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Abstract

Two-dimensional, 2D, niobium carbide MXene, Nb,CT,, has attracted attention due to its
extraordinarily high photothermal conversion efficiency that has applications ranging from
medicine, for tumor ablation, to solar energy conversion. Here, we characterize its electronic
properties and investigate the ultrafast dynamics of its photoexcitations with a goal of shedding
light onto the origins of its unique properties. Through density functional theory, DFT,
calculations, we find that Nb,CT, is metallic, with a small but finite DOS at the Fermi level for all
experimentally relevant terminations that can be achieved using HF or molten salt etching of the
parent MAX phase, including —OH, —O, —F, —Cl, —Br, —I. In agreement with this prediction, THz
spectroscopy reveals an intrinsic long-range conductivity of ~60 Q! cm™!, with significant
charge carrier localization and a charge carrier density (~10°° cm™?) comparable to Mo-based
MZXenes. Excitation with 800 nm pulses results in a rapid enhancement in photoconductivity,
which decays to less than 25% of its peak value within several picoseconds, underlying efficient
photothermal conversion. At the same time, a small fraction of photoinjected excess carriers
persists for hundreds of picoseconds, and can potentially be utilized in photocatalysis or other

energy conversion applications.

1. Introduction

Discovered in 2011, MXenes are a class of two-
dimensional, 2D, transition metal carbides, nitrides,
and carbonitrides. These materials share the general
chemical formula M, X, T,, where M is an early
transition metal, X is carbon or nitrogen, n takes on
a value from 1-4, and T, stands for the surface ter-
minations, such as -OH, —O, or —F. The latter form
when the A-layer, typically Al is selectively etched
away from their parent MAX-phases [1]. Several dif-
ferent MXene materials have displayed exceptional
properties, including high conductivity, record high
volumetric capacitances, nonlinear optical effects,
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and efficient photothermal conversion, suggesting the
potential for applications in electromagnetic interfer-
ence shielding [2—4], energy storage [5—13], optoelec-
tronic and photonic devices [14-20], electrochem-
ical sensors [21, 22], and even photothermal cancer
treatments [23-27].

A member of MXene family, niobium carbide,
Nb,CT,, was discovered in 2013, [8] and has
since been drawing attention for its high photo-
thermal conversion efficiency [23, 24, 28, 29], good
biocompatibility [23], high reversible capacity (when
integrated into battery anodes or electrodes) [8, 9,
11, 13], and nonlinear optical properties [19, 20,
30], rendering this MXene potentially attractive for
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applications in photothermal cancer therapy, anti-
bacterial sterilization, batteries, and optoelectronic
and photonic devices. Despite numerous experi-
mental and computational studies, the electronic
properties of Nb,CT, with different surface termina-
tions, the nature of conductivity and the behavior of
photoexcitations in this MXene are not well described
or characterized. For instance, unlike the highly con-
ductive Ti3C2Tx, TizCTx, or VzCTX [18, 31], Nb-
based MXenes such as Nb,CT, and Nb,C3T, have
been reported to have low intrinsic electrical conduct-
ivities, raising the question of whether these MXenes
possess a metallic or semiconducting nature [32]. In
our recent work, we demonstrated that Nb,CT, with
mixed O and OH terminations exhibits a surface
plasmon resonance despite having a low intrinsic free
carrier density, pointing to its metallic nature [33].
In this study, we investigate the electrical and
optical properties of Nb,CT, by combining Density
Functional Theory (DFT) calculations of its elec-
tronic structure, as a function of surface terminations,
with experimental measurements of intrinsic and
photoexcited conductivities using terahertz (THz)
spectroscopy. Recent DFT studies uncovered that
the surface terminations, T,, play a defining role in
determining whether or not a small gap opens in
the band structure of Nb-based MXenes [34, 35].
Here, we model Nb,CT, with a number of surface
terminations. We study Nb,CT, with hydroxyl, oxy-
gen, or a combination of these terminations that
occur when it is fabricated by HF etch of the par-
ent Nb,AIC MAX phase followed by delamination in
a NaOH, TMAOH or TBAOH solution [8, 36, 37]
which matches the film we use for experiments. In
addition, we investigate Ty = N, which has previ-
ously been predicted to result in opening of a band
gap [34], as well as halogen terminations that result
from etching of MAX phase using molten salts [38—
42]. We find that Nb,CT, is metallic for all surface
terminations with the exception of nitrogen. In agree-
ment with this, THz-TDS shows that Nb,CT, sheets
have an intrinsic free carrier density on the order
of 10% cm~3 and considerable intra-sheet carrier
mobility of ~30 cm? V~! s~!, comparable to other
MZXenes [31, 43-45]. Long-range transport in mac-
roscopic films is limited by nanosheet boundaries that
suppress the inter-sheet mobility more than ten-fold
to 2.4 £ 0.4 cm? V~! s~!. Finally, we find that pho-
toexcitation transiently enhances Nb,CT), conductiv-
ity, as has been reported in other metallic MXenes
with intrinsic carrier densities ~102° cm ™2 or below,
such as Mo,Ti,C3Ty, Mo,TiC,T, or NbyCsTy, and
in contrast to MXenes with high carrier densities
>10%! cm ™3, such as Ti;C,T,, where conductivity is
suppressed as rapid lattice heating results in lower
carrier mobility [31, 32, 43-45]. We find that most
of the optically injected carriers recombine and are
trapped at the defect states within one picosecond
after excitation, while a small fraction persists for
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tens and hundreds of picoseconds. Thus, ultrashort
photoexcited carrier lifetime may be utilized in high-
speed photoelectronic devices as another potential
application of this MXene.

