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SUMMARY

The growing global plastic waste challenge requires development
of new plastic waste management strategies, such as pyrolysis,
that will help to enable a circular plastic economy. Developing opti-
mized, scalable pyrolysis reactors capable of maximizing the yield of
desired products requires a fundamental understanding of plastic
pyrolysis chemistry. Accordingly, the intrinsic reaction kinetics of
polypropylene pyrolysis have been evaluated by the method of
pulse-heated analysis of solid reactions (PHASR), which enables
time-resolved measurement of pyrolysis kinetics at high tempera-
ture absent heat and mass transfer limitations on the millisecond
scale. Polypropylene pyrolysis product evolution curves were
generated at 525�C–625�C, and the overall reaction kinetics were
described by a lumped first-order model with an activation energy
of 242.0 G 2.9 kJ mol�1 and a pre-exponential factor of 35.5 G

0.6 ln(s�1). Additionally, the production of solid residues formed
during polypropylene pyrolysis was investigated, revealing a sec-
ondary kinetic regime.

INTRODUCTION

Plastics are ubiquitous materials because of their unique combination of useful ma-

terial properties and affordability. Since the 1950s, industrial-scale production of

plastics has grown from an estimated twomillion metric tons (Mt) annually to approx-

imately 438 Mt as of 2017.1 Based on current trends, the annual rate of plastic pro-

duction is projected to exceed one billion tons by 2050.1 This massive growth in

plastic production has resulted in the generation of an immense amount of plastic

waste, particularly because of the large fraction of plastics being produced for sin-

gle-use applications, such as packaging.2 As of 2017, approximately 7,000 Mt of

plastic waste have been generated, and it is projected that this cumulative quantity

will grow to 33,000 Mt by 2050.1 Effective waste management strategies must be

developed to manage existing and future plastic waste. Polypropylene (PP) is partic-

ularly important to the plastic waste problem; PP is the most widely produced ther-

moplastic material, accounting for around 17% of annual global plastic production,

18% of plastic packaging, and 24% of plastic in municipal solid waste.1,3–5

End-of-life (EOL) plastics that have exceeded their useful product life are conventionally

considered waste products. EOL plastics are primarily discarded in landfills, accumu-

lating as plastic waste.1,6As of 2017, 76% of all plastic waste generated globally was dis-

carded, 14% was incinerated, and only 10% was recycled.1 While incineration allows for

energy recovery and prevents plastic waste accumulation, it still leads to the release of

CO2 and other environmental toxins (e.g., dioxins) and prevents reuse of the plastics.6–8

PROGRESS AND POTENTIAL

The rapid and continual growth of

the global plastic market and the

associated global plastic waste

challenge necessitate the

development of new approaches

to plastic waste management,

such as pyrolysis, that will enable a

circular plastic economy. Previous

attempts to measure the reaction

kinetics of plastic pyrolysis, which

are essential for developing a

fundamental understanding of

plastic pyrolysis and designing

optimized pyrolysis reactors, have

been unable to decouple

chemistry from transport artifacts

and individual experimental

conditions. Here, we demonstrate

that the method of pulse-heated

analysis of solid reactions (PHASR)

is capable of pyrolyzing

polypropylene absent transport

limitations and quantifying the

intrinsic reaction kinetics of

polypropylene pyrolysis on the

millisecond timescale.

Additionally, we identify the

presence of multiple kinetic

regimes, providing chemical

kinetics for all future

polypropylene pyrolysis studies.

Matter 6, 3413–3433, October 4, 2023 ª 2023 Elsevier Inc. 3413

ll



Recycling offers a route through which plastics can be reused, but traditional mechanical

recycling is incapable of converting plastics back to their original form inmost cases. The

methods involved in thermomechanical processing (e.g., remelting and pelletizing)

result in degradation of the plastic material, requiring addition of virgin plastics to

improve material properties; alternatively, these mechanically recycled plastics can be

downcycled and eventually discarded.6,8,9 Mechanical recycling is also sensitive to

mixed waste streams and impurities, leading to reductions in material quality and

increased costs.6–10 Continued use of these traditional waste management strategies

fails to address the global plastic waste problem.

Chemical recycling is an alternative approach to plastic waste management that can

help to enable a circular economy in which EOL plastics are utilized as a resource to

produce new plastics and chemicals.6–9,11 Many chemical recycling processing op-

tions exist, including solvolysis, hydrolysis, and pyrolysis.8,9,12–14 Pyrolysis is the ther-

mal conversion of amaterial in an inert oxygen-free environment to produce a variety

of liquids and gases, including plastic monomers; this processing method can

accommodate highly heterogeneous and contaminated plastic waste streams, mak-

ing it more cost effective at scale.3,9,10,15

The chemistry of PP pyrolysis is highly complex, involving many intermediates and

products. A detailed description of the reaction network and associated reaction ki-

netics that matches experimental data does not yet exist, with current models

providing incomplete descriptions using empirical formulas or sets of elementary

steps.16–20 Figure 1 illustrates several of the many reaction pathways and product

groups that have been reported for PP pyrolysis.16,19–69While there is not yet a com-

plete understanding of PP pyrolysis, there is a generally accepted reaction scheme.

