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Crowdsourced transportation by independent suppliers (or drivers) is central to urban delivery and mobility

platforms. While utilizing crowdsourced resources has several advantages, it comes with the challenge that

suppliers are not bound to assignments made by the platforms. In practice, suppliers often decline offered

service requests, e.g., due to the required travel detour, the expected tip, or the area a request is located.

This leads to inconveniences for the platform (ineffective assignments), the corresponding customer (delayed

service), and also the suppliers themselves (non-fitting assignment, less revenue). Therefore, the objective of

this work is to analyze the impact of a platform approximating and incorporating individual suppliers’ accep-

tance behavior into the order dispatching process and to quantify its impact on all stakeholders (platform,

customers, suppliers). To this end, we propose a dynamic matching problem where suppliers’ acceptances or

rejections of offers are uncertain. Suppliers who accept an offered request are assigned and reenter the system

after service looking for another offer. Suppliers declining an offer stay idle to wait for another offer, but leave

after a limited time if no acceptable offer is made. Every supplier decision reveals only their acceptance or

rejection information to the platform, and in this paper, we present a corresponding mathematical model and

an approximation method that translates supplier responses into updated approximations of the likelihood

of a specific supplier to accept a specific future offer and use this information to optimize subsequent offering

decisions. We show via a computational study based on crowdsourced food delivery that online approxi-

mation and incorporating individual supplier acceptance estimates into order dispatching leads to overall

more successful assignments, more revenue for the platform and most of the suppliers, and less waiting for

the customers to be served. We also show that considering individual supplier behavior can lead to unfair

treatment of more agreeable suppliers.

Key words : peer-to-peer transportation, dynamic matching, supplier-side choice, stochastic acceptance

behavior, restaurant meal delivery

1. Introduction/Motivation

Crowdsourced transportation providers, such as Uber, Instacart, and Grubhub, have become

household names. These peer-to-peer platforms provide critical transportation services, including
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rides to passengers and delivery of shopping items or restaurant meals for the challenging last

mile segment of the supply chain. What all these platforms have in common is that they do not

rely on their own drivers, but instead outsource transportation fulfillment to private individuals,

who supply their time and vehicle to complete the service (in this work, we denote these indi-

viduals as suppliers). While such crowdsourcing of transportation services has many advantages

for the platform (He et al. 2021), it comes with significant uncertainties in planning and opera-

tions (Savelsbergh and Ulmer 2022, Kaspi et al. 2022). Crowdsourced suppliers often can decide

when they work (Ulmer and Savelsbergh 2020), where they work (Auad et al. 2023), when they

perform pickup and delivery (Zehtabian et al. 2022, Pugliese et al. 2023), and what offered jobs

they want to fulfill (Ausseil et al. 2022). All these uncertainties can severely reduce service quality

and platform revenue, because if no supplier can be found in time, the requesting customer may

leave the platform unserved and unhappy. It is therefore essential for a platform to acknowledge

the uncertainty in suppliers’ behaviors, derive predictions about them, and use these predictions

in decision making to improve their operations.

In this paper, we focus on the critical platform decision of how to match suppliers with trans-

portation requests, also known as order dispatching (Qin et al. 2020). One particularly challenging

uncertainty to predict is whether a supplier will accept or reject a specific offered request. This

decision is outside the control of the platform and depends on the supplier’s utility value of the

offered request. The request’s utility value depends on a variety of observable factors, such as the

travel time required for service, the location of the requesting customer, or the expected tipping

amount, but also additional, unobservable factors hidden to the platform (and often even to the

suppliers themselves) (Castillo et al. 2022). Furthermore, suppliers are very heterogeneous (Le et al.

2019). Some of them are quite agreeable, accepting most of the offered requests regardless of their

utility, e.g., because they are new to the platform, while others are rather selective, and only accept

requests with high utility values (Cook et al. 2021). Thus, it may be valuable for a platform to

account for the heterogeneity by offering them different requests. This may not only improve the

service rate but it could also increase supplier satisfaction as they get more “acceptable” offers.

While the use of personalized approximations for individual suppliers has potential to lead to more

successful matches, it also poses the risk of unfairly treating suppliers (as more amenable drivers

may receive less desirable requests). Further, in such systems, new suppliers are consistently joining

and so a platform would not know at least some percent of suppliers very well; thus, an approach

that dynamically updates specific suppliers’ personalized preferences is of interest compared to

offline aggregate or offline personalized learning approaches.

The objective of this work is to analyze the impact of a platform approximating and incorporating

individual suppliers’ acceptance behavior into the order dispatching process and to quantify its
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impact on all stakeholders (platform, customers, suppliers). To this end, we present a mathematical

model for a platform to dynamically approximate supplier behavior based on suppliers’ reactions to

offers and dynamically optimize offering decisions based on the updated approximated acceptance

probabilities viewed holistically across the entire set of suppliers and requests currently in the

system. This online approximation is challenging for three reasons: First of all, an acceptance or a

rejection does not allow a direct prediction of the minimum acceptable utility value of a supplier;

it can only point towards a general direction. For example, if an offered request is rejected, the

request’s observable utility is likely below the supplier’s minimum acceptance threshold; however,

it is not clear how far below. The same holds for acceptances. Second, the platform only sees if

a supplier accepts or rejects a request, but not why. Is the offer rejected because the observable

utility value is below the threshold, or is it due to some other unobservable factors? Third, the

number of online measurements for each supplier is very limited, especially since the suppliers leave

the platform after a short time if no acceptable offers are made (Castro et al. 2020). All these

challenges come on top of an already complex combinatorial dynamic matching problem where

holistic offering decisions for sets of requests and suppliers have to be made in real-time.

To quantify the impact of incorporating individual supplier acceptance estimates into order

dispatching, we conduct a comprehensive experimental study in the case of restaurant meal delivery.

For a large set of instances, we compare a supplier acceptance integration policy to a variety of

other approximation and optimization policies, as well as the perfect-information case with the

goal to derive managerial insights. We find that:

1. Acknowledging that suppliers can reject offered requests and modeling this behavior with

probabilities, rather than hard constraints, improves peer-to-peer operations.

2. Approximating supplier behavior probabilistically can substantially increase platform revenue,

particularly if the suppliers are rather “picky”.

3. Integrating and updating supplier behavior approximations into the request offering optimiza-

tion problem does not only increase revenue for the platform, but it also leads to faster service

for the requesting customers.

4. Increased revenue and faster service can be achieved by the platform if it acknowledges and

exploits that suppliers have heterogeneous willingness to participate.

5. Considering individual supplier behaviors when offering requests keeps matched suppliers

happy and retained in the system. Yet, the platform needs to make sure there is enough work

for all of them.

6. Considering supplier heterogeneity can lead to unfair treatment of the more agreeable suppli-

ers, as they are more likely to get offered the low-utility requests.
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Our work makes a variety of contributions. As we show in the literature review in Section 2, we

investigate the impact of approximating, updating, and integrating supplier acceptance behavior

in online peer-to-peer transportation matching problems. In Section 3, we present a comprehensive

general mathematical model reflecting the interplay of a platform’s offering and approximating

decisions with suppliers’ acceptance and rejection responses to introduce a policy in Section 4. We

present a carefully crafted set of experiments in Section 5 with a goal to derive managerial insights

into the impact of incorporating and approximating individual supplier behavior into dynamic

order dispatching problems. And in Section 6, we present our analysis, which shows how a better

understanding of suppliers’ decision making impacts all stakeholders involved and where we use

our model to provide a number of new insights into this emerging approach. Based on our model,

method, and experiments, in Section 7, we present promising areas of future research.

2. Literature Review

In this section, we discuss the related literature, starting with an overview on order dispatching

(or matching) in peer-to-peer transportation. We then discuss transportation and logistic problems

where information is accumulated during the process (i.e., “learning”).

2.1. Order Dispatching Problems in Peer-to-Peer Transportation

Research on peer-to-peer or crowdsourced transportation and delivery is booming, see Agatz

et al. (2012), Alnaggar et al. (2021), Boysen et al. (2019), Cleophas et al. (2019), Furuhata et al.

(2013), Mourad et al. (2019), Rai et al. (2017), Savelsbergh and Ulmer (2022), Tafreshian et al.

(2020), Wang and Yang (2019), or Yan et al. (2020) for recent surveys. While in practice supplier

availability and behavior are uncertain to the platform, most research assumes deterministic set-

tings with full information to investigate the general potential and changes in optimization when

using crowdsourced resources for delivery (see, e.g., Archetti et al. 2016, Behrend and Meisel 2018,

Behrend et al. 2019, Mancini and Gansterer 2022, and Yan et al. 2021).

There is a rapidly growing field of literature on dynamic matching problems, also called order

dispatching, in peer-to-peer transportation and many of them consider uncertainty that outsourcing

to crowdsourced suppliers brings. Yet, in the literature, this uncertainty usually manifests itself

in the suppliers’ availability, whereas the focus of our work considers uncertainty in suppliers’

acceptances of jobs offered by the platform. Work on (anticipating) uncertain supplier availability

is, for example, presented by Chen et al. (2020), Sk̊alnes et al. (2020), Dayarian and Savelsbergh

(2020), Lei et al. (2020), Ulmer and Savelsbergh (2020), Nieto-Isaza et al. (2022), Behrendt et al.

(2022), Yu et al. (2021), and Silva et al. (2023). All of these works assume that suppliers enter

and leave the system when they want. The papers present methods that anticipate the arrival and

departure of suppliers in their assignment, routing, relocation, or pricing decisions, but once arrived
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to the platform, the methods assume supplier acceptance behavior with certainty. In our problem,

the arrival and departure of suppliers are also uncertain to the platform, but, in contrast to existing

work, our work also considers the additional uncertainty associated with whether suppliers will

accept offered transportation jobs.

While a fundamental property of peer-to-peer transportation is that platforms do not employ

drivers, and thus should not be able to dictate what requests drivers must serve, most literature on

crowdsourced matching decisions use hard constraints that assume as long as a driver meets pre-

specified criteria, drivers will accept all dispatching decisions made by the platform. A promising

area of future research identified by a recent survey by Alnaggar et al. (2021) is to consider driver

acceptance as a soft constraint, and to assess the effects of different platform estimates of driver

acceptances on system performance. This work directly addresses this open research question. As in

our work, there is some work on crowdsourced transportation that assume suppliers do not accept

every offered job. However, they assume that the behavior of suppliers is static and known; notably,

all of the works that consider uncertain acceptance behavior use an offline, static behavioral model.

For example, Arslan et al. (2019) assume suppliers accept the offer if the detour is below a known,

but supplier-specific threshold. Only a small number of papers consider the uncertain acceptance

behavior of suppliers. Yildiz and Savelsbergh (2019) assume the probability of acceptance depends

on distance and expected compensation and tip. In a stylized setting, they calculate optimal service

radii and compensation values. Gdowska et al. (2018) and Cao et al. (2020) assume the probability

of acceptance depends on the compensation. Santini et al. (2022) assume acceptance probabilities

depend on compensation, travel distance, and some additional attributes hidden from the platform.

Barbosa et al. (2023) model acceptance given a dynamic compensation scheme. Mofidi and Pazour

(2019), Horner et al. (2021) and Ausseil et al. (2022) explicitly model supplier acceptance behavior,

but unlike this work, assume probabilities are known to the platform as they depend on the required

time to perform the service and the traveled distance. All of these works optimize for expected

cost or revenue based on (assumed known) acceptance probabilities, deciding about offering or

compensation. In our work, we optimize offering decisions based on the acceptance probabilities,

similar to the aforementioned papers. However, in contrast to existing work, we do not assume these

probabilities are given, but instead iteratively approximate the probabilities based on previously

observed supplier decisions. To the best of our knowledge, our work is the first to model the problem

of sequentially approximating supplier acceptance behavior in a peer-to-peer transportation setting

so that a platform can optimize order dispatching.

