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Abstract

Recent work in NLP has shown promising re-
sults in training models on large amounts of
tasks to achieve better generalization. How-
ever, it is not well-understood how tasks are
related, and how helpful training tasks can be
chosen for a new task. In this work, we inves-
tigate whether knowing task relationships via
pairwise task transfer improves choosing one
or more source tasks that help to learn a new
target task. We provide TASKWEB, a large-
scale benchmark of pairwise task transfers for
22 NLP tasks using three different model types,
sizes, and adaptation methods, spanning about
25,000 experiments. Then, we design a new
method TASKSHOP based on our analysis of
TASKWEB. TASKSHOP uses TASKWEB to es-
timate the benefit of using a source task for
learning a new target task, and to choose a sub-
set of helpful training tasks for multi-task train-
ing. Our method improves overall rankings and
top-k precision of source tasks by 10% and
38%, respectively. We also use TASKSHOP
to build much smaller multi-task training sets
that improve zero-shot performances across 11
different target tasks by at least 4.3%. !

1 Introduction

Recent studies have revealed that large language
models are able to generalize to unseen tasks when
jointly trained on many different tasks, with their
performance scaling to the size and diversity of
the training data (Sanh et al., 2022; Wang et al.,
2022b; Wei et al., 2022a; Chung et al., 2022; Long-
pre et al., 2023). As more and more tasks are added
to build general-purpose models, it has been noted
that knowing inter-task relationships may be help-
ful but that it remains unclear how to select helpful
tasks for multi-task learning (Ye et al., 2021; Min
et al., 2022; Asai et al., 2022; Chan et al., 2022).
In this work, we investigate whether quantifying
the relationship between different NLP tasks via

'Our code is available at
danieljkim@118/TaskWeb.
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Figure 1: We use pairwise transfer scores in TASKWEB
to score (source, target) pairs where the source task is
in TASKWEB and the target task is unseen (i.e., access
to only a few examples). Then, we select helpful tasks
and perform multi-task learning for the target task.

pairwise task transfer helps rask selection, which
we define as choosing one or more source tasks that
better initialize a model for an unseen target task as
shown in Figure 1. We begin from a pairwise setup
as it is often used to quantify task relationships
(Zamir et al., 2019; Vu et al., 2020) and is more
tractable than larger combinations of tasks.

First, we construct TASKWEB, a large-scale
benchmark for pairwise task transfers across dif-
ferent model architectures (encoder-only, decoder-
only, encoder-decoder), parameter count (60M to
770M) and adaptation methods including finetun-
ing, Adapter-tuning (Houlsby et al., 2019) and Bit-
Fit (Zaken et al., 2022), resulting in 25,000 trans-
fers. From our results, we discover a transitive
property where having strong, positive transfers
A — B and B — C for tasks A, B and C makes it
more likely that A — C is also a positive transfer.

Then, we introduce a new method TASKSHOP
that predicts the transferability from a source task
to a target task associated with only a few examples.
TASKSHOP builds upon the transitive behavior to
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construct different paths with “pivot” tasks between
the source and target tasks. It combines TASKWEB
scores between the source and pivot and textual
similarity scores between the pivot and target to
estimate (source—target) transfers.

We evaluate our methods in both single-task and
multi-task settings. First, we show that TASKSHOP
assigns better transferability scores both in terms
of the overall ranking and identifying top helpful
tasks. Then, we demonstrate that models trained
on small multi-task sets built with TASKSHOP out-
perform models trained on larger sets of tasks. We
perform additional analyses and discover that there
is a tradeoff for building multitask sets of varying
sizes with TASKSHOP, and that the proportion of
helpful tasks in the training set affects performance.

To summarize, our contributions are as follows:

1. We build and analyze TASKWEB, a bench-
mark of pairwise transfer experiments across
various tasks, models and adaptation methods.

2. We define task selection for single-task and
multi-task setups and propose TASKSHOP
which uses pairwise transfer scores to predict
transfer to an unseen target task.

3. We use TASKSHOP and TASKWEB to choose
helpful source tasks and build small multi-
task training sets that result in better zero-shot
performance for unseen targets.

2 Background and Overview

We use pairwise task transfer to quantify task simi-
larities, select better source tasks for unseen tasks
and improve performance via multi-task finetuning.

2.1 Overview

Figure 2 depicts how we use task relationships to se-
lect better source tasks. We first quantify task rela-
tions with pairwise task transfer, which is a process
of sequentially learning one task—the source task—
and then another task—the target task. We use
this to build TASKWEB, a collection of 22 diverse,
high-resource tasks in NLP and their pairwise task
transfer scores across seven different training se-
tups (Sections 3.1, 3.2). From our analysis, we
find that pairwise task transfer indicates transitive
behavior between positive transfers (Section 3.3).
We then explore task selection, where for a target
task ¢ with n examples and a set of source tasks
S, we select a helpful task s € S for ¢. Here, we
assume that the target task is unseen, that is, with

access only to a small number of examples from ¢
(n < 32). We propose a new task selection method
TASKSHOP that builds upon the transitive behavior
to select the best source task to transfer to an unseen
target task, even without pairwise transfer scores
for the target (Section 4.1). We evaluate the overall
task rankings and the precision of top-k helpful
tasks returned by TASKSHOP (Section 5.1).
Moreover, we extend task selection to a multi-
task setup. By selecting tasks £ > 1 times, we
obtain a set of k source tasks as a multi-task train-
ing set (Section 4.2). We train models on these
multi-task sets and perform evaluations and analy-
ses on 11 different target tasks (Sections 5.2, 5.3).

2.2 Related Work

Pairwise Task Transfer. Pairwise task transfer,
also known as intermediate task transfer, is used
to quantify relationships between different tasks in
computer vision (Zamir et al., 2019; Achille et al.,
2019) and NLP (Vu et al., 2020; Poth et al., 2021).
It is also used in NLP to study factors impacting
task transfer (Pruksachatkun et al., 2020; Albalak
et al., 2022) and identify helpful source tasks for
parameter-efficient methods (Vu et al., 2022; Su
et al., 2022; Asai et al., 2022). Building upon pre-
vious work, we address more diverse tasks, models,
and adaptation methods.

Task Selection. Task selection is used in many
studies to better initialize models for learning new
tasks. Some methods assume access to the entire
training set and model (Vu et al., 2020; Poth et al.,
2021; Vu et al., 2022; Su et al., 2022), while other
methods only access a small portion of the training
data (Jang et al., 2023; Paranjape et al., 2023). We
build upon the second case in this work.

Multi-task Fine-tuning. Multi-task fine-tuning
is used to train models that generalize across many
tasks (Khashabi et al., 2020; Mishra et al., 2022;
Sanh et al., 2022). While studies report that adding
more tasks generally improve performance, (Agha-
janyan et al., 2021; Wei et al., 2022a; Wang et al.,
2022b), others report that using a subset of tasks
provide better performance (Padmakumar et al.,
2022; Chan et al., 2022) but that it is not clear
how to identify such subset (Aribandi et al., 2022).
Previous work retrieves the top-k relevant source
examples based on the target examples (Lin et al.,
2022; Ivison et al., 2022). In this work, we take a
simpler approach and select helpful fasks based on
target examples to build multi-task training sets.
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Figure 2: Overview of single and multi-task selection using TASKSHOP and TASKWEB. Section 3 describes the
pairwise task transfer involved in TASKWEB as well as its analysis. Section 4 details TASKSHOP and describes
task selection in single task and multi-task setups. Section 5 presents our experiments as well as additional analyses.

