2023 Annual Conference & Exposition RUELECHEAETEENLE
Baltimore Convention Center, MD | June 25 - 28, 2023 Education for 130 Years

Paper ID #36963

Board 196: A Framework to Assess Debugging Skills for Computational
Thinking in Science and Engineering

Derrick Hylton, Spelman College
Dr. Shannon Hsianghan-huang Sung, Institute for Future Intelligence

Shannon H. Sung is a Learning Scientist at Institute for Future Intelligence. Her research focuses on
technology-enhanced learning and assessment, interdisciplinary STEM learning, and the cognitive learn-
ing processes.

Xiaotong Ding
Mary Johanna Van Vleet

©American Society for Engineering Education, 2023

A Framework to Assess Debugging Skills for Computational Thinking in
Science and Engineering

Abstract
A rubric is presented to assess debugging skills for students particularly in the natural sciences
and engineering. The three categories that are assessed for the cognitive processes in debugging
skills are identification, isolation, and iteration. These are defined, and the characteristics of each
process are listed. We discuss the method used to develop this rubric that was based on
intentional errors in a programming assignment given to students in an introductory physics
course. The programming in this assignment was in Python and a visual-based programming
platform, called iFlow. We believe that visual-based programming will help elicit weaknesses in
debugging because it removes students' familiarity with particular programming languages.

Our focus on debugging skills came from a survey of students to self-identify barriers in
computational work in an introductory physics course that included engineering majors. This
skill was the primary self-identified barrier along with abstraction skills, which will be the focus
of another work. We also present the results of this survey. The Python assignment (neext = 9) was
used to create the rubric and the iFlow assignment (ngraphic = 11) was used to test the rubric.
Scoring was based on a scale of six levels in each category. Although the sample size was too
small to establish rigorous scoring reliability, we discussed how the two researchers attained
agreement in scoring the assignments after iterative modifications of the rubric and rescoring.
For the Python assignment, the average for identification was 2.75/5, for isolation 2.30/5, and for
iteration 3.33/5. For the iFlow assignment, the average for identification was 2.63/5, for isolation
2.23/5, and for iterate 3.32/5. A consistent trend from these assignments showed that students'
approach to debugging is mainly to identify and iterate without a full understanding of the error
(i.e., isolation). The lack of a full understanding of the error implies that students are prone to
repeat the error. Thus, the important outcome of debugging is to understand the source of error
by systematically investigating different parts of the computational solution. Our preliminary
results led to the hypothesis that students with weak debugging skills are mainly due the isolation
process. This hypothesis will be tested in a future experiment. Results from such an experiment
will be significant to those who are designing intervention strategies to integrate computational
thinking in science and engineering curricula.

Background

In STEM education, computational thinking (CT) has become a critical component in preparing
students for the technical workforce [1]. Computation is fundamental to science because it
renders rich contexts for solving complex problems in the real world. The overall goal of this
project is to equip practitioners with the ability to enhance students’ computational skills in
STEM courses, especially in introductory courses. In order to do this, we must identify barriers,
develop specific assessments, and create intervention activities to improve CT skills.

Practitioners are less familiar with the integration and assessment of CT in STEM curricula [2].
Also, very few CT assessment studies have been applied to higher education, and the CT
literature is especially lacking in the STEM field, or mostly focuses on assessing overall CT.
Although focusing on assessing overall CT is beneficial, it does not allow a practitioner to
pinpoint the specific weakness of a student. Therefore, just-in-time and strategic interventions
may not be feasible.

The definition of CT in the literature, although divergent, entails common themes (e.g., [3], [4],
[5]) which we have coalesced into five practices: abstraction, decomposition, algorithmic
thinking, debugging, and generalization. For more detailed information of the aforementioned
practices, see Martinez and his colleagues [6]. In this paper, we summarize our preliminary work
in debugging.

Our focus on debugging skills came from a survey of students to self-identify barriers in
computational work in an introductory physics course that included engineering majors. This
skill was the primary self-identified barrier along with abstraction skills, which will be the focus
of another work. Our objective is to identify cognitive processes and practices associated with
debugging computational solutions in STEM and develop a framework using undergraduate
students’ artifacts.

