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Abstract—Corrosion is a prevalent issue in numerous industrial
fields, causing expenses nearing $3 trillion or 4% of the GDP
annually with safety threats and environmental pollution. To
timely qualify and validate new corrosion-inhibiting materials
on a large scale, accurate and efficient corrosion assessment is
crucial. Yet it is hindered by a lack of automatic tools for expert-
level corrosion segmentation of material science experimental im-
ages. Developing such tools is challenging due to limited domain-
valid data, image artifacts visually similar to corrosion, various
corrosion morphology, strong class imbalance, and millimeter-
precision corrosion boundaries. To help the community address
these challenges, we curate the first expert-level segmentation
annotations for a real-world image dataset [1] for scientific
corrosion segmentation. In addition, we design a deep learning
based model, called DeepSC-Edge that achieves guidance of
ground-truth edge learning by adopting a novel loss that avoids
over-fitting to edges. It also is enriched by integrating a class-
balanced loss that improves segmentation with small area but
crucial edges of interest for scientific corrosion assessment. Our
dataset and methods pave the way to advanced deep-learning
models for corrosion assessment and generation — promoting
new research to connect computer vision and material science
discovery. Once the appropriate approvals have been cleared, we
expect to release the code and data at: https://arl.wpi.edu/

I. INTRODUCTION

Background. Corrosion is defined as the gradual degradation
of a metal over time due to chemical interactions with its
environment. It results in major safety risks worldwide and
negatively impacts nature environment, societal health, na-
tional infrastructure, manufacturing, and transportation. The
associated economic burden is substantial, with global losses
estimated to be around 4% of the gross domestic product
(GDP), equivalent to approximately $2.5 trillion [2], [3].
Consequently, the study of corrosion is an active research
field in material science that aims to innovate environmen-
tally friendly materials capable of corrosion resistance. This
involves conducting scientific corrosion assessment by various
industries, government agencies, and countries [4]—[9].

Motivation. Traditional methods for assessing corrosion often
involve manual segmentation, which is both labor-intensive
and subject to human error. This lack of precise, quick, and
safe assessment methods impedes not only the understanding
of corrosion as well as material discovery in general. While
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Figure 1: Sample corrosion images with the segmentation
ground truth we provide with corrosion experts.

the need for efficient and accurate corrosion assessment has
been acknowledged [10], the transition to automated methods
using Machine Learning (ML) has been slow. One of the
significant roadblocks is the absence of high-quality scientific
data for corrosion segmentation. This type of data is costly and
complex to acquire, often requiring the expertise of seasoned
professionals to identify subtle and varied corrosion patterns,
especially those with artifacts like water stains with similar
colors or textures to corrosion.

Shown in Figure 1, some corrosion forms, such as corrosion
underneath, i.e. under the coatings, necessitate invasive and
potentially hazardous methods for accurate assessment where
the expert needs to scrape the corresponding coating out.
There is also the challenge of millimeter-level observations,
particularly crucial when defining the boundaries of corroded
areas. Given these complexities, there is an urgent need for an
automated corrosion assessment tool that can accurately deal
with the nuances of various types of corrosion, thereby aiding
both academic research and industrial applications.

Data and Ground Truth. Our original 600 corrosion panel
images are fully taken from an open domain dataset [1] derived
from standard corrosion science experiments according to
ASTM standards [7]. Ground truth, expertly curated, binary
segmentation is produced for each of the 600 images in this
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work. In consultation with domain experts, we develop criteria
to segment corrosion of interest while excluding superfluous
background pixels.

Challenges. From examples shown in Figure 1, challenges that
are both domain-specific and which extend to the general com-
puter vision community [11], include: i) a variety of textures
and shapes in limited images, ii) tiny-scale and detailed areas
to segment, iii) similarities in color with coating or image arti-
facts such as water staining, iv) areas of corrosion not visibly
apparent on the images but identifiable to domain experts, and

v) class imbalance between corrosion and background pixels

which arises naturally due to the relatively small size and

irregular distribution of interest, such as any item above. These
challenges lead us to the research questions below:

« To what extent can a deep learning architecture be trained
to learn the expert-curated segmentation including the chal-
lenging corrosion field of interest?

o On limited data, how to better guide the model by exploiting
strategies tied to the above observations, such as edge
detection or class imbalance methods?