3 TASKWEB: A Benchmark for Pairwise
Task Transfer

Previous studies in pairwise task transfer tend to fo-
cus on specific models, adaptation methods or task
domains (Vu et al., 2020; Poth et al., 2021; Albalak
et al., 2022). We introduce TASKWEB, which con-
sists of pairwise task transfer experiments that span
a wide variety of tasks, models, and adaptation
methods. TASKWEB can be used as a benchmark
to evaluate task transferability, and as a repository
for selecting helpful source tasks (Section 4).

3.1 Focus and Experimental Setup

Tasks. To build TASKWEB, we choose a set of
22 representative tasks in NLP that span diverse
categories and require various forms of knowledge,
as shown in Table 1. We perform a total of about
25,000 transfers between all pairs of tasks.?

Training Procedure. We finetune a pre-trained
language model on the full dataset associated with
a source task s, and further finetune the model on
a set of 1,000 random examples of the target task
t.3 Then, we compare the performance gain from
initializing the model on s to finetuning the model
on the same subset of ¢ without starting from s.
We repeat this process over eight random seeds to
reduce variability (Dodge et al., 2020).

Models. We study the impacts of three different
model architectures on task transfer—T35 (encoder-

2We use SQuAD2.0 as only a source task due to difficulties
associated with running SQuAD evaluation for all transfers.

3This number was chosen for the model to not overfit to ¢,
but also learn enough from ¢ to provide a measure of how it
would perform on the task, in line with previous studies.

Category Tasks

NLI/Entailment | ANLI, CB, QNLI, RTE, SciTail, SNLI

Paraphrase MRPC, QQP, STSB

Sentiment IMDB, Rotten Tomatoes

Commonsense |COPA, CosmosQA, HellaSwag, PIQA,
Quartz, SociallQA, Winogrande

Semantics WiC, WSC

QA BoolQ, SQuAD2.0

Table 1: All tasks used in our pairwise transfer experi-
ments, grouped by high-level task categories. Citations
for all datasets are provided in Table 8 in the appendix.

decoder; Raffel et al. 2020), GPT-2 (decoder-
only; Radford et al. 2019) and RoBERTa (encoder-
only; Liu et al. 2019). We use the LM-adapted ver-
sions* (Lester et al., 2021) of T5-small/base/large,
as well as GPT-2 medium and RoBERTa-base.

Adaptation Settings. We investigate pairwise
task transfer with three widely-adopted adapta-
tion methods—full fine-tuning, Adapter-tuning
(Houlsby et al., 2019) and BitFit (Zaken et al.,
2022)—while fixing T5-base as the base model.

Metrics for Task Transferability. We follow Vu
et al. (2020) and use the average percentage change
to measure task transfer. Also, we measure the pro-
portion of models with positive transfer across all
random seeds. We combine both metrics to account
for both the magnitude and consistency of transfers
across all random seeds. The formal definition is
provided in Section A.1 in the appendix.

*The original T5 checkpoints have been trained on datasets
that overlap with ours. We aim to separate the effects of multi-
task supervised pretraining in our pairwise transfer analysis.
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Figure 3: (Left) visualization of TASKWEB, our collection of pairwise transfer between 22 different NLP tasks,
averaged over seven training setups. Positive transfers are blue and negative transfers are red. All transfers point
from the source to the target. (Center) transfer scores between a subset of source tasks (three more helpful/three
less helpful) and a subset of target tasks. The full set of scores is given in Figure 5 in the appendix. (Top-right)
similarities between pairwise transfer results in our experiment of 22 tasks obtained for seven different training
setups. (Bottom-right) probability of identifying positive source — target transfers as the minimum threshold for
(source — pivot, pivot — target) transfers is increased. Results with all setups are in Figure 14 in the appendix.
t5s/b/l: T5-small/base/large, ft: finetuning, ad: adapter-tuning, bf: BitFit, gpt2: GPT-2 medium, rob: RoBERTa-base.

3.2 Observations from TASKWEB

Results. Figure 3 visualizes TASKWEB—the left
shows all transfers, and the center gives examples
of pairwise transfer scores. All scores are averaged
over seven training configurations. Refer to Figures
5 to 12 in the appendix for the full results.

We note that positive transfers (blue) occur be-
tween intuitively similar tasks such as CosmosQA
to SociallQA (+0.15), both of which are multiple-
choice commonsense questions. In contrast, neg-
ative transfers (red) occur for tasks that seem to
require unrelated skills, such as from QQP to Cos-
mosQA (-0.12). Surprisingly, positive transfers ex-
ist between tasks that do not seem similar, such as
a positive transfer from SociallQA to RTE (+0.10).

Effects of Training Setup. We investigate how
the training setup affects pairwise task transfer. To
this end, we build matrices of pairwise transfer
scores for each training setup as shown in Figure 5
and compute their normalized dot products.

Refer to the top-right subfigure of Figure 3. We
observe more similar pairwise transfers when 1)
the same adaptation method is applied to models
of the same class but different sizes, or 2) different
adaptation methods are applied to the same model.
For example, T5-base finetune exhibits more simi-
lar transfer with T5-small/large finetune or T5-base
adapter/BitFit than GPT-2 or RoBERTa finetune.

3.3 Analysis of Mathematical Properties

Computing pairwise transfer scores can become
costly as more tasks are added. Would it be possible
to predict transferability beforehand using existing
scores? We formulate pairwise task transfer as
a mathematical relationship and investigate two
properties—commutativity and transitivity.

We define commutativity in our setup as whether
A — B being a positive/negative transfer implies
that B — A is also a positive/negative transfer. If
A — B is known, the commutativity would help
us predict B — A before performing the transfer.

Meanwhile, we define transitivity in our setup
as whether knowing the transfer scores of A — B
and B — C allows us to infer about A — C. This
property would also provide us more flexibility to
predict pairwise transfer in advance.

Commutativity often does not hold. Based on
the pairwise transfer scores shown in Figure 3 (cen-
ter), we compute the proportion of transfer pairs
that exhibit commutativity. Of the 210 unique trans-
fer pairs in our setup, we find that 97 exhibit com-
mutativity. The results are visualized in Figure 13
in the appendix. We uniquely observe from our
experiments that pairwise transfer does not display
strong signs of commutativity. One possible reason
is that while knowledge acquired from task A may
be helpful for task B, the reverse may not be true.
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Transitivity holds for positive transfers. We
perform a small experiment where we predict trans-
fer A — B as positive if both A — Band B — C
score above a threshold. Here, we call A the source
task, C the target task, and B the “pivot” task.
Refer to the bottom-right subfigure of Figure 3.
We observe that as stricter criteria is imposed for
source — pivot and pivot — target, the likelihood
of observing positive transfers steadily increase
across all training setups. For example, the proba-
bility of observing positive transfers increases from
88% to 97% when the intermediate thresholds in-
crease from 0.01 to 0.04. These results indicate a
transitive behavior between positive transfers.

4 Task Selection for Unseen Target Tasks

Pairwise transfer scores are not always available
for a new target task. We introduce TASKSHOP to
estimate transfer from a source task in TASKWEB
to an unseen target task with only a small number
of examples (Figure 2). Then, we perform task
selection in two settings: a single-task setup where
we identify a helpful source task, and a multi-task
setup where we locate a set of helpful source tasks.

4.1 TASKSHOP: Selecting Helpful Tasks

The objective of task selection in a single-task setup
is to predict the benefit of initializing a model on
a source task for learning a target task. We intro-
duce a new method TASKSHOP which uses pair-
wise transfer scores to estimate the transfer from
source tasks in TASKWEB to an unseen target task.

Setup. Given a source task s € S and an unseen
target task ¢, we seek to predict the transferability
of s to t. We assume access to pairwise transfer
scores between s and other source tasks S\{s}.
Meanwhile, we have a small number of examples
(n < 32) but no pairwise transfer scores for ¢.