First, PP melts and depolymerizes via random chain scission, producing radical inter-

mediates. The radical intermediates react to form primary products, represented by

the solid blue pathways. The primary products can then undergo further reactions

(e.g., interconversion and Diels-Alder), represented by the dashed red pathways,

forming secondary and higher products.19,20,24,70

Figure 1. PP pyrolysis network

PP undergoes primary (solid blue pathways) thermal conversion via radical reactions to produce solid, liquid, and gaseous products, which may undergo

secondary and higher-order reactions (red dashed pathways).
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While there is some agreement on the general structure of the PP pyrolysis reaction

network, there is little agreement on the underlying kinetics of the process, with sig-

nificant variation in reported product distributions and reaction kinetic parameters.

For example, reported lumped activation energies vary between 21 and 393 kJ

mol�1, and reported pre-exponential factors differ by up to 27 orders of magni-

tude.48,55,63 The variation in the available data is further demonstrated by Figure 2,

which presents 215 reported apparent activation energies and pre-exponential fac-

tors for PP pyrolysis from 50 literature sources; complete details on the data pre-

sented in this figure are available in the supplemental information. These discrep-

ancies can be attributed to variations in experimental conditions, such as heating

and cooling rates, residence time, and reactor design.23,55,71–76 Additionally, heat

andmass transfer limitations are often present because of large sample length scales

(e.g., pellets and packed powders), which produce a distribution of reaction kinetics

in the pyrolyzing mass.18,71,74,75,77–81 The influence of operational conditions on the

kinetic parameters indicates that previous studies have reported apparent kinetics

with transport artifacts rather than intrinsic reaction kinetics.

Intrinsic reaction kinetics will be essential for developing a fundamental understand-

ing of PP pyrolysis and for the design and optimization of scalable pyrolysis reac-

tors.82 To study the intrinsic reaction kinetics of PP pyrolysis, a reactor system absent

heat and mass transport limitations is required that also can measure the time-

resolved evolution of the polymer and its pyrolysis products. To this end, the

pulse-heated analysis of solid reactions (PHASR) reactor was redesigned for poly-

olefin pyrolysis and validated with low-density polyethylene.83 In this work, use of

the PHASR reactor with PP was validated, and isothermal, reaction-controlled

Figure 2. Literature-reported lumped PP pyrolysis kinetics

(A) Distribution of reported activation energies.

(B) Distribution of reported pre-exponential factors.

(C) Compensation plot of pre-exponential factor (left axis) and activation entropy (right axis) versus activation energy, with associated experimental

parameters provided for each data point.
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operation was demonstrated, yielding PP pyrolysis evolution curves between 525�C

and 625�C that are then compared with literature data. Lastly, the solid residues

formed during PP pyrolysis were analyzed to understand the competing pathways

to volatile and non-volatile PP products.

RESULTS AND DISCUSSION

Verification of isothermal, reaction-controlled operation

To obtain intrinsic reaction kinetics, it was necessary to operate under reaction-

controlled conditions. To determine the limiting parameters (reaction temperature

and sample length scale) of the regime in which PP pyrolysis occurs absent transport lim-

itations, dimensional analyses of the heat andmass transfer properties of the reacting PP

system were performed. To analyze the heat transport characteristics of the PP system,

the pyrolysis numbers (PyI and PyII) were plotted against the Biot number (Bi), producing

a pyrolysis map (Figure 3A). PyI and PyII relate the timescale of reaction to the timescales

of conduction and convection, respectively, and the timescales of conduction and con-

vection are compared byBi (Equations S3.1–S3.3). The resulting order-of-magnitude es-

timate of this analysis indicates that it is possible tomeasure the intrinsic reaction kinetics

of PP pyrolysis at temperatures up to�650�C with sample length scales of order 10 mm

or less, as described by the top left section highlighted in Figure 3A, where heat trans-

port (conduction and convection) occurs faster than reaction. An analogous dimensional

analysis was performed for mass transfer within a PP sample. Here, the second Damköh-

ler number (DaII), the ratio of the rateof reaction to the rate ofmass diffusion, wasplotted

against the characteristic length scale of PP (i.e., the sample thickness), as shown in Fig-

ure 3B. This analysis shows that PP samples with length scales of order 100 mmor thinner

are reaction controlled, with diffusion occurring orders of magnitude faster than reac-

tion. Definitions, selected parameters, assumptions, and associated calculations for all

dimensional quantities are provided in Equations S3.1–S3.4 and Tables S3.1 and S3.2.

The dimensional analyses indicate that heat transfer limitations are more likely to

arise than mass transfer limitations, demonstrated by the difference in the

Figure 3. PP transport properties

(A) Pyrolysis map comparing the two pyrolysis numbers and the Biot number, providing an order-of-magnitude estimation for the length scales and

temperatures at which reaction-controlled pyrolysis is possible.

(B) Mass transport map comparing the second Damköhler number with the characteristic length scale (i.e., thickness) of a PP sample, providing an order-

of-magnitude estimate for the length scale leading to the onset of transport limitations. Further information on these analyses is provided in the

supplemental information.
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order-of-magnitude estimates for the maximum allowable sample length scale to main-

tain reaction-controlled conditions (10 mm vs. 100 mm). Heat transport was further

analyzed with a 1D simulation in MATLAB. The simulated system, a PP film atop a steel

sample plate with a He atmosphere, includes conduction at the film/plate interface, con-

duction through the film, reaction kinetics throughout the film, and convection at the

film/atmosphere interface. All selected parameters and complete simulation details

are provided in Equations S3.5–S3.8 and Table S3.3. Figures 4A and 4B show the

same transient temperature profiles for simulated PP films with thicknesses of 15 mm

and 100 mm, respectively, being heated to a target reaction temperature of 500�C.

