BARGAINING AND EXCLUSION WITH MULTIPLE BUYERS

DILIP ABREU* AND MIHAI MANEAT

ABSTRACT. A seller trades with ¢ out of n buyers who have valuations a; > as > ... >
an > 0 via sequential bilateral bargaining. When ¢ < n, buyer payoffs vary across equilibria

in the patient limit, but seller payoffs do not, and converge to

ay+azx+...+a—1
max +aj41+ ... Fagy1]| -
1<q+1 2 * o

If I* is the (generically unique) maximizer of this optimization problem, then each buyer
i < I* trades with probability 1 at the fair price a;/2, while buyers i > I* are excluded from
trade with positive probability. Bargaining with buyers who face the threat of exclusion is
driven by a sequential outside option principle: the seller can sequentially exercise the outside
option of trading with the extra marginal buyer g + 1, then with the new extra marginal
buyer ¢, and so on, extracting full surplus from each buyer in this sequence and enhancing
the outside option at every stage. A seller who can serve all buyers (¢ = n) may benefit
from creating scarcity by committing to exclude some remaining buyers as negotiations
proceed. An optimal exclusion commitment, within a general class, excludes a single buyer
but maintains flexibility about which buyer is excluded. Results apply symmetrically to a
buyer bargaining with multiple sellers.

1. INTRODUCTION

Consider a seller whose supply is valuable to multiple buyers. If the seller is a monopo-
list, this is a classical setting, which is well understood under various assumptions regarding
information and price discrimination. Under complete information and perfect price discrim-
ination, the monopolist extracts all surplus from every buyer. We investigate what happens
in the complete information setting when the terms of trade are determined by bargaining
between the seller and each individual buyer. What profits does the seller earn and which
buyers does she trade with in a bargaining game with fixed supply? What payoffs do buyers
get? If there is no scarcity and the seller serves all buyers, then the standard equal (“fair”)
division of surplus between the seller and each buyer should be expected. However, if there
is scarcity and some buyers are necessarily “excluded,” then the seller should be able to
exploit competition among buyers and obtain higher than fair prices. This suggests that the
seller may benefit from limiting supply, and leads to a related question: if the seller may
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reduce supply or place more general restrictions on the sets of buyers she transacts with,
what restrictions will be most profitable and what outcomes will emerge?*

We consider a market in which a seller contracts independently with ¢ out of n individual
buyers with respective values (net of seller cost) a; > ay > ... > a, > 0. For convenience,
we use language suggesting that the seller is offering ¢ units of the same “good” for sale,
and each buyer has unit demand. However, the seller’s transactions with each buyer may
be idiosyncratic; the main restriction we impose is that there are no externalities between
buyer valuations. We study the following bargaining game, which we refer to as the game
with supply q. Negotiations occur over time, and players have a common discount factor
d € (0,1). In each round, the seller strategically picks a buyer to bargain with, and with
equal probability each of the two players proposes a price to the other. If the proposal is
accepted, then the seller trades with the buyer at the proposed price, the buyer exits the
game, and the seller continues to bargain with the remaining buyers in the next round. If
the proposal is rejected, then bargaining proceeds with the same set of buyers in the next
round. The game ends when the seller has traded with ¢ buyers.

We analyze Markov perfect equilibria (MPESs) of the game with supply ¢—subgame perfect
equilibria (SPEs) in which each player’s strategy in a round depends only on the set of buyers
with whom the seller has not yet traded, and actions taken within that round.? Our main
results concern limit MPE outcomes as 0 goes to 1. We will frequently affix the qualifiers
“limit” and “asymptotic” to describe limit outcomes as 6 — 1 in a collection of MPEs for
discount factors § € (0,1) (but drop qualifiers for brevity in some cases).

If ¢ = n, so all buyers can be served, then the seller splits the surplus equally with each
individual buyer, and her profits converge to a,/2+as/2+...4a,/2 as § — 1. This is closely
related to the classic result on convergence of (symmetric) non-cooperative bargaining in the
style of Rubinstein (1982) to the Nash (1950) bargaining solution (Binmore 1980; Binmore,
Rubinstein and Wolinsky 1986).

Suppose next that supply is smaller than the number of buyers (¢ < n). For the remainder
of the introduction (but not in the formal treatment), we assume for simplicity that buyer
values are distinct. Consider first the case in which the seller has unit supply (¢ = 1).
Proposition 1 in Manea (2018) characterizes MPEs in this simple case. If ay < a;/2, then
the seller bargains exclusively with buyer 1, and the two players split the gains equally,
trading at (average) price a;/2. In this case, the outside option of trading with buyer 2 is
mnce of exclusion restrictions in the context of individually negotiated agreements with multiple
agents has been examined in applied work. Gal-Or (1997) emphasizes the power of exclusion in an early
paper. In the health economics literature, it has been widely noted that insurance companies offer “narrow”
hospital networks (e.g., Howard 2014; Liebman 2018; Ho and Lee 2019; Ghili 2022).
2SPEs usually have little predictive power in bargaining games with more than two players (e.g., Herrero
1985, Rubinstein and Wolinsky 1990, Abreu and Manea 2012a, Manea 2018, Elliott and Nava 2019), and
MPE is frequently invoked as an equilibrium refinement in such settings. In Abreu and Manea (2022), we

show that there is extreme variation in SPE outcomes even in the simple version of the model considered
here where n =2 and ¢ = 1.
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too weak to enhance the seller’s bargaining power in negotiations with buyer 1. If ay > a1/2,
then for high J, the seller randomizes between buyers 1 and 2 in equilibrium, and each
buyer trades at prices converging to as, but the probability of bargaining (and trading) with
buyer 2 converges to 0 as ¢ goes to 1. Now, the outside option of trading with buyer 2 is
binding, and the seller ezercises it with positive but vanishing probability as 6 — 1. An
outside option principle emerges from this analysis of MPEs: the seller trades with buyer

1 with limit probability 1 at limit price max(a;/2,as).®

Therefore, when ¢ = 1 trade is
asymptotically efficient, and buyer 2 provides an endogenous outside option that has a limit
equilibrium value of a,.*

By analogy with the unit supply case, one might conjecture that when ¢ > 1 the seller

should attain asymptotic profits of

q
a;
(1) Zmax (5,%“) :
i=1

However, this conjecture is incorrect. Formula (1) may be rationalized in terms of the
following presumptions: (i) the seller trades efficiently (with limit probability 1) with buyers
1,...,q; (ii) bargaining with each of the buyers 1,...,q is driven by a fixed outside option
provided by the eztra marginal buyer ¢ + 1; (iii) the value of the outside option provided
by buyer ¢ + 1 in equilibrium is a,4; (i.e., buyer ¢ + 1 has zero limit payoff). The first
two presumptions turn out to be incorrect, as they fail to take into account the dynamic
nature of outside options under sequential bargaining. For instance, consider a setting with
n = 3,q = 2 and suppose that az > a;/2, so that both buyers 2 and 3 constitute binding
outside options in bargaining with buyer 1 in subgames where the seller has a single unit left.
In this case, trading with buyer 2 in the first round at the highest (individually rational)
price of ay is not (asymptotically) more profitable than trading with buyer 3 at a price of
as. Indeed, in the next round, when bargaining with buyer 1, the seller obtains a price of as
if buyer 2 is available as an outside option, but a lower price of as if buyer 3 is the outside
option. In either case, the seller’s profit would be as + a3. Hence, buyer 2 is valuable to the

seller both directly as a trading partner and indirectly as an outside option when bargaining

