

ICLS 2023 Proceedings © ISLS 2189

Using a Visual-Based Coding Platform to Assess Computational
Thinking Skills in Introductory Physics

Derrick Hylton, Spelman College, dhylton@spelman.edu

Shannon Sung, Institute for Future Intelligence, shannon@intofuture.org

Xiaotong Ding, Institute for Future Intelligence, xiaotong@intofuture.org

Abstract: Developing assessment tools for computational thinking (CT) in STEM education is

a precursor for science teachers to effectively integrate intervention strategies for CT practices.

One problem to assessing CT skills is students’ varying familiarity with different programming

languages and platforms. A text-neutral, open-source platform called iFlow, is capable of

addressing this issue. Specifically, this innovative technology has been adopted to elicit

underrepresented undergraduate students’ debugging skills. We present how the visual-based

coding platform can be applied to bypass programming language bias in assessing CT. In this

preliminary study, we discuss design principles of a visual-based platform to effectively assess

debugging practices – identification, isolation, and iteration – with the use of iFlow

assignments. Our findings suggest how the ability of iFlow to test parts of a program

independently, dataflow connectivity, and equity in removing biases from students’ various
backgrounds are advantageous over text-based platforms.

Introduction
In STEM education, computational thinking (CT) has become a critical component in preparing students for the

technical workforce (NSF, 2020). Practitioners are, however, facing problems integrating and assessing CT in the

STEM curriculum (Wang et al., 2021). CT presents an additional stumbling block for underrepresented groups in

building the pipeline for computational-related careers (Thomas et al., 2018). Our central proposed intervention

strategy is for students to create computational solutions to science problems without, at first, requiring them to

master intimidating syntax and semantics. This can be accomplished with the aid of a visual-based programming

tool, so that we can make students’ computational thinking visible while they are shaping it (Ainsworth et al.,

2011). We collaborated with the developers of one such tool, called iFlow, where we can create a beta version

suitable for our needs. The goal is to design assessment tools for evaluating the effectiveness of visual-based

programming in facilitating students’ CT skills. We report on one of the assignment questions for eliciting CT
skills of debugging, which students self-identified as a barrier in our preliminary study (Hylton et al., 2021).

Innovative visual-based programming platform – iFlow
Visual-based programming was implemented by the application of iFlow. Inspired by the Unified Modeling

Language and dataflow programming paradigm, this constructionist environment (Papert, 1991), named iFlow,

models a program as an executable directed graph depicting the structure of a computational solution and the

interactions among its constituents. The results emerge as data flow through these interconnected elements (see

Figure 1 as an example). While there exist successful dataflow programming products such as Grasshopper,

LabVIEW, and Simulink, most of them are tailor-made for specific applications that may not be appropriate for

introductory courses. For example, Grasshopper only works within the Rhinoceros 3D computer-aided design

software, LabVIEW is mostly used in data acquisition and instrument control, and Simulink focuses on modeling

multi-domain dynamic systems. By comparison, iFlow is a general-purpose, Web-based, and integrated

computational environment designed for students to solve common problems encountered in the science

curriculum, with an objective to meet diverse educational needs of students with various backgrounds and interests

in science. To clarify, although it bears some resemblance to system dynamics software such as Stella and Vensim,

iFlow is not a system dynamics modeler. In iFlow, the representational blocks are directly manipulable (e.g.,

pulling a slider changes the variable it represents). Their changes can be immediately transmitted across the

connector networks, updating the linked nodes on their way and making the entire diagram interactive

iFlow debugging assignment
We describe an assignment intended to elicit and assess users’ debugging skills. The assignment prompt is:

Your lab partner devised a method to test whether the function shown in the Multivariate

Function block (the green block in Figure 1) is a good fit to the data. S/he decided to subtract

the data values from the function values (using an Arithmetic block [see Figure 1]) to see how

ICLS 2023 Proceedings © ISLS 2190

close they are as a test of goodness of fit. S/he also decided to average the difference of each

data point (using the Mean block), and since the average is 0 as shown in the Output block, s/he

decided that the fit is very good. Your job is to decide whether you agree or disagree with your

lab partner’s work, and if you disagree to improve on the work.

The assignment in Figure 1 illustrates some of the blocks where we can store arrays, define functions,

assign variables, do arithmetic computations and statistics, and display outputs. The assignment program was

constructed by dragging appropriate blocks from the left “Blocks” palette to the working canvas. The function of
each block was described to the student via a manual and training exercise. The blocks are connected via the nodes

on the left and/or right sides of the blocks, which represent the input(s) to and output(s) from the blocks. Each

block has properties that are listed in table form (by right clicking on the block) that can control each block. The

assignment was given to 13 STEM majors in an Introductory Physics lab. A post-activity survey was implemented

to collect students’ reflection and feedback.