The 15-mm film heated rapidly and uniformly, reaching �300�C in the first 10 ms and

approximately reaching the 500�C set point after just 30 ms of heating. Conversely,

the 100-mm film was shown to heat in a non-ideal fashion, with large temperature gradi-

ents observed at all times; the maximum film temperature was more than 100�C below

the target temperature after 100 ms of heating. The effect of sample thickness on heat

transport is further demonstrated by Figure 4C, which plots the simulated temperature

profiles of films with thicknesses ranging between 15 mm and 500 mm after 100 ms of

heating. These data show that even a small increase in film thickness from 15 mm to

25 mm results in a lower film temperature at 100 ms; however, the profile is still highly

uniform. At all greater thicknesses, there is a notable decrease in film temperature

and increasing non-uniformity in the thermal profiles. The results of these simulations

further demonstrate the necessity for fine control over the length scales of the PP sam-

ples to achieve isothermal, reaction-controlled pyrolysis conditions.

The dimensional analyses and heat transport simulations rely on parameters found in

the literature that are non-specific to the material and reactor used for this work and

therefore can only provide an order-of-magnitude estimate for the maximum film

Figure 4. Simulated transient temperature profiles in PP films

(A) 15-mm-thick sample with a target temperature of 500�C

(B) 100-mm-thick sample with a target temperature of 500�C

(C) Final temperatures for samples of different thicknesses after 100 ms of heating and a target temperature of 500�C.
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thickness and reaction temperatures that define the isothermal, reaction-controlled

regime. Given this limitation, the transition between the transport-controlled and re-

action-controlled PP pyrolysis regimes was experimentally verified. Here, a series of

PP films of thicknesses ranging between 6 mm and 50 mm were prepared and pyro-

lyzed in the PHASR reactor at 625�C for 60 ms. A minimum of three reactions were

performed for each thickness, and the product yields, measured by gas chromatog-

raphy (GC) and microgram-resolution balance (MB), are plotted in Figure 5. For the

15-, 25-, and 50-mm-thick samples, a continuous decrease in GC- andMB-detectable

yields was observed with increasing thickness, demonstrating that the experiments

are transport limited at thicknesses greater than 15 mm, with the limitations

increasing as a function of thickness. In contrast, the observed product yields were

equal for PP samples with thicknesses of 6 and 15 mm, indicating reaction-controlled

conditions absent heat andmass transfer limitations at thicknesses less than or equal

to 15 mm. Through the combined theoretical and experimental results, it is clear that

PP pyrolysis via the PHASR method results in isothermal, reaction-controlled condi-

tions capable of quantifying intrinsic reaction kinetics.

Visual PHASR

Pyrolysis of PP films was observed with high-speed photography (1,000 fps) at 500�C,

550�C, 600�C, 650�C, and 700�C for 2 s within the visual PHASR reactor. The PHASR

reactor and visual PHASR reactor are limited to reaction times of 2.0 s under standard

operation because of an inherent safety limit of the PHASR power supply controller.

Additional details are provided in the Secondary PP pyrolysis kinetics section. In all

experimental trials, 15-mm thick, 3-mm-diameter PP samples were used. Individual

frames from the high-speed video (at 0, 0.4, 0.8, 1.2, 1.6, and2.0 s) are shown inFigures 6

and 7, and the original videos are available in real time and slowmotion in Section S6. In

all cases, the PP thin films are observed to react in a uniformmanner, further establishing

that the PHASR method enables isothermal, reaction-controlled conditions. Addition-

ally, these videos enable a qualitative assessment of the rate and extent of reaction.

Figure 5. Experimental verification of the transition between reaction-controlled and transport-

controlled operation

Product yields detected by gas chromatography (GC; red squares) and microgram-resolution

balance (MB; navy circles) are plotted as a function of sample film thickness for pyrolysis reactions

performed at 625�C for 60 ms. Pyrolysis reactions performed with samples thinner than 15 mm are

reaction controlled (green region) and transport controlled (gray region) when performed with

samples thicker than 15 mm. The error bars represent the standard deviation of the data points.
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At 500�C, the apparent extent and rate of reaction are low, with little visual change to the

sample occurring and large amounts of residue remaining on the plate after 2 s. At

550�C and 600�C, notable changes occurred to the samples as the reactions proceeded

at a greater rate with less residue remaining after 2 s. At the highest reaction tempera-

tures of 650�C and 700�C, the reactions occurred rapidly, reaching completion in less

than 0.5 s, with the solid films rapidly forming a molten phase and eventually transform-

ing into fully evolved vapors and gases with no observable residue remaining on the

plates.