2.2. Learning in Transportation and Logistics

Our work uses observed information to approximate supplier behavior for better future decisions,

i.e., “learning” from the past. There are different types of learning considered in the transportation
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and logistics literature. We differentiate between (1) econometric models for learning traveler’s

demand, (2) learning by the workforce, (3) learning the value of decisions in the model, and (4)

learning about the optimization model’s parametrization.

A wealth of literature exists on the use of econometric models to predict (or learn) transportation

demand. Discrete choice models (Train 2009), and more recently machine learning classifiers (Salas

et al. 2022), have been widely used to learn users’ transportation mode choices. Typically the

prediction/learning problem is considered independently of the decision making problem and thus

static models are typically created. While more recently, work exists to update personalized user

preference estimates over time using discrete choice models (Danaf et al. 2019), but the focus is

only on updating estimation of preferences. This is in contrast to our work, which is interested in

the online problem, where the platform wants to update its belief about users’ preferences while

at the same time optimizing its dispatching decisions.

The second set of literature considers problems where the workforce learns based on previous

information. The learning process is usually assumed deterministic and follows a given functional

form. For example, delivery drivers may get to know their customers better with every visit (see

Ulmer et al. 2020 for a recent survey) or technicians may learn to perform certain tasks more

effectively via repetition (Valeva et al. 2017, Chen et al. 2017, Jin et al. 2018, Bakker et al. 2021). In

all those cases, employee learning leads to faster service, and the decision making models consider

the impact of workforce learning when assigning a customer or task. In our research, the workforce

does not learn, instead the platform learns about the behaviors of its workforce, i.e., the suppliers.

The third set of literature uses (reinforcement) learning to identify high quality decision making

policies often via value function approximation (e.g., Ulmer et al. 2018, van Heeswijk et al. 2019,

Kullman et al. 2022). This is a growing area for transportation research, see Soeffker et al. 2022

and Qin et al. 2022 for recent surveys. In such approaches, the learning occurs offline and before

the online execution of the algorithm. Typically repeated simulations are performed to evaluate

decisions with respect to their future value. Thus, the optimization model characteristics are fully

known, and the learning is part of an offline heuristic method that feeds later into the online

optimization model. This is in contrast to our research, where the platform learns the individ-

ual supplier acceptances online, and in conjunction, with order dispatching decisions. Thus, the

platform’s learning about supplier’s acceptances is based on the outcome of online decisions.

The fourth set of literature is closest to our research, in that methodologies are created and

employed to identify specific, unknown parameterizations of the optimization model. This falls into

the field of Optimal Learning (OL) (Powell and Ryzhov 2012). In OL, decisions carefully balance

the exploitation of parameterizations-knowledge and the exploration of parameterizations for future

use. To the best of our knowledge, there are only two papers related to OL in the transportation
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literature. Al-Kanj et al. (2023) face a problem of routing to repair a larger-scale power outage.

Several areas of the city are without energy and vehicles are routed to identify (and repair) broken

connections in the system. Besides optimizing the routing of the vehicles, additionally, there is

the identification of the broken parts of the system (“information collection”). The latter can be

seen as learning the model’s parameterizations. As in our paper, the optimization decision is based

on the current belief of the parameterizations; thus, no “suboptimal” decisions are selected to

enforce explicit exploration of the model’s parametrization. The only work explicitly exploring the

parameterizations is provided by Huang et al. (2019) for an urban delivery problem. Initially, the

routing cost of a specific number of vehicles in a city district is unknown. Over the decision periods,

the costs are updated based on observations and used for optimization in the subsequent states.

In that paper, the authors propose to explicitly test more costly setups to allow exploration. For

a small instance with four districts, they show that this active OL reduces cost in the long run.

Similar to Al-Kanj et al. (2023) and Huang et al. (2019), we face uncertainty in the model’s

parameterizations. In our case, we are uncertain about the behavior of the suppliers. Like Al-

Kanj et al. (2023), we subsequently update the belief about the parameterizations and use it for

optimization. However, in contrast to the work by Al-Kanj et al. (2023), we do not observe the

specific parameter information, but only a surrogate about the parameterizations of the suppliers’

preferences via their acceptance/rejection decisions. Further, our problem requires complex and

fast offering decisions for several suppliers and requests. In contrast to Huang et al. (2019), our

decisions are interrelated (across a set of suppliers with uncertain behavior) and impact future

states. We also differ by focusing on pure exploitation. Our focus on pure exploitation is motivated

by our problem setting. First, in our problem, we only have a very limited number of trials to find

a successful matching between suppliers and requests, since both leave the platform if they do not

receive an acceptable offer. Research on dynamic matching with “disengagement” of participants

has shown that OL-exploration can actually be counterproductive (Bastani et al. 2022).

We finally note that our work is also related to the general field of preference learning outside

of logistical settings, often applied in many areas where companies try to identify the participants’

preferences, e.g., in pricing (Nambiar et al. 2019), personalized revenue management (Chen et al.

2022), or dating platforms (Cao and Zhang 2021). Related literature exists that also dynamically

adjusts decisions based on an unknown response function of decentralized agents; for example, Bes-

bes and Zeevi (2009) develop policies that learn customer demand functions in an online function

for dynamic pricing problems found in revenue management. While these problems are similar in

that the platform needs to learn on the fly, while also optimizing a decision, they vary in the type

of decision. Notably, a pricing decision is a continuous decision. Thus, our work shares the aspect

of approximating preferences for more successful decisions, it differs substantially in the setting
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and complexity of decision making. In our work, we aim for an orchestrated combinatorial decision

of matching several suppliers and customers at once.

3. Problem Definition

In this section, we begin with a problem description and an illustrative example, and then define

the components of the mathematical model.

3.1. Problem Description

We consider a peer-to-peer platform dynamically matching customer requests for transportation

services with individual crowdsourced drivers (from now on called “suppliers”) over the course of the

day. Spontaneous service requests arrive to the platform during a service period, and the requesting

customers expect fulfillment of service a short time later. The fulfillment usually comprises a timely

pickup of either a passenger, goods, or food, at one location and a dropoff at another location

nearby. Simultaneously, crowdsourced suppliers spontaneously log into the app of the platform,

indicating their willingness to receive offers of requests from the platform to provide transportation

services with their own vehicles. As the suppliers are self-employed, they are not bound to accept

the offers made by the platform. Suppliers are free to reject an “unacceptable” offer because their

utility for the request is too small. For example, the utility of an offered request decreases when

serving it requires long travel, leads to operating in an area difficult to drive and park in, or - as

often observed in meal delivery - the expected tipping amount is small. While these attributes can

be measured relatively well by the platform (Castillo et al. 2022), there are often additional factors

impacting a supplier’s utility that are hidden to the platform. We assume that each supplier has

a specific minimum utility acceptance threshold (i.e., the utility of the outside or the no-choice

option). This threshold is unknown to the platform, and the supplier rejects all offered requests

with utilities below it. If a request’s utility is higher than the threshold, the supplier accepts it,

starts working, and then usually reappears on the platform once the service is finished.

The role of the platform is to successfully match requests and suppliers. In equidistant time

steps (e.g., every five minutes), the platform makes an offering decision based on the requests

and suppliers currently in the system. After the response of the suppliers, the accepted offered

requests are served by the corresponding suppliers, and those requests leave the system. A matched

supplier leaves the system for the time duration of the service request, but then reappears after

completion. All unassigned suppliers and requests stay in the system, however, only for a limited

overall time and if a match does not occur within this time, they exit the system. This results in

the overall goal of the platform to maximize the expected number of successful assignments over

the course of the day, especially because the platform must perform recourse actions for requests

that have been in the system for “too long”. For example, these requests may be served by an
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expensive taxi or are rejected without service, leading to customer inconvenience and lost revenue.

If a supplier gets an unacceptable offer (or no offers at all), they stay in the system and wait for

the next offer. We assume that, theoretically, suppliers are willing to service platform requests for

the entire time horizon, however, only if they get assigned enough work. If they do not receive an

acceptable offer within a certain amount of time since they have (re-)appeared in the system, they

leave the platform for that day, which leads to lower service capacity options for the platform.

As the platform does not know the suppliers’ preferences (i.e., the minimum utility acceptance

thresholds), it cannot be sure if a supplier will accept or reject an offer. However, as suppliers

stay in the system for a while and reappear after a service, the platform can use their previous

response behaviors to approximate their preferences and use the approximations for a more fitting

offer later.

3.2. Example

To illustrate the problem’s components and in preparation for the mathematical model, we

describe a simplified example of our problem in Figure 1. The first box of the figure depicts an

example state of the problem. The state shown here is in time step 8, in which three requests, A, B,

and C, as well as two suppliers, 1 and 2, are currently in the system. For the purpose of presentation,

in this example, we assume service is performed at the requests’ locations (in our mathematical

model, we consider pickup and delivery). The requests and the suppliers (depicted by red squares

and blue circles, respectively) display heterogeneity in their geographical locations. Supplier 1 is

currently located in the Southwest of the service area and supplier 2 in the Northeast. Specifically

for this simplified example, we assume a request’s utility only depends on the (Euclidean) travel

distance from the respective supplier to the request. Thus, in this example, a supplier’s minimum

acceptance threshold limits how far the supplier is willing to go to service a request. A green

shade surrounding a supplier’s origin depicts the platform’s current assumption of a supplier’s

acceptance region based on their approximated minimum utility acceptance threshold. The larger

the approximated acceptance threshold is, the smaller is the respective maximum travel distance

and consequently, the acceptance region. In this example, we model this via a point estimate

for reasons of presentation (in model and method, we will rely on probability distributions). For

example, requests A and C are within supplier 2’s approximated acceptance region, so the platform

assumes supplier 2 would accept either of those requests and would reject request B. Based on

the (approximated) supplier thresholds and on the platform’s objective to maximize the expected

number of assigned requests, the platform offers request B to supplier 1 and request C to supplier 2,

as depicted in the second box of Figure 1. Request A is not offered to any supplier, as a supplier can

only be offered at most one request in a given time step. Supplier 1 accepts offered request B, i.e.,
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Figure 1 Example for a state, offering decision and first stochastic information, update decision and stochastic

information, and transition.

the platform’s assumption that supplier 1’s utility for serving request B is above their acceptance

threshold was correct. As request B is successfully assigned, request B leaves the platform. Supplier

1 starts serving request B and will reappear in the system after service. However, supplier 2

rejects their offer of request C, i.e, the actual minimum utility acceptance threshold of supplier 2

is either higher than assumed or potentially the unobservable attributes resulted in a lower than

approximated utility for request B. Based on the rejection observation, the platform updates its

knowledge on supplier 2’s threshold in the next time step (which leads to a smaller acceptance

region for supplier 2). In the next time step, the updated thresholds are considered, along with

updated supplier and request sets; in the example, a new order D and a new or returning supplier

3 appear.

3.3. Mathematical Model

In this section, we formally define the mathematical model and its supporting notation. As

the problem is relatively “rich”, we start with a preparation of the model; then, we describe the

components of the sequential decision process following the framework from Powell (2022). Notably,

our model has two types of decisions, one for the offer and one for the approximation.

Preparation. In preparation for the model, we first provide global notation. Then, we dis-

cuss the particular characteristics of our problem – the suppliers, the uncertain utility values and

(approximated) acceptance probabilities – and how they will be modeled.

Global Notation: We consider a time horizon with equidistant time steps t = {1, . . . , T}. Each

supplier sj entering the system has a starting location lj0. The maximum time per entry a supplier

is willing to wait without an assignment is tsmax; afterwards, they leave the system. As a request ri

can represent a variety of services, in time t, we define δt(sj, ri) as the overall required time for sj

to serve request ri. Further, lri represents the location supplier sj reappears in the system in case

the supplier is successfully assigned to request ri.
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Figure 1 Example for a state, offering decision and first stochastic information, update decision and stochastic
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region for supplier 2). In the next time step, the updated thresholds are considered, along with
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the problem is relatively “rich”, we start with a preparation of the model; then, we describe the

components of the sequential decision process following the framework from Powell (2022). Notably,

our model has two types of decisions, one for the offer and one for the approximation.