Overview. Our method searches over paths from
s to t via a set of pivot tasks in TASKWEB where
each pivot p forms a path s — p — ¢, and averages
their scores to estimate s — ¢. It builds upon our
previous observation that the strengths of s — p
and p — ¢ help us estimate the strength of s — *.

Method. The TASKSHOP method is summarized
in Equation 4.1. Given a pivot task p € S\{s} for
which transfer s — p is already known, we first use
an off-the-shelf task selection method F' to obtain
F(p — t). F can be any method that only uses a
small number of task examples. Then, we find the

pairwise transfer score 7'(s — p) from TASKWEB,
and average the two scores. We repeat this process
over all pivot tasks p € S\{s} and average the
resulting scores. Finally, we linearly interpolate
our estimate with a direct estimate F'(s — t) using
a hyperparameter A tuned on a held-out task.
T(s—=p) +Fp—t)

1
NERGI 2 2

peS\{s}
F(1=N)-F(s = t)

)
TASKSHOP is directional. One interesting fea-
ture of TASKSHOP is its directionality—our pre-
dictions for A — B differs from B — A. Our
method deviates from conventional techniques that
use task embeddings and select tasks using cosine
similarities, which results in symmetric predictions.
Hence our method is more aligned with the non-
commutative property observed in Section 3.3.

TS(s,t) = A

TASKSHOP is modular. Another feature of
TASKSHOP is its modularity since any task selec-
tion method that only uses a small number of target
examples can be used for F'. Likewise, we utilize
recent methods that only use a small number of
target task examples, thereby excluding methods
that require the fine-tuned model or the full train-
ing set. Specifically, we use Retrieval-of-Experts
(RoE) from Jang et al. (2023) and the LLM simi-
larity method from Paranjape et al. (2023) for F.

4.2 Extension to Multi-Task Selection

While choosing a single, appropriate source task
is beneficial for learning a target task (Vu et al.,
2020, 2022), it has also been observed that using
multiple source tasks provides additional benefits
(Asai et al., 2022). Hence we extend task selection
from a single-task to a multi-task setup.

Given a target task ¢ and a task selection method,
we first select the top-k highest scoring source tasks
Sk = {s1, ..., sk} for t. Here, the task selection
method can be TASKSHOP or other methods. We
then randomly sample n prompted examples from
each task, resulting in a small training set of kn ex-
amples. Table 6 in the appendix shows examples of
top-5 tasks selected by TASKSHOP with F'=RoE.

S Experiments and Results

5.1 Single-Task Selection

Comparisons. We compare to Retrieval-of-
Experts (RoE) from Jang et al. (2023) and LLLM-
similarity in Paranjape et al. (2023). For Retrieval-
of-Experts, we take 100 examples of the source
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Method NLI/Entailment Paraphrase Commonsense Sentiment QA  Semantics Mean

LLM similarity 54.75 47.01 63.14 65.71 41.96 56.07 56.69
8 Retrieval-of-Experts 66.53 49.19 65.7 78.21 84.46 54.33 64.52
% Ours: TASKSHOPLLM 54.12 52.9 67.26 71.38 51.12 56.48 59.69

Ours: TASKSHOPRoE 75.14 49.29 79.49 80.53 85.74 54.22 71.54 (1)
v | LLM similarity 3.31 1.84 6.92 0.56 3.79 0.78 3.67
% Retrieval-of-Experts 4.79 1.38 6.83 0.14 4.26 1.84 4.11
;u;b Ours: TASKSHOPLLM 3.31 0.85 4.37 0.22 3.79 0.86 2.73
& | Ours: TASKSHOPRoE 3.51 1.35 3.76 0.04 2.22 1.67 2.66 (1)

Table 2: Results of task selection experiments. We use TASKWEB to evaluate TASKSHOP and two task selection

methods that only use target examples

: LLM similarity (Paranjape et al., 2023) and RoE (Jang et al., 2023).

TASKSHOP 11y uses F' = LLM-similarity and TASKSHOP grog uses F' = ROE in Equation 4.1. TASKSHOP grop
exhibits the best performance in task selection both in terms of the overall ranking (NDCG) and top-5 precision
(Regret@5). Note that a higher score is better for NDCG (above) and a lower score is better for Regret@5 (below).

task and 32 examples of the target task and com-
pute the similarity between text embeddings of the
prompts. For LLM-similarity, we input a prompt
to text-davinci-003 (Ouyang et al., 2022) to as-
sign probability scores to whether the two tasks
are similar or not. For TASKSHOP, we use RoE
and LLM-similarity for F' in Equation 4.1. More
details are provided in Section A.1 in the appendix.

Metrics. To evaluate task selection, we use two
metrics: normalized discounted cumulative gain
(NDCG) and Regret@k, following Poth et al.
(2021). We use NDCG to evaluate the overall rank-
ing, and Regret@Fk to measure the performance
drop of the predicted top-k source tasks from the
actual top-k source tasks. We evaluate task selec-
tion for all tasks in our setup grouped by categories
in Table 1, and use TASKWEB for the gold labels.

Experimental Setup. While we use target tasks
from TASKWEB to use their transfer scores as la-
bels, we wish to simulate a scenario in which there
are only 32 examples for each target. Therefore we
perform our experiments in a leave-one-out setup,
where for each experiment we assume access to
pairwise scores amongst our set of tasks except for
the given target task. In this way, we maintain the
assumption that only a small number of examples
of the target task are available during evaluation.

Results. Table 2 reports our results. Combin-
ing pairwise transfer scores with LLM and RoE
improves both NDCG and Regret@5 compared
to their base methods, with the best gains from
RoE. We hypothesize that the improvement occurs
because the pairwise transfer scores capture the
transferability between each source task and the set
of tasks textually similar to the target task. Due to

transitive behavior between positive task transfers,
these transfer scores would provide additional in-
formation about the transferability from the helpful
source tasks to the target. Moreover, our method
considers the direction of the pairwise transfer un-
like the other methods, thereby better accounting
for the non-commutativity observed in Section 3.3.

5.2 Multi-Task Selection

We now investigate whether TASKSHOP can also
be used to select multiple source tasks that collec-
tively improve target task performance.

Comparisons. We use the following baselines.
TO0-3B has the same architecture as T5-3B but
trained on millions of examples spanning 35 dif-
ferent tasks (Sanh et al., 2022). T5-3B + most
similar is the LM-adapted T5-3B (Lester et al.,
2021) trained on a handpicked, similar source task
from the same category as each target task. T5-3B
+ all tasks is the LM-adapted T5-3B trained with
samples from all 22 tasks from TASKWEB except
each target task in a leave-one-out setup.

We then train T5-3B models on small training
sets sampled from the five highest-scoring source
tasks based on the following task selection meth-
ods: Retrieval-of-Experts from (Jang et al., 2023),
LLM-similarity from (Paranjape et al., 2023) and
TASKSHOP gog With F' = ROE in Equation 4.1.

Finally, we consider the case where TASKWEB
scores for the target task are available and select
the five highest-scoring source tasks for each target.
We train T5-3B on samples from these tasks.