3The assumption of Markov behavior is important for this conclusion. In Abreu and Manea (2022), we
show that SPEs in the setting with n = 2,¢ = 1 are very permissive (in part expanding on a point made
by Rubinstein and Wolinsky (1990))—the price may be above or below the outside option price, and the
allocation may be asymptotically inefficient in either case. We proceed to propose refinements that are
behaviorally plausible in the context of this bargaining environment and yield the intuitive predictions of the
outside option principle. Although these refinements do not imply Markov behavior, they provide support
for MPE predictions in the bargaining game considered here. See also Maskin and Tirole (2001) and Bhaskar,
Mailath and Morris (2013) for alternative foundations for the Markov equilibrium assumption.

“In the original treatment (Binmore 1985; Binmore, Rubinstein and Wolinsky 1986; Sutton 1986; Binmore,
Shaked and Sutton 1989), outside options were assumed to have exogenous values that can be obtained by
traders without bargaining with third parties. Subsequent research on search and matching in labor markets
and bargaining in markets with multiple buyers and sellers emphasized the endogeneity of outside options
derived from bargaining with several parties.
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with buyer 1 in the event that the seller trades with buyer 3 first. Thus, buyer 2 might not
necessarily manage to “outbid” buyer 3 in the first round. This suggests that trade need not
be asymptotically efficient when ¢ > 1, which we confirm in examples with n = 3,¢ = 2.

Although the extra marginal buyer ¢+ 1 may trade with positive limit probability as 6 — 1
in a collection of MPEs, we prove that the seller is always able to extract full surplus from
buyer ¢ + 1 (hence, the third presumption above is correct). This property of MPEs allows
us to replace the outside option principle for the case ¢ = 1 with a sequential outside option
principle for the case ¢ > 1. The seller can sequentially exercise outside options by trading
with the extra marginal buyer ¢ + 1 at limit price aq41, then trading with the new extra
marginal buyer ¢ at limit price a, (buyer ¢ becomes extra marginal in the subgame with
supply ¢ — 1), and so on, thereby enhancing the outside option at every round. Since some
buyers may be too valuable to be excluded, it may be beneficial for the seller to exclude
a buyer [ > 1 and include all lower index buyers. When buyer [ is available, the threat of
replacing buyer ¢ < [ — 1 with some higher value buyer is blunted, and the seller may be
unable to extract full surplus from buyer 7. Nevertheless, we show that each buyer ¢ must
pay at least a fair limit price of a;/2 as 6 — 1 in any collection of MPEs. This leads to the
following lower bound on the seller’s asymptotic MPE profits:

(2) M = max ap+ag+ ...+ a1

—i—all—l—...—l—a 1
1<g+1 2 * ot

A polar argument leads to the surprising conclusion that M*? also constitutes an upper
bound on the seller’s asymptotic MPE profits. Therefore, the seller’s profits converge to M*?
in any collection of MPEs as § — 1.

The static optimization problem displayed in (2) yields the seller’s payoffs in the dynamic
bargaining game with supply ¢ < n. The optimization problem is also informative about
the seller’s behavior, in particular about which buyers get to trade with certainty and which
buyers face the threat of exclusion in equilibrium. In the generic case in which the static
optimization problem has a unique maximizer [*, we establish that for sufficiently high 9, in
any MPE, buyers i < [* are guaranteed to be included—and trade at the fair price a;/2—
while buyers ¢ > [* are excluded with positive probability. Furthermore, if [* # ¢ 4+ 1, then
buyer [* is included with limit probability 1 as § — 1.

While MPEs are (asymptotically) payoff equivalent for the seller, each buyer’s payoff and
probability of trade can vary across convergent sequences of MPEs. We develop a partial
characterization of buyer payoffs that leverages the formula for seller profits in every subgame.

We also consider a strategic situation in which the seller has unconstrained supply (¢ = n),
but can sharpen competition by excluding some buyers in the course of negotiations. An
exclusion commitment specifies a subset of buyers to be excluded from future negotiations
depending on the set of buyers who have already traded. This general formulation allows for
elaborate patterns of exclusion. Despite the potential multiplicity of MPEs in the bargaining
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game induced by some exclusion commitments, we find that an optimal exclusion commit-
ment can be defined unambiguously and takes a simple form: no buyer is excluded from
bargaining until n — 1 units are sold, and then the remaining buyer is excluded (this com-
mitment leads to the game with supply n — 1). Under this commitment, the seller excludes
a single buyer, but decides flexibly who to include at every stage. The result implies that
maintaining one unit of shortage allows the seller to extract the full benefits of exclusion,
and creating more scarcity or treating buyers asymmetrically cannot increase profits.

Finally, we discuss exclusion commitments in settings in which the seller has an exogenous
supply constraint ¢ < n. In this case, in line with the intuition above, the seller does not
benefit from making commitments to exclude buyers before all available ¢ units are sold. In
particular, a reduction in supply is detrimental to the seller.

We contrast our findings with those of Ho and Lee (2019), who were the first to analyze
exclusion commitments in a model of network formation via bargaining.® In their model,
a “seller” who commits to form ¢ links delegates ¢ independent “representatives” to each
bargain over the formation of one link. When specialized to our setting, this delegated-
agent bargaining protocol delivers formula (1) for seller profits, and implies that the seller
may benefit from reducing supply. Ho and Lee’s representatives are compartmentalized
and cannot effectively coordinate to maximize joint profit, whereas in our model the seller
internalizes the dynamic implications of sequential trades with individual buyers.® Our more
conventional bargaining protocol enables the seller to extract higher profits via the sequential
outside option principle embodied in formula (2).

The paper is organized as follows. Section 2 introduces the bargaining model, and Sec-
tion 3 provides a preliminary lemma and an example. In Section 4, we develop bargaining
theoretic principles that we use in Section 5 to obtain the formula for seller profits. Sec-
tion 6 characterizes included and excluded buyers. Sections 7 and 8 formalize our notion of
exclusion commitments and identify the optimal commitment. Section 9 concludes. Proofs
omitted in the main body of the paper appear in the Appendix.

%Also motivated by the questions of network endogeneity and optimal exclusion, Liebman (2018) considers
a bargaining model between a health insurer and several hospitals in which the insurer commits to a net-
work size and then bargains with randomly selected hospitals. His analysis restricts attention to equilibria
with immediate agreement, but such equilibria do not exist under random matching when hospitals are
heterogeneous and bargaining frictions are small. As this is the case we are primarily interested in, a direct
comparison with his results is not possible. Taking a cooperative approach, Ghili (2022) studies network
formation in the pairwise stability framework of Jackson and Wolinsky (1996) assuming that payoffs are
determined by Nash bargaining.