Preparation. In preparation for the model, we first provide global notation. Then, we dis-

cuss the particular characteristics of our problem – the suppliers, the uncertain utility values and

(approximated) acceptance probabilities – and how they will be modeled.

Global Notation: We consider a time horizon with equidistant time steps t = {1, . . . , T}. Each

supplier sj entering the system has a starting location lj0. The maximum time per entry a supplier

is willing to wait without an assignment is tsmax; afterwards, they leave the system. As a request ri

can represent a variety of services, in time t, we define δt(sj, ri) as the overall required time for sj

to serve request ri. Further, lri represents the location supplier sj reappears in the system in case

the supplier is successfully assigned to request ri.
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Suppliers: The set of suppliers differ from state to state as new suppliers enter the system, assigned

suppliers reappear later, and other suppliers leave for good. To keep track of all the suppliers and

to keep the indices for each supplier the same, we assume that, at each time step t, we have an

ordered set of suppliers st = (s1, . . . , sj, . . . , sJt) with (random number) Jt, denoting the overall

number of suppliers observed up to that point. Over the time steps, the set of suppliers interacting

with the platform is subsequently revealed, with new suppliers appended to this set. For every

supplier sj, we carry information on their status in time t. The status is represented by two values:

the availability time τ s
jt ∈ T and the location ljt. Time τ s

jt can be in the past, i.e., the supplier idles,

or in the future, i.e., the supplier is currently busy. For suppliers who left the system, τ s
jt = ∞ and

ljt = −. Furthermore, for every supplier, we carry information about their threshold approximation

as discussed later in this section. For the ease of presentation, we do the same for the (random)

number of overall requests at time t, rt = (r1, . . . , ri, . . . , rIt) with It being a random variable. Like

suppliers, requests also have availability times τ r
it ≤ t indicating when the request was issued. Value

τ r
it = ∞ indicates that request ri already left the system.

Utility: For a specific supplier sj and a specific request ri in a specific time step t, vijt denotes

the supplier’s utility value which is unknown to the platform because only a part of the request’s

utility can be quantified by the function f(aijt) via a set of c attributes aijt = {a1ijt, . . . , a
r
cijt}.

Some of these known attributes may be independent of the supplier (e.g., the expected tipping

amount), whereas others may be a function of the supplier and the request (e.g., the time to

complete the service request). Another part of the utility is hidden from the platform, represented

by the (potentially negative) value εij ∈R. Thus, the suppliers’ overall utility for requests, vijt, is

a random variable, unknown to the platform, as it is the additive combination of both known and

unknown attributes: vijt = f(aijt) + εij.

Furthermore, each supplier sj has a stationary utility acceptance threshold v0j, i.e., the minimum

utility a supplier will accept a request, which is unknown to the platform, but stays constant over

the time periods. Thus, every time a supplier is offered a request, the supplier makes a discrete

choice between the offered request and the minimum utility value (i.e., the no choice option), and

selects the choice with the highest utility value; i.e., a supplier sj selects request ri if vijt ≥ v0j and

a supplier sj rejects a request ri if vijt < v0j. The platform receives back only whether the supplier

accepted or rejected the offered request. Thus, at every time step t, the platform operates with

approximated acceptance probability functions p̂jt for each supplier sj. These probability functions

allow us to map a request ri to value p̂jt(ri) ∈ [0,1], which denotes the approximated probability

that request ri is accepted by supplier sj in time t. These probabilities are captured in the belief

state and are updated over time based on supplier sj’s rejection/acceptance behavior. How these

probabilities are updated is modeled as a decision in our mathematical model.
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States. In each time step t, state St is defined based on the set of present requests and suppliers

and their associated attributes and parameters. For ease of presentation, we denote the sets of

available suppliers as sat = {sj ∈ st : τ s
jt ≤ t} and open requests as rot = {ri ∈ rt : τ r

it ≤ t}. The suppliers

sj ∈ st, j ≤ Jt are represented by the time and location they became or will become available again,

τ s
t = (τ s

1t, . . . , τ
s
Jtt

) and lst = (ls1t, . . . , l
s
Jtt

). The requests are represented by their time of request vector

τ r
t . Further, a state contains the attribute value matrix at = (aijt)i≤It,j≤Jt , and location vector,

lri , i≤ It which denotes the geographical location a supplier will reappear at when serving request

ri. A state also contains the belief state, e.g., the current approximated probability functions p̂jt(ri)

that supplier sj will accept offered request ri.

First Decision. Each time step t begins with the platform making decisions xt, which represent

the offers made to the suppliers. A decision value is xijt = 1 if platform offers request ri to supplier

sj; xijt = 0, otherwise. The platform can only offer open requests to suppliers currently available

in the system; it can offer an open request to at most one available supplier, and at most one open

request can be offered to each available supplier:

∑
sj∈sat

xijt ≤ 1 ∀ri ∈ rot (1)

∑
ri∈rot

xijt ≤ 1 ∀sj ∈ sat (2)

The reward R(St, xt) of a decision xt in state St is the expected number of accepted offers. In

the next step, the first stochastic transition occurs.

First Stochastic Transition. After the platform decides the request offers to the suppliers

with decision xt, the platform observes the suppliers’ selections ωx
t with ωx

ijt ≤ xijt. A selection

value is ωx
ijt = 1 if supplier sj accepts offered request ri; otherwise, ωx

ijt = 0 if supplier sj rejects

offered request ri. The observed reward is

∑
ri∈rot

∑
sj∈sat

ωx
ijtxijt.

The availability times τ s,x
t and locations ls,xt of suppliers are updated in set sxt as follows. If a

supplier sj accepts an offered request ri, the availability time and location of the supplier are set

to τ s,x
jt = t+ δt(ri, sj) and ls,xjt = lri . For an unassigned supplier sj, if the maximum waiting time is

reached, i.e., t= τ s
jt + tsmax, this supplier leaves the system and τ s,x

jt = ∞, and ls,xjt = −. The set rxt is

updated similarly. For a request ri, if the maximum waiting time is reached (t = τ r
it + trmax) or the

request is assigned (ωx
ijt = 1 for one supplier sj), the request leaves the system and τ r,x

it = ∞. Else,

it stays in the system for the next state in t+ 1.
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Second State and Decision. After the observation of the suppliers’ acceptance/rejection

behavior, the platform observes a second state and has a second decision to make. The second

state, Sx,ω
t , contains the now updated information about suppliers sxt and requests rxt , the previous

approximated probability function p̂t, and the observed selections of the suppliers, ωx
t . The second

decision yt updates the belief state, i.e., the approximated probability functions p̂jt are updated

to p̂yjt for every supplier sj based on the observed behavior of the suppliers. There is no reward

associated with this update decision.

Second Stochastic Transition. The transition ωt+1 = ((sJt+1, . . . sJt+1
), (rIt+1, . . . rIt+1

))

accounts for the arrival of It+1− It new requests and Jt+1−Jt new suppliers in the system between

the end of state St and the start of the next state St+1. The corresponding values are set to

τ s
jt+1 = t+ 1, lsjt+1 = lj0∀Jt < j ≤ Jt+1 and τ r

it+1 = t+ 1∀It < i≤ It+1. The new sets st+1 and rt+1 are

created by augmenting the sets sxt and rxt by the new Jt+1−Jt suppliers and It+1−It new requests.

Objective Function. A solution to the problem is a two-part decision policy π = (πx, πy) with

one decision policy for the offer, πx, and one for the update, πy. A policy π maps each state St

to an offering decision X πx
(St) and each state Sx,ω

t to an approximation decision X πy
(Sx,ω

t ). The

objective is to find a policy π∗ maximizing the expected number of successful assignments:

π∗ = arg max
π=(πx,πy)∈Π

E

[
T∑

t=0

R(St,X πx

(St))|πy, S0

]
. (3)

The optimal policy is the policy that maximizes the expected overall reward, the number of suc-

cessful assignments, when starting in the initial state S0 (when there are no requests or suppliers

yet, i.e., I0 = J0 = 0), and applying the offering decisions X πx
of policy πx and approximation

decisions of the update policy πy throughout the entire problem horizon.

4. Solution Methods

In this section we present our solution method to solve Section 3.3’s mathematical model. We

give a general overview and motivation to highlight how we address the two steps of optimization

and approximation, then present our method in detail, and describe comparative policies.

4.1. Overview

As depicted in Figure 2, decision making has two main components: offering optimization and

probability approximation. Given the current time step’s probability approximations, the platform

performs an optimization to output suppliers’ offers. Each supplier then makes the decision of

either accepting or rejecting their offered request, and this process of supplier decisions is outside

the control of the platform. After the platform receives the suppliers’ selections, the platform

performs a probability approximation step to update suppliers’ estimated acceptance thresholds,
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Figure 2 A Process Diagram of the Iterative Solution Method. A green box means it is a platform decision, and

a blue oval means it is a supplier decision.

i.e., acceptance probability functions. This process continues in an iterative fashion, with these

functions being then used as inputs to the subsequent optimization step in the next time step, in

which new suppliers and requests may appear.

Designing effective methodologies for both steps is challenging. In the offering optimization,

instant and holistic considerations of suppliers and requests are required, while taking into account

that a one-to-one match is needed, as well as the state details and the individual attributes of each

request and individual (approximated) preferences of each supplier. In the probability approxi-

mation, the platform observes preferences only indirectly via a supplier’s rejection or acceptance

decision. Furthermore, the approximation is complicated by the unobservable utility component.

We address these challenges as follows:

Optimization: We focus on how to make offering decisions that optimizes the expected number

of successful matches, i.e., the expected reward of the decision. This rather short-term objective

was selected for two reasons. First, as suppliers and requests only stay in the system for a very

limited time, exploratory learning reduces the small number of offering opportunities even further,

a phenomenon also observed in other domains with participant disengagement (Bastani et al. 2022).

Because of supplier and request impatience that leads to disengagement, not offering anything to a

supplier now in the hope for better, future assignment opportunities is also not warranted. Second,

longer-term anticipation is difficult in crowdsourced transportation problems due to the manifold

and disruptive uncertainties of the problem (Ausseil et al. 2022).

Approximation: We deploy a simple approximation method that allows for a straight forward

way to transform suppliers’ acceptance and rejection responses into the platform’s updated belief

state. This approach requires the platform to estimate for each supplier, only two threshold values,

an upper border value and a lower border value. After acceptance and rejection decisions are

observed for each supplier, the platform updates its belief about a suppliers’ acceptance threshold

by narrowing the gap between the upper and lower border values. A rejection of a request may
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increase the lower border value, and an acceptance may decrease the upper border value. And

as these bounds change, so does the platform’s beliefs about suppliers’ probabilities of accepting

requests. As suppliers have an unobservable utility component, a hard update may not be advisable.

Therefore, we carefully balance the new observations with the previous approximation.

4.2. Main Method: Objective-Based Optimization with Parameter-Based
Approximation

Our main method (called OB-RA) consists of an objective-based (OB) optimization step with a

parameter-based probability approximation (RA) step based on supplier rejections (R) and accep-

tances (A). The whole process is described in Algorithm 1, in which we start by initializing, for

each supplier, their estimated threshold values; then, in the optimization step we solve an integer

program, as described in Section 4.2.1, given those estimated thresholds and state information.

Next, the suppliers make their selections of the offers resulting from the optimization step. Finally,

the supplier thresholds are updated via the RA approximation, as described in Section 4.2.2, based

on those supplier decisions. At which point, the process repeats itself in the next state in the

following time step, with the arrivals and departures of requests and suppliers.

4.2.1. Objective-Based Optimization. The objective-based (OB) optimization aims to

maximize the expected number of accepted offers based on the platform’s approximated prefer-

ences for the suppliers currently in the system. The preferences in state St are represented by two

parameters. Parameter v0jt indicates supplier sj’s approximated lower border threshold in time

step t. Parameter v0jt represents supplier sj’s approximated upper border threshold in time step

t. By definition, v0jt ≤ v0jt. The OB approach translates these parameters into probabilities of

acceptances for all suppliers and requests currently in the system.