Training Setup. Given a target task ¢ and a task
selection method, we first select the five highest-
scoring source tasks si, ..., s5 for t. We then ran-
domly sample 2,000 prompted examples from each
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Method ANLI-RI ANLI-R2 ANLI-R3 CB COPA Hellasw. RTE StoryC. WiC Winogr. WSC Mean
T0-3B 3562 3336 3310 6220 7550 27.30 61.87 85.13 50.88 50.65 66.02]52.88
T5-3B + most similar | 44.50  37.42  39.61 79.07 8142 4146 72.83 93.73 50.86 52.83 36.54|57.30
T5-3B + all tasks 4149 3532 3961 79.96 82.08 39.73 7495 9193 52.93 57.35 44.44|58.16
Retrieval-of-Experts* | 3838 3544 4124 752 83.17 41.86 65.08 94.04 5322 50.09 44.76[56.59
LLM-similarity® 3991 3474 3884 81.65 8091 40.85 782 9396 5135 5226 55.02|58.88
Ours: TASKSHOPRop| 42.86  36.15 4141 84.52 86.08 41.94 7673 94.04 5149 530 59.4 [60.69
Ours: TASKWEB T | 40.16  36.15  42.15 8224 8525 4373 7771 9269 50.75 55.84 62.82[60.86

Table 3: Results of multi-task learning experiments. We perform all evaluations in zero-shot settings, meaning that
we do not fit the model parameters to the target task - however, we still assume access to a small number of labeled
examples of the target. We average results over multiple prompts. The first group corresponds to our baselines,
the second group corresponds to two existing task selection methods, as well as TASKSHOP without access to
TASKWEB scores for the target task (but access to TASKWEB scores between other tasks), and the third group uses
TASKWEB scores for the target task to select source tasks. x is from Jang et al. (2023) and ¢ is from Paranjape et al.
(2023). T has access to TASKWEB scores directly to the target task. All methods below the dotted line use the top-5
scoring source tasks to build multi-task training sets, while the three above utilize different numbers of source tasks.

task and randomly shuffle all examples to create a
multitask training set. For the T5-3B most similar
baseline, we sample 10,000 examples of the similar
task in the same category in order to ensure that
the size of the training set is the same as the size of
the multitask training sets in our other experiments.
Meanwhile, for the T5-3B + all tasks baseline, we
select 21 tasks except the target and use 2,000 ex-
amples from each task. We provide more training
details in the appendix.

As it is costly to compute pairwise transfer
scores with bigger language models, we use
TASKWEB scores from T5-large. This is based
on our observation that models with similar archi-
tectures and adaptation methods share more similar
transferabilities (Section 3.2). We hypothesize that
T5-large can learn the complexities of our source
tasks and represent their transferabilities—this is
supported by how both our T5-large transfers and
T5-3B expert models in Jang et al. (2023) found
CosmosQA and SociallQA to be great source tasks.

Evaluation setup. We use the same set of evalu-
ation tasks used by Jang et al. (2023). For ANLI-
R1/R2 which are not included in TASKWEB, we
apply the subset of tasks chosen for ANLI-R3 for
the upper baseline. Meanwhile, for the Story Cloze
task which is not included in TASKWEB due to its
lack of training set, we use a subset of five tasks
with the best transfer scores for the upper baseline.
For each target task, we perform the evaluation
in a leave-one-out setup by removing the target
task from TASKWEB along with its scores. This is
to maximize the number of available source tasks

while ensuring that the target task is unseen in our
setup. By doing so, we simulate using TASKSHOP
and TASKWEB across various categories of target
tasks with access only to their examples (n < 32).
We perform all evaluations in a zero-shot setting.

Results. Table 3 summarizes the results of our
experiments. The middle section details the per-
formances of task selection methods that assume
no access to pairwise transfer scores to the target.
Two out of three methods improve target task per-
formance compared to all baselines. Most notably,
TASKSHOP outperforms both baselines as well as
other task selection methods, improving by 14.7%
over TO-3B and by 4.3% over our strongest base-
line while using a small portion of the training set.
Finally, we observe that using the top-5 source
tasks for each target according to TASKWEB con-
sistently improves target performance. Our results
support previous observations that using smaller
multi-task training sets with a more careful task
selection strategy can improve target performance
(Pruksachatkun et al., 2020; Chan et al., 2022).

5.3 Discussion

The results of our experiments indicate that single-
task transfer metrics can help improve multi-task
transfers. We perform further experiments to sup-
port this hypothesis and address three questions.

How many source tasks do we need? We inves-
tigate whether different numbers of source tasks in
the training set affect target task performance. To
this end, we train T5-3B on training sets with top-1,
3, 10 and 21 source tasks in addition to five tasks.
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Method ANLI-R1 ANLI-R2 ANLI-R3 CB COPA Hellasw. RTE StoryC WiC Winogr. WSC Mean
Top-1 40.83 34.53 38.08 75.0 80.08 2856 7049 89.68 50.74 52.6 36.54 | 54.28
Top-3 41.78 36.54 40.86 7946 86.16 4554 7054 89.66 51.32 52.61 54.81|59.03
Top-5 42.86 36.15 4141 84.52 86.08 4194 7673 94.04 5149 53.0 594 | 60.69
Top-10 40.58 35.17 38.88 75.6 8492 4224 78.65 9399 5141 5254 5897 59.36
Top-21 41.49 35.32 39.61 7996 82.08 39.73 7495 9193 5293 5735 4444 58.16

Table 4: Results of choosing different numbers of source tasks for multi-task learning with TASKSHOP gog. For
each target task, the highest scoring setup is bolded. Results for top-5 are taken from TASKSHOPgog in Table 3.
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Figure 4: Variations in the zero-shot target performance as the top-5 source tasks for each target are incrementally
replaced by the bottom-5 source tasks according to TASKWEB while maintaining the size of the training set.

Method ANLI COPA Hellasw. Mean
Random 3525 7258 29.64 50.51
Bottom-5 w/ TASKSHOP | 34.41 5592 2501 47.13
Bottom-5 w/ TASKWEB | 34.72 52.92 2537 46.25

Table 5: Results of choosing random and worst sets of
tasks according to TASKSHOP and TASKWEB for three
example target tasks, as well as the mean over all target
tasks. Table 9 in the appendix provides the full results.

Table 4 shows the results. We observe that most
target tasks achieve performance improvements
from training on 3 to 5 source tasks. Using five
source tasks results in the best overall performance
and ranks first or second across most targets. Mean-
while, using ten source tasks results in a worse
overall performance. The performance drops con-
siderably when 21 tasks are used. According to our
results, most targets only require a careful selection
of three to five source tasks except several tasks
such as Winogrande. Our findings differ from pre-
vious work which finds performance to scale with
the number of tasks (Sanh et al., 2022; Wei et al.,
2022a; Wang et al., 2022b) because while they add
tasks in a target-agnostic manner, we add helpful
source tasks based on the target task.

Do our methods identify both helpful and un-
helpful source tasks? We demonstrate that our
methods can also identify unhelpful tasks in multi-
task settings. To this end, we pick the bottom-5
source tasks for each target with TASKSHOP and
TASKWEB, as well as five random source tasks.

Table 5 summarizes the results. A random set
of source tasks underperforms the T0O-3B baseline,
and the bottom-5 tasks from TASKSHOP further ob-
serves decreases in 3.4 accuracy points on average.
Finally, the bottom-5 tasks based on TASKWEB re-
sults in similarly low performances. These results
indicate that negative pairwise transfers between
source and target tasks impact multi-task learning.

What happens if we mix helpful and unhelpful
source tasks? While grouping helpful sources
improves target performance and vice versa, it is
unclear what happens in between. To address this,
we experiment with different proportions of helpful
tasks and measure the target task performance. We
repeat this process over four target tasks in our eval-
uation setup—ANLI (R3), COPA, HellaSwag and
RTE. For each task, we start with the top-5 tasks
according to TASKWEB and replace a task with a
bottom-5 task until all top-5 tasks are replaced. We
perform the same evaluations as Tables 3, 4 and 5.
Figure 4 visualizes the results. As each helpful
source task is replaced with an unhelpful source
task, the target performance decreases across all
four tasks. However, there are several instances
where such replacement increases performance, as
can be seen from 0—1 in HellaSwag and 4—5 in
ANLI. These results indicate that while pairwise
transferability between the source and target heav-
ily impacts target performance during multi-task
learning, other factors such as negative interference
between the source tasks may also be involved,
which is an interesting direction for future work.