2. Methods

2.1. Synthesis

2.1.1. MAX phase synthesis

To synthesize the Nb, AlC phase, first, powders of Nb
(99.8% purity, 1-5 um), Al (99.5% purity, < 44 pm,
—325 mesh), and C (99% purity, < 48 pum, —300
mesh), all acquired from Alfa Aesar, were mixed in a
2:1.1:1 molar ratio in a polyethylene jar with zirconia
milling balls, 5-20 mm in diameter. Excess Al com-
pensates for evaporation and aluminothermic reduc-
tion of native metal oxides. The mixed powders were
ball-milled (U.S Stoneware, OH, USA) for 24 h at
70 rpm and then transferred to an alumina, Al,O3,
boat, which was placed inside an Al,O; tube fur-
nace and heated under flowing argon, Ar, (flow rate
15 SCCM) to 1600 °C for 4 h at a heating rate of
3 °C /min. The resulting solid was then drilled into
a powder and sieved through a 400 mesh to obtain a
powder with a particle size of less than 38 ym.

2.1.2. MXene etching

Multilayered (ML) Nb,CTx flakes were obtained by
etching 1 g of Nb,AIC powder in 10 ml of HF solu-
tion (50 wt.%, Acros Organics, Morris Plains, USA)
and stirring (PC-420D, Corning, NY, USA) for 96 h at
55 °C and 400 rpm. The resulting slurry was decan-
ted into a 50 ml centrifuge tube, and deionized, DI,
water (18 MS2 cm, Milli-Q, Merck KgaA, Darmstadt,
Germany) was added to fill the remaining volume.
The centrifuge tube was then sealed and shaken for
60 s (Fisherbrand™ Analog Vortex Mixer, Hampton,
NH, USA), after which it was centrifuged at 3500 rpm
for 120 s (Sorvall ST 16, Thermo Fisher Scientific,
MA, USA). The supernatant was discarded, then DI
water was added, and washing was repeated until the
pH of the supernatant reached ~7. After washing,
the MXene-containing sediment was collected and air
dried.

2.1.3. MXene delamination

To delaminate the Nb,CTx MLs into single to few lay-
ers, ~0.2 g of the ML from the washing process was
dispersed in 2 ml of tetrabutylammonium hydroxide,
TBAOH, (40 wt.% in water, Alfa Aesar, MA, USA)
and shaken in for 15 min. The mixture was washed
twice with ethanol (200-proof, Fisher Scientific, NH,
USA), followed by a final DI water washing step. After
washing off excess TBAOH, the sediments were redis-
persed in fresh DI water, and the mixture was then
sonicated (Model 505 Sonic Dismembrator, 500 W,
Fisher Scientific, NH, USA) under bubbling Ar flow
for 1 h with 30 s/30 s on/off cycles at 75% amp-
litude. To avoid oxidation, the bath temperature was
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maintained below 20 °C using ice. The solution was
centrifuged for 1 h at 3500 rpm, the supernatant was
decanted into a fresh centrifuge tube, while the resid-
ual sediment containing any unetched MAX or non-
delaminated MXene was discarded.