High-speed photography of reacting PP films also revealed complex multi-phase

behavior, including the formation of bubbles, the generation of aerosols, and a po-

tential Leidenfrost effect of the PP droplet on the hot plate, as shown in additional

frames of the video of a PP film reacting at 600�C in Figure 8. At all temperatures,

bubbles were observed to form with the evolution of volatile species in the melt

phase, with the degree of bubble formation greatly increasing as a function of tem-

perature. At 500�C and 550�C, small pockets of bubbles formed that remained inde-

pendent, while bubbles formed throughout the reacting films and rapidly coalesced

as the reaction proceeded at temperatures greater than or equal to 600�C. The pres-

ence of bubbles agrees with prior descriptions and observations of PP pyrolysis in

the literature.84,85 It is known that the presence and subsequent bursting of bubbles

may lead to aerosol generation.86 The majority of aerosols formed, either by bubble

film fragmentation or jet ejections, likely existed at a size below the observable limit

afforded by video resolution; however, jet ejection of a large aerosol (>2 mm) was

observed at 600�C. This jet ejection event is shown in Figure 8 in the frames for re-

action times spanning 428–432 ms. At 550�C and 600�C, the bubbles that formed

moved along the surface of the sample plate. As shown in Figure 6, the small pockets

of bubbles formed at 550�C spread from the center of the sample plate in multiple

directions. At 600�C, as shown in Figures 6 and 8, a primary cluster of bubbles

formed that moved toward the back right side of the plate. At 650�C and 700�C,

Figure 6. Visual PHASR: Side view

Shown are individual frames of high-speed video (1,000 fps) of PP thin films pyrolyzed at 500�C–700�C for 2.0 s in the visual PHASR reactor.
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significant sample movement was not observed, which may be due to the high rate

of reaction at these temperatures. The sample movement may be evidence of a Lei-

denfrost effect; however, the movement may have also been induced by the helium

atmosphere sweeping through the visual PHASR reactor.

Intrinsic PP reaction kinetics

To measure the intrinsic reaction kinetics of PP pyrolysis, PP pyrolysis reactions were

performed via the PHASR method at 525�C, 550�C, 575�C, 600�C, and 625�C for re-

action times ranging between 20 ms and 2.0 s. A minimum of three reaction trials

were conducted for each unique time and temperature condition, and all yield

data from these reactions are shown in Figure 9. Volatile products up to C20 were

quantified as the GC-detectable product yield (Figure 9A), and the total yield of vol-

atile products by mass was quantified as the MB-detectable product yield (Fig-

ure 9B). Detailed definitions of the GC-detectable andMB-detectable yields are pro-

vided under Experimental procedures. In the GC- and MB-detectable product

yields, it was observed that a maximum was reached at all temperatures between

140 ms (625�C) to 300 ms (525�C). Further increases in product yields were not

observed in the additional reaction period up to 2.0 s. Furthermore, the measured

product yields agreed well with the qualitatively observed extent of reaction in the

visual PHASR reactor. In the visual PHASR experiments at 500�C and 550�C, large

amounts of residue were observed to remain on the plate, while at 600�C or greater,

little to no residue remained after 2.0 s of reaction. The maximum MB-detectable

product yields increased from �15% at 525�C to �95% at 625�C. Even in cases

where no visible residue remained, typical of reactions at 625�C for reactions times

greater than 140 ms, the 1,2,4-trichlorobenzene cleaning process revealed that a

small amount of residue was still present (�1 mg).

To describe the kinetics of the primary reaction mechanism of PP pyrolysis outlined

in Figure 1, a first-order consumption model (Equation 1) was fit to the experimental

Figure 7. Visual PHASR: Top view

Shown are individual frames of high-speed video (1,000 fps) of PP thin films pyrolyzed at 500�C–700�C for 2.0 s in the visual PHASR reactor.
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data. As demonstrated in the Verification of isothermal, reaction-controlled opera-

tion section, the PHASR reactor operates under isothermal, reaction-controlled con-

ditions. Accordingly, the first-order model purely describes the fundamental chem-

istry of the process, free of transport artifacts. The kinetic parameters were fit using

the short reaction time data, which encompasses the observed initial period of reac-

tivity. In Figures 10A and 10B, the model fits are plotted as solid lines, and the 95%

confidence intervals are plotted as dashed lines, overlaying the short reaction time

yield data up to 300 ms. In Figure 10C, the Arrhenius plot is provided for both

models, and the values of the kinetic parameters are listed in Table 1. Further details

are provided in Tables S4.1, S4.2, and S4.5; Figure S4.1; and Equations S4.29 and

S4.30. Given that the MB-detectable product yields represent all products that vola-

tilize at a given reaction temperature, the MB-detectable model parameters better

describe the overall intrinsic reaction kinetics of PP pyrolysis, while the GC-detect-

able model parameters describe the intrinsic kinetics for the production of light spe-

cies up to C20.

YðtÞ = 1 � e� kt (Equation 1)

Comparison of measured intrinsic reaction kinetics with literature data

As shown in Figure 2, a vast range exists in the literature for the reported kinetics of PP

pyrolysis, attributed to the measurement of apparent kinetics unique to a given exper-

imental system rather than the intrinsic kinetics of the chemistry itself. The data pre-

sented in Figures 2A (reported apparent activation energies) and 2B (reported pre-expo-

nential factors) were plotted together in Figure 2C as a compensation plot. In addition,

the pre-exponential factors were converted to activation entropy (DSz; Figure 2C, right

axis) using Equation 2. In Equation 2, e is the natural logarithm base, kb is the Boltzmann

constant, h is the Planck constant, T is the absolute temperature, and R is the universal

gas constant.87 The line of best fit for DSz versus Ea (black line) provides the compensa-

tion slope, which was found to be 748G 36 K. Figure 2C also contains additional infor-

mation on the sample sizes (symbol outlines), maximum reaction temperatures (symbol

fill colors), and reactor types (symbol shapes) associated with the kinetic data. The