6Stole and Zwiebel (1996) and Arie, Grieco and Rachmilevitch (2017) analyze bargaining models in which a
player signs bilateral contracts with several others in sequence, but in their models the order of negotiations
is exogenous.



2. MODEL

Consider a market where an agent, player 0, signs bilateral contracts with ¢ out of n
players from the set N = {1,2,...,n}. To fix terminology, we refer to player 0 as the seller,
to the players in N as buyers, and to the bilateral contracts as goods. In this language, the
seller has ¢ < n units of a good, and each of the n buyers has unit demand.” Assume that
buyer i’s value for the good (net of seller cost) is a;, where a; > as > ... > a, > 0, and these
values are common knowledge. There are no externalities: buyer values are independent of
who else gets a unit of the good.

The seller trades with individual buyers sequentially. In every round ¢t = 0,1, ..., the seller
(strategically) selects a buyer ¢ to bargain with (among those who have not yet traded).
Bargaining between the seller and buyer ¢ in round ¢ proceeds via the random-proposer
protocol: with probability 1/2 each of the two players proposes a price, and the other decides
whether to accept or reject the proposal. If the proposal is accepted, the seller trades with
buyer ¢ at the proposed price, buyer i exits the game, and the seller continues to bargain
with the remaining buyers in round ¢+ 1. Otherwise, bargaining proceeds with the same set
of buyers in round ¢ + 1. The game ends when the seller trades all ¢ units.® Players have
a common discount factor § € (0,1): payoffs obtained in round ¢ are discounted by 6. The
game has perfect information.

We call this the bargaining game with exogenous supply q, or the game with supply q
for short. We will also be interested in situations in which there is no inherent scarcity,
i.e., ¢ = n, but the seller may strategically commit to exclude buyers in order to enhance
competition. The model with exclusion commitments is analyzed in Section 7.

We analyze Markov perfect equilibria (MPFEs) of the game with supply ¢, which are sub-
game perfect equilibria in which each player’s strategy in every round depends only on the
state S—the set of buyers with whom the seller has not already traded—and the actions
taken within the round (including nature’s random selection of proposer). By definition, in
an MPE, behavior in any subgame that starts at the beginning of a bargaining round (before
the seller’s selection of a bargaining partner) in state S does not depend on the history of
play prior to that round. We refer to any such subgame as subgame S.

For any MPE of the game with supply ¢, let u;(S) denote the expected payoff of player
i € SU{0} in state S, and 7;(S) the probability that the seller chooses to bargain with buyer
i in state S. Our main results apply to collections of MPEs for discount factors 6 € (0,1) in

"The seller may customize the “good” for each buyer upon purchase; the setting with multiple units of a
homogenous good is a special case.

8Proposition 4.ii in Rubinstein and Wolinsky (1990) introduced this “voluntary matching” bargaining pro-
tocol (their wording emphasizes the seller’s strategic selection of bargaining partner, in contrast to random
matching) in a setting with unit supply. We employed similar bargaining protocols in Abreu and Manea
(2012b, 2022) and Manea (2018). This bargaining protocol is distinct from the “random proposer” protocol
of Elliott and Nava (2019) and Talamas (2019, 2020) whereby a “proposer” is randomly recognized in every
round, and the proposer strategically selects a bargaining partner but also makes the offer.
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the game with supply g, which for every ¢ in (0, 1) specify an MPE o of the game with supply
¢ in which players have discount factor 6. When the variables u;(S) and m;(S) associated
with a collection of MPEs (05)56(0,1) converge as 0 — 1, we will denote the corresponding
limits by w;(.S) and 7;(.5), respectively. We will also simplify notation by writing u,, 7;, 4;, 7;
for the variables u;(N), m;(N), u;(N),7;(N) associated with the initial state IV, respectively.

3. A PRELIMINARY LEMMA AND AN EXAMPLE

Lemma 1 provides basic scaffolding for the arguments that follow. It first establishes that
in any MPE there is trade in every round, that is, if in some round, the seller bargains with
buyer ¢ with positive probability in equilibrium, then conditional on approaching buyer ¢,
agreement is reached with probability 1. Hence, the game with supply ¢ ends in ¢ rounds.

The lemma also states that MPE variables satisfy the following conditions:

(3) up(S) > = (a; + dup(S\ {i}) — 0u;(S)) + %5u0(5), with equality if 7;(S) > 0

DO | —

(4) u(S) =m(S) (% (a; + up(S\ {i}) — 6uo(S)) + %5@%(5)) + 3 m(9)oui(S\ {k}),
keS\{i}

where ug(S\ {i}) = w;(S\ {k}) =0if |S|=n—q¢+1and ik € S.

Finally, the lemma shows that if the seller bargains with buyer 7 in state S in equilibrium
(and relevant variables converge), the price that buyer ¢ pays in state S converges to a; —;(5)
regardless of whether the seller or buyer ¢ is chosen to make the offer.

Lemma 1. In any MPE of the game with supply q, there is trade in every round, and
payoffs and the seller’s mizing probabilities satisfy conditions (3) and (4) for every state S.
If m;(S) > 0 along a sequence of MPFEs associated with a sequence of discount factors going
to 1, and u;(S) converges to u;(S), then both the price the seller offers to buyer i and the

price buyer i offers to the seller in state S converge to a; — u;(S).

The formal proof of Lemma 1 and other proofs omitted in the main body of the paper
appear in the Appendix. To understand condition (3), note that the seller may select buyer
1 for bargaining in state S, and if chosen to propose, can offer a price arbitrarily close to
a; — du;(S) that ¢ will accept; following an agreement with buyer ¢, the seller obtains a
continuation equilibrium payoff of dug(S\ {i}). When buyer ¢ is chosen to propose, the seller
may at worst reject i’s offer and enjoy a continuation payoff of dug(S); in equilibrium, buyer
1 will make an offer that makes the seller indifferent between accepting and rejecting. If the
seller bargains with buyer ¢ with positive probability in state .S, then her realized payoff from
trading with 4 should be equal to her equilibrium payoff uq(S). The buyer payoff equation
(4) has a similar interpretation.



8

An example. With the preliminary analysis in place, we are able to solve simple examples.
This exercise illustrates how equilibria “work” and highlights a distinctive feature of our
bargaining game—the dynamic equilibrium evolution of outside options. It is also helpful
in developing appropriate conjectures. We are interested in the following questions, which
concern limit equilibrium outcomes as § — 1: Is the MPE unique? If not, does each buyer
trade with the same probability in all MPEs? Are buyer payoffs constant across MPEs? Are
seller payoffs constant across MPEs?