11039



6 Conclusion

In this work, we investigate how using prior knowl-
edge of task relationships quantified via pairwise
task transfer aids selecting helpful source tasks for
multi-task NLP. We build TASKWEB, a benchmark
and repository of pairwise task transfers across dif-
ferent tasks, models and adaptation methods in
NLP. Based on our analysis of TASKWEB, we pro-
pose TASKSHOP, our method for selecting helpful
source tasks for a new target task. We show that
TASKSHOP outperforms existing methods in choos-
ing helpful source tasks for different target tasks.
Moreover, we use TASKSHOP and TASKWEB to
build small multi-task training sets and outperform
other methods that use much larger training sets.

7 Limitations

Our work contains several limitations. First, our
set of tasks does not constitute the entirety of NLP
tasks. While we use 22 NLP tasks that are repre-
sentative enough to cover various types of reason-
ing, we do not include long-form tasks (e.g., sum-
marization, LFQA) or domain-specific tasks (e.g.,
law, medicine) to facilitate experiments across vari-
ous model architectures such as encoder-only mod-
els. In order to add entirely new forms of task to
TASKWEB, one would have to compute pairwise
transfer scores between the new task and other tasks
in TASKWEB. If the model is known beforehand,
this would require ||7'|| iterations of fine-tuning
with 1,000 examples where T is the set of tasks in
TASKWEB. On the other hand, if the model is not
known beforehand, this would require || M || x || T||
iterations where M is the set of models used in
TASKWEB.

Moreover, our datasets are in English and we
do not incorporate multilinguality in our experi-
ments. Second, our work focuses on models with
at most three billion parameters. Our finding may
not be directly applicable to models with orders
of magnitude more parameters considering factors
such as emergence (Wei et al., 2022b), which can
be explored in future work. Third, we perform
our multi-task finetuning experiments by uniformly
sampling 2,000 examples from each source task fol-
lowing the style of Wang et al. (2022b). Therefore,
different behavior may arise when other sampling
strategies are used. Finally, recent work shows the
effectiveness of using diverse instruction-output
pairs which do not necessarily have clear bound-
aries as our tasks do (Ouyang et al., 2022; Wang

et al., 2022a, 2023). Recently, Wang et al. 2023
report that large language models finetuned on spe-
cific instruction datasets perform better on related
target tasks, which is closely related to our findings.
Future work could extend our approach to setups
without clear boundaries between tasks and explore
ways to perform target-specific instruction tuning.
Considering these limitations, we encourage the
NLP community to contribute to quantifying the
transferabilities between different language tasks.

Ethics Statement

TASKWEB is based on a set of representative
NLP tasks that have widely been used in the NLP
community. While this work explores pairwise
task transfer and multi-task finetuning using non-
harmful datasets, an adversary could potentially
misuse our approach to build another version of
TASKWEB containing harmful tasks and quickly
train models specifically for malicious target tasks.
Hence we emphasize the importance of monitoring
the content of tasks newly added to TASKWEB.

Acknowledgements

We thank members of the H2Lab and UW NLP for
their discussion and constructive feedback. This
work was funded in part by the DARPA MCS pro-
gram through NIWC Pacific (N66001-19-2-4031),
NSF I1S-2044660, and gifts from AI2. Joongwon
Kim is supported by the National Science Foun-
dation Graduate Research Fellowship under Grant
No. DGE-2140004. Akari Asai is funded by the
IBM PhD Fellowship.

References

Alessandro Achille, Michael Lam, Rahul Tewari,
Avinash Ravichandran, Subhransu Maji, Charless C.
Fowlkes, Stefano Soatto, and Pietro Perona. 2019.
Task2vec: Task embedding for meta-learning. In
2019 IEEE/CVF International Conference on Com-
puter Vision, ICCV 2019, Seoul, Korea (South), Octo-
ber 27 - November 2, 2019, pages 6429-6438. IEEE.

Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava,
Xilun Chen, Luke Zettlemoyer, and Sonal Gupta.
2021. Muppet: Massive multi-task representations
with pre-finetuning. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 7-11 November, 2021,
pages 5799-5811. Association for Computational
Linguistics.

11040


https://doi.org/10.1109/ICCV.2019.00653
https://doi.org/10.18653/v1/2021.emnlp-main.468
https://doi.org/10.18653/v1/2021.emnlp-main.468

Alon Albalak, Yi-Lin Tuan, Pegah Jandaghi, Connor

Pryor, Luke Yoffe, Deepak Ramachandran, Lise
Getoor, Jay Pujara, and William Yang Wang. 2022.
FETA: A benchmark for few-sample task transfer in
open-domain dialogue. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2022, Abu Dhabi, United
Arab Emirates, December 7-11, 2022, pages 10936—
10953. Association for Computational Linguistics.

Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao,

Huaixiu Steven Zheng, Sanket Vaibhav Mehta, Hon-
glei Zhuang, Vinh Q. Tran, Dara Bahri, Jianmo Ni,
Jai Prakash Gupta, Kai Hui, Sebastian Ruder, and
Donald Metzler. 2022. Ext5: Towards extreme multi-
task scaling for transfer learning. In The Tenth In-
ternational Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. Open-
Review.net.

Akari Asai, Mohammadreza Salehi, Matthew E. Pe-

ters, and Hannaneh Hajishirzi. 2022. ATTEMPT:
parameter-efficient multi-task tuning via attentional
mixtures of soft prompts. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2022, Abu Dhabi, United
Arab Emirates, December 7-11, 2022, pages 6655—
6672. Association for Computational Linguistics.

Stephen H. Bach, Victor Sanh, Zheng Xin Yong, Al-
bert Webson, Colin Raffel, Nihal V. Nayak, Ab-
heesht Sharma, Taewoon Kim, M. Saiful Bari,
Thibault Févry, Zaid Alyafeai, Manan Dey, An-
drea Santilli, Zhiqing Sun, Srulik Ben-David, Can-
wen Xu, Gunjan Chhablani, Han Wang, Jason Alan
Fries, Maged Saeed AlShaibani, Shanya Sharma, Ur-
mish Thakker, Khalid Almubarak, Xiangru Tang,
Dragomir R. Radev, Mike Tian-Jian Jiang, and
Alexander M. Rush. 2022. Promptsource: An in-
tegrated development environment and repository for
natural language prompts. In Proceedings of the
60th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2022 - System Demon-
strations, Dublin, Ireland, May 22-27, 2022, pages
93-104. Association for Computational Linguistics.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro,

Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second pascal recognising tex-
tual entailment challenge.

Luisa Bentivogli, Bernardo Magnini, Ido Dagan,

Hoa Trang Dang, and Danilo Giampiccolo. 2009.
The fifth PASCAL recognizing textual entailment
challenge. In Proceedings of the Second Text Analy-
sis Conference, TAC 2009, Gaithersburg, Maryland,
USA, November 16-17, 2009. NIST.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng

Gao, and Yejin Choi. 2020. PIQA: reasoning about
physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational

11041

Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7432—
7439. AAAI Press.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,

and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2015, Lisbon, Portugal, September 17-21,
2015, pages 632—-642. The Association for Computa-
tional Linguistics.

Joaquin Quifionero Candela, Ido Dagan, Bernardo

Magnini, and Florence d’ Alché-Buc, editors. 2006.
Machine Learning Challenges, Evaluating Predic-
tive Uncertainty, Visual Object Classification and
Recognizing Textual Entailment, First PASCAL Ma-
chine Learning Challenges Workshop, MLCW 2005,
Southampton, UK, April 11-13, 2005, Revised Se-
lected Papers, volume 3944 of Lecture Notes in Com-
puter Science. Springer.