Because a platform has uncertainty in the belief state of each supplier sj’s acceptance threshold,

in this approach a truncated rectified linear unit (ReLu) activation function is used to approximate

supplier selection and rejection, as defined in (4). This means the platform considers, for each

supplier, an interval, in which for requests with utility values below the lower border threshold v0jt,

the platform assumes the supplier will reject, and above the upper border threshold v0jt, accept. In

between those upper and lower bound thresholds, the platform assigns a probability of acceptance

of supplier sj accepting request ri, p̂jt(ri), between 0 and 1.

p̂jt(ri) =

⎧⎪⎨
⎪⎩

1 if v̂ijt ≥ v0jt
v̂ijt−v0jt
v0jt−v0jt

if v0jt > v̂ijt ≥ v0jt

0 otherwise

(4)

The initial lower border threshold, v0j0, is given a value of zero, indicating that, initially, the

platform assumes with a positive probability p̂jt(ri) that supplier sj will accept requests with any
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Algorithm 1 Pseudo-code for OB-RA Process

1: t← 0

2: for all sj ∈ s do

3: v0j0 ← 0 � Initialize lower border threshold

4: v0j0 ← vmax � Initialize upper border threshold

5: end for

6: t← 1 � Initialize time horizon

7: while t≤ T do

8: xt ←OB(St, v0t, v0t, v̂t) � Solve optimization OB

9: ωx
t ← SupplierDecisions(xt) � Suppliers reject or accept their respective offer

10: for all sj ∈ sat do

11: for all ri ∈ rot do

12: for all ωx
ijt ∈ ωx

t do

13: if ωx
ijt = 0 && xijt = 1 then

14: v0jt+1 ←UpdateLowerThresh(v̂ijt, v0jt) � Apply R approximation

15: else if ωx
ijt = 1 then

16: v0jt+1 ←UpdateUpperThresh(v̂ijt, v0jt) � Apply A approximation

17: end if

18: end for

19: end for

20: end for

21: St+1 ← Transition(Sx,ω
t ) � New suppliers and requests enter the system

22: t← t+ 1

23: end while

utility value. The initial upper border threshold, v0j0, is set at a value that is at least as high as

the highest possible value of a utility, vmax, which implies that the platform initially assumes there

is no guarantee that supplier sj will accept any request.

Then, in every state St, an integer linear program is solved via function OB(St, v0t, v0t, v̂t) in

Algorithm 1. Inputs for the function are the current approximated thresholds for all suppliers via

vectors v0t and v0t, and the matrix of observable utilities for all pairs of suppliers and requests,

v̂t. This program maximizes objective (5), subject to constraints (1) and (2). Specifically, this

optimization method maximizes the (approximated) expected number of accepted offers, while

enforcing that the platform can only offer at most a single request to a supplier, and each request

can only be offered to at most a single supplier.
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max
∑
ri∈rot

∑
sj∈sat

p̂jt(ri)xijt (5)

4.2.2. Parameter-Based Probability Approximation. The Parameter-Based approxima-

tion updates the platform’s estimates for the set of suppliers that make a selection in a given

time step. Specifically, a supplier sj’s lower border threshold v0jt or upper border threshold v0jt is

updated based on supplier sj’s selection ωx
ijt of offered request ri. For each selection a supplier sj

makes in t, only one of two discrete outcomes is possible: a rejection (ωx
ijt = 0) or an acceptance

(ωx
ijt = 1) of offered request ri. Thus, the parameter-based approximation updates only one of the

two border thresholds in each time step supplier sj makes a selection.

Due to the unobservable attribute εij, the update of the thresholds needs to be carefully designed.

On the one hand, the larger the threshold step size updates are, the faster the approximation can

be achieved. This is important since suppliers do not tolerate many unacceptable offers. On the

other hand, thresholds can become too strict, e.g., if a supplier rejects an offer with an objectively

high utility, it indicates a relatively high pickiness, but the rejection may be based solely on the

unobservable attribute εij not known to the platform. A more aggressive update of the thresholds

could reduce the number of offers made to this supplier in the future, and may result in the platform

assuming a supplier would not accept a request, even though a supplier would actually be happy to

serve it. To strike the right balance between fast approximation and not preventing future offers,

we update the thresholds as a combination of previous thresholds and new observation data.

The general procedure is shown in Figure 3. Let v0jt and v0jt be the approximated thresholds of

supplier sj in time t. Let v̂ijt be the (observable) utility of offered request ri with v0jt ≤ v̂ijt ≤ v0jt.

If the supplier rejects offer xijt (i.e., ωx
ijt = 0), as shown in the upper right of Figure 3, the platform

updates the estimate of that supplier’s lower border threshold v0jt+1 based on the previous estimate

and the rejected request’s estimated utility value:

v0jt+1 = (1− ρ)v0jt + ρv̂ijt.

This is done via function UpdateLowerThresh(v̂ijt, v0jt) in Algorithm 1. Parameter ρ∈ [0,1] denotes

the step size of the update. The extreme value of ρ = 0 would not change the thresholds at all

(no approximation update), while a value of ρ= 1 would solely rely on the new observation (likely

overly aggressive).

Similarly, if the supplier accepts the offer (i.e., ωx
ijt = 1), as shown in the lower right of Figure 3,

the platform updates the estimate of that supplier’s upper border threshold v0jt+1 based on the

previous estimate and the accepted request’s estimated utility value:

v0jt+1 = (1− ρ)v0jt + ρv̂ijt.
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Figure 3 Update of Probability Function For Supplier sj Via a Parameter-Based Approximation

This is done via function UpdateUpperThresh(v̂ijt, v0jt) in Algorithm 1. We note that because

v̂ijt ≥ v0jt and v̂ijt ≤ v0jt, it is easy to show that there is monotonicity in values v0jt and v0jt over the

time steps t. Thus, over time, the difference between v0jt and v0jt decreases, and the approximation

becomes tighter. Further, in the special case that the exact utility values are known (thus, there

is no unobservable attribute εij), we can fully trust our observations and update aggressively by

setting ρ = 1. Else, we set ρ = 0.5 based on preliminary tests. In the very rare case when the

estimated lower border threshold is updated and becomes greater than the estimated upper border

threshold, the estimated upper border threshold is reset to its initial value.

4.3. Alternative Approaches

As the objective of this work is to analyze the impact of a platform approximating and incorpo-

rating individual suppliers acceptance behavior into the order dispatching process, in this section

we present alternative approaches that combine different optimizations and probability approxi-

mations, and a perfect information policy. Notably, these alternative approaches vary in specific

aspects, which allow us in Section 6 to provide a number of managerial insights.

4.3.1. Constraint-Based Optimization. This alternative policy is used to quantify the

impact of capturing supplier acceptances as a hard or soft constraint, which was a recommended

future research direction in Alnaggar et al. (2021)’s recent survey. This alternative approach
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assumes a hard constraint exists, such that only requests above a certain threshold value can be

offered to suppliers. This is the typical assumption made by existing literature (e.g., Archetti et al.

(2016), Arslan et al. (2019)), where constraints are often in terms of maximum detour distance

or extra time. This is also similar to the procedure in our example with the point-based estima-

tion where it is assumed that every request with utility higher than the acceptance threshold is

accepted and every request with utility below is rejected. Thus, instead of probability values, the

point estimate threshold can be seen rather as a constraint reducing the set of requests that can

be offered to a supplier. Consequently, we label this approach constraint-based (CB) optimization.

Similar to our objective-based method, CB can also integrate approximations of the threshold,

however, only from rejections since acceptances do not change the constraint.

To implement this strategy, we define an additional parameter, qijt, which is 1 if the platform can

offer a request to a supplier based on the estimated lower border threshold (i.e., v̂ijt > v0jt); else, 0.

The constraint-based (CB) approach maximizes function (6), which seeks to maximize the number

of assignments (assuming that all suppliers will accept any request offered as long as the request

is above their known threshold utility), subject to constraints (7) that ensure that the platform

only offers a request with an acceptable utility value to a supplier, and constraints (1) and (2) that

enforce that the platform can only offer a single request to a supplier, and each request can only

be offered to a single supplier, respectively.

max
∑
ri∈rot

∑
sj∈sat

xijt (6)

s.t. xijt ≤ qijt ∀ri ∈ rot ,∀sj ∈ sat (7)

4.3.2. Probability Approximations Comparisons. To capture the impact of incorporat-

ing and updating the platform’s approximation of supplier acceptances, we present five different

probability approximation approaches, in which the first two do not update the platform’s esti-

mates of supplier thresholds, whereas the last three do update estimates, but in a different way

than the approach in 4.2.2.

None (N): The None approximation does not update the initial values of the estimated sup-

plier thresholds, meaning the estimated lower border threshold and the estimated upper border

threshold of every supplier retain their respective initial value throughout the time horizon, i.e.,

these benchmarks use an offline rather than an online approach. When combined with the OB

optimization, this creates the benchmark OB-N, which is a static approach that maximizes the

total expected number of accepted offers. This benchmark can be achieved by setting ρ= 0 in the

OB-RA case. Combined with the CB optimization, this approximation does not consider supplier

preferences but assumes every request will be accepted by every supplier.
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Mean (M): The Mean approximation assumes all suppliers will reject requests with utility below

the (global) average threshold value. To do this, we set the initial estimated lower border threshold

to its expected value, and the upper border threshold is set to its initial value. Neither of the esti-

mated thresholds are updated throughout the time horizon. This approximation does not consider

supplier preference heterogeneity, as it assumes the same supplier preference behavior across all

suppliers. It is an offline approach as it does not update its assumptions based on any supplier

observations.

Exclude (E): The Exclude approximation prevents a rejected request to be re-offered to the same

supplier in future time steps. Combined with CB, this approximation is implemented by adding a

new binary parameter mijt that is 0 if supplier sj rejected request ri in a previous time step and

1 otherwise. The new constraint (8) then prevents the platform from offering a previously-rejected

request to the same supplier in the next time step and all future time steps:

xijt ≤mijt ∀ri ∈ rot ,∀sj ∈ sat . (8)

Combined with OB, this approximation is implemented by updating the probability of acceptance

of the rejected request for that supplier to zero, i.e., if supplier sj rejected request ri in a previous

time step, then for all subsequent time steps, p̂jt(ri) = 0.

Rejections Only (R): The Rejections Only approximation applies our proposed approximation

as described in Section 4.2.2, but only in case of supplier rejections. Thus, it only updates the

estimate supplier lower border thresholds.

Acceptances Only (A): The Acceptances Only approximation applies our proposed approxima-

tion as described in Section 4.2.2, only in case of supplier acceptances, so it only updates the

estimate supplier upper border thresholds.

4.3.3. Perfect Information Optimization. Finally, we apply a strategy that is an “upper

bound” of our approximations. In this method, we assume that the platform knows the exact

utilities and acceptance thresholds for every supplier, which would not be realistic in practice, but

serves useful for comparison purposes. The perfect information optimization solves the same integer

program as the CB optimization, but instead of estimates as inputs, it uses the suppliers’ actual

acceptance thresholds v0j and their actual utility values vijt (including actual εij values). We note

that while this policy is an upper bound on the expected reward of a decision, it is theoretically

not an upper bound on our policy because it does not capture the dynamics over multiple periods.

5. Experimental Set Up

We design a set of computational experiments to quantify the impact of incorporating individual

supplier acceptance estimates into order dispatching for each of the peer-to-peer transportation
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platform stakeholders. While our model captures a variety of crowdsourced delivery applications,

we base our experiments on restaurant meal delivery where the issue of suppliers rejecting offered

jobs is especially severe (Savelsbergh and Ulmer 2022). When interested in driving and delivering

food for a third-party platform, independent suppliers log in to the platform’s app. Simultaneously

and throughout the day, customers place orders for delivery of food from local restaurants that

have also partnered with the platform. The platform facilitates the matching of suppliers who are

tasked with picking up a specific order from a restaurant and then dropping the ordered food off

at the customer’s requested destination location. As such, each order is linked to a restaurant.

Next, we describe the problem parameters in our experiments and then the supplier choice model

in detail. This section finishes with an overview of the design of experiments.