We consider an example in which a seller with supply ¢ = 2 bargains with three buyers
who have values a; = 4, a9 = 3,a3 = 1. This example demonstrates that the answer to each
of the first three questions is negative. The negative answer to the second question implies
that MPEs are not always asymptotically efficient. Interestingly, the example is consistent
with the answer to the fourth question being positive.”

In any MPE for high 4, the seller must approach at least two buyers with positive prob-
ability in the initial state.!® For ¢ sufficiently close to 1, the example admits three classes
of MPEs that are distinguished by the set of buyers with whom the seller may trade in the
initial state. In one class, the seller trades with every buyer in the initial state. In the other
two classes, the seller trades with buyer 3 and only one of buyers 1 and 2, respectively, in
the initial state. Here, we derive the limit structure of each class of MPEs as § — 1. In the
Appendix, we prove that each type of MPE exists for high §.

We analyze the game from the “back,” starting with the simple subgames in which the
seller has a single unit remaining (after having traded with one buyer). Proposition 1 of
Manea (2018) characterizes the unique MPE outcomes for such subgames. In states {i,3}
(1 = 1,2), the outside option of trading with buyer 3 is not sufficiently valuable to improve
the seller’s bargaining position with buyer 7, and the seller sells the remaining unit with
probability 1 to buyer i at expected price a;/2: m;({i,3}) = 1,uo({7,3}) = w;({i,3}) =
a;/2,u3({i,3}) = 0. In state {1,2}, the outside option of trading with buyer 2 is binding,
and the seller randomizes between buyers 1 and 2 in equilibrium, but the probability of
choosing buyer 2 converges to 0 as § goes to 1; buyer 1 trades with limit probability 1 at
limit price as: m1({1,2}) = 1, uo({1,2}) = 3,u1({1,2}) = 1,u2({1,2}) = 0.

What about play in the initial state {1,2,3}, before any trade has happened? Lemma 1
implies that when the seller chooses to bargain with buyer ¢ along a convergent sequence of
MPEs, trade takes place at the common limit price a; — u; regardless of whether the seller

9These qualitative findings are robust to perturbations in the specified buyer values.

0\ ore generally, in states where the seller has more than one good left, randomization between trading with
multiple buyers is a necessary feature of the seller’s strategy in any MPE for high §. If the seller chose to
bargain with a single buyer in such a state in a proposed MPE, then that buyer would “hold up” the seller
for half of her gains from future trades. As we argue in the context of Lemma 2 in the next section, the seller
would then have a profitable deviation that involves changing the order of trades, thereby undermining the
putative MPE.



or buyer i is picked to propose. It follows that

(5) W=+ Y m(N\ {k}),

keN\{i}
Since the seller must obtain her equilibrium payoff regardless of which buyer she trades with
in the initial state of the MPE, we have that

(6) m; > 0 for all § — Uy = a; — U; + I_L0<N \ {Z})

Note that we already know the limit equilibrium values @;(N \ {k}) and @o(N \ {i}) for
subgames following the first trade.

How does equilibrium multiplicity arise? At a high level, the seller’s randomization in the
initial state determines buyer equilibrium payoffs via (5), and in turn buyer payoffs have to
be compatible with the support of the seller’s randomization via (6). This system allows for
three consistent solutions with distinct buyer payoffs.

We next confirm the intuition that given the scarcity, the lowest valuation buyer must get
zero limit payoff in every sequence of MPEs. Since buyer 3 obtains zero payoff in states {1, 3}
and {2, 3}, equation (5) implies that @3 > 0 only if 73 = 1. However, if 73 = 1, then (5) leads
to g = ue({1,2}) =0, and (6) (for i = 3) implies that uy =1 — a3+ up({1,2}) < 1+3 =4.
Then, taking the limit § — 1 in (3) (for i = 2) leads to p > 3—us+uo({1,3}) = 3+4/2 =5,
a contradiction. We conclude that @3 = 0.

Consider now the class of MPEs in which for high §, the seller approaches all three buyers
with positive probability in the initial state. Since 7y, mo, 73 > 0, (6) implies that

Uy = a; — U + TLO({Q,?)}) = Qs — Uz + ﬂo({l,g}) = a3 — us + ﬂo({l, 2})

As uy({2,3}) = 1.5,u9({1,3}) = 2,u0({1,2}) = 3 and uz = 0, we have that vy = 4,1, = 1.5
and 4y = 1. The required limit mixing probabilities are obtained by plugging these limit
payoffs in formula (5) for buyers i = 1, 2:"

1.5 = ﬁ1X1.5+ﬁ2X2+ﬁ3X1
1 = 7_1'1X1.5—|—77'2X1+77'3X0.

Combining these equations with 7; 4+ 79 + 3 = 1 leads to the unique solution 7, = 0.5, 75 =
w3 = 0.25. In this class of MPEs, trade is inefficient with limit probability 73 = 0.25.

We now turn to a second class of MPEs, in which m; = 0 and 7y, 73 > 0 for high §. In
this case, (6) implies that ug = as — us + up({1,3}) = as — u3z + wo({1,2}). As uo({1,3}) =
2,10({1,2}) = 3 and @z = 0, we obtain that uy =4 and uy = 1. Noting that us({1,2}) =0,
formula (5) (for ¢ = 2) and m; = 0 imply that uy = 0 if 7 < 1. It follows that 73 = 1. Using

11Equation (5) for buyer 3 does not create any restriction on limit mixing probabilities because buyer 3 gets
limit payoff 0 in every state.
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(5) again (for i = 1) yields u; = 2. It is easy to verify the optimality of choosing m; = 0 for
the seller.'? In this class of MPEs, trade is asymptotically efficient.?

The third class of MPEs is similar to the second, with the roles of buyers 1 and 2 inter-
changed. Analogous arguments imply that 7; = 1, and yield the limit payoffs for this class:
Uy =4,1 = 1.5, = 1.5, 13 = 0.1

The following table summarizes each player’s limit payoffs and the seller’s first-round
mixing probabilities in the three classes of MPEs.

ap =4,a0 =3,a3=1|ug | 4y | Uy | U3 (71, 7o, T3)
1,79, 73 > 0 4115 1005025025
m = 0; 79, m3 >0 4121110 (0,1,0)

mo = 0;m,m3 >0 4115|1510 (1,0,0)

In the first two classes of MPEs, the seller is indifferent between trading with buyer 2 at
(limit) price 2 and with buyer 3 at the lower price 1 in the first round. This is explained
by the impact of the first trade on the equilibrium value of the outside option—and thus
the bargaining power of buyer 1—in the second round. If the seller trades with buyer 2
first, then she can obtain only the “fair” price a;/2 = 2 from buyer 1 due to buyer 3’s
uncompetitiveness, while if she trades with buyer 3 first, then she can demand the higher
price as = 3 from buyer 1 due to buyer 2’s competitiveness. Despite the risk of being
excluded, buyer 2 does not have an incentive to (further) “outbid” buyer 3 by agreeing to
pay a price above 2 in equilibrium. If the seller were to make a more aggressive demand to
buyer 2, buyer 2 would decline, preferring to gamble on the MPE probability that the seller
will not trade with buyer 3 in the next round. We comment more on variation in buyer
strengths across the three classes of MPEs in the Appendix.