Our Proposed Methodology. We first train and compare
two popular widely-used deep learning architectures, UNet
[12] and MedTransformer [11], that had been shown to be
successful for tasks to segment tiny but important pixels.
Although UNet outperforms MedTransformer on our small
domain-representative dataset, we found that UNet cannot
fully learn edge information of the small-scaled corrosion cru-
cial for corrosion assessment. This then motivates us to guide
UNet with ground-truth edge maps generated by deterministic
computer vision techniques such as the Canny edge operator
!. We thus develop an edge-guided baseline model, ET-UNet.
This model adopts the backbone from UNet [12], while now
augmented with edge-guidance capabilities [13].

While ET-UNet is designed to guide segmentation bound-
aries, it lacks the ability to guide the boundary via edge map
features in decoder layers. Typically, this Decoder edge guid-
ance can cause overfitting to edges but not the segmentation
within.

To address the issues, we propose three alternate strategies
on ET-UNet: 1) constructing targeted edge guidance on De-
coder, 2) innovating losses to regularize the caused overfitting
issue, 3) employing a class-balanced method, Focal Tversky
Loss (FTL) to further distinguish challenging corrosion of
interest in the proposed edge guidance model. Our proposed
models are listed in Table 1.

Findings. We demonstrate that our proposed strategies ef-
fectively recover critical edge details while learning the seg-
mentation — providing a 1% dice and 1.43% IOU increase
over 86.72% dice or 77.27% 10U score from the UNet
baseline on our image data set. After sorting and weighting
the test set by its prediction rank performance using baseline
UNet (weighting baseline poorer performing images higher),
our proposed methods outperform UNet by 1.66% dice and

Uhttps://kornia-tutorials.readthedocs.io/en/latest/_nbs/filtering_edges.html#
canny-edges

2.41% IOU. This demonstrates our ability to handle more
challenging, difficult-to-segment images. The predictions on
certain difficult test images are improved by about 8% dice or
IOU increase.

Contributions. In summary, our key contributions in this work

are as follows:

o We design a loss method enabling ground-truth edge guid-
ance via decoder output to enhance segmentation perfor-
mance while preventing the guidance overfits to edges
(Equation 6.), compared to traditional encoder guidance

« We employ a class-imbalanced method to our novel edge
guidance loss — effectively learning segmentation with the
challenging edges of corrosion

o DeepSC-Edge over traditional methods is affirmed by a
Rank metric measuring their performance on corrosion
images with challenging edges.

o We provide the first expert-curated segmentation image
dataset, opening rich research opportunities for scientific
material discovery, deep learning, and computer vision.

II. RELATED WORK

Deep learning & data sets in material science.. For corrosion
science, machine learning solutions have been applied to
automate engineering tasks such as defect detection [14]-[17]
and corroded pipe detection [18]. However, there is no well-
performing ML work for scientific corrosion segmentation
[19]. Due to the difficulty and expertise required to annotate
corrosion, to the best of our knowledge, our work provides the
first expert-level segmentation dataset for scientific corrosion
assessment and corresponding high-performing deep learning
methods for standardized corrosion segmentation.

In the broader sense, deep learning has been widely used
for image segmentation tasks. UNet is a popular deep learning
model for various image segmentation tasks [12], [20]-[22] -
first introduced for biomedical image segmentation. It primar-
ily introduced the utilization of a skip-connection structure
to propagate information from the encoder to the decoder.
Further, there exist works that aim to refine predicted segmen-
tation by integrating additional boundary and edge information
[23]-[26]. Losses to address class imbalance during training
in tasks like object detection by applying a modulating term to
the cross entropy loss to focus learning on hard misclassified
examples has been shown to be effective. [27]. In this work,
we also incorporate edge information into UNet. However,
we demonstrate methods involving ground-truth edges and a
class-balanced loss to benefit scientific corrosion segmenta-
tion, especially on difficult-to-segment images that pose both
domain-related and general-purpose segmentation challenges.

