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Abstract
Hybridization between species and the establishment of hybridization barriers can influence the diversification of species. 
Antarctic notothenioid fishes represent a prime example of marine adaptive radiation that diversified in the icy waters 
of Antarctica from an ancestral population that innovated antifreeze glycoproteins. The processes by which Antarctic 
notothenioid species evolved, however, remain elusive, and interspecific hybridization or the establishment of hybridization 
barriers between lineages may have influenced species diversification. To evaluate the current hybridization potential of 
notothenioids, we performed an experimental in vitro fertilization cross between two sympatric and congeneric notothen 
species using oocytes from the bullhead notothen Notothenia coriiceps and sperm from the marbled notothen N. rossii. 
Resulting embryos developed to late gastrula/early neurula stages and then suddenly died. Genetic analyses of embryos 
and parents demonstrated that the embryos lacked detectable paternal DNA and were thus gynogenetic. While premating 
barriers are likely to exist between the two species, this experiment suggests a strong postmating, prezygotic reproductive 
barrier preventing hybridization between the sister species due to gametic incompatibility in this directional cross. Our 
study provides novel information on mechanisms that may have contributed to the divergence and maintenance of these two 
ecologically important congeneric species.
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Introduction

Hybridization between species and the establishment 
of barriers to prevent hybridization can influence the 
diversification of species (Seehausen 2004; Mallet 2007; 
Genner and Turner 2012; Abbott et al. 2013; Taylor and 
Larson 2019; Marques et al. 2019; Gillespie et al. 2020; 
Pfennig 2021). Antarctic notothenioid fishes, also known 
as cryonotothenioids, constitute a remarkable example 
of marine adaptive radiation that diversified during the 
past 10.7 million years (Bista et al. 2023) from a single 
ancestor to more than a hundred species that now inhabit 
the frigid waters of the Southern Ocean (Eastman and 
Eakin 2021). While geographic isolation likely explains 
the divergence of several cryonotothenioid lineages and 
species by allopatric speciation (e.g., Hüne et al. 2015; La 
Mesa et al. 2017; Desvignes et al. 2020), a few population 
genetics studies revealed putative hybrids between 
parapatric sister species (Marino et al. 2013; Dornburg 
et  al. 2016a, b; Schiavon et  al. 2021), which suggests 
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incomplete reproductive isolation between some closely 
related species. Furthermore, an in vitro cross between 
a blackfin icefish female Chaenocephalus aceratus and 
a male ocellated icefish Chionodraco rastrospinosus 
produced intergeneric hybrids that survived past hatching 
to swimming larvae; unfortunately, further study of hybrid 
survival and development was precluded by logistic 
constraints of work in Antarctica (Desvignes et al. 2019). 
These examples of possible natural hybridization between 
related cryonotothenioid species motivate the analysis of 
the roles of interspecific hybridization and of hybridization 
barriers in the diversification of this iconic clade. Here, we 
evaluated the hybridization potential between two sympatric 
and congeneric notothenioid species: the bullhead notothen 
Notothenia coriiceps and the marbled notothen N. rossii 
(Eastman et al. 2011; Duhamel et al. 2014; Caccavo et al. 
2021) by performing in vitro fertilization using N. coriiceps 
oocytes and N. rossii sperm. Results revealed gynogenetic 
embryos activated by, but with no genetic contribution from, 
the sperm and embryos that died uniformly well before 
hatching, consistent with a strong postmating, prezygotic 
barrier to hybridization.

Methods

Collection of adult specimens

The female bullhead notothen Notothenia coriiceps 
specimen was collected during the night of April 20–21, 
2018, using an 18-ft otter trawl equipped with rockhopper 
gear deployed from the ARSV Laurence M. Gould at a 
depth of ~ 150 m in the Antarctic Specially Protected Area 
(ASPA) 152 (Western Bransfield Strait) located southwest 
of Low Island (63°29’S 62°41’W), as previously described 
(Desvignes et  al. 2022). The male marbled notothen 
Notothenia rossii specimen was captured during the night 
of June 5–6, 2018, in the ASPA 153 (Eastern Dallmann Bay) 
(63°55’S 62°47’W), about 45 km distant, using the same 
rockhopper otter trawl at a depth of ~ 180 m.