Although limit buyer payoffs and probabilities of trade vary across the three classes of
MPEs for this example, limit seller payoffs do not, and are equal to 4 in all MPEs. In
Section 5, we prove that limit MPE seller payoffs are unique in general, and derive a formula
for their value, which in this example reduces to 2y = as + a3. Other common features of
MPEs in this example, which will also be explained by our results, are that buyer 1 trades
with limit probability 1 and that buyer 3 gets zero limit payoff.

2Given buyer 1’s equilibrium expectations, a first trade with buyer 1 would generate limit price a1 —u; = 2,
and would be followed by a trade with buyer 2 at expected price as/2 = 1.5. This would yield limit profit
3.5 for the seller, which is smaller than uy = 4.

13The existence of an asymptotically efficient MPE is not guaranteed in general. In the Online Appendix,
we discuss an example with n = 3,¢ = 2 and buyer values a; = 5,a2 = 4,a3 = 3 in which asymptotically
efficient MPEs do not exist.

HMgimilar limit arguments establish that for high 8, there are no MPEs in which the seller chooses 13 = 0
and 7y, m > 0. Since the seller needs to randomize among at least two buyers in the first round of every
MPE for high § (see footnote 10), it follows that the three asymptotic structures described above constitute
the only potential limit points of MPEs as § — 1.



11
4. KEY LEMMAS

We now develop some core results upon which our subsequent analysis builds. These
results are intuitive, and indeed familiar in the case ¢ = 1, but their complete proofs for the
case ¢ > 1 are not straightforward. We present proof sketches at the end of the section.

Lemma 2 shows that in any collection of MPEs of the game with supply ¢ for § € (0, 1),
no buyer 7 can acquire the good for less than the “fair” price a;/2 in the limit as § — 1. This
is intuitive because within each round in which the seller bargains with buyer i, the seller
and buyer ¢ make offers with equal probability, but the seller has the additional advantage
of choosing her bargaining partner and possibly trading with other buyers if agreement is

not reached in the current round.

Lemma 2 (Buyers pay at least fair prices). In any collection of MPEs of the game with
supply q for discount factors 6 € (0,1),
lim sup u; < %.
0—1 2

Lemma 3 establishes that in the game with supply ¢ < n, the payoffs of buyers ¢+1,...,n
converge to 0 as § — 1.15 To get some perspective on this result, assume that buyer values are
distinct. For ¢ = 1, the result asserts that all buyers other than the buyer with the highest
value have zero limit payoffs. This is an implication of Proposition 1 of Manea (2018). In
this case, the highest valuation buyer trades with limit probability 1, and all other buyers
with limit probability 0. The case ¢ > 1 is more subtle: with sequential trade, a high value
buyer is valuable to the seller both as a direct trading partner in the current round and as a
better outside option when trading with other buyers in the future, and therefore might not

necessarily manage to “outbid” a lower valuation buyer.

Lemma 3 (Buyers ¢+ 1,...,n get zero payoffs under supply ¢). In any collection of MPEs
of the game with supply ¢ < n for discount factors § € (0, 1), the payoffs of buyers q+1,...,n
converge to 0 as 0 — 1.

Lemma 4 below establishes that a buyer ¢ who trades with probability 1 in a sequence
of MPEs for 6 — 1—even when this occurs with some delay and perhaps stochastically in
any given round—pays at most the fair price a;/2 in the limit. This result may be viewed
as a counterpoint to the outside option principle—a buyer who is never under the threat of

exclusion in equilibrium cannot be exploited (relative to fair pricing) by the seller.

Lemma 4 (Buyers sure to trade pay at most fair prices). Let (0%).>¢ be a sequence of MPEs
for the game with supply q in which the discount factors §, converge to 1 as z — oo. If the

5The result implies that every buyer i < ¢ with a; = aq+1 also gets a zero limit payoff (via an argument
that exchanges the labels of buyers ¢ and ¢ + 1). Hence, buyers with values that do not exceed the extra
marginal value get zero limit payoffs.
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seller trades with buyer i with probability 1 under o for all z > 0, then

.. a;
liminf u; > —.
2—00 2

We emphasize that “sure trade” in the naming of Lemma 4 refers to trade with exact
probability 1 in a sequence of MPEs associated with a sequence of discount factors converging
to 1. As discussed in the context of subgames in the example from the previous section, when
a; > ay > ap/2 in the setting with unit supply, trade with buyer 1 takes place with limit
probability 1 as 6 — 1, but in this case the outside option of trading with buyer 2 is binding,
and buyer 1 pays a limit price of as, which is above the fair price a;/2.

Lemmata 2 and 4 have the following corollary.

Corollary 1 (Fair pricing with sure trade). Let (0%).50 be a sequence of MPEs for the game
with supply q in which the discount factors §, converge to 1 as z — oo. If the seller trades
with buyer i with probability 1 under o for all z > 0, then the expected payoff of buyer i
converges to a;/2 as z — 0.

While this result echoes classic results on convergence to the Nash bargaining solution
in Rubinstein-style alternating-offer bargaining (Binmore 1980; Binmore, Rubinstein and
Wolinsky 1986), the argument here is more involved due to the presence of other buyers,
the seller’s strategic (and typically stochastic) selection of bargaining partner at every stage,
and the resultant non-stationary interaction between the seller and each buyer. In general,
the exact price a buyer pays in MPEs for a fixed ¢ depends on the state in which the buyer
trades, but the result shows that if the buyer is certain to trade, then all these prices converge
to the fair price as § — 1.16

The example from the previous section demonstrates that although trading with exact
probability 1 is a sufficient condition, it is not a necessary condition for fair pricing in the
limit. Indeed, in the second class of MPEs in the example, buyer 1 trades with probability
smaller than 1 but converging to 1 for § — 1 and obtains a limit payoff of a;/2 (buyer 2 is
in an analogous situation in the third class of MPEs).

We briefly turn to the game with unconstrained supply, i.e., ¢ = n. By Lemma 1, in every
MPE of the game with supply ¢ = n, there is trade in every round. It follows that the seller
trades with each buyer ¢ with probability 1 in one of the first n rounds, and Corollary 1 and
Lemma 1 imply that trade takes place at an expected discounted price converging to a;/2

16We establish a result of a similar flavor for a network setting in earlier work (Abreu and Manea 2012b).
In that model, every link generates a unit surplus and each player needs to trade with a neighbor. We show
that every player who is guaranteed to trade in equilibrium—even when trade occurs in an evolving network
and potentially with different neighbors—obtains asymptotic payoffs of at least 1/2. Elliott and Nava (2019)
also obtain a related result in a network setting with heterogeneous link values. In the efficient MPEs they
analyze, every pair of players who trade with each other with probability 1 face a stationary environment of
trading opportunities with other neighbors, but these outside options cannot be binding. Consequently, each
such pair effectively trades in a stationary two-player bargaining game, and agreements reflect “Rubinstein
payoffs” independent of the state of the network.
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as 0 — 1 (regardless of the timing of the agreement and nature’s selection of proposer in the

seller’s interaction with buyer 7). We established the following result.