III. DATA SET DESCRIPTION

Experimental Workflows for Coating and Rating Panels
for Corrosion Levels. Corrosion panel testing is used globally
in industrial and government labs to conduct standardized
corrosion tests on surfaces with protective coatings [1]. In
corrosion science, experimentalists develop and validate new
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[ Model | Description (Equation) | Method
UNet UNet baseline for image segmentation (1) Baseline 1
ET-UNet Edge guidance architecture based on UNet (2) Baseline 2

Guided ET-UNet ET-UNet (2) + additional edge guidance (5)

Proposed Strategy 1

S-Guided ET-UNet

ET-UNet (2) + additional edge guidance in a soft manner (6)

Proposed Strategy 1, 2

UNet + FTL UNet (1) + class balanced loss (7)

Baseline 1 + Proposed Strategy 3

ET-UNet + FTL ET-UNet (2) + class balanced loss (7)

Baseline 2 + Proposed Strategy 3

Guided ET-UNet + FTL

ET-UNet (2) + additional edge guidance (5) + class balanced loss (7)

Proposed Strategy 1, 3

S-Guided ET-UNet + FTL

ET-UNet (2) + additional edge guidance in a soft manner (6) + class balanced loss (7)

Proposed Strategy 1, 2, 3

Table I: Model descriptions: UNet-based models that reflect our methods combining baselines and proposed strategies. Strategy
1 or 2 is proposed upon ET-UNet. DeepSC-Edge A is Guided ET-UNet. DeepSC-Edge B is S-Guided ET-UNet.

anti-corrosive materials following standard material science
procedures [28]. Based on the corrosion area of interest, they
rate the panels from O (heavy corrosion) to 10 (no corrosion)
according to the defined ASTM standards. As the rating scale
is at a millimeter level, it is necessary to segment corrosion
out from the background in a detailed tiny scale where the
experts exploit magnifiers to verify it point by point. These
tests are widely conducted to evaluate the performance of the
newly-invented coatings in preventing corrosion.

Experimental Data Collection. Our dataset is derived from
a related, open dataset [1] includes 600 images of corroded
panels that have been expertly rated but not yet segmented.
This data set represents diverse material types in coating
stack layers (5 substrates, 2 profiles, 21 pre-treatments, 4
primers, and 5 topcoats) and interaction of distinctive features
(water spots, under-coating rust, tiny shapes, and edges largely
of interest, etc.) not found in popular image datasets like
ImageNet. Their images are evenly balanced across 5 critically
defined rating categories of 5 to 9, and are resampled and
rating-stratified to 10-fold cross-validation sets with a held-
out test set containing 60 images. An example image of each
rating class can be seen in Figure 1. In this work, we provide
expertly curated, binary segmentations for each of these 600
images — representing the ground truth for scientific corrosion
segmentation. They were obtained using the OpenCV GrabCut
algorithm [29] to separate areas of scribe corrosion from the
surrounding background.

Scientific Corrosion Segmentation Image Preparation. To
ensure accuracy and completeness, we consulted with corro-
sion domain experts to develop criteria for segmenting scribe
corrosion areas. This allowed us to include all necessary areas
of corrosion in the segmentation while excluding irrelevant
background pixels, such as dark water stains. Using GrabCut,
we define a bounding box including all scribe corrosion and
allow the algorithm to determine preliminarily the location
of the foreground (corrosion) and background. Then, we
manually refine the areas of corrosion and background using
GrabCut until we achieve an accurate segmentation for the
given panel [29]. The segmentation output from GrabCut is
then transformed into a grayscale image and binarized such
that all scribe corrosion areas are set to 255 and all background
pixels are set to zero. We then apply a median filter [30]
and morphological operators to the binary images to remove
any remaining salt and pepper noise that wasn’t removed
initially by GrabCut. The binary segmentations were reviewed

by corrosion domain experts and further refined collaboratively
thereafter. Examples can be seen in Figure 1.