5.1. Problem Parameters

We consider the meal delivery service area to be a 10km times 10km square, and contains 50

potential restaurants from which customers can request food for delivery to their locations (which

is in the service area). We model travel based on rectilinear distances. We consider two spatial

distributions of these restaurants: spread out and centrally clustered. In the spread out restaurant

case, the restaurants are equally likely to span any part of the service area, and we generate the

restaurant locations so that they are uniformly distributed over the service area. In the centrally

clustered restaurant case, all the restaurants are in the city-center, and we implement this case by

generating restaurant locations to be uniformly located within a square-kilometer in the center of

the service area.

For our experiments, decisions are made every five minutes. We set the overall daily service

horizon to 100 time steps (500 minutes). We further consider 1000 expected requests per day that

appear uniformly over the time horizon. The probability that a request is for a given restaurant

is equally likely across the 50 restaurants. The delivery location of the requests are uniformly

distributed across the service area. We assume that, on average, 100 suppliers participate every

day. They are not all available in the beginning but appear randomly at a rate that is uniformly

distributed across the first 25 time steps of the time horizon, i.e., 4 new suppliers arrive per time

step on average. The coordinates of the initial locations of the suppliers are drawn randomly from

a uniform distribution.

If a supplier is matched with a request, they perform the delivery, which means they travel from

their current location to the restaurant and then travel to the delivery location. During this time,

they are not available to be matched in the system. We model the supplier’s reappearance time δt

as the travel time from the supplier’s current location to the restaurant, plus the travel time from

the restaurant to the request. We assume suppliers travel with an average speed of 36 kilometers
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per hour. Suppliers then re-appear in the system at the destination of their most recently served

order.

Requests are assumed to wait a maximum of 5 time steps (20-25 minutes) to get assigned;

otherwise, they leave the system. Every time a supplier arrives to the platform (whether that is for

the first time or after they have completed a request), they are assumed to have a maximum time

limit they are willing to wait to be matched with an order until they decide to exit the system.

Notably, this is a “per entry” time that is reset each time a supplier enters the platform looking

to be matched. We model that suppliers have varying levels of patience by setting this maximum

time limit (which we denote as supplier patience) as a parameter in our experiments and testing

low (5 time steps), medium (10 time steps), and high patience (30 time steps).

5.2. Supplier Choice Model

In this section we describe how suppliers evaluate offered requests. We assume that all requests

have the same fixed maximum utility value, e.g., the fixed compensation by the platform. From

this value, we deduct the “hassle” a supplier has to endure to satisfy the order. In our experiments,

we measure this by four attributes motivated by Castillo et al. (2022): time of travel, navigation

difficulties, tipping amount, and the unobservable attribute. The first three attributes are assumed

to be observable to the platform and of equal importance to all suppliers, and the deduction is

relative to the maximum hassle per attribute, e.g., when travel is exceptionally long, navigation at

the restaurant is very difficult, or no tip can be expected.

Mathematically, we rely on an additive utility model with bounded rationality (Train 2009). The

maximum utility value is vmax from which are deducted the three known attributes: (a1) restaurant

characteristic (e.g., parking availability, neighborhood, etc.), (a2) the monetary value of the order or

the tipping amount, and (a3) the distance from the supplier’s origin to the restaurant’s location and

then to the request’s destination. Thus, the observable value is v̂ijt = f(aijt) = vmax−(a1
i +a2

i +a3
ijt).

Further, we deduct the unobservable supplier and request specific attribute εij, which we assume

remains constant for a specific supplier-request pair. Overall, the utility for supplier sj and request

ri in time t is then calculated as:

vijt = vmax − (a1
i + a2

i + a3
ijt)− εij. (9)

We assume that all three attributes can be normalized into values between 0 and 1, i.e.,

a1
i , a

2
i , a

3
ijt ∈ [0,1], for all suppliers and requests, with 1 being the maximum “hassle” possible. The

first two components, a1
i and a2

i , are specific to a request ri and are categorized into three utility

levels: low, medium, and high. The low category is assigned the deduction value of 0, the medium

category the value of 0.5, and the high category the value of 1. The third component a3, which
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varies for each supplier, is the relative travel time and is calculated as the travel time from the

supplier’s origin to the order’s restaurant location, and then to the order’s destination. This travel

time is then normalized by dividing it by the maximum travel time possible for all restaurants, i.e.,

twice the maximum travel time over all restaurants from the restaurant’s location to the location

furthest away from the restaurant.

The unobservable attribute value εij for each request-supplier combination is assumed normally

distributed with a mean of zero and a standard deviation of σε (i.e., εij ∼ N(0, σε)). In our

experiments, we test three different values for σε, specified in the next subsection (see Table 1).

We note that the unobservable attribute can also increase the utility of a request. Given the four

attributes, we set vmax = 5 to ensure that the utility of a request is generally positive, even though

it might be below a supplier’s acceptance threshold.

A supplier’s true minimum acceptance threshold v0j is generated from a normal distribution

with a mean of μv0 and a standard deviation of σv0 , i.e., v0j = N(μv0 , σv0). Both values are varied

in our experiments as described in the next subsection. The mean μv0 represents the collective

level of pickiness of suppliers in the system: a high value for μv0 represents the platform has picky

suppliers, while a low value for μv0 represents the platform has agreeable suppliers. The values

used in our computational experiments were set relative to the generated request utility values,

with the low pickiness level being set at half the maximum observed utility value, and then for

medium and high increasing this value in steps of 0.75. The standard deviation σv0 establishes a

heterogeneity level among the suppliers: a low standard deviation value produces suppliers with

similar acceptance thresholds, while a higher standard deviation value yields greater disparity in

acceptance thresholds among the suppliers.

5.3. Design of Experiments

For our experiments, we capture a variety of exogenous factors summarized in Table 1, as well as

various probability approximation policies as summarized in Table 2. For each method-combination,

we conduct a full factorial experiment on the exogenous levels, resulting in 162 experiments with

different parameters. We run 20 replications, for a total of 3,240 instance realizations (days). In

the computational study section that follows, any statements made about a method’s performance

against another method are statistically significant with respect to a paired t-test with a statistical

significance level of 0.05.

6. Results and Managerial Insights

In this section, we present our results and managerial insights from our computational study.

We first compare the main goal of the platform, i.e., the objective function, which is to maximize

the number of successful matches over the day, and how this objective function value is influenced
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Factor Levels

unobservable attribute
std dev σε

1.5x0% (none)
1.5x10% (low)
1.5x20% (high)

supplier patience
tsmax (time steps)

5 (low)
10 (med)
30 (high)

supplier
heterogeneity σv0

0.1 (low)
0.3 (med)
0.5 (high)

supplier pickiness μv0

2.50 (low)
3.25 (med)
4.00 (high)

restaurant layout
centrally clustered

spread out
Table 1 Exogenous Factors and Levels for Design of Experiments

Factor Level

optimization
CB
OB

probability
approximation

N
M
E
R

A (only OB)
RA (only OB)
PI (only CB)

Table 2 Methods for Design of Experiments

with different exogenous factors. The section concludes with an analysis of the experiences of the

other two stakeholders, i.e., the requesting customers and the suppliers.

6.1. Changes to the Objective Function Values

First, we compare the average objective values of all policies over all instances in our design of

experiments. We calculate the average improvement in assignments of all the other policies against

the policy CB-N (which has the platform make offering decisions assuming all offers are accepted),

which is used as the baseline benchmark. The results are shown in Figure 4: the lighter the color, the

smaller the percentage difference, and conversely, the darker the color, the greater the percentage

difference. The method OB-RA is highlighted in red. First, we observe that explicitly incorporating

acceptance probabilities (OB) is superior to the respective constraint-based methods, regardless of

the approximation. Even the OB-method without any approximation, OB-N, improves upon the

baseline benchmark by 13%, which is better than any of the improvements using the constraint-

based policies. The superior performance of the objective-based approaches is independent of the

underlying distribution of restaurants as shown in Figure 5. This leads to our first main insight:
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Insight 1. Acknowledging that suppliers can reject offered requests and considering acceptance

probabilities are valuable for peer-to-peer transportation platforms. Providers should therefore

analyze supplier behavior carefully and develop assignment mechanisms that can integrate accep-

tance probabilities in their offering decision making process rather than capturing supplier rejection

criteria using hard constraints.

In peer-to-peer transportation settings, it is important for a platform to consider individual

supplier’s behaviors and to dynamically update their approximations. We find that an approach

that approximates behavior using an offline aggregate approach does poorly, see Figure 4, where

CB-M and OB-M do the worst, and significantly so, where OB-M, on average, makes 20% fewer

matches than even our benchmark approach that ignores supplier selection behavior. Further, when

all suppliers are initially unknown to the platform, moving from an offline, but still personalized

approach, OB-N, to an approach that dynamically updates acceptance probabilities based on sup-

pliers’ interactions with the platform, can increase the average improvement in number of accepted

offers by 6% when both acceptance and rejection decisions (RA) are used in the update process.

As shown in Figure 6, however, updating approximations is generally more valuable if suppliers

are more patient, because the number of observations per supplier tends to increase, leading to

an even better understanding of the individual suppliers. Updating approximations is particularly

important when suppliers are very picky, as detailed in Figure 7. In the case where every supplier

mostly accepts every request (low pickiness), the value of approximating is rather small with only

a 3% increase over a policy that ignores supplier behavior when making offering decisions. Yet, in

situations when every supplier is unwilling to accept all requests, even at medium pickiness levels,

the average improvement is 21%. If suppliers are as a whole very picky, the average improvement

goes up to 60%.

Another aspect of supplier behavior is their predictability by the platform, which we model via

the two types of attributes in the utility model (i.e., observable and unobservable). With increasing

impact of the unobservable attribute, the platform has a more challenging time understanding the

suppliers. This is illustrated in Figure 8, which shows the value of our method for different levels

of the unobservable attribute. In the case of no unobservable attributes (“none”), the platform can

approximate suppliers’ preferences relatively easily based on their previous interactions with the

platform, and our method performs very well. It nearly matches the performance of the perfect

information policy which has full knowledge of actual utility values and thresholds. In contrast,

when the unobservable attribute has a high impact, our method performs only as well as method

OB-E, which only excludes unsuccessful offers. In this very unpredictable setting, understanding

the suppliers’ decision with respect to the observable attributes becomes very difficult. Notably,
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Figure 4 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N

Figure 5 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N - Restaurant Breakdown

even in this very unpredictable setting, considering probabilities (OB) is still better than a platform

using constraints (CB).

In all the results, the value of approximating from rejections only (OB-R) is relatively close to

that of our main method (OB-RA), while approximating from acceptances only (OB-A) provides

less improvement compared to not approximating at all (OB-N). This may have two reasons. First,

it can be explained by the suppliers’ impatience. In the case of a rejection, the supplier is dissatisfied

with the platform’s offer and waits for an acceptable offer, but only for a limited time until the

supplier abandons the system. Thus, updating the supplier’s acceptance threshold to be higher

than currently thought is substantially more important compared to the case where the supplier

accepted the offer and therefore is satisfied with the platform’s service. Second, while the updates

for rejection and acceptance decisions both impact the approximated probability estimates, they

have a different impact. In case of OB-R, the updates refine the area of zero acceptance probability,

but does not define an area of certain acceptance. For OB-A, it is the opposite: a re-define of

the area of certain acceptance, but no area of certain rejection. Thus, OB-R only assigns requests

if there is positive probability and with increasing probability when the value increases. OB-A,

however, may assign requests even though the supplier rejected requests with much higher value.

These observations lead to our second main insight:

Insight 2. Understanding suppliers better and using this information to offer requests that

better balance the needs of the platform with suppliers’ preferences is important, especially when

suppliers are relatively picky or when they are more patient, even when they get offered unac-

ceptable requests. Thus, a platform may consider ways to increase the suppliers’ patience, e.g.,
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Figure 6 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N - Supplier Patience Breakdown

Figure 7 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N - Pickiness Breakdown

via a bonus program or by rewarding guaranteed availability during the day. While, ideally, the

platform should use both acceptance and rejection decisions for a better approximation, it is espe-

cially important to understand why a supplier was unhappy about an offered request and therefore

rejected it. This avoids adding to the corresponding supplier’s dissatisfaction with more unaccept-

able offers and, in the worst case, the supplier leaving the platform entirely.

