in
gene expression profiles between cells from open and closed nares. This analysis enabled
the characterization of the spatial relationships between cells in the scRNAseq dataset.
Violin plots were generated to visualize the distributions of log-fold changes, facilitating
the comparison of gene expression patterns across OR subsets that were upregulated and
downregulated in the iRhom2-/-.

4.15. OR Population Comparison

We examined each OR gene individually, assessing the counts of cells associated with
open and closed nares to gauge relative abundance of OR with and without odor stimula-
tion. The loglp was calculated between nares to capture the fold change in counts between
total number of cells from closed and open nares. This transformation offers a nuanced
representation of fold changes without addressing issues with extreme values. To ensure
comparability across receptors, we normalized the loglp values based on the proportion of
counts each OR contributes to the total counts across all cells. This normalization procedure
standardized the effect size (fold change) to account for variations in counts across ORs,
facilitating the identification of fold change with significant count alterations between open
and closed nares. Ultimately, these normalized loglp fold change values were used in
characterizing the relative counts of OR genes in response to naris occlusion.

4.16. RNAseq Data Analysis

RNAseq analyses were performed in python (versions 3.8) and R (version 4.2). Single-
cell analyses were performed in python (versions 3.8) using Scanpy package (version
1.8.2) [60]. Custom scripts for data analysis and visualization were built using open-source
python libraries (pandas, numpy, matplotlib, plotly, sklearn, scipy, seaborn and itertools).
Scripts to replicate data analysis are available at https://github.com/Justice-Lu/iRhom?2
_Analysis (accessed on 15 September 2023).

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ijms25116079/s1.
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