Methods

Operational Definition of Debugging

We adopted Weintrop and his colleagues’ definition of troubleshooting and debugging
definition, which states “Students who have mastered this practice will be able to identify,
isolate, reproduce, and ultimately correct unexpected problems encountered when working on a
problem, and do so in a systematic, efficient manner.” ([5], p.140) Our team operationally
defined 3 cognitive processes of debugging that are most relevant in STEM education —
identification (making sense of the solution), isolation (investigating the cause of an error), and
iteration (repeatedly improving the solution); see the Table in the Appendix for complete
characteristics for each process.

Key practices for each cognitive process were listed and student responses according to their
complexity levels were categorized into 6 levels. This approach was inspired by the Knowledge
Integration framework, where Lynn [7], Liu [8], and their colleagues listed essential science
concepts and categorized student’s conceptual understanding into various levels according to the
number of connected key concepts. These characteristics were defined as distinct as possible to
ease scoring purposes.

Context of Study

To test whether the assessment framework could be used in different programming platforms, we
designed two parallel debugging assignments, one in text-based (see Box 1) and the other in
graphic-based (see Box 2) formats. Both questions are program-based computational problem,
where students have to identify that the output is not the most ideal solution, to isolate which
input codes are needed to be corrected, and to iterate the investigation to fix the error. Twenty
students (ntext = 9, ngraphic = 11) from the laboratory component of a calculus-based introductory
physics course consented to participate in this study. Four think-aloud interviews were
conducted to ensure that the questions were eliciting the desirable debugging practices under
study.

Box 1
Sample text-based debugging question.

We write a code to plot the points (1.5, 2.5), (2.5, 4.5), (3.5, 7.2) and (4.6, 10.3), as follows:
import matplotlib.pyplot as plt

pointl = (1.5, 2.5)
point2 = (2.5, 4.5)
point3 = (3.5, 7.2)
pointd = (4.6, 10.3)

plt.plot (pointl, point2, point3, point4)

10 4
o 4

g -

iy

2 3 4 5 & 7

a.Is the output of the plot function as expected? Explain in the space below.

b.Python allows you to check the type of data for a particular variable by using the built-in
function ‘type’. The syntax is: type(x), where the argument x is the name of the variable you
want to check. Use this to consider inputs and output of the plot function to isolate the
problem. In the space below state what you did with the ‘type’ function, if anything.

c.Try to fix the problem. In the table below, write each thing that you tried along with your
reasoning, even if it did not work.

d.What might have been the thought process of writing the code as shown?

Box 2
Sample graphic-based debugging question
Graphic-based prompt:

Assume that you have collected data of one quantity (called y) as you vary another quantity
(called x). You want to plot this data so that you can visualize any trend in the data. The data
points (x, y) are: (1.3, 4.8), (2.7, 8.5), (4.1, 12.6), (6.7, 19.3), and (8.5, 25.1) with appropriate
units. This data has been entered into an Array Input block in iFlow for you. The link below will
take you to this iFlow file. Click on the link or copy and paste it in a Chrome browser; sign in;
and copy this file either in the Clouds or on your local computer as a .json file. (iFlow works
better with Chrome.)

http://intofuture.org/iflow/index.html?userid=shannon%40intofuture.org&filename=ssplot1

To plot this data, we use a block called Space2D that can be found in the Inputs and Outputs
category of blocks. Drag a Space2D block to the work area and resize it. Connect the output
node of the Array Input block to both input nodes of the Space2D block as an attempt to plot the
data.

4.8 2r

1.3
2.7 8.5

4.1 12.6 21
6.7 19.3

8.5

2541
A X

109

89

A8 s 2 27 35 42 49 58 63 7 7B 85

a. Is there a problem with the final graphical output? Explain.
b. Fill in the table below in describing each action you did in trying to fix the problem:

List of things done Reasoning for each State what you learned
step from each step

http://intofuture.org/iflow/index.html?userid=shannon%40intofuture.org&filename=ssplot1

Refining Debugging Rubrics

Two of the researchers coded both Python and iFlow questions together to establish interrater
agreement. Although the sample size was too small to establish rigorous scoring reliability, the
two researchers obtained agreement in scoring the assignments after iterative modifications of
the rubric and rescoring them after exhaustive discussions. We also took notes based on the
recurring mistakes found in their responses as feedback to revise future questions.