Upon collection, live fish were transferred immediately 
from the trawl net to the ship aquaria (1-m3 Xactics™, 
Cornwall, Ontario, Canada), which were supplied with 
flow-through seawater and enhanced aeration. Live fish were 
transported within 1–2 days to aquaria facilities at Palmer 
Station, Antarctica, where they were maintained in 2.5-m3 
circular flow-through seawater tanks at ambient temperatures 
of − 1 to 0 °C following previously described husbandry 
guidelines (Le François et al. 2017).

All procedures were performed according to protocols 
approved by the Institutional Animal Care and Use 
Committees (IACUC) of the University of Oregon 

(#13-27RRAA) and of Northeastern University (#18-
0103R), and access to ASPAs 152 and 153 was authorized 
by Antarctic Conservation Act Permit ACA 2016–025.

Gametes and in vitro fertilization

On June 7, 2018, mature oocytes were obtained from the 
gravid N. coriiceps female (2072 g total weight, 42.4 cm 
total length, estimated gonadosomatic index 34%) by 
applying gentle pressure to its abdomen after sedation with 
MS-222 at 50 mg∙L−1. Stripped oocytes were collected in a 
stainless-steel bowl and kept chilled in ovarian fluid on ice 
to prevent oocyte activation.

After euthanasia with a lethal dose of MS-222 at 
100 mg∙L−1, testes of the mature N. rossii male (1021 g total 
weight, 43.4 cm total length, estimated gonadosomatic index 
0.53%) were dissected and rapidly cut into small fragments 
in a petri dish kept on ice to let semen exude and maximize 
semen volume for oocyte fertilization. A sample of exuded 
semen was diluted in filtered sea water and immediately 
observed under a microscope to verify sperm capacitation 
(Le François et al. 2020).

For in vitro fertilization, ~ 1 mL of semen exudate from 
the N. rossii male was added to N. coriiceps oocytes in the 
stainless bowl and ~ 2.5 L of filtered, UV-treated seawater 
at ~ 0 °C was gradually added to activate the sperm. The 
mixture of oocytes and sperm was gently agitated for 5 min 
and rinsed three times over half an hour with filtered and 
UV-sterilized seawater to minimize egg adhesion to one 
another.

Observations of developing embryos

Positively buoyant embryos were initially incubated at ~ 0 °C 
with gentle aeration in four 1-L beakers containing ~ 1500 
embryos each. Every other day, 75% of the water was 
renewed with preconditioned filtered and UV-sterilized 
seawater. Dead embryos were removed daily. After 10 days, 
embryos were transferred to a tray of a vertical incubation 
system (MariSource Inc., WA) with constant flow-through 
of filtered, aerated, and UV-sterilized seawater at -1 to 0 °C. 
Several embryos were randomly collected every few days 
for developmental and morphological observations and 
were imaged using a dissecting microscope. Developmental 
stages corresponded to those previously described for N. 
coriiceps (Postlethwait et al. 2016) and medaka (Iwamatsu 
2004). At 21  days post fertilization (dpf), embryonic 
development stalled, and five of the remaining embryos were 
sampled and preserved in 70% ethanol for subsequent DNA 
analyses. During incubation, the water temperature remained 
stable around 0 °C and embryos from several other pure N. 
coriiceps crosses raised in other trays of the same vertical 
incubator did not experience any mortality event, ruling out 
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technical issues that could have affected the experimental 
embryos. All surviving embryos produced, from the hybrid 
cross and from the pure N. coriiceps crosses, were humanely 
euthanized with a lethal dose of MS-222 at 100 mg∙L−1.