Corollary 2. In any collection of MPFEs of the game with supply ¢ = n for discount factors
6 € (0,1), each buyeri’s payoff converges to a;, and the seller’s profit converges to ),y a;/2
as 6 — 1.

We conclude the section by sketching some key steps in the proofs of Lemmata 2-4. Readers
satisfied with the intuitions provided above may proceed to the next section. Consider an
MPE for the game with discount factor . An important implication of Lemma 1 that the
proofs rely on is that

7 _2m(l-9) ai+5uD(N\{2'})+ 3 ngui(jv\{k}).

S W 2 25— om
keN\{i}

Moreover, we have that

2 (1 =06 (2 —0
®) L

KEN\{i}

Therefore, formula (7) expresses buyer i’'s MPE payoff as a convex combination of half of the
gains a; +0ug(N\{i}) generated by a trade between the seller and buyer 7 in the initial state,
and buyer i’s continuation payoffs du;(N \ {k}) after the seller trades with other buyers k in
the initial state. If m; = 1, then the weight 2m;(1 —¢)/(2 — 9 — ;) on the first term equals 1,
and the two players share the gains from trade a; + dug(N \ {i}) equally. In this case, buyer
7 becomes a “bottleneck” for the seller’s access to gains from future trades, which enables
him to “hold up” the seller for half of those gains. Lemma 2 shows that the seller is able to
avoid such hold-ups in equilibrium whenever her continuation profits have a positive limit.
More generally, it is possible that lims_,; 7; = 1 in a sequence of MPEs for 6 — 1, and the
weight 27;(1—0)/(2— — dm;) has a positive limit, which depends on 7;’s rate of convergence
to 1 as 6 — 1. For instance, in the second class of MPEs for the example in the previous
section, the weight corresponding to buyer 2 converges to 2/5 as § — 1. By contrast, if
lims_,; m; < 1, then the weight converges to 0. In this case, buyer i’s asymptotic payoffs are
driven exclusively by his payoffs in subgames following trades with other buyers. Taking the
limit § — 1 in (7) for a sequence of MPEs in which all state variables converge, we obtain

) B= 3 (N (),

keN\{i} =~ ¢

This formula facilitates inductive arguments in the proofs of Lemmata 2-4, with the case
7; = 1 requiring separate treatment. While in the latter case, formula (7) is not informative
about buyer i’s limit payoff without knowledge of 7;’s rate of convergence to 1 as d goes to
1, it carries the information that @y = (N \ {i}) when applied for buyers k # i, which we
leverage in the proofs.
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The proof of Lemma 2 proceeds by induction on ¢ (with base case ¢ = 0). For the inductive
step, it is sufficient to establish that @; < a;/2 for all i € N for any sequence of MPEs in
which the state variables converge as 6 — 1. From the induction hypothesis, we know that
w;(N\{k}) < a;/2 for all k # 0. If uo(IV \ {i}) = 0, then it is easy to reach the conclusion
from (7) and (8): each term in the convex combination describing buyer i’s payoff, including
(a;+dug(N\{i}))/2, is asymptotically bounded above by a;/2. If 7; < 1, then the conclusion
follows directly from (9). We are left with the case m; = 1 and uo(NV \ {¢}) > 0 (which, as
noted earlier, arises for ¢ = 2 in the second class of MPEs in the example from the previous
section). The latter inequality implies that the seller trades with some buyer k € N \ {i}
with positive limit probability in the second round of the game after an agreement with 4,
ie., T(N\{i}) > 0. As T; = 1, the arguments above imply that u; = @,(N \ {i}). It follows
Uy = a; — U; + ap — U + uo(N \ {7, k}). The seller may deviate to first trading with buyer
k at a price converging to aj — 1y, and then trading with buyer ¢ at a price converging to
a; — u; (N \ {k}) to obtain a limit profit of ay — ug + a; — u;(N \ {k}) + wo(N \ {7, k}). For
this deviation not to be profitable for the seller for high ¢ in the sequence of MPEs, it must
be that u; < @;(N \ {k}), which proves the inductive step via the induction hypothesis.

The proof of Lemma 3 also proceeds by induction on g. For the inductive step, consider a
buyer ¢ > ¢+ 1. We need to argue that u; = 0. As in the case of Lemma 2, it is sufficient to
establish this for a sequence of MPEs in which state variables converge as 6 — 1. A trade
with any buyer k # i leads to a game with supply ¢ — 1 in which the induction hypothesis
implies that @;(N \ {k}) = 0. If 7, < 1, then (9) leads to @; = 0. To deal with the delicate
case in which 7; = 1, we consider a deviation whereby the seller switches the order of trades
with buyer i and another buyer k if ¢ > 1 like in the proof of Lemma 2 (or trades with
another buyer j for which a; > a; at limit price a; if ¢ = 1).

For Lemma 4, we argue inductively that w; > a;/2 for every buyer i that trades with
probability 1 in a sequence of MPEs with 6 — 1. Consider such a buyer 7. If 7, > 0 along
a subsequence, then buyer i must trade with probability 1 in subgame N \ {k}, which by
the induction hypothesis implies that u;(N \ {k}) > a;/2. The inductive step follows from
noting that the payoffs (a; + dug(N \ {i}))/2 and ou;(N \ {k}) in the convex combination
(7) are asymptotically bounded below by a;/2.

5. SELLER PROFITS

The main result of this section establishes that the seller’s MPE payoffs are essentially
unique for ¢ close to 1, and provides a simple formula for the seller’s limit profit as § goes to
1. The uniqueness of asymptotic seller payoffs is unexpected in light of the example discussed
in Section 3, which showcases multiple MPEs that are not asymptotically equivalent in terms
of buyer payoffs or trading probabilities.
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Theorem 1 (Seller profits). In any collection of MPEs of the game with supply ¢ < n for
discount factors 6 € (0,1), the seller’s expected profit converges as 6 — 1 to

(10) M* := max Gty +a-
1<q+1 2

+ a1+ .o+ Qg

To prove this theorem, we argue that M*? constitutes both an upper and a lower bound
on the seller’s asymptotic profit in every sequence of MPEs for the game with supply ¢ for
0 — 1. The first result establishes the upper bound.