Results
The final debugging rubrics are divided into three cognitive processes along with expected
practices and 5 complexity levels for each process (see Appendix). The Python assignment was
used to create the rubric and the iFlow assignment was used to test the rubric. Scoring was based
on five levels in each category. For the Python assignment, the average for identification was
2.75/5, for isolation 2.30/5, and for iteration 3.33/5. For the iFlow assignment, the average for
identification was 2.63/5, for isolation 2.23/5, and for iterate 3.32/5. A consistent trend from
these assignments showed that students' approach to debugging is mainly to identify and iterate
without a full understanding of the error (i.e., isolation). For example, one student’s response to
the text-based prompt in Box 1 as an example of intermediate identification:
1 thought it would just produce a picture of one plot line but it also spit out a
discontinuous line. (identification: 2).
The student showed an attempt to examine the output, however, the response was incorrect
because the problem asked to plot the points and the student was focusing on the line rather than
the points as was prompted.

Although there was an attempt to identify an issue, there was no investigation as to why the line
was discontinuous as the following response shows:
1 put each position variable into the type function to make sure there were no errors. c)l
tried to make a line of best fit by using outside resources for tips. I changed the x and y
values to be listed. I then calculated a slope and made a plot line. I tried this because I
was unsure of how to make the original code work. It was running perfectly, the line was
just broken. It worked, and produced one single line of best fit. d) I think the code was
written that way to put the x and y points together instead of having the code do it
automatically. But, since the points were plotted individually with two lines of best fit, the
line had a significant break. (isolation: ()
This student tried to artificially place a continuous line to replace the discontinuous line and did
not attempt to investigate why the line was discontinuous in the first place. In order for students
to receive a Level 5 score on isolation, they must complete all three practices: 1) Decide which
part of the computational solution is a reasonable cause of the error; 2) Provide the correct
reasoning as to what about the part in #1 could be the cause the error; 3) Systematically study
how the reasoning given could have caused the error. Notice this score was not used to penalize
the lack of identification in Question a), but to assess their practices for isolation.

Discussions

Our preliminary results led us to hypothesize that students with weak debugging skills were
mainly due to the isolation process, since this process had the lowest score. The finding implies
that, even if students can quickly identify and fix the error in the program, they are not as
proficient in isolating and investigating possible causes of error, which is an essential practice to
acquire better understanding of computational problems. Without a full understanding of the
error, students are prone to repeat the error. Thus, the important outcome of debugging is not just
to fix the error, but also to understand the source of error by systematically investigating
different parts of the computational solution.

Results from this study will be significant to those who are designing intervention strategies to
integrate computational thinking in science and engineering curricula. For instance, it shows that
practitioners should focus most of their efforts on teaching the isolation process instead of
spending a lot of time on identifying or iterating; the focus should be on investigating the source
of error. Even though this study focused on the program-level debugging, the process can be
readily applied to problem-level debugging. Problem-level debugging is an analysis of the
solution based on the non-programming parts, as not all errors occur in the programming part.
For example, some errors may occur in the assumptions and modelling parts of the solution.

Future Plans

A similar approach will be taken in the future to other practices in CT, such as for algorithmic
thinking and abstraction. We would also like to research interconnectedness of the different CT
practices, such as the relationship among debugging, abstraction, and algorithmic thinking, and
what it means in terms of assessment. Our hypothesis that students are weak in isolation will be
tested in future studies that include problem-level CT.

Acknowledgements
This work is funded under the NSF HBCU-UP Broadening Participation Research Program in
STEM Education under award number 2107104

References

[1] “Dear Colleague Letter: Advancing Educational Innovations that Motivate and Prepare
PreK-12 Learners for Computationally-Intensive Industries of the Future (nsf20101)
National Science Foundation.” https://www.nsf.gov/pubs/2020/nsf20101/nsf20101.jsp
(accessed Feb. 13, 2022).

[2] C. Wang, J. Shen, and J. Chao, “Integrating Computational Thinking in STEM Education: A
Literature Review,” International Journal of Science & Mathematics Education, vol. 20, no.
8, pp- 1949-1972, Dec. 2022, doi: 10.1007/s10763-021-10227-5.