2.1.4. MXene deposition

The resultant Nb,CT, colloid was deposited by a
gravity-feed, compressed-gas-propelled commercial
airbrush (Master Airbrush, G233) onto IR-grade
quartz to produce a thin film of Nb, CT,. Spray depos-
itions utilized ~0.25 ml of a 1:10 aqueous dilution
of the concentrated Nb,CT, colloid. Routine clean-
ing of the airbrush body and components utilized
dilute, aqueous glacial acetic acid (AcOH, 99.7%, Alfa
Aesar) was carried out as follows. Components in fre-
quent contact with Nb,CT, material including the
needles, fluid tips, and reservoir were sonicated in
the aqueous, dilute acetic acid and rinsed with copi-
ous amounts of water in between subsequent depos-
itions. This process results in a multilayer film con-
sisting of many individual nanoflakes with sub-um
lateral dimensions. In such films, the transport prop-
erties result from an interplay of short-range, intra-
flake carrier motion and long-range, inter-flake hop-
ping transport [32, 44]. Using a stylus profilometer,
we found the thickness of this MXene film to be
185 4= 11 nm.

2.2. Density functional theory (DFT)
All DFT calculations were performed using the
Vienna ab initio Simulation Package (VASP)
[46—49]. The generalized gradient approximation
exchange correlation functional by Perdew, Burke,
and Ernzerhof (PBE) [50] was utilized for our
calculations. Projector augmented wave (PAW)
pseudopotentials [51, 52] described the core electron
states. The cutoff energy for valence electron wave-
functions was set to 450 eV. The Brillouin zone was
sampled with a I'-centered mesh with 3 x 3 x 1 k-
points. During structure relaxation, calculation con-
vergence criteria for energies and forces were set to
1075 eV and 0.002 eV A ™!, respectively. The Gaussian
smearing method was used with a width of 0.25 eV,
which was chosen to optimize the smoothness of
density of states (DOS) curves. To further confirm
the metallic nature and or identify potential band gap,
DOS calculations were performed using the HSE06
exchange correlation functional [53] with a smearing
width of 0.05 eV (recommended by the VASP docu-
mentation for semiconductors). Since HSE06 calcu-
lations are so time-consuming, we used the PBE geo-
metries for the HSE06 calculations. Post-processing
extraction of DOS values and band structure from
VASP simulations was carried out using the VASPKIT
package [54].

We studied the electronic structure for 3 x 3
supercells of Nb,CT, MXenes with T = O, F, OH,
N, Cl, Br, or I. We modeled Nb,CT, MXenes with
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° - Termination

Figure 1. Top (left) and side (right) views of Nb,CT
MXenes modeled in this work. The hy configuration is
shown in (a), (b) and the hx configuration is shown in (c),
(d). Green spheres are Nb atoms, brown spheres are carbon,
and blue spheres are representative of terminations. The
diamond outline shown in the top view outlines a single
unit cell. Figures for all modeled structures are given in
supporting information, SI.

mixed OH/O terminations in a 1:1 ratio, and mixed
OH/F terminations in 1:1, 2:1 and 5:1 ratios. Previous
literature suggests that mixed terminations may be
randomly distributed and depend on the synthesis
method [55-57]. Accordingly, we modeled mixed ter-
mination MXenes also with random configurations,
and having symmetry between the top and bottom
surfaces maximized (see figure S5). MXenes gener-
ally have trigonal symmetry with terminations loc-
ated either in the hollow sites above metal atoms
(hm) as in figures 1(a) and (b), or in the hollow
sites above X (carbon or nitrogen) atoms (hx) as in
figures 1(c)and (d). Sample calculations for Nb,CF,,
and Nb,C(OH),, predict these structures to have
an energetic preference for the hy configuration,
which is consistent with the most stable configura-
tion predicted for Nb,CT, in other studies [58, 59].
Therefore, in this work all structures were modeled
with trigonal symmetry and the hy; termination con-
figuration. To avoid interlayer interactions, the cell
length along the z direction was set to 20 A.