IV. METHODOLOGY

Our proposed solution, DeepSC-Edge, consists of two sub-
models, DeepSC-Edge A (Guided ET-UNet in Table I) and B
(S-Guided ET-UNet in Table I).

Inspired by the expert annotation process, it is noticeable
that corrosion boundary plays a vital role in learning detailed
expert-level knowledge about corrosion on a panel. In UNet
baseline, early encoder layers are designed to learn low-
level features [12] such as textures and colors of corrosion
pixels. To guide these layers in learning the edges of expert
ground truth segmentation, we built an UNet edge guidance
baseline, ET-UNet, according to a widely used edge guidance
network ET-Net [13]. However, corrosion boundaries may
not always be visually apparent and low-level features might
not represent the complete segmentation easily. Even worse,
parts of boundaries might be similar to certain background
pixels or to corrosion not of interest. Additionally, the expert
rules to determine these boundaries are sample-dependent and
varied considering complex factors from actual environments,
raw materials, or even errors during the manufacturing and
experimental process.

In order to ensure that ET-UNet is learning low-level
features within the edge boundaries, we propose a strategy that
considers additional edge guidance (Strategy 1 in Table 1) on
ET-UNet as Guided ET-UNet. Further, to avoid overfitting to
the boundary rather than the segmentation, we propose to soft-
guide by gradually injecting it as segmentation loss decreases
during training (Strategy 2 in Table I) on Guided ET-UNet as
S-Guided ET-UNet.

For edges or areas of corrosion that are the minority
compared to other areas, we propose to involve the class-
balanced loss, FTL, to exploit models for better recognition.
We describe all of the models with methods in Table I.

Baselines. UNet is a convolutional neural network architecture
that uses an encoder-decoder structure to perform segmenta-
tion by predicting pixel-wise labels. The encoder extracts low-
level features from the input image, which are then used by
the decoder to predict the segmentation shape.

We aim to investigate how edge guidance could be involved
in this classic deep learning architecture — approaching a better
automation of scientific corrosion segmentation. Thus, as an
alternative baseline, we also develop an edge-guided UNet
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model inspired by the edge guidance modules in ET-Net [13],
called ET-UNet. Figure 2 illustrates how ET-UNet involves
ground-truth edge guidance to the encoder-decoder architec-
ture in UNet. In the model, the Edge Guidance Module (EGM)
is designed to learn low-level features related to segmentation
edges, and Weighted Aggregation Module (WAM) to capture
multi-scale features to form the segmentation. Strategies. We

propose the following strategies to improve baselines inspired
by our observations and understanding of scientific corrosion
segmentation: i) We involve additional guidance — by verifying
edges of the segmentation prediction in ET-UNet with edges
of ground truth. ii) In order to avoid the issue of over-fitting to
the edges, we propose to add this guidance in a soft manner —
increasing it as the segmentation loss decreases gradually. iii)
Further, we utilize Focal Tversky Loss (FTL) [31] instead of
Dice loss as a regularization to overcome the class imbalance
challenge in the domain.

Strategy 1 is going to enhance ET-UNet by ensuring its
prediction edge to approach that of the ground truth edge.
Strategy 2 is proposed to avoid over-fitting to the edges while
not the segmentation itself when applying Strategy 1. Strategy
3 aims at emphasizing learning the challenging corrosion of
interest with minority but critical edges.

Loss functions to exploit deep learning models. Our strate-
gies are added to our DeepSC-Edge models listed in Table
I. We define the loss functions of these deep learning models
below. Combining Binary Cross Entropy (BC E) and Dice loss
(Dice_Loss) [12], UNet loss function is calculated by ground
truth segmentation Y and the segmentation prediction Y:

Lunet = BCE(Y, Y) + Dice_Loss(Y, Y) (1)

Other than UNet, ET-UNet also learns edges of ground truth
segmentation in early encoder layers so that its loss function
can be described as:

Ler-UNet = LuNet + A+ Ledge 2

where Leqgge = BOE(Y edyge, ?edge)
+ Dice_Loss(Yedge, Yedge)7 3)