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iiigo

Lopez-Gazpio, and Lucia Specia. 2017. Semeval-
2017 task 1: Semantic textual similarity multilingual
and crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic Eval-
uation, SemEval@ACL 2017, Vancouver, Canada,
August 3-4, 2017, pages 1-14. Association for Com-
putational Linguistics.

Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy

Scheurer, and Ethan Perez. 2022. Few-shot adap-
tation works with unpredictable data.  CoRR,
abs/2208.01009.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret

Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao,
Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
CoRR, abs/2210.11416.

Christopher Clark, Kenton Lee, Ming-Wei Chang,

Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 2924-2936. Associa-
tion for Computational Linguistics.

Marie-Catherine de Marneffe, Mandy Simons, and Ju-

dith Tonhauser. 2019. The commitmentbank: Investi-
gating projection in naturally occurring discourse.

Dorottya Demszky, Kelvin Guu, and Percy Liang.

2018. Transforming question answering datasets


https://aclanthology.org/2022.emnlp-main.751
https://aclanthology.org/2022.emnlp-main.751
https://openreview.net/forum?id=Vzh1BFUCiIX
https://openreview.net/forum?id=Vzh1BFUCiIX
https://aclanthology.org/2022.emnlp-main.446
https://aclanthology.org/2022.emnlp-main.446
https://aclanthology.org/2022.emnlp-main.446
https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2022.acl-demo.9
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://doi.org/10.18653/v1/d15-1075
https://doi.org/10.18653/v1/d15-1075
https://doi.org/10.18653/v1/d15-1075
https://doi.org/10.1007/11736790
https://doi.org/10.1007/11736790
https://doi.org/10.1007/11736790
https://doi.org/10.1007/11736790
https://doi.org/10.1007/11736790
https://doi.org/10.1007/11736790
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.48550/arXiv.2208.01009
https://doi.org/10.48550/arXiv.2208.01009
https://doi.org/10.48550/arXiv.2210.11416
https://doi.org/10.18653/v1/n19-1300
https://doi.org/10.18653/v1/n19-1300
http://arxiv.org/abs/1809.02922

into natural language inference datasets. CoRR,

abs/1809.02922.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah A. Smith.
2020. Fine-tuning pretrained language models:
Weight initializations, data orders, and early stop-
ping. CoRR, abs/2002.06305.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing, INP@IJCNLP 2005, Jeju Island,
Korea, October 2005, 2005. Asian Federation of Nat-
ural Language Processing.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third PASCAL recogniz-
ing textual entailment challenge. In Proceedings of
the ACL-PASCAL@ACL 2007 Workshop on Textual
Entailment and Paraphrasing, Prague, Czech Repub-
lic, June 28-29, 2007, pages 1-9. Association for
Computational Linguistics.

Andrew S. Gordon, Zornitsa Kozareva, and Melissa
Roemmele. 2012. Semeval-2012 task 7: Choice
of plausible alternatives: An evaluation of com-
monsense causal reasoning. In Proceedings of the
6th International Workshop on Semantic Evaluation,
SemEval @ NAACL-HLT 2012, Montréal, Canada,
June 7-8, 2012, pages 394-398. The Association for
Computer Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 2790-2799.
PMLR.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and
Yejin Choi. 2019. Cosmos QA: machine reading
comprehension with contextual commonsense rea-
soning. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Nat-
ural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019, pages 2391-
2401. Association for Computational Linguistics.

Hamish Ivison, Noah A. Smith, Hannaneh Hajishirzi,
and Pradeep Dasigi. 2022. Data-efficient finetun-
ing using cross-task nearest neighbors. CoRR,
abs/2212.00196.

Joel Jang, Seungone Kim, Seonghyeon Ye, Doyoung
Kim, Lajanugen Logeswaran, Moontae Lee, Kyung-
jae Lee, and Minjoon Seo. 2023. Exploring the bene-
fits of training expert language models over instruc-
tion tuning. CoRR, abs/2302.03202.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sab-
harwal, Oyvind Tafjord, Peter Clark, and Hannaneh
Hajishirzi. 2020. Unifiedqa: Crossing format bound-
aries with a single QA system. In Findings of the
Association for Computational Linguistics: EMNLP
2020, Online Event, 16-20 November 2020, volume
EMNLP 2020 of Findings of ACL, pages 1896-1907.
Association for Computational Linguistics.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 5189-5197. AAAI Press.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 7-11 November, 2021, pages 3045-
3059. Association for Computational Linguistics.

Hector J. Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Principles of Knowledge Representation and Rea-
soning: Proceedings of the Thirteenth International
Conference, KR 2012, Rome, Italy, June 10-14, 2012.
AAAI Press.

Bill Yuchen Lin, Kangmin Tan, Chris Miller, Beiwen
Tian, and Xiang Ren. 2022. Unsupervised cross-
task generalization via retrieval augmentation. In
NeurIPS.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. 2023.
The flan collection: Designing data and methods for
effective instruction tuning. CoRR, abs/2301.13688.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In The 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies, Proceedings of the Conference, 19-24 June,
2011, Portland, Oregon, USA, pages 142—150. The
Association for Computer Linguistics.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2022. Metaicl: Learning to learn
in context. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL 2022, Seattle, WA, United States,

11042


http://arxiv.org/abs/1809.02922
http://arxiv.org/abs/2002.06305
http://arxiv.org/abs/2002.06305
http://arxiv.org/abs/2002.06305
https://aclanthology.org/I05-5002/
https://aclanthology.org/I05-5002/
https://aclanthology.org/W07-1401/
https://aclanthology.org/W07-1401/
https://aclanthology.org/S12-1052/
https://aclanthology.org/S12-1052/
https://aclanthology.org/S12-1052/
http://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.48550/arXiv.2212.00196
https://doi.org/10.48550/arXiv.2212.00196
https://doi.org/10.48550/arXiv.2302.03202
https://doi.org/10.48550/arXiv.2302.03202
https://doi.org/10.48550/arXiv.2302.03202
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17368
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17368
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4492
http://papers.nips.cc/paper_files/paper/2022/hash/8a0d3ae989a382ce6e50312bc35bf7e1-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8a0d3ae989a382ce6e50312bc35bf7e1-Abstract-Conference.html
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.48550/arXiv.2301.13688
https://doi.org/10.48550/arXiv.2301.13688
https://aclanthology.org/P11-1015/
https://doi.org/10.18653/v1/2022.naacl-main.201
https://doi.org/10.18653/v1/2022.naacl-main.201

July 10-15, 2022, pages 2791-2809. Association for
Computational Linguistics.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland, May
22-27, 2022, pages 3470-3487. Association for Com-
putational Linguistics.

Nasrin Mostafazadeh, Michael Roth, Annie Louis,

Nathanael Chambers, and James F. Allen. 2017. Ls-
dsem 2017 shared task: The story cloze test. In
Proceedings of the 2nd Workshop on Linking Models
of Lexical, Sentential and Discourse-level Seman-
tics, LSDSem@EACL 2017, Valencia, Spain, April 3,
2017, pages 46-51. Association for Computational
Linguistics.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 4885-4901.
Association for Computational Linguistics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Vishakh Padmakumar, Leonard Lausen, Miguel Balles-

teros, Sheng Zha, He He, and George Karypis. 2022.
Exploring the role of task transferability in large-
scale multi-task learning. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL 2022, Seattle, WA,
United States, July 10-15, 2022, pages 2542-2550.
Association for Computational Linguistics.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? sentiment classification using
machine learning techniques. In Proceedings of the
2002 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2002, Philadelphia,
PA, USA, July 6-7, 2002, pages 79-86.

Bhargavi Paranjape, Scott M. Lundberg, Sameer

Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. 2023. ART: automatic multi-
step reasoning and tool-use for large language mod-
els. CoRR, abs/2303.09014.