Figure 8. Visual PHASR: Observed reaction phenomena

Shown are individual frames of high-speed video (1,000 fps) of a PP thin film pyrolyzed at 600�C for 2.0 s in the visual PHASR reactor, depicting bubble

formation, sample movement because of a potential Leidenfrost effect, and aerosol ejection.
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literature data in this analysis are tabulated in the supplemental information. The linear

relationship between ln k0 and Ea observed in the compensation plot is an apparent

compensation effect88,89 that further indicates that the literature-reported kinetics of

PP pyrolysis are representative of apparent rather than intrinsic kinetics. The kinetic pa-

rameters measured in this work (Table 1), are intrinsic to PP pyrolysis and are within the

range of the previously reported parameters, aligning with the centers of the distribu-

tions conveyed in Figure 2, particularly the overall intrinsic kinetic parameters repre-

sented by the MB-detected model.

k0 =

ekbT

h
e

DSz

R (Equation 2)

A mechanistic kinetic model to describe PP pyrolysis and calculate estimates for the

apparent activation energy was also derived. The radical reaction model was based

on the Rice-Herzfeld mechanism, commonly used to describe hydrocarbon chain

decomposition and polyolefin pyrolysis (Reactions SR4.1–SR6).56,90–95 Themodel simply

describes PP pyrolysis as a general radical reaction system in terms of initiation, propa-

gation, and termination. Full details of the model derivation are provided in Equations

S4.2–S4.24, and the derived rate expression is described by Equation 3. Here, ki, kH,

kb, and kt are the rate constants for initiation, propagation (via hydrogen abstraction

and b-scission), and termination, respectively. Species A represents the reacting PP.

rA =

d½A�

dt
= kH

�

ki
kt

�1=2

0

B

B

@

½A�3=2

1+
kH
kb

½A�

1

C

C

A

(Equation 3)

Values were calculated for the elementary steps of the Rice-Herzfeld mechanism via

DFT following a previously described method and utilized in combination with the

derived rate expression to calculate apparent activation energies for PP pyrolysis.96

Figure 9. PP pyrolysis yield versus time

(A) Yield of light products (<C20) measured by GC.

(B) Yield of all volatile products measured by MB.

The error bars represent the standard deviation of the data points.
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Details on the DFT calculation methods are provided in the supplemental informa-

tion. The DFT values were calculated for initiation via alkane C-C bond cleavage

(�358 kJ mol�1), propagation via b-scission (�117 kJ mol�1), and propagation via

hydrogen abstraction (�41 kJ mol�1), and termination via radical recombination

was assumed to have no energetic cost.96 Three different termination mechanisms

are considered for this model (R1R1, R2R2, and R1R2), and the apparent activation en-

ergy of the system depends on which of these mechanisms is dominant. The DFT

activation energies were used to calculate the activation energies for R1R1-, R2R2-,

and R1R2-dominant termination, resulting in activation energies of 220, 296, and

258 kJ mol�1, respectively (Equations S4.25–S4.28). The calculated values are

consistent with the intrinsic kinetic model parameters obtained experimentally via

the PHASR method (Table 2) and with the range of literature-reported parameters

(Tables S1.1A–S1.1R). Additional details on use of the DFT-calculated values with

the derived rate expression are provided in Tables S4.3 and S4.4.

Residue analysis

Formation of residue product was observed at all reaction conditions other than

625�C for reaction times exceeding 100 ms. Residue and char from PP pyrolysis

has been reported previously; however, there is little consistency in the definitions

of the solids and varying extent of formation.49,70,97–108 Given the consistent nature

of residue formation in our experiments of Figure 9, the resulting solid residues from

PP pyrolysis were characterized. Solid residues were analyzed by multiple methods,

including microscopy, 13C solid-state NMR, Raman spectroscopy, and attenuated

total reflectance infrared (ATR-IR) spectroscopy. Other techniques, such as gel

permeation chromatography (GPC), were not utilized because of low residue

Figure 10. Kinetic analysis of PP pyrolysis yield versus time

(A) Yield of light products (<C20) measured by GC (points) with first-order model fits (solid lines).

(B) Yield of all volatile products measured by MB (points) with first-order model fits (solid lines).

(C) Arrhenius plot of GC-detected (red circles) and MB-detected (navy squares) model fits, with

linear regression analysis for determination of kinetic parameters. Complete details of model

fitting are provided in the supplemental information.

The error bars represent the standard deviation of the data points.
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masses. The PP thin films used in the PHASRmethod to achieve isothermal, reaction-

controlled conditions were 70 G 10 mg and yielded residues of about 10 mg. Analyt-

ical capabilities were further limited by the need to remove the PP pyrolysis residues

from the experimental sample plate with solvent. Removal of residues from the sam-

ple plates by mechanical means (i.e., scraping, tweezers, etc.) was found to be inef-

fective, with only use of excess 1,2,4-trichlorobenzene at 150�C consistently and reli-

ably removing the residues. Consequently, the dissolved residues were dilute (�1 mg

mL�1) and not suitable for techniques like GPC, which require sample concentrations

of �1 mg mL�1. An analysis of the product residue with 13C solid-state NMR was

made possible by combining multiple 250-mm-thick samples to meet the effective

sample mass threshold of �20 mg; however, commensurate with the results in Fig-

ure 5, these thick films were observed to have a low degree of conversion when py-

rolyzed for 2.0 s because of the impact of transport limitations, and the NMR spec-

trum was unchanged compared with virgin PP. Additional details on the NMR

analysis are provided alongside Figure S5.1.