2.3. Terahertz spectroscopy

The intrinsic conductivity of Nb,CT, in the 0.25-
2.5 THz range was investigated using THz time-
domain spectroscopy (THz-TDS) in transmission
mode [31, 44, 60-62]. THz-TDS is a non-contact, all-
optical technique that allows measurement of com-
plex, frequency-resolved conductivity. THz probe
pulses were generated in a 1 mm-thick ZnTe [100]
crystal upon photoexcitation with 800 nm, 100 fs
pulses from an amplified Ti: Sapphire laser. The
bandwidth of the generated THz pulses spans in the
1-10 meV range. Off-axis parabolic mirrors were
used to focus the THz pulses onto the ~ 1.5 mm
spot on the sample at normal incidence and to col-
lect transmitted THz pulses, directing them to the
detector. They were detected by another 1 mm-
thick [100] ZnTe crystal using electro-optic sampling.
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Analyzing the amplitude and phase of the THz pulse
through the substrate and sample in the frequency
domain yields the complex frequency-resolved con-
ductivity of the material [63, 64].

In addition, time-resolved THz spectroscopy
(TRTS) was used to study the effects of photoexcita-
tion with 800 nm (1.55 eV, 100 fs pulses [60, 65-68].
The optical excitation beam was directed on to the
sample through a 5 mm aperture in the parabolic mir-
ror that focused the THz probe pulse onto the sample.
A larger optical excitation spot size (=5 mm) ensured
uniform illumination of the entire THz probe pulse
spot on the MXene sample. A mechanical delay line
was used to control the arrival time of the THz probe
pulse relative to the optical excitation pulse.

3. Results and discussion

3.1. Density functional theory (DFT)

Earlier studies on Nb,CT, have reported a negli-
gibly low conductivity for this MXene, [18] leading to
the hypotheses that Nb-based MXenes may be semi-
conducting rather than metallic in nature. However,
observed plasmonic properties suggest the presence
of a nonzero, and measurable, concentration of free
charge carriers [33]. Accordingly, we used DFT to
model the electronic properties of Nb,CT, in order
to establish the nature of the conductivity of these
materials.

Initial band structure and DOS calculations, using
the PBE functional, revealed a metallic nature for bare
Nb,C, which is retained upon adsorption of O, F, OH,
Cl, Br, and I groups (see figure 2). Further DOS calcu-
lations using the HSE06 functional, which is known
to be more accurate than PBE for predicting con-
ductive nature, confirm that these MXenes are metals
(see SI for figures). Our results are in agreement with
literature [35, 58, 59, 69, 70]. Additionally, our simu-
lations of Nb,CT, with mixed OH/F and O/OH ter-
minations indicate that the metallic nature is also pre-
served when multiple termination types are present,
independent of their ratio (see SI for figures S6 and
S7).In the case of nitrogen, N, terminations, however,
Nb,CT, transitions to a semiconductor with a band
gap of 0.25 eV with PBE and 0.66 ¢V with HSE06,
which is in agreement with previous studies [34, 71,
72]. The band gap may be difficult to see in the DOS
due to the smearing applied to the DOS. However, the
band gap in Nb,CN; is evident from the band struc-
ture (figure 2), as well as examining the energy eigen-
values in the OUTCAR file.

Partial DOS, PDOS, curves for Nb,CT,, shown
in figure 2 and SI, reveal that the electronic states of
Nb atoms dominate the electronic structure near the
Fermi level, Eg, while the C, E, O, Cl, Br and H atoms
have much less contribution. This indicates that the
d-orbitals of Nb atoms are responsible for the metal-
lic nature of Nb,CT, with Cl, Br, O, E and/or OH
terminations. For Nb,CN,, however, Nb-N bonding
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produces a shift in the Ep such that a band gap is
opened. Nb,CI, has significant contributions from
both Nb and I atoms at E, indicating that this mater-
ial may have notably higher electrical conductivity as
compared to the other Nb,CT, MXenes considered
in this study. MXenes with Cl, Br, or I terminations
are rare, however, as they are typically synthesized
using molten salts [38—42]. Future studies may exam-
ine these materials in detail.