Lemma 5 (Upper bound on seller profits). In any collection of MPFEs of the game with
supply g < n for discount factors 6 € (0, 1),
limsup ug < M.
6—1

We sketch the proof of Lemma 5 here. Consider an MPE of the game with supply ¢ < n.
Let [ be the smallest index of a buyer who trades with probability smaller than 1 in the
MPE. We have that [ < g+ 1. By Lemma 1, the MPE generates a probability distribution
over sequences of ¢ distinct buyers with whom the seller trades in the first ¢ rounds of the
game. By definition, there exists at least one such sequence S that excludes buyer [ but
includes buyers 1,2,...,l — 1. Since choosing to bargain with buyers in the sequence S is
optimal for the seller, it must be that the seller’s MPE payoff is equal to her expected payoff
from trading over S. As S arises with positive probability in equilibrium, each buyer j < [
trades with probability 1 in the subgame following agreements with his predecessors in S.
Lemma 4 implies that the (limit) expected discounted price the seller collects from buyer j
in the subgame is at most a;/2. Hence, the seller’s limit payoff from trading with buyers
1,...,0—1 over S does not exceed a;/2+ ...+ a;—1/2. The seller receives no payment from
buyer [ along S, and can at most extract all surplus from the remaining ¢ — [+ 1 buyers with
the highest valuations. If follows that the seller’s limit profit is bounded above by M™*9.

Remarkably, it is also the case that the seemingly coarse upper bound M*? constitutes a
lower bound on the seller’s asymptotic profits in MPEs for the game with supply ¢ as § — 1.

Lemma 6 (Lower bound on seller profits). In any collection of MPFEs of the game with
supply ¢ < n for discount factors ¢ € (0, 1),

lim inf uy > M™.
6—1

To prove this result, let [* be a maximizer in the optimization problem defining M*?, and
consider a collection of MPEs of the game with supply ¢ < n for § € (0,1). The seller
may deviate from her equilibrium strategy to a strategy that generates trades with buyers
in the sequence ¢ + 1,q,..., 1" +1,0* —1,...,1 over a fixed but long enough time horizon
with probability arbitrarily close to 1. Under this deviation, the seller bargains successively
with each buyer in the sequence, rejecting all offers and waiting to become the proposer.
Upon being selected to propose to buyer i, the seller makes an offer that buyer ¢ accepts
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in equilibrium. By Lemma 3, for high enough §, buyer i = ¢+ 1,q,...,l* + 1 will accept
price offers arbitrarily close to a; when it is his turn to trade. Similarly, by Lemma 2, buyer
i=1"—=1,...,1 will accept price offers arbitrarily close to a;/2. Over a long enough time
horizon, the seller will win the coin toss against all buyers in the sequence with probability
arbitrarily close to 1, and the deviation secures seller profits arbitrarily close to M*? for high
0. We conclude that the seller’s asymptotic profits in the collection of MPEs are bounded
below by M*9.

Since the two bounds on the seller’s asymptotic payoffs in the game with supply ¢ delivered
by Lemmata 5 and 6 coincide, they must be tight. Therefore, in any collection of MPEs for
the game with supply ¢, the seller’s profits converge to M*? as § — 1, which proves Theorem
1.

We remark that while the strategy underlying the proof of Lemma 6 enables the seller to
achieve her limit MPE payoff M*? asymptotically in the game with supply ¢, it does not
necessarily describe the seller’s behavior in any MPE, and may even be played with limit
probability 0 as § — 1. Indeed, when the maximizer in (10) is unique and different from

q + 1, this is an implication of forthcoming Theorem 2.

Sequential outside option principle. Theorem 1 yields a sequential outside option prin-
ciple for settings in which a seller trades sequentially with several, but not all, potential
buyers. Recall that the standard outside option principle implies that if the seller has one
unit for sale and there are multiple buyers, the second highest valuation is a lower bound on
the price the seller can extract from the highest-value buyer. Similarly, if there are ¢ units
for sale and n buyers, if we think of the extra marginal buyer ¢+ 1 as a static outside option,
q - agy1 should be a lower bound on seller profits.!” In our dynamic bargaining process, the
seller can sequentially exercise the outside option by trading with the extra marginal buyer
q + 1 first, the new extra marginal buyer ¢ next, and so on; the outside option provided by
the extra marginal buyer improves every round. In particular, this argument implies that the
seller can extract a profit of as +. ..+ aq41 by trading in sequence with buyers ¢+1,¢,...,2.
This is the value of the maximand in (10) for [ = 1. Our formula for seller profits (10)
recognizes that it might be too costly to exclude buyers with high valuations, and combines
Lemma 3 with Lemma 2. The latter implies that the seller can trade with buyers from a top
interval of valuations at fair (or better) prices.

For another perspective on the sequential exercise of outside options, we revisit the example
from the introduction in which n = 3,¢ = 2 and a3 > a;/2. As argued there, trading with
buyer 2 in the first round even at the highest possible price of a5 is not more valuable than
trading with buyer 3 at a price of az (which is feasible in the limit for § — 1 by Lemma 3).
This is because in the next round, when bargaining with buyer 1, the seller can demand a

1"The model of Ho and Lee (2019) applied to our setting actually predicts limit seller payoffs of ¢-ay+1 when
the outside option provided by buyer ¢+ 1 is binding for buyers 1, ..., q. See Section 8 for further discussion.
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price of as if buyer 2 is available as an outside option, but a lower price of ag if buyer 3 is the
outside option. In either case, the seller’s limit profit is as + as. This example shows that
buyers who are more valuable for inclusion may also be more valuable for exclusion when

additional units remain to be sold to even more valuable buyers.

Prices and buyer payoffs. In the example from Section 3, we have seen that limit prices
and payoffs for the buyers, unlike limit profits for the seller, may vary across MPEs of the
game with supply ¢ when 1 < ¢ < n. What can then be said about a buyer’s limit prices
and payoffs along a sequence of MPEs? Frequently quite a bit, even with relatively coarse
information about the seller’s mixing probabilities in the class of MPEs in question.

A sequence of MPFEs for the game with supply ¢ associated with a sequence of discount
factors d going to 1 is said to be convergent if the corresponding variables u;(S) and 7;(.S)
as well as the support of 7(S) converge along the sequence. Since there is a finite set of
possible supports for the seller’s randomization among buyers in every state .S, convergence
of the support of 7(.5) is equivalent to the support being constant far enough in the sequence;
hence, for each i € S, either m;(S) = 0 or m;(S) > 0 after a point in the sequence. Every
sequence of MPEs contains a subsequence that is convergent according to this definition.

Consider a convergent sequence of MPEs for the game with supply ¢ < n, and fix a state
S and a buyer ¢ € S such that m;(S) > 0 for 6 near 1. Lemma 1 implies that trade with
buyer i in state S takes place at limit price tig(S) — 2o(S \ {i}).'® Note that we know 1 (S)
and @y(S\ {i}): they can be computed explicitly by applying Theorem 1 to subgames S and
S\{i}, respectively. More importantly, Lemma 1 implies that @y(S) = a;+o(S\{i})—u;(.9),
which leads to

ui(S) = a; + (S \ {i}) — uo(S).

Hence, buyer ¢’s limit payoff in state S can be determined without knowledge of the exact
probability 7;(S) (as long as it is positive) or granular details of the different paths of trade
with buyer ¢ starting from state 5.