Figure 1

iFlow program associated with the debugging assignment

We hypothesize that this visual-based programming can enhance students’ cognitive processing of data
flow, which would lead to a stronger performance in more traditional computing tools, such as text-based Python

and visual-based LabView. This question can be used to assess debugging skills, because it purposefully

introduces an error in testing the goodness of fit, which is an essential part of common data analysis in introductory

physics courses. The error introduced is averaging the deviations to gauge goodness of fit. This will not work

since some deviations are positive and some are negative. Students with more advanced debugging skills should

be able to graph the data and fit function with iFlow (see Figure 2) to realize that the fit is not good.

Assessing cognitive processes of debugging in iFlow
iFlow program makes the assessment of debugging practices easier, because it could not only help assess the

processes involved in fixing errors, but also resurface the cognitive processes of completely understanding the

errors. Such affordance could mitigate the problem, where errors are often fixed without systematically

investigating them, and thus, learners are prone to repeat the errors (Li et al., 2019).

We classify the debugging practices dealing with errors into three cognitive processes—identification,

isolation, and iteration – adapted from the work of Weintrop and his colleagues (2016). Identification focuses on

how one makes sense of the solution, isolation focuses on one's systematic investigation of the issue, and iteration

focuses on how one reproduces and fixes the error. To illustrate each cognitive process, we prompted the students

with the following questions as a protocol in eliciting thought processes: 1) Do you AGREE with the given

solution? 2) If Yes, explain your reasoning in the space below. 3) If No, you should improve on your solution. 4)

Record ALL the things you did to justify your decision and to improve the solution. These things should include

anything you did to acquire information needed to understand ALL the issues you identified. For example, if you

tried to understand the properties of a block outside of the computational problem, then it should be included in

the list of things done.
For numbers 1-3, we expect students to spot some issues in the solution shown in Figure 1. For example,

the deviation (computed by the arithmetic block) can average to 0 as shown in the output block, but with further

investigation, a graph generated by an exemplar student (see the Space2D block in Figure 2) reveal that the

solution proposed in Figure 1 is inadequate. For number 4, students are prompted to list their actions, so that we

ICLS 2023 Proceedings © ISLS 2191

can evaluate whether they engaged in the investigative processes. For instance, students should research the error

enough to eliminate the canceling of the deviations by comparing the data values (shown as the blue points in

Figure 2) to the line fitted to the data (shown as B in the legend of Space2D block in Figure 2). Another issue is

the type of function, and students should realize by the practices involved in isolation and iteration that the linear

function is not the best solution.

Figure 2

Sample systematic investigation of an exemplar student on the computational errors in goodness of fit.

Design principles of iFlow in assessing debugging
Assessing cognitive processes of debugging can be done in common text-based programming, but visual-based

programming has some advantages over text-based programming (Navarro-prieto & Cañas, 2001; Saito et al.,

2017; Weintrop & Wilensky, 2017) and assessment. First, iFlow helps its users to investigate blocks independent

of the rest of the program, which usually cannot be readily done in text-based programming (e.g., usually, one has

to disable the rest of the program in order to check one part). For assessment purposes, iFlow makes it easier for

students to isolate and trace back the steps without breaking the entirety of the programming solution (e.g., Figure

2). For researchers, iFlow is advantageous over text-based programming, because we can evaluate what the

tendencies of users are when they engage in debugging, such as: 1) identifying an issue based on the visual

computational solution, 2) deciding which part of the visual-based computational solution is a reasonable cause

of the error, and 3) systematically studying how the cause of error. Therefore, iFlow better helps the practitioners

and researchers evaluate investigative processes pertaining to how students isolate errors and fix them.

Second, we believe that iFlow encourages debugging because it visually shows connectivity and

relationship among different components on the same page. The hierarchical linearity or non-connectivity

involved in the text-based programming usually overwhelms novice students, preventing them from even

attempting to identify the issue (Mosemann & Wiedenbeck, 2001), which deters any assessment endeavor. In

visual-based programming, students can trace the source of error and test various ideas in a more systematic

manner. Correspondingly, the inputs of text-based codes could be assigned hundreds of lines back in the program

before being called into computing. Such a gap and lack of connectivity may demotivate students in science

classes to engage in the practices of debugging. As a result, iFlow is more suitable than text-based platforms in

assessing debugging, since the interface is more welcoming for users to engage in debugging practices.

Third, all of the students can be provided with an equal background in iFlow, which may not be possible

if the same platform, such as Python or Excel, is used in the science courses for assessment purposes as well as

coursework. The coursework platform for assessment may impose bias since students would have varying

backgrounds and familiarity. For instance, we may not be able to assess the cognitive processes in isolation

correctly if some of the students already know how to deal with the purposeful errors. These students can bypass

some of the debugging sub-practices, which makes their prior knowledge interfere with the assessment. Thus, the

validity of the assessment is jeopardized.