As previously reported for Nb,CT, synthesized
as described above, x-ray photoelectron spectroscopy
(XPS) shows that Nb,CT, has much more surface
oxides than Ti;C, T, or Mo, Ti,C5 Ty, and the only ter-
minations present are O and OH. No measurable F
was detected, probably due to the removal of fluorine
during TBAOH treatment [36]. Considering only the
MZXene-ascribable components, the XPS-determined
Nb:C ratio of 2:0.9 is in good agreement with the
expected 2:1 stoichiometric ratio. As noted above,
for the O and OH terminations, DFT unambiguously
predicts the metallic nature of Nb,CT,.

3.2. THz time-domain spectroscopy (THz-TDS)

Figure 3(a) shows the THz pulses transmitted
through the quartz substrate alone and through the
185 & 11 nm thick Nb,CT, film deposited on top
of the quartz substrate. The inset shows the amp-
litude spectra of the same THz pulses in the fre-
quency domain. The frequency-dependent, complex
conductivity of Nb,CT, can be calculated from the
amplitude and phase of the THz pulses that have been
transmitted through the sample on the quartz sub-
strate and through the quartz substrate alone using

Esatmple (w) _ n+1
Esubstrate (w) n+142Zyo (w) ’

1

where # is the refractive index of the quartz substrate
in the THz frequency range (~2.156, assumed here to
be constant as reported variation is <1% within the
0.25-2.5 THz range) [73], Z, is the impedance of free
space (377 €2), and Esamp|e (w) and Eqypsrate (w) are the
electric fields of the THz pulses transmitted through
the sample and substrate together and through the
substrate alone [31, 60, 74].

Figure 3(b) plots the real (o) and imaginary (o)
parts of this intrinsic conductivity as functions of
frequency. To model the complex conductivity, we
employ the Drude—Smith model, a modification of
the free carrier Drude conductivity that incorporates
the effects of carrier localization over distances com-
parable to their mean free path by the disorder and
grain boundaries or, in this case, the boundaries of
individual Nb,CT, nanosheets [44, 61, 75-77].

The Drude—Smith model for complex conductiv-
ity is given by
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Figure 2. Band structure and DOS plots for Nb,C (a), Nb,CO, (b), Nb,C(OH); (¢), Nb,CF, (d), Nb,CCl, (e), Nb,CBr; (f),
Nb,CI, (g), and Nb,CN, (h) as calculated by DFT using the PBE exchange correlation functional. These results predict Nb,CN,
to be semiconducting, and all others to be metallic. All DOS plots are scaled identically. Energies are shown relative to the Fermi

Flw)=—2

1— iUJTDs

<1+ < ) (2)
1 —1wps

where ¢ is the localization parameter, Tpg is carrier
scattering time, and oy is given by

NZ
o= — D8 3)

m*

where N is the intrinsic charge carrier density and

*

m* is the carrier effective mass [44, 78]. In the




10P Publishing

2D Mater. 11 (2024) 035028

A M Fitzgerald et al

=
C
©

Zos o o ~ === Nb2CTy UV-Vis Spectrum
- 6 I ~ | o o, € 1.4x10°] © 1.55eV Photoexcitation
= £ £ “%1 & bC Conductvity (Four-point Probe) = @ 1.7 eV Plasmon Resonance
24 Eol S 8 1.2x10%
s 0% e o s 2o as s S 2001 e
o Frequency (THz) 2 2 1.0x10%
£ g 2 % S
© E [ S, 5 8.0x10%
g ol 2 e 3
o —Quartz | G200 @ 6.0x10*
4] — NbpCTy g
‘ , : . : -400—— 4.0x10* . . . , ‘
4 6 8 10 12 00 05 10 15 20 25 30 1 2 3 4 5 6

Time (ps) Frequency (THz) Photon Energy (eV)

Figure 3. (a) THz waveforms in the time-domain transmitted through quartz (black line) alone and through a thin-film sample
of Nb,CTy deposited onto the quartz substrate (magenta line). Inset plots THz amplitude in the frequency-domain. (b) Real (o)
and imaginary (o) intrinsic conductivities of Nb, CTy. Lines represent fits to the Drude-Smith model for complex conductivity
(solid line—fit to real part of model; dashed line—fit to imaginary part of model). Green star represents DC conductivity
measured by four-point probe. Experimental error in these measurement is smaller than the symbol size. (c) Optical absorption
coefficient of Nb,CTy in UV-near IR spectral range. Photon energy used in TRTS measurements (1.55 eV) is shown as an open

circle. Also shown is a center photon energy of a plasmon resonance reported earlier in Nb,CTy [29], at 1.7 eV.