Mohammad Taher Pilehvar and José Camacho-Collados.

2019. Wic: the word-in-context dataset for evaluat-
ing context-sensitive meaning representations. In
Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), pages 1267—
1273. Association for Computational Linguistics.

Clifton Poth, Jonas Pfeiffer, Andreas Riicklé, and Iryna
Gurevych. 2021. What to pre-train on? efficient
intermediate task selection. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November,
2021, pages 10585-10605. Association for Computa-
tional Linguistics.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe Pang,
Clara Vania, Katharina Kann, and Samuel R. Bow-
man. 2020. Intermediate-task transfer learning with
pretrained language models: When and why does it
work? In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pages 5231-5247.
Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2018, Melbourne, Australia, July 15-20, 2018,
Volume 2: Short Papers, pages 784-789. Association
for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 3980-3990.
Association for Computational Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adver-
sarial winograd schema challenge at scale. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, I[AAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 8732—
8740. AAAI Press.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine

11043


https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/w17-0906
https://doi.org/10.18653/v1/w17-0906
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.18653/v1/2022.naacl-main.183
https://doi.org/10.18653/v1/2022.naacl-main.183
https://doi.org/10.3115/1118693.1118704
https://doi.org/10.3115/1118693.1118704
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.18653/v1/n19-1128
https://doi.org/10.18653/v1/n19-1128
https://doi.org/10.18653/v1/2021.emnlp-main.827
https://doi.org/10.18653/v1/2021.emnlp-main.827
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://ojs.aaai.org/index.php/AAAI/article/view/6399
https://ojs.aaai.org/index.php/AAAI/article/view/6399

Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Févry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M. Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le
Bras, and Yejin Choi. 2019. Social iga: Common-
sense reasoning about social interactions. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, pages 4462—4472. Association
for Computational Linguistics.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan,
Yankai Lin, Huadong Wang, Kaiyue Wen, Zhiyuan
Liu, Peng Li, Juanzi Li, Lei Hou, Maosong Sun, and
Jie Zhou. 2022. On transferability of prompt tuning
for natural language processing. In Proceedings of
the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL 2022, Seattle,
WA, United States, July 10-15, 2022, pages 3949—
3969. Association for Computational Linguistics.

Oyvind Tafjord, Matt Gardner, Kevin Lin, and Peter
Clark. 2019. Quartz: An open-domain dataset of
qualitative relationship questions. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 5940-5945. Association for
Computational Linguistics.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’,

and Daniel Cer. 2022. Spot: Better frozen model
adaptation through soft prompt transfer. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2022, Dublin, Ireland, May 22-27, 2022,
pages 5039-5059. Association for Computational
Linguistics.

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessan-

dro Sordoni, Adam Trischler, Andrew Mattarella-
Micke, Subhransu Maji, and Mohit Iyyer. 2020. Ex-
ploring and predicting transferability across NLP
tasks. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, pages
7882-7926. Association for Computational Linguis-
tics.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A. Smith,
Iz Beltagy, and Hannaneh Hajishirzi. 2023. How
far can camels go? exploring the state of instruction
tuning on open resources. CoRR, abs/2306.04751.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A. Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022a. Self-instruct: Aligning lan-
guage model with self generated instructions. CoRR,
abs/2212.10560.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An-
jana Arunkumar, David Stap, Eshaan Pathak, Gi-
annis Karamanolakis, Haizhi Gary Lai, Ishan Puro-
hit, Ishani Mondal, Jacob Anderson, Kirby Kuz-
nia, Krima Doshi, Kuntal Kumar Pal, Maitreya Pa-
tel, Mehrad Moradshahi, Mihir Parmar, Mirali Puro-
hit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit
Verma, Ravsehaj Singh Puri, Rushang Karia, Savan
Doshi, Shailaja Keyur Sampat, Siddhartha Mishra,
Sujan Reddy A, Sumanta Patro, Tanay Dixit, and
Xudong Shen. 2022b. Super-naturalinstructions:
Generalization via declarative instructions on 1600+
NLP tasks. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2022, Abu Dhabi, United Arab Emirates,
December 7-11, 2022, pages 5085-5109. Association
for Computational Linguistics.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017.
Bilateral multi-perspective matching for natural lan-
guage sentences. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelli-
gence, 1JCAI 2017, Melbourne, Australia, August
19-25, 2017, pages 4144-4150. ijcai.org.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022a. Finetuned
language models are zero-shot learners. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022b. Emer-
gent abilities of large language models. Trans. Mach.
Learn. Res., 2022.

Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. 2021.
Crossfit: A few-shot learning challenge for cross-
task generalization in NLP. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November,
2021, pages 7163-7189. Association for Computa-
tional Linguistics.

11044


https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/2022.naacl-main.290
https://doi.org/10.18653/v1/2022.naacl-main.290
https://doi.org/10.18653/v1/D19-1608
https://doi.org/10.18653/v1/D19-1608
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/2020.emnlp-main.635
https://doi.org/10.18653/v1/2020.emnlp-main.635
https://doi.org/10.18653/v1/2020.emnlp-main.635
https://doi.org/10.48550/arXiv.2306.04751
https://doi.org/10.48550/arXiv.2306.04751
https://doi.org/10.48550/arXiv.2306.04751
https://doi.org/10.48550/arXiv.2212.10560
https://doi.org/10.48550/arXiv.2212.10560
https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.emnlp-main.340
https://doi.org/10.24963/ijcai.2017/579
https://doi.org/10.24963/ijcai.2017/579
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://doi.org/10.18653/v1/2021.emnlp-main.572
https://doi.org/10.18653/v1/2021.emnlp-main.572

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), ACL 2022, Dublin, Ireland, May 22-
27, 2022, pages 1-9. Association for Computational
Linguistics.

Amir Zamir, Alexander Sax, William B. Shen,
Leonidas J. Guibas, Jitendra Malik, and Silvio
Savarese. 2019. Taskonomy: Disentangling task
transfer learning. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, August 10-
16, 2019, pages 6241-6245. ijcai.org.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4791-4800. Association for Computational Linguis-
tics.

11045


https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.24963/ijcai.2019/871
https://doi.org/10.24963/ijcai.2019/871
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472

A Appendix

A.1 More Experimental Details

Full list of the datasets. Table 5 presents the
complete list of the 22 tasks studied in TASKWEB,
along with references to the original papers.

Pairwise Task Transfer Metric For a source s
and target ¢, evaluation function p, model m; tuned
on ¢t and a model m4_,; tuned from s to ¢,

p(ms—t) — p(my)
p(mt)
PM(s, t) mgM 1 (p(ms—t) > p(my))

PC(s,t) ey

PC refers to the average percentage change of the
model performance across all random seeds, and
PM refers to the proportion of models that resulted
in a positive transfer across all random seeds.

Implementation Details of Task Selection. For
Retrieval-of-Experts, we use a similar implementa-
tion by taking 100 examples of the source task and
32 examples of the target task and computing the
similarity between text embeddings of the prompts.
We use PromptSource (Bach et al., 2022) to extract
prompts and Sentence Transformers (Reimers and
Gurevych, 2019) to obtain text embeddings.

For LLM-similarity, we write a prompt that con-
tains several pairs of tasks not used in our setup,
where each pair has 1) an example of each task,
and 2) an answer noting whether the two tasks are
similar or not. Then, for each source-target pair,
we pass the prompt prepended to source and target
examples to text-davinci-003 (Ouyang et al., 2022).
We use the ratio of the log probabilities of the an-
swers “yes” and ‘“no” to assign a score between the
source and target tasks.