Genetic Analysis

To test whether N. coriiceps x N. rossii embryos were true 
F1 hybrids, we amplified segments of two polymorphic 
nuclear genes, myh6 (myosin, heavy chain 6, cardiac 
muscle, alpha) and rho (rhodopsin), and the polymorphic 
mitochondrial gene mt-co1 (cytochrome c oxidase I, 
mitochondrial), from five embryos and from both parents. 
PCR reactions were performed using primers as previously 
described (Desvignes et  al. 2019), and amplicons were 
sequenced by Sanger sequencing (GENEWIZ, Cambridge, 
MA, USA). Results were compared to sequences in NCBI 
GenBank and the Barcode of Life Data System (BOLD 
System)(Ratnasingham and Hebert 2007) to identify 
species-specific alleles. Sequencing results are provided in 
Online Resources 1–3.

Results

Experimental embryos initiated development 
but died before neurulation

Hardening of the egg chorion was observed within a few 
hours post fertilization, indicating successful hydration 
and cortical reaction. Hydrated eggs measured on average 
4.4 mm in diameter, with a wet weight of 49.5 ± 1.3 mg and 
a dry weight of 4.2 ± 0.3 mg (~ 8.5% of wet weight). At 1 
dpf, embryos were at the 2-cell stage (Fig. 1A), and at 2 dpf, 
they had advanced to the 4-cell stage. On average, embryos 
reached the 64-cell stage by 3 dpf, the 256-cell stage by 5 
dpf, and the 1 k-cell stage by 7 dpf. At 8 dpf, the embryonic 
dome of cells flattened to reach a late blastula stage with 
the formation of a rudimentary germ ring and embryonic 
shield (Fig. 1B). At 9 dpf, embryos transitioned to an early 
gastrula stage with a defined germ ring and embryonic shield 
(Fig. 1C). Between 10 and 12 dpf, embryos progressed 
towards the mid-gastrula stage (Fig.  1D-E) and by 14 
dpf, embryos had reached ~ 30% epiboly (Fig. 1F). At that 
age, embryonic chorions became abnormally weak and 
occasionally ruptured, even with careful handling. Between 
14 and 21 dpf, most embryos had stopped developing or 
had died. By 21 dpf, several embryos were arrested at late-
gastrula to early neural stages with an established embryonic 

Fig. 1   Development of N. coriiceps x N. rossii embryos. A 2-cell 
stage, 1 dpf. Arrowheads point at the two cells. B Late blastula, 8 dpf. 
C Early gastrula, 9 dpf. D Early gastrula, 10 dpf. E Early gastrula, 
12 dpf. F ~ 30% epiboly, 14 dpf. G,H Late gastrula/early neurula, 21 

dpf. H Embryonic axis at higher magnification. Abbreviations: ch, 
chorion; cns, central nervous system anlagen; ea, embryonic axis; ep, 
eye primordium; gr, germ ring; sh, embryonic shield; tb, tail bud; y, 
yolk
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axis and the anlagen of a central nervous system posterior to 
eye primordia (Fig. 1F). None of the experimental embryos 
developed distinct somites or a Kupffer’s vesicle. Embryos 
did not survive past this stage.

Experimental embryos were gynogenetic

The N. coriiceps x N. rossii embryos could be true hybrids 
or, alternatively, might have derived by gynogenesis. To 
evaluate these two hypotheses, we amplified and sequenced 
fragments of one mitochondrial and two nuclear genes from 
both parents and five different experimental embryos.

The sequencing of the mitochondrial marker mt-co1 
from the five experimental embryos confirmed the presence 
of maternal N. coriiceps mitochondrial DNA and the 
absence of paternal N. rossii mitochondrial DNA (Fig. 2A, 
Supplementary Table 1), as expected given the maternal 
inheritance of mitochondria.

PCR amplification of the two nuclear genes myh6 and rho, 
however, revealed the presence of only maternal alleles in the 
embryos and failed to amplify paternal sequences, although 
the same primers efficiently amplified DNA from the N. 
rossii father (Fig. 2B). At all nucleotide sites differentiating 
the two parental alleles, nucleotides in the progeny were 
resolved unambiguously as maternal variants (three sites 
in myh6 and 11 sites in rho, Supplementary Table 1) with 
no paternal variants detected. Thus, experimental embryos 
appeared to be devoid of paternal DNA and were, therefore, 
gynogenetic. Whether the embryos were gynogenetic 
haploids or gynogenetic diploids could not be assayed and 
would have required cytological analyses of embryos, or 
the identification of heterozygous loci in each embryo that 
could have been derived from meiotic recombination events 
associated with maternal polymorphisms if the gynogenetic 
embryos had been derived by the production of half-tetrads 
(Streisinger et al. 1981).