The importance of fast and accurate approximation updates differs, depending on the suppliers’

general behavior. As previously discussed, the results in Figure 4 indicate that considering and

approximating acceptance probabilities is valuable compared to assuming every supplier accepts

every request. Interestingly, method CB-M, which assumes suppliers reject requests but every sup-

plier has the same threshold, performs substantially worse than CB-N. This is especially noteworthy

as this assumption is one of the most prominent approaches in the literature (e.g., Archetti et al.

2016, Arslan et al. 2019). One reason for this poor performance is assuming that all suppliers

are homogeneous, which leads to two problems. First, and most obvious, pickier suppliers may be

offered unacceptable requests. Second, and maybe more subtle, is that some suppliers are willing

to serve less attractive requests, but because the platform does not offer such requests to them, the

matches are not made. For both cases, acknowledging and understanding heterogeneity within the

set of suppliers is necessary. To further analyze this phenomenon, we differentiate the improvements

with respect to the suppliers’ heterogeneity, shown in Figure 9. We observe that with increasing

heterogeneity, the improvement of OB-RA increases even further from 17% (low heterogeneity) to

21% (high heterogeneity). This leads us to our third main insight:

Insight 3. Every supplier is different. Treating them equally not only leads to unhappy suppliers

leaving the system due to unacceptable offers, but also to missed assignment opportunities for more
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Figure 8 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N - Unobservable Attribute

Figure 9 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N - Supplier Heterogeneity

agreeable suppliers who are willing to serve less attractive requests. Platforms should therefore

consider their suppliers individually, understanding and utilizing their heterogeneous preferences.

This is especially important in cases where the supplier base is quite heterogeneous, e.g., if they

consist of rather “occasional” drivers only serving very convenient requests versus gig-workers who

rely on this for their main source of income and may have to serve a higher number of requests

offered to them.

6.2. Changes for the Requesting Customers

While our method increases the platform’s objective significantly, it also changes the experiences

for the requesting customers. Figure 10 shows the distribution of the average request match time,

i.e., the number of time steps a request stays in the system until getting assigned or leaving, across

supplier pickiness levels, for the baseline benchmark CB-N, the perfect information case PI, and

our method OB-RA. The time for requests to be matched is decreased in OB-RA compared to the

benchmark CB-N; thus, requests benefit from approaches that can dynamically update personalized

beliefs about suppliers acceptance preferences. This is true across supplier pickiness levels, but is

more pronounced when suppliers are pickier.With low pickiness, regardless of methods, offers are

usually accepted, and on average, in less than one time step, with OB-RA matching requests to

suppliers, on average, as quickly as the perfect information case and slightly faster than the CB-N

case. As suppliers become pickier, requests take longer to get matched, regardless of whether a

platform adopts approximating or not. Yet, when suppliers are pickier, approximating substantially

improves the time to match a request against not approximating by one time step or more. As each
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Figure 10 Distribution of Request Match Time in Time Steps

time step reflects five minutes in the process, this means that the requests are served significantly

faster. This leads to our fourth insight:

Insight 4. Platforms that understand suppliers better and consider uncertain and heteroge-

neous supplier behavior in their offer decisions make more successful matches (and thus more

revenue), but also operate systems with better and faster service for the requesting customers. This

is critical for on-demand transportation services with instant gratification and especially for meal

delivery, where only minutes can lie between fresh and soggy food.

6.3. Changes for the Suppliers

In this section we explore the impact to suppliers. Figure 11 shows the distribution of the average

supplier match time in time steps, similarly to Figure 10. The two peaks in Figure 11 reflect the

two different restaurant location layouts. As shown in Figure 11, our method decreases the average

time a supplier waits for an acceptable offer, however, not as significantly as for the requests.

This is because of two interacting phenomena. On the one hand, with our method, we have more

probable matching decisions leading to faster matching. On the other hand, with our method,

we also have a better understanding of our suppliers, and so we also have more suppliers in the

system, and so given a limited number of requests in the system, suppliers might need to wait

longer for a match. This is why, when supplier pickiness is low, suppliers wait slightly longer with

our method compared to CB-N. With our method, fewer suppliers abandon the system due to

unacceptable offers. Thus, with more suppliers in the system and suppliers accepting most of the

offers, the relative assignment opportunities decrease. Yet, for cases with higher supplier pickiness,

the number of requests per supplier is still sufficient, and our method leads to faster assignments

for the suppliers. We summarize these observations in our fifth insight:
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Insight 5. Understanding suppliers better and making better offers can reduce the time

required to match a supplier successfully with an acceptable request. However, if suppliers are

willing to participate, a higher number of satisfied suppliers stay in the system looking for the

next offer. Thus, the platform should expect and plan to match the increase in suppliers by mak-

ing sure that enough requests are also generated to increase revenue even more while keeping the

participating suppliers happy.

Figure 11 Distribution of Supplier Match Time in Time Steps

Next, we explore the impact of the policies on the active number of suppliers in the system.

In Figure 12 we present the difference in the number of suppliers in the system over time when

OB-RA is used versus our benchmark CB-N. (The OB-AU information is explained in more detail

in Section 6.5). Our method has more suppliers available in every period. As we show in Figure

13, our method does not just keep more suppliers in the system, but also more picky suppliers in

the system, than compared to the CB-N benchmark. This ability to keep suppliers in the system

is one reason for the effectiveness of our approach.

Finally, we analyze how understanding suppliers impacts the number of assignments and the

utility across the set of different suppliers. Figure 14 depicts for suppliers with a specific acceptance

threshold, how many services they perform on average. This relationship is plotted across the three

pickiness levels and for three methods: the baseline benchmark CB-N, our method OB-RA, and

the upper bound PI. Notably, the pickiness levels is a reflection of the population of suppliers

as a whole, but the x-axis of these graphs show for a given suppliers with a specific threshold,

how many services they perform on average. As expected, for methods CB-N and OB-RA, very

picky suppliers usually service much fewer requests (over 10 fewer requests) than more agreeable

suppliers, especially if the population of suppliers are relatively picky. However, in the perfect
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Figure 12 Difference in Number of Suppliers Present Per Period Between OB-RA and CB-N, and Between OB-

AU and CB-N.

Figure 13 Average Thresholds of Suppliers Present Per Period for OB-AU, OB-RA, and CB-N

information case, we see that more picky suppliers actually serve more requests than less picky

ones. This (at first glance) counterintuitive phenomenon can be explained by the relation between

utility values and travel time required for service. With increasing travel time, the utility of a

request decreases. Thus, such a request is likely rejected by the pickiest suppliers. Given perfect
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Figure 14 Relationship Between the Average Number Of Requests Serviced Per Supplier and Supplier Accep-

tance Thresholds

information, the platform offers the high utility requests with short travel times to the very picky

suppliers, while the less picky ones are assigned the requests requiring longer travel. This leads to

picky suppliers reappearing in the system earlier to get their next offer, while less picky suppliers

travel longer and therefore serve fewer requests per day, even though (or because) they accept all

requests offered.

While a similar tendency can be observed with our method, in general, the more agreeable a

supplier is, the more requests they will be assigned, which one would consider as fair. However, even

with our method, the offered requests have relatively lower average utility values, as our method

can differentiate between less and more picky suppliers. Thus, although less picky suppliers serve

more requests, the total utility per day (i.e., the sum of the utilities of all the orders serviced by

a supplier in a day) may actually be smaller for them. Indeed, as Figure 15 shows, our method

does not always improve the sum of utility across the day for all suppliers. In the low pickiness

case, all suppliers achieve higher utility values regardless of their thresholds. But with medium

and high average pickiness, the average utility for rather agreeable suppliers decreases compared

to method CB-N. Furthermore, at least for the instances with medium average pickiness, there is

a sweet spot of pickiness where suppliers actually gain more utility when accepting fewer offers

(again, in the perfect information case, this phenomenon is even more distinct). This observation

is in line with work on ride-sharing where more experienced and selective suppliers benefit, and

new and agreeable suppliers work more while earning less (Cook et al. 2021). This leads us to this

major insight:

Insight 6. Understanding suppliers and considering their individual preferences may increase

platform revenue and service level for requests. However, it also comes with the risk of systematic

unfairness to the suppliers. Platforms may identify and exploit agreeable suppliers while rewarding
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Figure 15 Relationship Between the Average Total Utility of Assignments and Supplier Acceptance Thresholds

very selective ones. At the same time, it might be of interest for suppliers to “game” the system by

not accepting all offered requests initially, even though they might be acceptable. Such strategic

behavior by suppliers could pay off in higher total utility values in the long run.

We also observe that the effects of the number of requests a given supplier will serve as well

as their total utilities are a function of the population of suppliers. For example, consider a given

supplier that is less picky (e.g., with a threshold of 2). If we compare the y-axis of Figures 14 and

15 across the pickiness levels, applying OB-RA with a population of low picky suppliers overall,

the suppliers with threshold of 2 perform fewer number of services and achieve lower total utilities,

than when the population of suppliers have high pickiness. The reason is that given a population

of suppliers with low pickiness, we have many suppliers with thresholds of two or below. Thus,

even though the platform serves overall more requests, they are distributed over more low picky

suppliers. In the case of high population pickiness, we have very few suppliers with threshold around

2. Given that everyone else is rather picky, these specific low-picky suppliers get assigned relatively

more requests and better requests.

6.4. Robustness of Results with a Different Supplier Choice Model

In our main experiments, we use a simple approximation technique to model suppliers’ selection

behaviors that assumes suppliers’ probability of accepting a request is a linear relationship with

its observable utility value. This assumption allows for a direct update of the probability function

when observing rejections or acceptances. However, in some cases, suppliers may follow a differ-

ent choice model then we assumed in our method and experiments. In this section we test the

robustness of our results when the suppliers’ acceptance behavior does not follow such a simple

linear relationship, but instead suppliers’ acceptance behavior is captured using a common dis-

crete choice model. Specifically, in this section we conduct additional computational experiments
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Figure 16 Heat Map of % Increase of Number of Assignments for Methods Compared to CB-N - Supplier Choice

Model Breakdown

assuming the suppliers use a widely accepted choice model, the Multinomial Logit Model (MNL)

model, to choose between the offered request and the no-choice option. We test the same methods

as before for the new, different setting.

Figure 16 provides the percent increase in number of assignments, comparing when the suppliers

follow the MNL model (i.e., the vijt and v0jt are generated using a Gumbel distribution) rather

than our previously assumed results which generated vijt and v0jt using a normal distribution.

The results in Figure 16 are for the setting where σε is set at low, supplier patience at medium,

supplier heterogeneity at medium, supplier pickiness at medium, and a spread out restaurant layout.

The pattern of improvements compared to the base method CB-N remains the same for both

supplier acceptance models. Thus, our insights are robust even if the observed supplier acceptance

model is different than the one assumed in the approximation step. Further, the performance gap

compared to the perfect information case is similar for both supplier acceptance behaviors modeled.

We observe that the methods’ objective function values, which represents the number of served

customers, are actually slightly higher when suppliers’ acceptance behavior is captured as a MNL

model compared to a linear relationship. This is likely because of MNL’s Sigmoid shape of the

acceptance curve.

6.5. Multi-Period Anticipation

The main goal of our work is to analyze how supplier behavior can be approximated based on

their decisions and how this approximation changes decision making. To this end, we focus on

maximizing the expected number of assignments per period. In a multi-period context, this can be

seen as a myopic policy, maximizing the expected immediate reward. While such a policy allows

for a clear analysis of the value of behavior approximation, it does not account for developments
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Figure 17 Heat Map of % Increase of Number of Assignments for Methods Compared to CB-N

in future periods, particularly, the risk of suppliers leaving due to no or unsuccessful assignments.