Multi-Task Finetuning Details. We construct
our multi-task training set by randomly select-
ing 2,000 examples with prompts from each task.
For our T5-3B + all tasks baseline we choose
all 21 tasks in TASKWEB apart from the target
task, resulting in 42,000 examples. For all other
methods (Retrieval-of-Experts, LLM-similarity,
TASKSHOPRoE, TASKWEB), we choose the five
highest-scoring tasks according to each method,
resulting in 10,000 examples. Then, we fully fine-
tune LM-adapted T5-3B on our training set for five
epochs, with an Adam Optimizer using a learning
rate of 1e-4 and batch sizes ranging from 4 to 16
depending on the maximum length of each dataset.

Target  Selected Tasks

ANLI RTE, CB, SNLI, CsmsQA, Soc.IQA

CB ANLI, CsmsQA, Soc.IQA, WSC, SNLI
COPA CsmsQA, Soc.IQA, Winogr., Hellasw., PIQA
Hellasw. | PIQA, CsmsQA, Soc.IQA, Winogr., COPA
RTE ANLI, QNLI, Soc.IQA, MRPC, SQuADv2
StoryC. | CsmsQA, COPA, Soc.IQA, Hellasw., Winogr.
WiC PIQA, MRPC, ANLI, Hellasw., Soc.IQA
Winogr. | Soc.IQA, CsmsQA, PIQA, COPA, WSC
WSC Winogr., ANLI, Soc.IQA, WIC, RTE

Table 6: Top-5 source tasks selected using TASKSHOP.

Target  Selected Tasks

ANLI CsmsQA, BoolQ, SNLI, Rot.Tom, RTE

CB ANLI, BoolQ, SNLI, Rot.Tom, SciTail

COPA CsmsQA, Winogr., SciTail, PIQA, Soc.IQA
Hellasw. | CsmsQA, Soc.IQA, PIQA, RTE, Rot.Tom
RTE ANLI, CsmsQA, Winogr., SQuADvV2, Soc.IQA
StoryC. | CsmsQA, Soc.JQA, PIQA, Winogr., Rot. Tom
WiC QNLI, MRPC, SNLI, RTE, ANLI

Winogr. | SQuADV2, Soc.IQA, CsmsQA, ANLI, Quartz
WSC ANLI, QNLI, QQP, Soc.IQA, SNLI

Table 7: Top-5 source tasks selected using TASKWEB.

A.2 More Pair-wise Transfer Results

Full results. Figure 5 displays pairwise transfer
scores for all tasks in TASKWEB averaged over
training setups. Scores for individual setups are
shown in Figure 6 (T5-large finetune), Figure 7 (T5-
base finetune), Figure 8 (RoBERTa-base finetune),
Figure 9 (GPT2-medium finetune), Figure 10 (T5-
base Adapters), Figure 11 (T5-base BitFit) and
Figure 12 (T5-small finetune).

Commutativity results. Figure 13 shows the
commutativity experiment results.

Transitivity results. Figure 14 shows the exper-
imental results of the transitivity analysis for all
setups in our experiments.

A.3 More Multi-Task Selection Results

Tasks chosen for the multi-task setup. Tables
6 and 7 list the top-5 (left to right) source tasks
chosen for our multi-task setup using TASKSHOP
and TASKWEB, respectively.

Bottom-5 and random-5 full results. Table 9
presents the evaluation results for the bottom-
5 source tasks selected with TASKSHOP and
TASKWEB as summarized in Table 5, as well as
five random source tasks.
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datasets used in our experiments

ANLI (Nie et al., 2020), BoolQ (Clark et al., 2019), CB (de Marneffe et al., 2019), COPA (Gordon et al., 2012),
CosmosQA (Huang et al., 2019), HellaSwag (Zellers et al., 2019), IMDB (Maas et al., 2011), MRPC (Dolan and
Brockett, 2005), PIQA (Bisk et al., 2020), QNLI (Demszky et al., 2018), QQP (Wang et al., 2017), QuaRTz (Tafjord
et al., 2019), Rotten Tomatoes (Pang et al., 2002), RTE (Candela et al., 2006; Bar-Haim et al., 2006; Giampiccolo et al.,
2007; Bentivogli et al., 2009), SciTail (Khot et al., 2018), SNLI (Bowman et al., 2015), SociallQA (Sap et al., 2019),
SQuAD2.0 (Rajpurkar et al., 2018), Story Cloze (Mostafazadeh et al., 2017), STSB (Cer et al., 2017), WiC (Pilehvar and
Camacho-Collados, 2019), Winogrande (Sakaguchi et al., 2020), WSC (Levesque et al., 2012)

anli 1
boolq -
cb -

copa
cosmaqa

hellasw -
imdb

mrpc
piga
gnli
aqgp
quartz
rtomato
rte
scitail
snli
sociga
squad2
stsb

wic
winogrd
WSC

source tasks

1
N
Q)
>
20

Table 8: References for datasets used in our experiments.

=

0.12
0.15
0.14
0.12

I
O

target tasks

Figure 5: Visualization of pairwise transfer between 22 different NLP tasks, averaged over our training setups. We
display the actual transfer scores, with positive transfers in blue and negative transfers in red.

Method

ANLI-R1 ANLI-R2 ANLI-R3 CB COPA Hellasw. RTE StoryC WiC Winogr.

WSC

Mean

Random
Bottom-5 w/ TASKSHOP
Bottom-5 w/ TASKWEB

34.35
33.39
34.33

35.29
34.21
33.56

36.12  65.67 72.58 29.64
35.63 67.76 5592 25.01
36.28 47.02 5292 2537

73.69 55.84 49.53 51.03
62.57 59.42 50.33 50.45
67.2 573 50.05 50.1

51.92
43.69
54.59

50.51
47.13
46.25

Table 9: Results of choosing random and worst sets of tasks according to TASKSHOP and TASKWEB.
third row in Table 4 for target task performances with the top-5 source tasks selected by TASKSHOP.
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qqp
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stsb
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WSC

0.1 0.120.21

source tasks

0.1 0.08 0.1
0.1 0.130.19
0.120.150.21-0.1-0.

0:08/0.140.15

target tasks

Figure 6: Visualization of pairwise transfer between 22 different NLP tasks for T5-large (Raffel et al., 2020) finetune.
We display the actual transfer scores, with positive transfers in blue and negative transfers in red.
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target tasks

Figure 7: Visualization of pairwise transfer between 22 different NLP tasks for T5-base finetune. We display the
actual transfer scores, with positive transfers in blue and negative transfers in red.
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Figure 8: Visualization of pairwise transfer between 22 different NLP tasks for RoBERTa-base (Liu et al., 2019)
finetune. We display the actual transfer scores, with positive transfers in blue and negative transfers in red.
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Figure 9: Visualization of pairwise transfer between 22 different NLP tasks for GPT-2 medium (Radford et al.,
2019) finetune. We display the actual transfer scores, with positive transfers in blue and negative transfers in red.
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Figure 10: Visualization of pairwise transfer between 22 different NLP tasks for T5-base adapters (Houlsby et al.,
2019). We display the actual transfer scores, with positive transfers in blue and negative transfers in red.
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Figure 11: Visualization of pairwise transfer between 22 different NLP tasks for T5-base BitFit (Zaken et al., 2022).
We display the actual transfer scores, with positive transfers in blue and negative transfers in red.
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Figure 12: Visualization of pairwise transfer between 22 different NLP tasks for T5-small finetune. We display the
actual transfer scores, with positive transfers in blue and negative transfers in red.
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Figure 13: Visualization of commutativity between all tasks in our pairwise transfer setup. The white color indicates
that transfers in both directions share the same signs, and the orange color indicates opposite signs.
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Figure 14: Results for Figure 3 (right) but for all setups in TASKWEB, with the probability of identifying positive
source — target transfers as the minimum threshold for (source — pivot, pivot — target) transfers is increased.

11052