A simple visual analysis of the formed residues was performed by examination with an

optical microscope. Photographs of the samples reacted at 575�C for 20, 100, 220,

and 500 ms taken through the eye piece of the microscope are shown in

Figures 11C–11F. The sample reacted for 20 ms (Figure 11C) was primarily clear, with

indications of bubbling because of gas and vapor product volatilization, and it retained

its original circular shape and �3.0-mm size. Similarly, the sample reacted for 100 ms

(Figure 11D) mostly retained its original size and shape; however, the sample was

notably darker, indicating potential formation of char-like material. The sample reacted

for 220 ms (Figure 11E) had evidence of sample spreading and movement, as observed

previously in the visual PHASR, as well as potential formation of char-like material. The

sample reacted for 500 ms (Figure 11F) had a small amount of thin, dark residue, again

indicative of potential formation of char-like material.

The product residues of samples reacted at 525�C for 20–2,000 ms as well as un-

reacted PP (including virgin PP, the original material prior to sample preparation,

and a prepared thin film) were further analyzed by Raman, ATR-IR, and advanced

ATR-IR-corrected spectroscopy. The notable results of these analyses are depicted

Table 2. Activation energies calculated from first principles with the Rice-Herzfeld model and

from experimental PHASR data

Activation energy Description Value

E
app
a;R1R1

Rice-Herzfeld model calculated activation
energy for R1R1 dominant termination

220 kJ mol�1

E
app
a;R2R2

Rice-Herzfeld model calculated activation
energy for R2R2 dominant termination

296 kJ mol�1

E
app
a;R1R2

Rice-Herzfeld model calculated activation
energy for R1R2 dominant termination

258 kJ mol�1

EPHASR
a;GC PP pyrolysis experimental activation energy for

production of light species up to C20 from
PHASR intrinsic kinetic data

175 kJ mol�1

EPHASR
a;MB overall experimental activation energy of PP

pyrolysis from PHASR intrinsic kinetic data
242 kJ mol�1

Table 1. Intrinsic kinetic model parameters

Ea (kJ mol�1) lnðk0Þ (ln[s
�1])

GC-detected 175.1 G 13.1 25.2 G 2.2

MB-detected 242.0 G 2.9 35.5 G 0.6
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in Figures 11A and 11B. In the Raman spectra (Figure 11A), a new peak was observed

at �1,648 cm�1 for samples reacted at 525�C for times equal to or greater than

100 ms that was not observed in unreacted and virgin PP samples. This peak corre-

sponds to a substituted alkene C-C double bond.109 In the advanced ATR-IR-cor-

rected spectra (Figure 11B), a new peak was observed at �886 cm�1 that was not

present in the unreacted and virgin PP samples, which corresponds to a substituted

alkene or aromatic C-H bonds.109,110 The results from both analyses are indicative of

the formation of unsaturated species that may be precursors to or polyaromatic in

nature. The formation of these new chemical structures that react slower than virgin

PPmay explain the plateauing yields of volatile products in short reaction times up to

2.0 s, as depicted in Figure 9. Additional details on these analyses, including the full

spectra, are available in Figures S5.2–S5.4.

Secondary PP pyrolysis kinetics

Spectroscopic analysis of the solid residues produced at short reaction times of up to

2.0 s in the PHASR reactor revealed the formation of unsaturated species. The stabil-

ity of these residues was tested to determine whether these changes to the original

PP prohibit further reaction or generate a secondary kinetic regime where the mate-

rial pyrolyzes at a reduced rate at times beyond the measurement of the PHASR

reactor. Under standard operation, the PHASR reaction is limited to reaction times

of 2.0 s for a single pulse. This is an inherent safety limit of the PHASR power supply

controller, which is designed to deliver high-current electrical pulses for times up to

Figure 11. Analysis of solid residues

(A) Raman spectroscopy of polypropylene (PP) samples reacted at 525�C for 20–2,000 ms and comparison with unreacted PP (full spectra are provided in

the supplemental information).

(B) Advanced attenuated total reflectance infrared (ATR-IR)-corrected spectroscopy of PP samples reacted at 525�C for 20–2,000 ms and comparison

with unreacted PP (full spectra are provided in the supplemental information).

(C) Microscope photograph of a PP sample reacted for 20 ms at 575�C

(D) Microscope photograph of a PP sample reacted for 100 ms at 575�C

(E) Microscope photograph of a PP sample reacted for 220 ms at 575�C

(F) Microscope photograph of a PP sample reacted for 500 ms at 575�C.
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2.0 s, that cannot be bypassed.83 To probe reaction times longer than 2.0 s, we

instead utilized multiple successive 2.0-s thermal pulses on individual samples.

When samples are reacted in the PHASR reactor, the sample plate undergoes intense

stress induced by the high-current electrical pulses (�1.3 kA, 4 V) and rapid thermal

swings (heating from room temperature up to 500�C–700�C in less than 20ms and cool-

ing back to room temperature in less than 180 ms). These extreme conditions lead to

embrittlement of the sample plates, with some plates failing during a single pulse. For

these long-reaction-time experiments, the vast majority of the sample plates failed after

only two to four successive 2.0-s pulses (total reaction times of 4.0–8.0 s); however, three

samples withstood 31 successive pulses at 500�C (total reaction time of 62.0 s), and two

samples withstood 13 successive pulses at 525�C (total reaction time of 26.0 s). Lower

reaction temperatures of 500�C and 525�C were chosen because they allow slightly

lower amperage currents to be used, �1.2 kA.