Rather, it might be valuable to prioritize such suppliers in the assignment. To analyze the value

of such multi-period anticipation, we extend our myopic policy via a cost-function-approximation

(CFA, Powell 2022). Our CFA keeps the approximation process similar to our original policy but

artificially increases the approximated probabilities for suppliers already waiting a longer time for

a successful assignment. More specifically, for the instance setting with a supplier patience level of

10 time steps, if a supplier has been waiting less than 4 periods, the acceptance probabilities are

computed using Equation 4. For suppliers waiting 4 or 5 time steps, we set all probabilities to 0.8,

for 6 or 7 time steps to 1.0 and from 8 time steps on to 1.2. This ensures that suppliers always get

priority in the last time steps before they leave. We denote this method objective based policy with

anticipation of urgency (OB-AU). As seen in Figures 12 and 13, this policy keeps substantially

more suppliers in the system compared to OB-RA, also suppliers with relatively high thresholds.

This surplus of suppliers indeed leads to an improvement in solution quality over OR-BA of about

2%, shown in Figure 17 (Individual results can be found in the Appendix). The reason for the

relatively small improvement is again, that when keeping more suppliers in the system, the earning

opportunities per supplier are reduced. Thus, multi-period anticipation is valuable but companies

may need to ensure sufficient work for all suppliers.

7. Discussions and Future Research

In this work, we have shown that approximating, updating, and integrating supplier acceptance

behavior into a platform’s offering decisions is valuable for peer-to-peer transportation platforms

but also for customers and most suppliers. This work is the foundation of several avenues for future

work. Our work has shown that even simple approaches to approximating supplier behavior via
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probability functions on the operational level and updating the approximation over the course of

the day, is already very valuable. Future work could explore alternative approaches to estimating

and updating supplier choice probabilities, for example, by assuming suppliers make selections

between the request and their no-choice option using an established discrete choice model and

exploring how to update parameters in these choice models over time based on acceptance and

rejection feedback from suppliers. Future work may also investigate the impact of supplier-specific

approximations over more periods, not only for understanding their acceptance behavior, but also

other information, such as the times and areas a specific supplier likes to work. This becomes

particularly interesting when considering that suppliers may act strategically (Wang et al. 2023).

Our work has also shown that the approximation has to be made fast as suppliers may leave the

system. Here, future work may create methods that increase the chance of supplier acceptance and

provide new needs for methods that can balance better approximations with additional operational

decisions, for example, by changing the amount paid to suppliers (Çınar et al. 2023, Hu et al. 2024),

or by offering menus to the suppliers to choose from (Ausseil et al. 2022). Such menus should then

carefully balance requests that are likely to be accepted with more “risky” requests to explore the

supplier behavior in more detail.

We have shown that approximation is particularly valuable when the utility values of suppliers

are relatively clear to the platform. However, as the unobservable attributes contribute more to the

supplier’s utility values, the more difficult the approximation becomes. Thus, another interesting

area of future research is to better understand and model the utility attributes of suppliers. Our

research has focused on the three main attributes suggested in Castillo et al. (2022): travel time,

location of the restaurant, and tipping amount. However, there may be several additional attributes

adding value to the approximation, for example, the area a supplier is most familiar with (Auad

et al. 2023) or how long the supplier has interacted with the platform already. Future research could

create approximation approaches that explicitly capture such temporally and/or spatially varying

supplier acceptance behaviors. We have also seen that approximating supplier behavior may lead

to unfair distribution of offered requests. This may also affect the longer-term participation of

new or agreeable suppliers. Therefore, companies may consider developing methods that increase

equitability across offers made to suppliers, or offer guaranteed minimum compensation per hour

Alnaggar et al. (2024) as well as bonus programs for “committed” suppliers, who accept all or at

least most of the offered requests (Behrendt et al. 2022). Our work may be the starting point for

considering pricing schemes, e.g., by increasing compensation for an offer if the observable utility

is below a supplier’s threshold (or by decreasing the compensation if the utility is way above the

threshold). Our research has shown that with better approximation of supplier behavior, more

suppliers stay in the system, waiting for more offers. Pricing may therefore not only be a tool for
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increasing supplier participation but also for increasing the number of requests (e.g. via vouchers)

and, consequently, keeping the platform’s two sides more balanced, and the suppliers happy. Finally,

while we focused on crowdsourced peer-to-peer transportation, uncertainty in supplier (or company

driver) behavior is also present in other areas, e.g., when delivery drivers take their break or where

they route and park their vehicles, how comfortable they are when routing certain areas, etc.

Future work could also extend to other workforce scheduling problems in which even company

employees may choose between different workshifts or tasks and this decision making behavior is

uncertain to the scheduler, e.g., traveling nurses. Future work addressing salient features of these

kinds of problems may build on our model and methodology, as well as the insights derived from

the experiments.
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Appendix: Additional results for policy OB-AU

In this section, we present the individual results of the policy OB-AU for different pickiness

levels, restaurant distributions, noise, and supplier heterogeneity.

Figure 18 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N - Pickiness Breakdown

Figure 19 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N - Restaurant Breakdown

Figure 20 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N - Unobservable Attribute

Figure 21 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N - Supplier Heterogeneity
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Figure 2 A Process Diagram of the Iterative Solution Method. A green box means it is a platform decision, and

a blue oval means it is a supplier decision.

i.e., acceptance probability functions. This process continues in an iterative fashion, with these

functions being then used as inputs to the subsequent optimization step in the next time step, in

which new suppliers and requests may appear.

Designing effective methodologies for both steps is challenging. In the offering optimization,

instant and holistic considerations of suppliers and requests are required, while taking into account

that a one-to-one match is needed, as well as the state details and the individual attributes of each

request and individual (approximated) preferences of each supplier. In the probability approxi-

mation, the platform observes preferences only indirectly via a supplier’s rejection or acceptance

decision. Furthermore, the approximation is complicated by the unobservable utility component.

We address these challenges as follows:

Optimization: We focus on how to make offering decisions that optimizes the expected number

of successful matches, i.e., the expected reward of the decision. This rather short-term objective

was selected for two reasons. First, as suppliers and requests only stay in the system for a very

limited time, exploratory learning reduces the small number of offering opportunities even further,

a phenomenon also observed in other domains with participant disengagement (Bastani et al. 2022).

Because of supplier and request impatience that leads to disengagement, not offering anything to a

supplier now in the hope for better, future assignment opportunities is also not warranted. Second,

longer-term anticipation is difficult in crowdsourced transportation problems due to the manifold

and disruptive uncertainties of the problem (Ausseil et al. 2022).

Approximation: We deploy a simple approximation method that allows for a straight forward

way to transform suppliers’ acceptance and rejection responses into the platform’s updated belief

state. This approach requires the platform to estimate for each supplier, only two threshold values,

an upper border value and a lower border value. After acceptance and rejection decisions are

observed for each supplier, the platform updates its belief about a suppliers’ acceptance threshold

by narrowing the gap between the upper and lower border values. A rejection of a request may
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Figure 3 Update of Probability Function For Supplier sj Via a Parameter-Based Approximation

This is done via function UpdateUpperThresh(v̂ijt, v0jt) in Algorithm 1. We note that because

v̂ijt ≥ v0jt and v̂ijt ≤ v0jt, it is easy to show that there is monotonicity in values v0jt and v0jt over the

time steps t. Thus, over time, the difference between v0jt and v0jt decreases, and the approximation

becomes tighter. Further, in the special case that the exact utility values are known (thus, there

is no unobservable attribute εij), we can fully trust our observations and update aggressively by

setting ρ = 1. Else, we set ρ = 0.5 based on preliminary tests. In the very rare case when the

estimated lower border threshold is updated and becomes greater than the estimated upper border

threshold, the estimated upper border threshold is reset to its initial value.

4.3. Alternative Approaches

As the objective of this work is to analyze the impact of a platform approximating and incorpo-

rating individual suppliers acceptance behavior into the order dispatching process, in this section

we present alternative approaches that combine different optimizations and probability approxi-

mations, and a perfect information policy. Notably, these alternative approaches vary in specific

aspects, which allow us in Section 6 to provide a number of managerial insights.

4.3.1. Constraint-Based Optimization. This alternative policy is used to quantify the

impact of capturing supplier acceptances as a hard or soft constraint, which was a recommended

future research direction in Alnaggar et al. (2021)’s recent survey. This alternative approach
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Figure 4 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N

Figure 5 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N - Restaurant Breakdown

even in this very unpredictable setting, considering probabilities (OB) is still better than a platform

using constraints (CB).

In all the results, the value of approximating from rejections only (OB-R) is relatively close to

that of our main method (OB-RA), while approximating from acceptances only (OB-A) provides

less improvement compared to not approximating at all (OB-N). This may have two reasons. First,

it can be explained by the suppliers’ impatience. In the case of a rejection, the supplier is dissatisfied

with the platform’s offer and waits for an acceptable offer, but only for a limited time until the

supplier abandons the system. Thus, updating the supplier’s acceptance threshold to be higher

than currently thought is substantially more important compared to the case where the supplier

accepted the offer and therefore is satisfied with the platform’s service. Second, while the updates

for rejection and acceptance decisions both impact the approximated probability estimates, they

have a different impact. In case of OB-R, the updates refine the area of zero acceptance probability,

but does not define an area of certain acceptance. For OB-A, it is the opposite: a re-define of

the area of certain acceptance, but no area of certain rejection. Thus, OB-R only assigns requests

if there is positive probability and with increasing probability when the value increases. OB-A,

however, may assign requests even though the supplier rejected requests with much higher value.

These observations lead to our second main insight:

Insight 2. Understanding suppliers better and using this information to offer requests that

better balance the needs of the platform with suppliers’ preferences is important, especially when

suppliers are relatively picky or when they are more patient, even when they get offered unac-

ceptable requests. Thus, a platform may consider ways to increase the suppliers’ patience, e.g.,
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Figure 6 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N - Supplier Patience Breakdown

Figure 7 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N - Pickiness Breakdown

via a bonus program or by rewarding guaranteed availability during the day. While, ideally, the

platform should use both acceptance and rejection decisions for a better approximation, it is espe-

cially important to understand why a supplier was unhappy about an offered request and therefore

rejected it. This avoids adding to the corresponding supplier’s dissatisfaction with more unaccept-

able offers and, in the worst case, the supplier leaving the platform entirely.

The importance of fast and accurate approximation updates differs, depending on the suppliers’

general behavior. As previously discussed, the results in Figure 4 indicate that considering and

approximating acceptance probabilities is valuable compared to assuming every supplier accepts

every request. Interestingly, method CB-M, which assumes suppliers reject requests but every sup-

plier has the same threshold, performs substantially worse than CB-N. This is especially noteworthy

as this assumption is one of the most prominent approaches in the literature (e.g., Archetti et al.

2016, Arslan et al. 2019). One reason for this poor performance is assuming that all suppliers

are homogeneous, which leads to two problems. First, and most obvious, pickier suppliers may be

offered unacceptable requests. Second, and maybe more subtle, is that some suppliers are willing

to serve less attractive requests, but because the platform does not offer such requests to them, the

matches are not made. For both cases, acknowledging and understanding heterogeneity within the

set of suppliers is necessary. To further analyze this phenomenon, we differentiate the improvements

with respect to the suppliers’ heterogeneity, shown in Figure 9. We observe that with increasing

heterogeneity, the improvement of OB-RA increases even further from 17% (low heterogeneity) to

21% (high heterogeneity). This leads us to our third main insight:

Insight 3. Every supplier is different. Treating them equally not only leads to unhappy suppliers

leaving the system due to unacceptable offers, but also to missed assignment opportunities for more
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Figure 8 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N - Unobservable Attribute

Figure 9 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N - Supplier Heterogeneity

agreeable suppliers who are willing to serve less attractive requests. Platforms should therefore

consider their suppliers individually, understanding and utilizing their heterogeneous preferences.

This is especially important in cases where the supplier base is quite heterogeneous, e.g., if they

consist of rather “occasional” drivers only serving very convenient requests versus gig-workers who

rely on this for their main source of income and may have to serve a higher number of requests

offered to them.