Drude-Smith model, the localization parameter can
take on a value between 0 and —1. For ¢ = 0, charge
carriers move throughout a sample entirely unim-
peded; for ¢ = —1, the charge carriers’ movement is
entirely suppressed or localized.

Lines in figure 3(b) represent the global fit of
both real and imaginary intrinsic conductivity to
equation (2).

Note that the complexity of the Fermi surface in
Nb,CT,, that can be inferred from the band structure
diagrams in figure S8, complicates calculation of the
effective carrier mass necessary for extracting the car-
rier density from the Drude—Smith fitting paramet-
ers. For the sake of obtaining an estimate of Nb,CT,
carrier density, we assume here m* = m,, and in doing
so, we find that N = (1.6 £ 0.3) x 10?° cm ™.

The charge carrier density we find here is compar-
able to that of Mo, Ti,C3T, and Mo, TiC, T, (where Li
et al also approximated the effective carrier mass to
the mass of a free electron) [44] but about two orders
of magnitude lower than that of Ti3C, T, [31]. For this
sample the localization parameter, c = — 0.92 + 0.01,
is close to —1, suggesting that charge carriers are
highly localized over distances comparable to their
mean free path, either due to defects or the edges of
individual nanoflakes. As a result, static (or DC) con-
ductivity can be estimated by extrapolating the real
part of the Drude—Smith model out to 0 THz:

opc=Re[7(0)]=62+15Q 'em™.  (4)

We find that Nb,CT, has a low, but finite,
intrinsic conductivity of 62 + 15 Q7! cm™!, which
is about two orders of magnitude lower than other
MZXenes like Ti;C, T, [31]. To corroborate this estim-
ate of conductivity, we also measured this sample’s
conductivity using a four-point probe technique [79,
80].At56+ 11 Q! em™!, the DC conductivity meas-
ured was in good agreement with the THz measure-
ment. Although this is low, it is still a measurable,
nonzero quantity.

To understand the intrinsic conductivity, we cal-
culate the intrinsic charge carrier mobility within
individual nanoflakes from the Drude—Smith scatter-
ing time, 7Tps, as

eTDs
Mintrinsic = P (5)

Again assuming m* = m,, and using
Tps = 17 £ 2 fs from the Drude—Smith fit, we estim-
ate the intrinsic carrier mobility of this sample to be
30 & 4 cm? V™! s7!. From here, we can estimate the
long-range carrier mobility assuming,

,ulongfrange = HMintrinsic (1 + C) ) (6)

which results in a long-range charge carrier mobil-
ity of 2.4 & 0.4 cm? V~! s7!. The significant dis-
parity between intrinsic and long-range conductivit-
ies suggests—Ilike in our previous work—that charge
carrier mobility is impeded by the boundaries of the
nanoflakes comprising our material [31, 44].

3.3. Time-resolved terahertz spectroscopy (TRTS)

Figures 4(a) and (b) both show the negative change
in THz peak transmission following a 1.55 eV pho-
toexcitation for three different fluences. As shown in
figure 3(c), the energy of this photoexcitation is quite
close to the 1.7 eV plasmon resonance observed by
Colin—Ulloa et al in Nb,CT, [33]. In the limit of
small changes (—AT/T < 20%), this is proportional
to transient photoconductivity (Ac). Figure 4(a)
shows the early time window (within the first 10 ps
after photoexcitation, together with the photoexcited
excess carrier densities, extracted from the Drude—
Smith fits to transient photoconductivity spectra at
different times after excitation, as discussed later,
while figure 4(b) displays normalized transient pho-
toconductivity over an extended time window (as far
out as 250 ps after photoexcitation). We find that pho-
toexcitation of Nb,CT, results in a rapid onset of
enhanced photoconductivity as interband excitations
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Figure 4. TRTS pump scans of Nb,CT, using three different photoexcitation fluences at 1.55 eV. Each plot is fitted to a

three-component exponential decay model, with solid, dashed, and dotted black lines corresponding to fluences of 950 pJ cm™—2,

2

1530 pJ cm~2, and 1910 pJ cm ™2, respectively. Panel (a) displays TRTS pump scans ranging from 1 ps before photoexcitation to
11 ps after, while panel (b) displays time range from 1 ps before photoexcitation to 250 ps after. Inset in (b) plots the three decay
times on a semi-log plot a function of fluence. Error bars are too small to include for these decay times.

inject a new population of free carriers with the excess
carrier density reaching ~10% of the intrinsic value.