The average cumulative GC-detectable product yields from these samples are

plotted in Figures 12A and 12B, with yield data from times shorter than 2.0 s from

prior experiments also included. At 500�C (Figure 12A) and 525�C (Figure 12B),

the GC-detectable yields achieved after 2.0 s were in agreement with the yield

data in Figure 9, with average yields of �7% and �10%, respectively. In the multi-

pulse experiments at 500�C and 525�C, the yields were observed to consistently

rise with each thermal pulse after the initial 2.0 s up to�12% and�13%, respectively,

after which the plates failed.

The reactivity of the solid residues at reaction times longer than 2.0 s was signifi-

cantly slower than the fast, millisecond reactivity observed in the initial �0.3 s of

PP pyrolysis, revealing the existence of a secondary kinetic regime. This secondary

kinetic regime likely results from desaturation of the original PPmaterial, as detected

by Raman and ATR-IR spectroscopy, as well as the presence of char-like material

observed in the microscope photographs (Figure 11). PP pyrolysis at 525�C–625�C

may be described by a two-stage lumped reaction system (Scheme 1). The first stage

is characterized by rapid millisecond kinetics and the initial generation of gases and

vapors, as well as solid pyrolysis residue. The second stage is characterized by the

continued reaction of the solid residue to form additional gases and vapors as

well as solid, unreactive char on the second-to-minute timescale. The kinetics of

the secondary kinetic regime will be the focus of future work.

Figure 12. Secondary PP reaction kinetics

(A) Cumulative GC detected yields of PP samples pyrolyzed for 31 successive 2.0-s pulses (total reaction time of 62.0 s) at 500�C

(B) Cumulative GC detected yields of PP samples pyrolyzed for 13 successive 2.0-s pulses (total reaction time of 26.0 s) at 525�C.

The error bars represent the standard deviation of the data points.
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Conclusions

The intrinsic reaction kinetics of PP pyrolysis were evaluated via the method of

PHASR at temperatures spanning 525�C–625�C for reaction times between 20 ms

and 2.0 s. The PHASR method was validated theoretically and experimentally to

react�15-mm thin films absent heat andmass transfer limitations. Direct observation

of reacting PP films via high-speed photography elucidated reaction phenomena,

including bubble formation, aerosol ejection, sample movement because of a po-

tential Leidenfrost effect, and residue formation. A maximum plateau effect in the

observed yields for reaction times less than 2.0 s was observed at all reaction condi-

tions other than at 625�C, where complete reaction was reached in �100 ms. A

lumped first-order consumption model was used to determine the overall reaction

kinetics, representative of theMB detectable yields, resulting in an activation energy

of 242.0 G 2.9 kJ mol�1 and a pre-exponential factor of 35.5 G 0.6 ln(s�1).The res-

idues observed to form in the first 2.0 s of PP pyrolysis were shown to have a dark,

char-like appearance, and formation of unsaturated species was detected by Raman

and ATR-IR spectroscopy. The stability of residues was explored at reaction times

exceeding 2.0 s, revealing the existence of a secondary kinetic regime in which

the PP pyrolysis residue continues to react on the second-to-minute timescale.

The kinetics of the slow, secondary kinetic regime will be the focus of future work.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be ful-

filled by the lead contact, Dr. Paul J. Dauenhauer (hauer@umn.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The authors declare that all data supporting the findings of this study are available

within the paper and its supplemental information file. Any additional information

required to re-analyze the data reported in this paper is available from the lead con-

tact upon request.

Reactor design

The PHASR reactor was originally developed for cellulose pyrolysis and has been re-

designed to meet the challenges of polyolefin pyrolysis.83,111 The redesigned

PHASR reactor is capable of measuring the intrinsic kinetics of polyolefin pyrolysis

Scheme 1. Two-stage lumped reaction scheme for PP pyrolysis at 525�C–625�C

PP pyrolysis is described by a two-stage lumped reaction system characterized by rapid millisecond

kinetics and initial generation of gases and vapors as well as solid pyrolysis residue (stage 1) and the

continued reaction of the solid residue to form additional gases and vapors and solid, unreactive

char on the second-to-minute timescale (stage 2).
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on the millisecond scale at temperatures up to 700�C. The primary features of the

PHASR reactor redesign include a new cylindrical reactor housing, a flange seal

with a copper O-ring, a modified heat exchanger, and beryllium copper contact

brushes. As a result of these changes, the reactor body can be held at higher tem-

peratures to prevent polyolefin pyrolysate condensation in the reactor. In addition,

these changes result in faster, more consistent heating and cooling times (%20 ms

and%180ms, respectively) as well as more stable reaction temperatures. Full details

of the reactor modifications and validation of reactor operating conditions are pro-

vided in previous work.83

A full description of the PHASRmethod has been provided previously,83 and a summary

of PHASR operation is presented here. To perform PHASR experiments, thin-film PP

samples (15 mm thick, 3 mm in diameter) are deposited onto passivated carbon steel

sample plates and placed into the reaction chamber. When the reactor is closed, elec-

trical feedthroughs contact the sample plate via beryllium copper contact brushes, al-

lowing a high-current electrical pulse to be delivered to the sample plate. This electrical

pulse resistively heats the sample plate to the pre-selected reaction temperature (%