In Equation (3), Yedge is the edge map of ground truth
segmentation, Yedge is the predicted edge map from its Edge
Guidance Module illustrated in Figure 2, and A\ controls the
strength of this edge guidance. We then involve the additional
edge guidance shown in Table I:

Ledge- = BCE(Y edge,Y edge*)

+ Dice_Loss(Y edge,Yedge®). (4)
where Yedge* denotes the edge map of segmentation predic-
tion output from Weighted Aggregation Module of ET-UNet
— instead of Yedge that is output from the Edge Guidance

Module as shown in Figure 2. We control this additional
guidance using . So that:

Lcuided ET—UNet = LET—UNet + 77+ Ledger ©)

L5 Guided ET-UNet = LET—UNet
1

+ max (Lseg — 0, 0) +1 .

£’edge* (6)

By assigning # appropriately, we involve the additional guid-
ance, Leqge-, in the following soft (S) manner: the prediction
edge, Yedge*, will provide its guidance in inverse proportion
to Lgeq, and the full guidance to the prediction segmentation
only if L., is smaller than or equal to 0. For Strategy 3,
class balanced loss FTL [31] combines Tversky Index [31]
and Focal loss [27]:

FTL=(1-TI)Y¢ @)

TP +¢

where T = g C PN+ (1 —a)FP 12 O
‘We embed FTL loss into our models (+FTL) shown in Table T
instead of their Dice_Loss. In Equation (8), we calculate True
Positive (TP), False Negative (FN) and False Positive (FP)
pixels according to ground truth and prediction in Dice_Loss
used in the model. If « is larger than 0.5, the loss penalizes
FN so the model will emphasize learning these challenging
corrosion areas more. 3 further down-weights the contribution
of corrosion that is easy to be predicted and focuses more on
challenging corrosion during training. In this way, the model
would learn to preserve sharp, minority, or challenging edges
rather than avoid them, and as result, this would make the
prediction of edges smooth.

V. EXPERIMENTAL STUDY AND ANALYSIS

Experimental Setup. Each model for a particular set of hyper-
parameters was trained in a range 1 to 2 hours using an A100
GPU. Thereafter, each image is inferred in less than a second.
This efficiency was critical for our targeted applications to
integrate the Al models in a corrosion data collection and
assessment tool as an iOS APP for our domain collaborators
to collect and work with their data.

We trained and evaluated all models using our dataset
consisting of 600 corrosion image pairs: the original images
and their corresponding segmentation we provide in this work.

To grid-search hyperparameters, we select learning rates
from a set {le-1, le-2, le-3, le-4, le-5} and batch size from
a set {8, 16}. We found that all models work the best with
learning rate le-3 and batch size 8. The best A in ET-UNet
(2) is 0.5 tuned from a set {0.001, 0.1, 0.5, 1.0, 1.5}. The best
~ in Guided ET-UNet (5) based on the best ET-UNet is 1.0
tuned from a set {0.001, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. The
best 6 in S-Guided ET-UNet (6) based on the best ET-UNet
is 3.0 tuned from a set {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}.

For Proposed Strategy 3 on all the above best models, we
found the best penalization weight « in FTL is 0.88 for ET-
UNet + FTL and S-Guided ET-UNet + FTL models, and 0.90
for other models related — both showing a high false negative
rate penalization is beneficial in the dataset.

We also present an ablation study — showing our results are
robust to hyperparameter choice in the proposed strategies. We
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Figure 2: Guided ET-UNet: UNet encoder layers are in green, while UNet decoder layers are highlighted in blue. Edge Guidance
Module [13] is in orange. Weighted Aggregation Module [13] is highlighted in purple. ‘Conv’, ‘U’, ‘C’, and ‘+  signify the
convolutional layer, upsampling, concatenation, and addition layers, respectively. Red Arrow illustrates the deterministic canny
edge operator. Our Strategy 1 develops a loss (Equation 5) to train this new decoder edge guidance with traditional encoder edge
guidance loss (Equation 2) upon UNet loss (Equation 1) for segmentation. Our Strategy 2 proposes a novel loss (Equation
6) to regularize the proposed Guided ET-UNet loss so not to overfit to edges via weighting it with the segmentation loss
(Equation 1). The decoder edge guidance in Guided ET-UNet is expected to be gradually increased if it does encourage the
overall corrosion segmentation. However, this guidance will not be effective once the segmentation has been fully learned, as
the weight will be 0 if the segmentation loss is smaller than a hyperparameter theta. In our Strategy 3 (similar to Strategies
1 and 2), we integrate a class imbalanced method (Equation 7) into the segmentation and related edge guidance methods for
telling corrosion with challenging but critical boundaries.

evaluate the model performance using Dice and IOU scores
as broadly used in machine segmentation tasks [12].