Following this initial enhancement, the photo-
conductivity of the sample exhibits a significant decay
within the first few ps (figure 4(a)). About 10%-—
20% of the photoinjected carriers have much longer
lifetimes >250 ps (figure 4(b)). The photoconduct-
ivity decays are clearly multi-exponential, revealing
the presence of multiple relaxation channels. We find
they can be well-described by three-component expo-
nential decays, with decay times given in the inset
to figure 4(b). All decay times increase with excita-
tion fluence, a hallmark of saturation or filling of the
channels responsible and ruling out carrier—carrier
scattering or Auger recombination as candidates for
the fastest, sub-ps decay. As proposed earlier for
NbyC;3Ty, trapping on the fastest decay time can
be attributed to defects arising from oxidation [32].
They are presumably uniformly distributed through-
out the nanosheets, allowing for fast trapping of
excess carriers, and saturate with increasing injected
excess carrier density. In addition to the most prom-
inent, sub-ps decay, we observe a slightly slower decay
time under 5 ps, which is followed by significantly
longer decay times on the order of hundreds of ps.
Those decays also show that the states responsible for
the decays fill with increasing excitation fluence. We
therefore ascribe them to carrier trapping at intra-
nanosheet species as well as nanosheet edges.

The enhancement in conductivity that we observe
in in response to photoexcitation is similar to the
behavior of other MXenes including Mo, Ti,CsT,
[44], Mo, TiC, T, [44], and NbsC5T, [32] but oppos-
ite to the negative photoconductivity seen in the
highly conductive MXene, Ti;C,T, [31], where the
dominant effect is heating of the intrinsic elec-
tron gas followed by a rapid increase in lattice
temperature, which gives rise to a transiently reduced

conductivity. In all these MXenes, both effects,
injection of excess carriers and increase in carrier
and lattice temperature, are present, as photoexcit-
ation quickly heats up the crystal lattice, as evid-
enced by the transient broadening of the plasmon res-
onance peak in Ti;C,T, Mo,Ti,C;3T, and Nb,CT,
[33]. Positive photoconductivity in Mo, Ti,C;Ty,
Mo, TiC, T, and Nb,CT, cannot be taken as the signa-
ture of semiconducting behavior. Rather, in metallic
MZXenes with sufficiently low intrinsic carrier dens-
ity (<10%° cm™?), transient increase in carrier dens-
ity dominates over the transient decrease in carrier
mobility.

To estimate the injected carrier density and gain
additional information on their behavior, we extrac-
ted the complex, frequency-resolved photoconduct-
ivity at different points in the time (1-10 ps) after
the sample had been photoexcited. Figures 5(a)—
(c), show selected photoconductivity spectra at 1,
5, and 10 ps after photoexcitation for fluences of
1910 1] cm ™2, respectively. Figures 5(d) and (e) and
(f) plot the corresponding results for a fluence of
950 ] cm™2. Spectra at all 1, 2, 5, and 10 ps for all
three fluence values studied are shown in figure S2.
Like in the case of intrinsic THz conductivity, the lines
in figure 5 are the global fits of the real and imaginary
photoconductivity components to the Drude-Smith
model. From these fits, we can once again extract a
localization parameter, scattering time, and carrier
density for each spectrum.

Our measurements show that different fluences of
1.55 eV photoexcitations have little to no effect on the
Drude-Smith parameters. We find that the localiza-
tion parameter remains mostly unchanged after pho-
toexcitation, and remains that way for the first 10 ps
thereafter, for all studied fluence values. The localiz-
ation parameter was measured to be —0.91 £ 0.05
after photoexcitation, which is slightly lower than
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the ¢ = —0.92 £+ 0.01, we measure in our TDS
experiments. This suggests that the movement of
photoexcited charge carriers in the material is sup-
pressed to a similar degree as the movement of the
intrinsic carriers.