Discussion

Development of experimental embryos

Embryos resulting from the in vitro fertilization of a female 
N. coriiceps by a male N. rossii developed at the same 
rate as embryos resulting from a pure N. coriiceps cross 
raised in similar thermal conditions hovering around the 
freezing temperature of seawater (Postlethwait et al. 2016) 
and reached the onset of neurulation around 20 dpf. The 
N. coriiceps x N. rossii embryos, however, developed more 
slowly than pure N. rossii embryos raised in the Kerguelen 
Islands at temperatures ranging from 2 to 4.5 °C (Camus and 
Duhamel 1985), which reached neurulation around 14 dpf. 
The difference in incubation temperature likely explains the 

difference in developmental rates. No N. coriiceps x N. rossii 
embryos, however, survived past 21 dpf or developed past 
an early neurula stage.

Experimental embryos are likely gynogenetic 
haploids

Genetic analyses revealed the absence of detectable paternal 
DNA in the hybrid embryos but confirmed the presence of 
maternal mitochondrial and nuclear alleles, demonstrating 
that experimental embryos were gynogenetic. Gynogenetic 
embryos are generally of three main types: haploids, diploid 
half tetrads, or diploid doubled haploids (Streisinger et al. 
1981). Haploid embryos of different fish species generally 
display the “haploid syndrome”, which encompasses a 
variety of phenotypes ranging from early embryonic death to 
embryos with short and stocky bodies, small eyes, uninflated 
swim bladder, and apoptosis in the brain, and they usually 
die before hatching (Purdom 1969; Streisinger et al. 1981; 
Luo and Li 2003; Delomas and Dabrowski 2016; Zhou et al. 
2022). The N. coriiceps x N. rossii embryos thus presented 
phenotypes compatible with the haploid syndrome but they 
did not develop somites, well-formed eyes or brain, and 
appeared to die at an earlier developmental stage than typical 
haploid fish do.

Although our data are consistent with experimental 
embryos being haploid, we cannot rule out the alternative 
hypothesis that the embryos were gynogenetic diploids. If 
the experimental embryos were doubled haploids, then the 
observed mortality could be caused by homozygosity of 
lethal alleles of two different linked complementary genes 
for which the N. coriiceps mother was heterozygous, in 
which case half of the embryos would be homozygous for 
one of the lethal alleles and the other half homozygous for 
the other lethal mutation. Alternatively, many embryonic-
lethal alleles might have been heterozygous in the genome 
of the N. coriiceps mother so that no embryos would be free 
of lethal alleles, in which case, the population of embryos 
would have shown a number of different lethal syndromes, 
which we did not see. We therefore conclude that the 
experimental embryos were likely gynogenetic haploids.

Barriers to hybridization between N. coriiceps and N. 
rossii

Although barriers to hybridization may be somewhat 
permissive between some closely-related cryonotothenioid 
species (Marino et  al. 2013; Dornburg et  al. 2016a, b; 
Desvignes et  al. 2019; Schiavon et  al. 2021), results 
presented here suggest that directional hybridization 
between congeneric notothen N. coriiceps females and 
N. rossii males may be impossible and that reproductive 
isolation in this direction at least may be complete. The 
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embryonic lethality observed in this interspecific cross raises 
questions concerning barriers to hybridization between the 
two congeneric species.