700�C) for the set reaction time (20 ms–2.0 s); a cartoon depiction of reaction progress

is shown in Figure 13E. During an electrical pulse, a 1,000-Hz optical pyrometermonitors

the surface temperature of the sample and ensures precise temperature control through

a PID feedback loop. Before performing a reaction, the reactor housing is heated to

300�C to prevent pyrolysate condensation. A silicon heat transfer fluid (Dow Syltherm

800) continuously flows through agold-plated heat exchanger to rapidly cool the sample

and quench the reaction. To prevent electrical shorting, an aluminum nitride ceramic

sheet (0.010 in thick) is present between the sample plate and the heat exchanger. He-

lium continually sweeps the reaction chamber (�360 mL/min), providing an inert atmo-

sphere and carrying all volatile products to an in-line gas chromatograph with a Polyarc

and flame ionization detector (GC-PA-FID) for analysis. In this system, before analysis in

the FID, all organic compounds are catalytically converted to methane in the PA, elimi-

nating response factor changes because of different compounds and calibrations and

improving analysis accuracy.112

Reactor operation

To operate under reaction-controlled conditions, thin-film samples were used in

PHASR experiments. To prepare thin-film PP samples, PP pellets (provided by

ExxonMobil Technology and Engineering, molecular weight [MW] �263,000

g/mol by light scattering) were pressed in a Specac Mini-Film Maker at 175�C with

0.5 tons of force for 30 s. This produced thin-film discs (�1.5 cm in diameter) with

thicknesses of 15–500 mm, from which individual 3.0-mm-diameter PP samples

were cut using a Harris Uni-Core micro-punch. 15-mm-thick samples were primarily

used for this work, and the thicknesses of the produced samples were verified using

a KLA Tencor P-16 Surface Profiler, demonstrating that the average sample height is

within �1 mm of the desired 15-mm thickness (Figure 13B). Samples thinner than

15 mm were prepared by pressing the 15-mm samples again in the Mini-Film Maker

(150�C, 1 ton force, 30 s), resulting in films with a thickness of �6 mm and a diameter

of �4 mm (Table S2.1); example surface profilometry results are provided in Fig-

ure S2.1. For this work, initial sample weights were measured using a MB (Metter

Toledo XPR2U). The samples were produced with a high level of control, as shown

by the consistency of sample weight versus sample thickness (Figure 13C). After

weighing, the samples were deposited onto carbon steel sample plates at 165�C un-

til the samples slightly darkened on the surface (Figure 13A); this temperature was

selected to prevent sample spreading during deposition. Prior to depositing the

PP thin films, the sample plates were wiped with isopropanol and heated with a
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butane torch until the metal turned blue, cleaning and passivating the surface. To

ensure that the sample preparation process did not influence the degradation prop-

erties of PP, the original pellets and pressed thin-film samples of PP were pyrolyzed

in a TGA (He atmosphere at 100 mL min�1, 30�C to 1,000�C, 10 �Cmin�1 ramp rate).

The weight loss and derivative curves for the original PP pellets and pressed PP thin

films are overlaid in Figure 13D. The consistency between the original PP and the

pressed PP indicates that no change to the degradation properties was caused by

the sample preparation process.

In this work, samples were pyrolyzed over a range of temperatures (525�C, 550�C,

575�C, 600�C, and 625�C) for reaction times between 20 and 2,000 ms. The yield

of light products (<C20) was quantified via the in-line GC-PA-FID (GC-detectable

yield). A deactivated fused silica column was utilized in the GC, resulting in a single

light product peak. After pyrolysis, the amount of any remaining unreacted sample

or residue on the plates was quantified with the XPR2U balance (MB). First, the

excess area on the sample plates was cut off (to reduce the weight and improve

weighing accuracy), and the plates were weighed. Then, the cut plates were soaked

in 1,2,4-trichlorobenzene (TCB; 99%, Alfa Aesar) at 150�C for�15 min to remove the

remaining sample and residue. After drying in air, the clean plates were weighed

again. The difference in the weights determined the weight of the remaining

unreacted sample. Using the initial sample weights and the weight of remaining

unreacted sample, the total yield of volatile products by mass was obtained

(MB-detectable yield).

High-speed photography

A second, visual PHASR system was developed, which enables in situ observation of

reacting PP pyrolysis samples via high-speed photography.83 In this work, samples

Figure 13. Thin-film PP samples

(A) Photograph of a 3-mm-diameter thin film deposited on a sample plate.

(B) Profilometry of a thin film showing an average thickness of �13.5 mm.

(C) Uniformity of sample weights compared with sample thickness, as measured by MB.

(D) Consistency of a virgin PP pellet and PP thin-film TGA profiles, indicating no change of the thermal degradation properties of the sample.

(E) Cartoon depicting the reaction progress of a PP thin film.

ll

Matter 6, 3413–3433, October 4, 2023 3429

Article



were pyrolyzed over a range of temperatures (500�C, 550�C, 600�C, 650�C, and

700�C) for reaction times of 2,000 ms. In the visual PHASR reactor, samples were py-

rolyzed in the same manner as with PHASR via controlled high-current electrical

pulses. For this system, the top assembly of a PHASR reactor was inverted, and a

316 stainless steel riser containing clear polycarbonate side windows and a clear pol-

ycarbonate cover sealed the system, allowing a helium atmosphere as well as obser-

vation of the samples with the high-speed camera. The visual PHASR reactor is

described in full detail in previous work.83
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