On the other hand, we observe that the scat-
tering time experienced by the carriers within at
least the first 10 ps after excitation is significantly
longer compared to the intrinsic carrier scattering
time, 65 £ 8 fs vs. 17 & 2 fs, almost a three-fold
increase. An ultrashort pulse with average photon
energy of 1.55 eV injects a population of hot free
electrons (holes) into delocalized bands at the ener-
gies above (below) the Fermi level, and those excess
carriers appear to experience a lower scattering rate
and higher mobility. As in the case of the localization
parameter, excitation fluence does not impact the car-
rier scattering time.

Finally, the Drude-Smith fitting of the experi-
mental photoconductivity spectra at different times
after excitation allows estimation of the photoex-
cited excess carrier density, plotted in figure 4(a)
along with —AT/T. We find that at the peak
of measured photoconductivity, photoexcitation is
responsible for a maximum excess carrier density of
(4.2 40.5) x 10'® cm—3, that is at most a few percent
of the intrinsic carrier density.

Also, as the carrier mobility (determined by the
scattering time and the localization parameter) is
unchanged over the first 10 ps, we find that the tran-
sient photoconductivity decay is determined exclus-
ively by the trapping and recombination of excess car-
riers. Based on the measured absorption coefficient
at 1.55 eV (5.6 x 10* cm™!, figure 3(c)) and the
penetration depth of ~180 nm, comparable to the
film thickness, neglecting reflection losses and assum-
ing unity quantum efficiency, we estimate the upper

limit of the injected carrier density to range from
~3.9 x 10%° cm~3 for a fluence of 1910 ] cm™2 to
2.0 x 10%° cm 3 for a fluence of 950 1] cm ™2, nearly
two orders of magnitude higher than those experi-
mentally observed at the peak of photoconductivity
(2.2-4 x 10'® cm™3, figure 4(a)). This suggests that
most optically injected carriers are trapped and/or
recombine due to fast nonlinear processes dominant
at high carrier densities, such as Auger recombina-
tion, at times shorter than the experimental time res-
olution of ~0.3ps .

4. Summary

We investigated the charge carrier transport mech-
anisms, as well as the electronic and optical proper-
ties of Nb,CTy MXene, using a combination of DFT
modeling of the electronic structure as a function of
different surface terminations and THz spectroscopy.
Through our combined DFT calculations and ultra-
fast optical spectroscopy measurements, we determ-
ine that this material is metallic for all surface termin-
ations (apart from N) while also exhibiting increased
carrier mobility, and consequently enhanced con-
ductivity, when optically excited.

DFT calculations reveal that Nb,CT, has a metal-
lic band structure (i.e. no band gap at Eg) for O, E,
OH, Cl, Br, I or mixed OH/F and O/OH terminations,
independent of their ratios. Of the studied termin-
ations, the only one that results in the opening of a
small band gap (0.66 eV) is the pure N-terminations.
Earlier reported XPS results do not show evid-
ence of N terminations, thus predicting non-zero
intrinsic free carrier density and metallic nature of
Nb,CT,. In agreement with this prediction, THz-
TDS measurements reveal an intrinsic carrier density
of (1.6 + 0.3) x 10* cm™> with carriers strongly
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localized due to disorder and nanoflake boundar-
ies. Short-range, intraflake free carrier mobility is
found to be 30 & 4 cm? V=1 57!, while the flake
boundaries and disorder suppress the long-range
(inter-flake) mobility to 2.4 0.4 cm? V~! s~!, Zero-
frequency (DC) conductivity found by extrapolating
the fit to the experimental THz conductivity,
62 £ 15 Q7! cm™1, is in good agreement with our
four-point probe measurements.

We also demonstrate that photoexcitation with
1.55 eV optical pump pulses result in a rapid enhance-
ment in photoconductivity through a combination
of inter-band injection of a new population of free
charge carriers and intraband excitation of intrinsic
carriers. Most of the photoinjected carriers recom-
bine within a few ps, but ~10%-20% of photoinjec-
ted carriers persist for hundreds of ps. Rapid, over
sub-ps, initial decay of photoinduced conductivity,
where photoexcited carriers transfer energy to the
crystal lattice, underlies the exceptionally efficient
photothermal conversion efficiency that has been
reported for this MXene. It can also be leveraged in
high-speed photonic and optoelectronic devices.
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