Among premating hybridization barriers, temporal 
isolation and ecological isolation seem unlikely in this 
case because N. coriiceps and N. rossii have overlapping 

distributions (Duhamel et al. 2014; Ferreira et al. 2017; Calì 
et al. 2017) and reproductive seasons (Kock and Kellermann 
1991; Ferreira et al. 2017), consistent with our experience 
of simultaneously and regularly collecting mature adults of 
both species in the same trawl or baited trap. We cannot 
exclude, however, that N. coriiceps and N. rossii reproduce 

Fig. 2   Genetic analyses demonstrated that the embryos were 
gynogenetic. A Sanger sequencing for the mitochondrial gene mt-co1 
identified only the maternal allele in all five experimental embryos. 
B Sanger sequencing for the nuclear gene rhodopsin identified 
only the maternal allele in all five experimental embryos. This 

result demonstrated the absence of the paternal allele, and thus, the 
gynogenetic status of the embryos. The positions of single nucleotide 
polymorphisms (SNP) in the sequences are given with respect to the 
maternal alleles. Images illustrate adult specimens of the parental 
species, not the exact specimens used for the experimental cross
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at different times of day, in different spawning grounds, 
or both, which would constitute temporal and ecological 
barriers to hybridization. Furthermore, although both 
species are broadcast spawners whose females release 
large, positively buoyant eggs in potentially large spawning 
aggregates (White et al. 1996; Sapota 1999; Calì et al. 2017), 
species-specific reproductive behavior via assortative mating 
and courtship may nevertheless prevent hybridization. 
Therefore, premating hybridization barriers may contribute 
to the reproductive isolation of the two species, although the 
present study does not have the data to test this hypothesis.

Our data are, however, consistent with the hypothesis that 
postmating barriers likely play a major role in preventing 
interspecific hybridization between N. coriiceps females and 
N. rossii males. Indeed, our genetic analyses failed to reveal 
the presence of paternal DNA in the embryonic genome. 
Therefore, either the N. rossii sperm pronucleus entered 
the egg cell but was unable to fuse with the N. coriiceps 
oocyte pronucleus to generate a diploid zygote nucleus 
(karyogamy), or the N. rossii sperm was able to activate 
the N. coriiceps oocytes but the sperm pronucleus failed to 
enter the oocyte.

Karyotypic differences between the two species 
(2n = 22 in N. coriiceps and 2n = 24 in N. rossii (Prirodina 
and Neyelov 1984; Doussau de Bazignan and Ozouf-
Costaz 1985; Van et al. 1987; Ozouf-Costaz et al. 1991; 
Tomaszkiewicz et al. 2011)) are unlikely to have generated 
any problems in chromatids separating during anaphase of 
mitosis. Hybrids of species with different karyotypes (i.e., 
chromosomal hybrids) are not uncommon, often viable, 
and have intermediate number of chromosomes compared 
to the two parents or may be triploid or tetraploid (e.g., in 
fish LeGrande et al. 1984; Harvey et al. 2002; Ostberg et al. 
2013; Suzuki et al. 2017; Vasil’ev et al. 2021) and other 
metazoans, including the mule (Benirschke et al. 1962; 
Medarde et al. 2012; Lukhtanov et al. 2020; Galindo et al. 
2021; Noronha et al. 2022)). The impact of a karyotype 
with unpaired chromosomes usually becomes apparent only 
during meiosis, where mispairing of chromosomes leads to 
aneuploid gametes and inviability of the aneuploid offspring 
of hybrid parents. Even in cases where chromosome number 
is the same, individuals of the heterogametic sex are often 
sterile in an interspecific cross, a situation known as 
Haldane's rule (Haldane 1922; Coyne and Orr 2004; Coyne 
2018). Given these considerations, it would be surprising, if 
the N. rossii sperm pronucleus had fused with N. coriiceps 
oocyte pronucleus, that not a single embryo would have 
survived longer than neurulation, and that none of the tested 
embryos had detectable paternal DNA.