Discussions and implications
In this technology innovation paper, we only presented the application of iFlow to the assessment of debugging

skills. Based on students’ positive feedback, such as “The biggest thing is that iFlow is the most straightforward

[compared with Python]. If there’s anything that you’re not understanding, you are able to just see it.” we
conclude that visual-based programming would be efficient in assessing debugging skills, such as the ability to

ICLS 2023 Proceedings © ISLS 2192

see the various connections shown on iFlow interface. A few of the advantages are: ability to test parts of a

program independently, dataflow connectivity, and equity in removing biases from underrepresented students’
various backgrounds. Visual-based programming, such as iFlow (Hylton et al., 2021), is an innovative technology

to teach computational thinking in STEM courses. It is a powerful platform not only for students to be able to

solve computational problems in science, but also for researchers to assess pupils’ learning in various aspects.
The assignment developed for assessing debugging skills can be applied to both text-based and visual-

based programming. In our future studies, we plan on building debugging skills of students in STEM courses by

an appropriate intervention whose effectiveness can be assessed and refined using appropriate debugging rubrics.

Nevertheless, with the promising affordance in assessing CT in STEM education, there are some

limitations to this innovative technology. For instance, iFlow requires more development, as is planned, so it is

more responsive to the various needs and provides a smoother interface, such as comparing similar computational

solutions side by side without the need to open multiple cloud files. In addition, because the interface is different

from conventional text-based programming, it requires constant customization of different manuals and user

training materials that are tailored for instructional use.

References
Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to Learn in Science. Science, 333(6046), 1096-1097.

doi:10.1126/science.1204153

Hylton, D., Sung, S., & Xie, C. (2021) Adopting no-code methods to visualize computational thinking. Rodrigo,

M. M. T. et al. (Eds.) (2021). Proceedings of the 29th International Conference on Computers in

Education. Asia-Pacific Society for Computers in Education, 79-84.

Li, C., Chan, E., Denny, P., Luxton-Reilly, A., & Tempero, E. (2019). Towards a Framework for Teaching

Debugging. Proceedings of the Twenty-First Australasian Computing Education Conference, 79–86.

https://doi.org/10.1145/3286960.3286970

Mosemann, R., & Wiedenbeck, S. (2001). Navigation and comprehension of programs by novice programmers.

In Proceedings 9th International Workshop on Program Comprehension. IWPC 2001 (pp. 79–88). IEEE.

Navarro-Prieto, R., & Cañas, J. J. (2001). Are visual programming languages better? The role of imagery in

program comprehension. International Journal of Human-Computer Studies, 54(6), 799–829.

https://doi.org/10.1006/ijhc.2000.0465

National Science Foundation (NSF) 2020. Dear Colleague Letter retrieved from

https://www.nsf.gov/pubs/2020/nsf20101/nsf20101.jsp

Papert, S. (1991). Situating Constructionism. In I. Harel & S. Papert (Eds.), Constructionism. Norwood, NJ: Ablex

Publishing Corporation.

Saito, D., Washizaki, H., & Fukazawa, Y. (2017). Comparison of Text-Based and Visual-Based Programming

Input Methods for First-Time Learners. Journal of Information Technology Education: Research, 16,

209–226. https://www.informingscience.org/Publications/3775

Schmidgall, S. P., Eitel, A., & Scheiter, K. (2019). Why do learners who draw perform well? Investigating the

role of visualization, generation and externalization in learner-generated drawing. Learning and

Instruction, 60, 138-153. doi:https://doi.org/10.1016/j.learninstruc.2018.01.006

Thomas, J. O., Joseph, N., Williams, A., Crum, C., & Burge, J. (2018). Speaking Truth to Power: Exploring the

Intersectional Experiences of Black Women in Computing. 2018 Research on Equity and Sustained

Participation in Engineering, Computing, and Technology (RESPECT), 1–8.

https://doi.org/10.1109/RESPECT.2018.8491718

Wang, C., Shen, J., & Chao, J. (2021). Integrating Computational Thinking in STEM Education: A Literature

Review. International Journal of Science and Mathematics Education. https://doi.org/10.1007/s10763-

021-10227-5

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining

computational thinking for mathematics and science classrooms. Journal of Science Education and

Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5

Weintrop, D., & Wilensky, U. (2017). Comparing Block-Based and Text-Based Programming in High School

Computer Science Classrooms. ACM Transactions on Computing Education (TOCE), 18(1), 1–25.

https://doi.org/10.1145/3089799

Acknowledgments
This work is funded under the NSF HBCU-UP Broadening Participation Research Program in STEM Education

under award number 2107104. We thank Charles Xie for developing iFlow platform.

about:blank
https://doi.org/10.1145/3286960.3286970
https://doi.org/10.1006/ijhc.2000.0465
https://www.nsf.gov/pubs/2020/nsf20101/nsf20101.jsp
https://www.informingscience.org/Publications/3775
https://doi.org/10.1016/j.learninstruc.2018.01.006
https://doi.org/10.1109/RESPECT.2018.8491718
https://doi.org/10.1007/s10763-021-10227-5
https://doi.org/10.1007/s10763-021-10227-5
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/3089799