In order to better observe the evaluation, we also defined
their variants other than scores — rank, increase, and weighted
increase (W-Inc as shown in Table II). The Dice or IOU rank
takes the average rank performance of a model after calculat-
ing its rank compared with other models on every test image.
The Dice or IOU weighted increase (W-Inc) takes the weighted
average score improvement of a model rather than the UNet
baseline after weighting each test image with its prediction
rank using the UNet baseline. In this way, we evaluate how
a model is or is not able to predict challenging corrosion of
interest better. If W-Inc is larger than 0, it indicates that the

model outperforms UNet in predicting corrosion segmentation,
especially on challenging corrosion.

Comparative Study of Corrosion Segmentation Perfor-
mance. Shown in Table II, our results indicate that all of
our strategies improve baseline models. S-Guided ET-UNet
(+FTL) model performs the best based on its Dice, 10U,
and corresponding ranks and increases, demonstrating its
superior performance in solving the corrosion segmentation
task compared to other strategies and baselines, especially
on challenging corrosion. Further, incorporating any of our
proposed strategies elevates ET-UNet performance over UNet
— showing its effectiveness in edge-guidance. This is a notable

Model Dice 10U

Score T [ Rank | [ Increase T [ W-Inc T Score T [ Rank | [ Increase T [ W-Inc T
UNet 0.8672 £+ 0.0179 5.5167 0.0000 0.0000 0.7727 £ 0.0263 5.5167 0.0000 0.0000
ET-UNet 0.8670 £ 0.0181 5.6667 -0.0002 0.0014 0.7721 +£ 0.0268 5.7000 -0.0006 0.0014
Guided ET-UNet 0.8687 £ 0.0176 5.3167 0.0015 0.0028 0.7749 + 0.0260 5.2500 0.0022 0.0040
S-Guided ET-UNet 0.8696 £ 0.0199 4.6333 0.0024 0.0045 0.7763 + 0.0288 4.6167 0.0036 0.0062
UNet + FTL 0.8738 £ 0.0152 4.0167 0.0066 0.0149 0.7823 + 0.0226 4.0500 0.0096 0.0133
ET-UNet + FTL 0.8763 £ 0.0151 3.6833 0.0091 0.0094 0.7855 + 0.0227 3.6833 0.0128 0.0214
Guided ET-UNet + FTL 0.8768 £ 0.0168 3.8500 0.0096 0.0155 0.7864 + 0.0254 3.8667 0.0137 0.0232
S-Guided ET-UNet + FTL | 0.8772 + 0.0140 3.3167 0.0100 0.0166 0.7870 + 0.0212 3.3167 0.0143 0.0241

Table II: Test performance using 10-fold cross-validation: each cell shows the average test performance of a model under
a metric. The best-performing cell in each metric column is highlighted in BOLD. The MedTransformer performance (Dice
Score: 0.85; IOU: 0.75) cannot beat UNet on our domain small dataset so it was not considered as a basic architecture to build
our proposed strategies for scientific corrosion segmentation.
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B =1.0 B =1.5 B =2.0
Model (+ FTL) =01 a=03 [ a=07 | a=09 | a=01 | a=03 [ a=07 ][ a=09 | a=01 | a=03 [ a=07 | a =009
UNet 0.7346 0.8322 0.8737 0.8632 0.7434 0.8223 0.8741 0.8717 0.7547 0.8072 0.8614 0.8669
ET-UNet 0.7891 0.8377 0.8740 0.8672 0.7513 0.8479 0.8711 0.8741 0.7927 0.8493 0.8572 0.8646
Guided ET-UNet 0.7506 0.8359 0.8763 0.8679 0.7461 0.8336 0.8721 0.8763 0.7582 0.8109 0.8557 0.8687
S-Guided ET-UNet | 0.7346 0.8276 0.8758 0.8654 0.7706 0.8227 0.8755 0.8766 0.7777 08173 0.8659 0.8711