The most likely explanation for the gynogenetic genome 
of the hybrid embryos is thus that N. rossii sperm were 
incompatible with N. coriiceps oocytes while still able 
to activate embryonic development. The micropyle, a 

narrow canal in the chorion of fish oocytes that prevents 
polyspermy by limiting entry to only one sperm, has diverse 
morphologies and sizes adapted to the sperm characteristics 
of each species (Riehl and Kock 1989; Yanagimachi et al. 
2013, 2017) and may contribute to preventing interspecific 
crosses (Kinsey et al. 2007). The micropyle in N. coriiceps 
oocytes has a narrow pit of 16 µm and a canal diameter of 
4.5 µm, whereas that of N. rossii oocytes lacks a pit and 
has a diameter of 6–7 µm (Riehl and Kock 1989; White 
et al. 1996). Therefore, N. rossii sperm may, for example, 
be too large to pass through the micropyles of N. coriiceps 
oocytes, consistent with the observation that differences 
in micropyle size influence fertilization rates between 
medaka species (Iwamatsu et al. 1997). Furthermore, the 
micropyle secretes a sperm attractant that helps guide the 
sperm to and through the micropyle (Yanagimachi et al. 
2013, 2017). Perhaps the micropylar sperm attractant of N. 
coriiceps oocytes does not effectively guide N. rossii sperm 
all the way through the micropyle. More broadly, the many 
reproductive proteins necessary for the fusion of gametes, 
the decompaction of the sperm pronucleus, and the fusion of 
pronuclei may be other sources of incompatibility between 
the two species (Swanson and Vacquier 2002; Kinsey et al. 
2007). We can nonetheless conclude that N. rossii sperm 
were able to activate N. coriiceps eggs and to trigger 
embryonic development, although gamete fusion may not 
have happened and incorporation of paternal chromosomes 
into the zygote nucleus did not occur. Therefore, gametic 
incompatibility appears to explain the absence of paternal 
DNA that we observed in developing embryos and the 
failure to obtain true N. coriiceps x N. rossii diploid hybrids.

Thorough characterization of sperm and oocyte 
morphologies for each species are needed to assess whether 
morphological features of N. coriiceps and N. rossii 
gametes contribute to their incompatibility. In addition, 
to decisively conclude about the presence or absence of 
post-mating, prezygotic reproductive isolation between the 
two sister notothen species, our experiment would need to 
be replicated, the reciprocal cross (N. rossii oocytes x N. 
coriiceps sperm) would need to be analyzed, and additional 
controls would have to be added to the experimental design 
(i.e., fertilization of N. coriiceps oocytes by N. coriiceps 
sperm to verify oocyte viability, fertilization of N. rossii 
oocytes by N. rossii sperm to verify sperm quality). Such a 
complete experimental design is unfortunately exceedingly 
hard to implement in the field in Antarctica where capture 
of reproductively active and gravid specimens is never 
guaranteed and installations and time to raise embryos 
are limited. Nonetheless, the experimental design we 
were able to perform still provides opportunities to draw 
some conclusions despite logistical shortcomings. Here, 
our analysis of this directional experimental hybrid cross 
revealed a likely strong postmating, prezygotic barrier to 
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hybridization between N. coriiceps females and N. rossii 
males, which could contribute to the divergence and 
maintenance of these two ecologically important Antarctic 
congeners. This strong barrier to hybridization might have 
been erected if premating barriers to hybridization were 
permissive, which is not excluded given that N. coriiceps 
and N. rossii have mostly sympatric distributions, largely 
overlapping reproductive seasons, similar reproductive 
strategies, and are both broadcast spawners reproducing in 
potentially large aggregates. This gamete incompatibility 
might also result simply from the two species being too 
divergent after ~ 3–6 million years of evolution (Parker 
et al. 2022; Bista et al. 2023). In African cichlids, which 
underwent an adaptive radiation in the same timeframe 
as cryonotothenioids (Ronco et  al. 2020), the study of 
interspecific fertilization rates in 26 heterospecific pairs 
revealed that the strength of gamete incompatibility 
increases linearly with divergence time, with complete 
gamete incompatibility achieved after around 4 million 
years (Stelkens et al. 2010). The case of a strong postmating, 
prezygotic hybridization barrier between the congeneric N. 
coriiceps females and N. rossii males therefore contrasts 
with that of icefishes in which reproductive season and 
nesting behavior may represent the main hybridization 
barriers (Desvignes et  al. 2019). The diversification of 
cryonotothenioid species has thus likely been influenced 
by the establishment of various types of hybridization 
barriers that have potentially been influenced by the mode 
of reproduction of each species.
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