6.2. Changes for the Requesting Customers

While our method increases the platform’s objective significantly, it also changes the experiences

for the requesting customers. Figure 10 shows the distribution of the average request match time,

i.e., the number of time steps a request stays in the system until getting assigned or leaving, across

supplier pickiness levels, for the baseline benchmark CB-N, the perfect information case PI, and

our method OB-RA. The time for requests to be matched is decreased in OB-RA compared to the

benchmark CB-N; thus, requests benefit from approaches that can dynamically update personalized

beliefs about suppliers acceptance preferences. This is true across supplier pickiness levels, but is

more pronounced when suppliers are pickier.With low pickiness, regardless of methods, offers are

usually accepted, and on average, in less than one time step, with OB-RA matching requests to

suppliers, on average, as quickly as the perfect information case and slightly faster than the CB-N

case. As suppliers become pickier, requests take longer to get matched, regardless of whether a

platform adopts approximating or not. Yet, when suppliers are pickier, approximating substantially

improves the time to match a request against not approximating by one time step or more. As each
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Figure 10 Distribution of Request Match Time in Time Steps

time step reflects five minutes in the process, this means that the requests are served significantly

faster. This leads to our fourth insight:

Insight 4. Platforms that understand suppliers better and consider uncertain and heteroge-

neous supplier behavior in their offer decisions make more successful matches (and thus more

revenue), but also operate systems with better and faster service for the requesting customers. This

is critical for on-demand transportation services with instant gratification and especially for meal

delivery, where only minutes can lie between fresh and soggy food.

6.3. Changes for the Suppliers

In this section we explore the impact to suppliers. Figure 11 shows the distribution of the average

supplier match time in time steps, similarly to Figure 10. The two peaks in Figure 11 reflect the

two different restaurant location layouts. As shown in Figure 11, our method decreases the average

time a supplier waits for an acceptable offer, however, not as significantly as for the requests.

This is because of two interacting phenomena. On the one hand, with our method, we have more

probable matching decisions leading to faster matching. On the other hand, with our method,

we also have a better understanding of our suppliers, and so we also have more suppliers in the

system, and so given a limited number of requests in the system, suppliers might need to wait

longer for a match. This is why, when supplier pickiness is low, suppliers wait slightly longer with

our method compared to CB-N. With our method, fewer suppliers abandon the system due to

unacceptable offers. Thus, with more suppliers in the system and suppliers accepting most of the

offers, the relative assignment opportunities decrease. Yet, for cases with higher supplier pickiness,

the number of requests per supplier is still sufficient, and our method leads to faster assignments

for the suppliers. We summarize these observations in our fifth insight:
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Insight 5. Understanding suppliers better and making better offers can reduce the time

required to match a supplier successfully with an acceptable request. However, if suppliers are

willing to participate, a higher number of satisfied suppliers stay in the system looking for the

next offer. Thus, the platform should expect and plan to match the increase in suppliers by mak-

ing sure that enough requests are also generated to increase revenue even more while keeping the

participating suppliers happy.

Figure 11 Distribution of Supplier Match Time in Time Steps

Next, we explore the impact of the policies on the active number of suppliers in the system.

In Figure 12 we present the difference in the number of suppliers in the system over time when

OB-RA is used versus our benchmark CB-N. (The OB-AU information is explained in more detail

in Section 6.5). Our method has more suppliers available in every period. As we show in Figure

13, our method does not just keep more suppliers in the system, but also more picky suppliers in

the system, than compared to the CB-N benchmark. This ability to keep suppliers in the system

is one reason for the effectiveness of our approach.

Finally, we analyze how understanding suppliers impacts the number of assignments and the

utility across the set of different suppliers. Figure 14 depicts for suppliers with a specific acceptance

threshold, how many services they perform on average. This relationship is plotted across the three

pickiness levels and for three methods: the baseline benchmark CB-N, our method OB-RA, and

the upper bound PI. Notably, the pickiness levels is a reflection of the population of suppliers

as a whole, but the x-axis of these graphs show for a given suppliers with a specific threshold,

how many services they perform on average. As expected, for methods CB-N and OB-RA, very

picky suppliers usually service much fewer requests (over 10 fewer requests) than more agreeable

suppliers, especially if the population of suppliers are relatively picky. However, in the perfect
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Figure 12 Difference in Number of Suppliers Present Per Period Between OB-RA and CB-N, and Between OB-

AU and CB-N.

Figure 13 Average Thresholds of Suppliers Present Per Period for OB-AU, OB-RA, and CB-N

information case, we see that more picky suppliers actually serve more requests than less picky

ones. This (at first glance) counterintuitive phenomenon can be explained by the relation between

utility values and travel time required for service. With increasing travel time, the utility of a

request decreases. Thus, such a request is likely rejected by the pickiest suppliers. Given perfect
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Figure 14 Relationship Between the Average Number Of Requests Serviced Per Supplier and Supplier Accep-

tance Thresholds

information, the platform offers the high utility requests with short travel times to the very picky

suppliers, while the less picky ones are assigned the requests requiring longer travel. This leads to

picky suppliers reappearing in the system earlier to get their next offer, while less picky suppliers

travel longer and therefore serve fewer requests per day, even though (or because) they accept all

requests offered.

While a similar tendency can be observed with our method, in general, the more agreeable a

supplier is, the more requests they will be assigned, which one would consider as fair. However, even

with our method, the offered requests have relatively lower average utility values, as our method

can differentiate between less and more picky suppliers. Thus, although less picky suppliers serve

more requests, the total utility per day (i.e., the sum of the utilities of all the orders serviced by

a supplier in a day) may actually be smaller for them. Indeed, as Figure 15 shows, our method

does not always improve the sum of utility across the day for all suppliers. In the low pickiness

case, all suppliers achieve higher utility values regardless of their thresholds. But with medium

and high average pickiness, the average utility for rather agreeable suppliers decreases compared

to method CB-N. Furthermore, at least for the instances with medium average pickiness, there is

a sweet spot of pickiness where suppliers actually gain more utility when accepting fewer offers

(again, in the perfect information case, this phenomenon is even more distinct). This observation

is in line with work on ride-sharing where more experienced and selective suppliers benefit, and

new and agreeable suppliers work more while earning less (Cook et al. 2021). This leads us to this

major insight:

Insight 6. Understanding suppliers and considering their individual preferences may increase

platform revenue and service level for requests. However, it also comes with the risk of systematic

unfairness to the suppliers. Platforms may identify and exploit agreeable suppliers while rewarding
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Figure 15 Relationship Between the Average Total Utility of Assignments and Supplier Acceptance Thresholds

very selective ones. At the same time, it might be of interest for suppliers to “game” the system by

not accepting all offered requests initially, even though they might be acceptable. Such strategic

behavior by suppliers could pay off in higher total utility values in the long run.

We also observe that the effects of the number of requests a given supplier will serve as well

as their total utilities are a function of the population of suppliers. For example, consider a given

supplier that is less picky (e.g., with a threshold of 2). If we compare the y-axis of Figures 14 and

15 across the pickiness levels, applying OB-RA with a population of low picky suppliers overall,

the suppliers with threshold of 2 perform fewer number of services and achieve lower total utilities,

than when the population of suppliers have high pickiness. The reason is that given a population

of suppliers with low pickiness, we have many suppliers with thresholds of two or below. Thus,

even though the platform serves overall more requests, they are distributed over more low picky

suppliers. In the case of high population pickiness, we have very few suppliers with threshold around

2. Given that everyone else is rather picky, these specific low-picky suppliers get assigned relatively

more requests and better requests.

6.4. Robustness of Results with a Different Supplier Choice Model

In our main experiments, we use a simple approximation technique to model suppliers’ selection

behaviors that assumes suppliers’ probability of accepting a request is a linear relationship with

its observable utility value. This assumption allows for a direct update of the probability function

when observing rejections or acceptances. However, in some cases, suppliers may follow a differ-

ent choice model then we assumed in our method and experiments. In this section we test the

robustness of our results when the suppliers’ acceptance behavior does not follow such a simple

linear relationship, but instead suppliers’ acceptance behavior is captured using a common dis-

crete choice model. Specifically, in this section we conduct additional computational experiments
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Figure 16 Heat Map of % Increase of Number of Assignments for Methods Compared to CB-N - Supplier Choice

Model Breakdown

assuming the suppliers use a widely accepted choice model, the Multinomial Logit Model (MNL)

model, to choose between the offered request and the no-choice option. We test the same methods

as before for the new, different setting.

Figure 16 provides the percent increase in number of assignments, comparing when the suppliers

follow the MNL model (i.e., the vijt and v0jt are generated using a Gumbel distribution) rather

than our previously assumed results which generated vijt and v0jt using a normal distribution.

The results in Figure 16 are for the setting where σε is set at low, supplier patience at medium,

supplier heterogeneity at medium, supplier pickiness at medium, and a spread out restaurant layout.

The pattern of improvements compared to the base method CB-N remains the same for both

supplier acceptance models. Thus, our insights are robust even if the observed supplier acceptance

model is different than the one assumed in the approximation step. Further, the performance gap

compared to the perfect information case is similar for both supplier acceptance behaviors modeled.

We observe that the methods’ objective function values, which represents the number of served

customers, are actually slightly higher when suppliers’ acceptance behavior is captured as a MNL

model compared to a linear relationship. This is likely because of MNL’s Sigmoid shape of the

acceptance curve.

6.5. Multi-Period Anticipation

The main goal of our work is to analyze how supplier behavior can be approximated based on

their decisions and how this approximation changes decision making. To this end, we focus on

maximizing the expected number of assignments per period. In a multi-period context, this can be

seen as a myopic policy, maximizing the expected immediate reward. While such a policy allows

for a clear analysis of the value of behavior approximation, it does not account for developments
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Figure 17 Heat Map of % Increase of Number of Assignments for Methods Compared to CB-N

in future periods, particularly, the risk of suppliers leaving due to no or unsuccessful assignments.

Rather, it might be valuable to prioritize such suppliers in the assignment. To analyze the value

of such multi-period anticipation, we extend our myopic policy via a cost-function-approximation

(CFA, Powell 2022). Our CFA keeps the approximation process similar to our original policy but

artificially increases the approximated probabilities for suppliers already waiting a longer time for

a successful assignment. More specifically, for the instance setting with a supplier patience level of

10 time steps, if a supplier has been waiting less than 4 periods, the acceptance probabilities are

computed using Equation 4. For suppliers waiting 4 or 5 time steps, we set all probabilities to 0.8,

for 6 or 7 time steps to 1.0 and from 8 time steps on to 1.2. This ensures that suppliers always get

priority in the last time steps before they leave. We denote this method objective based policy with

anticipation of urgency (OB-AU). As seen in Figures 12 and 13, this policy keeps substantially

more suppliers in the system compared to OB-RA, also suppliers with relatively high thresholds.

This surplus of suppliers indeed leads to an improvement in solution quality over OR-BA of about

2%, shown in Figure 17 (Individual results can be found in the Appendix). The reason for the

relatively small improvement is again, that when keeping more suppliers in the system, the earning

opportunities per supplier are reduced. Thus, multi-period anticipation is valuable but companies

may need to ensure sufficient work for all suppliers.

7. Discussions and Future Research

In this work, we have shown that approximating, updating, and integrating supplier acceptance

behavior into a platform’s offering decisions is valuable for peer-to-peer transportation platforms

but also for customers and most suppliers. This work is the foundation of several avenues for future

work. Our work has shown that even simple approaches to approximating supplier behavior via
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Appendix: Additional results for policy OB-AU

In this section, we present the individual results of the policy OB-AU for different pickiness

levels, restaurant distributions, noise, and supplier heterogeneity.

Figure 18 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N - Pickiness Breakdown

Figure 19 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N - Restaurant Breakdown

Figure 20 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N - Unobservable Attribute

Figure 21 Heat Map of % Increase of Number of

Assignments for Methods Compared to

CB-N - Supplier Heterogeneity