Table III: Ablation Study of Proposed Models: Each cell shows the test performance using Dice Score metric.

helps us to solve the prediction challenge on the small yet
crucial areas of corrosion using the limited image pairs — via
controlling o and 3 in the loss. In TableIll, we show that our
proposed segmentation models are able to be locally optimized
in terms of « and f.

| ID: 1275 G d truth UNet baseli S-Guided ET-UNet . qe . .
mage sogmentation Dite soore 07863 FTL - © Case study. Providing visual examples of the segmentation

Dice score: 0.8639 predictions from the baseline models and proposed strategies
can be a useful way to explain why our strategies are necessary
for corrosion segmentation when leveraging the popular UNet
deep learning architecture. In Figure 4, we display test results
of the baseline UNet using its best validation fold model along
with the corresponding predictions from our best-performing

Image ID: 144 Ground truth UNet baseline S-Guided ET-UNet model. This comparison highlights the benefits of our proposed
segmentation Dice score: 0.7987 +FTL . . . .
Dice score: 0.8202 strategies for challenging corrosion segmentation tasks. Over-

all, these visual examples highlight the potential impact of our

Figure 4: Case study: Challenging corrosion panels segmented solution for improving scientific corrosion segmentation.

by UNet and our proposed S-Guided ET-UNet + FTL model.
VI. CONCLUSION AND FUTURE WORK

improvement considering that UNet is commonly used in the In this paper, we propose to integrate edge-map information
field of image segmentation with relative small data sets. and class-balanced loss with UNet for scientific corrosion

Moreover, from Weighted Increase performance for han-  segmentation. Our DeepSC-Edge models from the proposed
dling the difficult-to-segment corrosion, ET-UNet outperforms  strategies exploit edge information to enhance the feature
UNet without our strategies, but they indeed make this im-  representation via Decoder and improve the prediction of seg-
provement larger. In addition, from the loss plots in Figure 3, mentation to automate scientific corrosion assessment. Our ex-
the models with FTL tend to have smaller total loss values.  perimental results demonstrate the effectiveness of our model
Also, our best-performing model shows smooth training and o segment the publicly available corrosion dataset [1] paired
validation losses — denoting its robustness. with our expert-curated ground truth segmentation, especially

Ablation Study. Since in Table II, we found the class-balanced ~ on challenging hard-to-segment samples. Our strategies may
loss, (7), shows a significant improvement in each proposed inspire solutions for other image segmentation tasks that
model for our edge-related task. This strategy forces the model ~ require edge information in UNet.

to learn minority pixels better by penalizing false negatives or Our long-term goal is to speed up material discovery-related
false positives while predicting segmentation or its edge. It ~ experimental workflows. The release of our expert-labeled

Train and Validation Log Loss Train and Validation Log Loss Train and Validation Log Loss Train and Validation Log Loss

Log Loss
Log Loss.

[ 50 100 150 260 250 300 [ ) 100 130 200 250 300 o 50 100 150 200 250 300 [ 50 100 150 200 250 )
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Train and Validation Log Loss Train and Validation Log Loss Train and Validation Log Loss

LogLoss
LogLoss
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Figure 3: Loss plots on the best UNet validation fold: Top row, from left to right, shows UNet, ET-UNet, Guided ET-UNet,
and S-Guided ET-UNet. Bottom row shows the corresponding models with the consideration of class-balanced loss — FTL.
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segmentation corrosion data and our deep learning methods
applied to this unique application domain will drive innovation
of deep learning techniques such as UNet-based generative
models, like Stable Diffusion [32], for scientific corrosion
progression prediction and transfer learning from large models,
like SAM [33], to this important domain — bridging computer
vision and material science discovery.
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