[3] X.Tang, Y. Yin, Q. Lin, R. Hadad, and X. Zhai, “Assessing computational thinking: A
systematic review of empirical studies,” Computers & Education, vol. 148, p. 103798, Apr.
2020, doi: 10.1016/j.compedu.2019.103798.

https://www.nsf.gov/pubs/2020/nsf20101/nsf20101.jsp
https://doi.org/10.1007/s10763-021-10227-5
https://doi.org/10.1016/j.compedu.2019.103798

[4]

[5]

[6]

[7]

[8]

Y. Yin, R. Hadad, X. Tang, and Q. Lin, “Improving and Assessing Computational Thinking
in Maker Activities: the Integration with Physics and Engineering Learning,” J Sci Educ
Technol, vol. 29, no. 2, pp. 189-214, Apr. 2020, doi: 10.1007/s10956-019-09794-8.

D. Weintrop et al., “Defining computational thinking for mathematics and science
classrooms,” J Sci Educ Technol, vol. 25, no. 1, pp. 127-147, Feb. 2016, doi:
10.1007/s10956-015-9581-5.

M. L. Martinez, O. Lévéque, . Benitez, C. Hardebolle, and J. D. Zufferey, “Assessing
Computational Thinking: Development and Validation of the Algorithmic Thinking Test for
Adults,” Journal of Educational Computing Research, vol. 60, no. 6, pp. 1436—1463, Oct.
2022, doi: 10.1177/07356331211057819.

M. C. Linn, H.-S. Lee, R. Tinker, F. Husic, and J. L. Chiu, “Teaching and Assessing
Knowledge Integration in Science,” Science, vol. 313, no. 5790, pp. 1049—1050, 2006,
Accessed: Feb. 13, 2023. [Online]. Available: https://www.jstor.org/stable/3847060

O. L. Liu, H.-S. Lee, C. Hofstetter, and M. C. Linn, “Assessing Knowledge Integration in
Science: Construct, Measures, and Evidence,” Educational Assessment, vol. 13, no. 1, pp.
33-55, Mar. 2008, doi: 10.1080/10627190801968224.

https://doi.org/10.1007/s10956-019-09794-8
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1177/07356331211057819
https://www.jstor.org/stable/3847060
https://doi.org/10.1080/10627190801968224

Table

Appendix

Assessment Framework for Debugging of Computational Solutions

Response

Categories
g Characteristics/Practices

. . Compare the output with existing
Identification .
schema to make sense. 1. Identify

rocess:)
P a correct issue based on the

making sense

luti tput. 2. explain why i
of the solution S°MY ion/output. 2. explain why is

it an issue.

Understand the source of an error
by systematically investigating
different parts of the
computational solution. 1. Decide

Isolation . .
which part of the computational
process: .
. . solution is a reasonable cause of
investigating

the error. 2. Provide the correct
the cause of an .
reasoning as to what about the
part in #1 could be the cause the
error. 3. Systematically study

how the reasoning given could

€rror

have caused the error.

Employ strategies repeatedly to
improve the solution.

Iteration 1. Examine a change that affects
process: the solution.
repeatedly 2. Change to get an improved
improving the solution.
solution 3. Iterate (if necessary) to
address ALL issues with the

solution to get the best solution

Level 0 Level 1 Level 2
show some conclude that there
/ attempt to is a problem but
no)) . .
) examine the | the issue identified
irrelevant ..
output but is irrelevant or
response)
conclude that incorrect w/ or w/o
there is no issue explanation
Attempted) . .
. p Simple isolation:
no/ isolation: Att ‘ .
. empt practices
irrelevant Attempt(s) of = . PEp
. with only 1 correct
response the practice(es) .
. . practice.
is/are incorrect.
no/ Attempt(s) at =~ Attempt practices

irrelevant the practice(es) with only 1 correct

response is/are incorrect. practice.

Level 3

correctly
identify the
issue w/
incorrect or
w/o
explanation

Partial
isolation:
Engage in 2
out of the 3
practices
correctly.

Engage in #1
and #2 but did
NOT get the
best solution
for any issue
as stated in #3.

Level 4

correctly
identify the
issue with
partially
correct
explanation

Systematic
isolation:
Engage in #1
and #2
correctly and
an attempt to
#3

Engage in #1
and #2
correctly and
solve SOME
of the issues
stated in #3 or
did not
complete all
the iterations.

Level 5

correctly
identify the
issue with
correct
explanation

Complete
isolation:
Engage in all 3
practices
correctly and a
complete
undertanding
of the error.

Engage in all 3
practices
correctly and
follow through
#3 iterations
completely.