We classify buyer i’s trades in the overall game based on sequences of trades with other
buyers 71, ...,7;, that lead to buyer i’s first chance to trade with positive probability in
state S = N\ {i1,..., i}, i.e., m(N\ {i1,...,5}) > 0, and m;(N \ {i1,...,ip}) = 0 for
k' < k. We then use the formula for u;(S) above to account for trades made by buyer i
immediately after such sequences (in state S) or following intermediate trades with other
buyers (in states S’ C S). This leads to the following result, which expresses buyer ¢’s limit
payoff in the overall game as a weighted sum of terms a; + @y(S \ {i}) — uo(S), where the
weight 0;(S) assigned to state S is derived from the limit equilibrium probability of trade

with sequences of buyers iy, ...,4 that have the above properties (the formal definition of

6;(S) can be found in the Appendix).

I8Ag earlier, we use bar notation for the limits of equilibrium variables along the sequence of MPEs.
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Proposition 1 (Buyer payoffs). For any convergent sequence of MPEs of the game with
supply ¢ < n, we have that

4= 0:(S)(ai +uo(S\ {i}) — 1 ().
53i

If m;(N) > 0 for § close to 1, then 6;(N) = 1 and 6;(S) = 0 for all other S containing 1.
Proposition 1 then implies that @; = a; + to(N \ {¢}) — @o(N). The result summarizes what
can be said more generally about #;. The computation of #;(S) requires knowledge of the
seller’s mixing probabilities for other buyers who get opportunities to trade before buyer i
has a chance, but not of the probabilities with which the seller bargains with ¢ in different
states. In some cases, the seller’s mixing probabilities for those other buyers may be inferred
from their limit payoffs, which in turn can be determined from Proposition 1. In the Online
Appendix, we show how this type of exercise leads to a quick derivation of buyers’ limit

payoffs and trading probabilities in the example from Section 3.

Generalization to heterogeneous proposal probabilities. Consider a more general
model in which when bargaining with buyer ¢, the seller gets the opportunity to make an
offer with probability p; € (0, 1) and buyer ¢ with complementary probability. In this version
of the model, fair pricing for buyer ¢ corresponds to the price p;a;, and the formula for limit
seller profits generalizes to?

(11) max [p1a1 + poGo + ...+ pP—1q;—1 + aji1 + ...+ CLq_H] .

I<q+1

We comment on some intriguing implications for which buyers are included and excluded
under this bargaining protocol in Section 6.

Extension to random matching. Our bargaining protocol allows the seller to strategi-
cally choose which buyer she bargains with in every round. An alternative protocol entails
random matching between the seller and individual buyers according to exogenously given
probabilities. The protocol with strategic choice of bargaining partner is easier to work with
and also seems more natural in our setting, in which the seller with multiple units may wish
to trade only with a particular subset of buyers. An awkwardness of the random matching
protocol is that the seller gets matched to bargain with buyers that she does not have an
incentive to trade with, and such matches lead to delay in equilibrium. Nevertheless, our
results extend: the seller can replicate strategic choice of bargaining partners simply by
waiting to be matched with a desired buyer at an expected cost of delay that vanishes as

19N0netheless, limit buyer payoff equations do not always carry sufficient information about limit mixing
probabilities, as we discuss in the Online Appendix in the context of the example mentioned in footnote 13.
20Note that p;a; may not be decreasing in i. Indeed, the sequence (pia;)?—, may even be increasing, and one
might conjecture an analogue of the profit formula based on reindexing the buyers in terms of the decreasing
order of p;a;. Interestingly, the straightforward generalization is the correct one, and our upper and lower
bound arguments extend directly to this case.
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0 — 1. At a high level, this is why Theorem 1 and the supporting lemmata extend with
minor modifications.?* We provide details in the Appendix.

In the Online Appendix, we revisit the example from Section 3 in the context of random
matching, and argue that there are exact analogues to each of the three classes of MPEs we
derived for the benchmark model. Hence, asymptotic inefficiency and multiplicity of MPEs
persist in this alternative model.

6. INCLUDED AND EXCLUDED BUYERS

Theorem 1 reveals a close connection between the maximum M*? in the simple static
optimization problem displayed in (10) and the seller’s profits in the complex dynamic bar-
gaining game with supply ¢ < n. As we have seen concretely in the example from Section
3, the seller can attain the total profits M*? in a variety of ways and from different sets of
buyers in equilibrium. Nevertheless, Theorem 2 below shows that the optimization problem
is also informative—via its maximizers [—about which buyers are certain to trade and which
buyers face the threat of “exclusion” in the game.

Generically, the static optimization problem has a unique maximizer [*. For this generic
case, we show that every buyer ¢ < [* trades with probability 1 in any MPE for high enough 4.
The converse is also true: every buyer ¢ > [* trades with probability less than 1 in MPEs for
high 0. Thus, buyers ¢ < [* are guaranteed to be “included”—and hence by Corollary 1 trade
at the fair price a;/2 in the limit as 6 — 1—while buyers i > [* are “excluded” with positive
probability in equilibrium for high §. We establish that if [* # ¢+ 1 and a;+ > @<, 1, then in
any collection of MPEs for ¢ € (0, 1), buyer [* trades with limit probability 1 as § — 1. In
this case, [* is the buyer with the highest value that is excluded with positive probability in
equilibrium, but the probability of excluding [* vanishes as 6 — 1. However, if [* = ¢ + 1,
then in MPEs for high 9, the seller trades with the top ¢ buyers with probability 1, and
hence trades with buyer [* with probability 0. We also prove that the seller trades only with
buyers with the top ¢+ 1 valuations, extending the logic of “two is enough for competition”
to situations with multiple transactions: an extra buyer is enough for competition. In the
Appendix, we state and prove a general version of the theorem that also deals with non-
generic cases in which the static optimization problem (10) has multiple maximizers. The
proofs of the claims track the evolution of the formula for seller profits in subgames as trade
takes place (and involve further use of the supporting lemmata).

Theorem 2 (Included and excluded buyers). Fiz ¢ < n, and suppose that the optimization
problem displayed in (10) has a unique mazimizer I*. Then, there exists 0 < 1 such that

2I\We conjecture that the generalization of our results as embodied in (11) extends to any sequential bilateral
bargaining protocol that allows the seller to mimic strategic choice of partners at an expected cost of delay
going to zero for 6 — 1 (as long as in every bargaining round with buyer 4, the seller and buyer i make offers
with probabilities (p;, 1 — p;)).
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the following statements hold for every MPE of the game with supply q and discount factor
0>94.

e The seller trades with buyer i with probability 1 if and only if 1 < [*.
o [fl* =q+ 1, then the seller trades exclusively with buyers 1,...,q.
o The seller trades with probability 0 with any buyer i for which a; < agt;.

IfI* # q+ 1 and a;» > a1, then in any collection of MPEs of the game with supply q for
d € (0,1), the probability that the seller trades with buyer I* converges to 1 as § — 1.

The result also highlights subtle differences between the static optimization problem defin-
ing M*? and the equilibrium of the dynamic bargaining game: the missing term correspond-
ing to the value of buyer [* in the formula for M*? does not translate into buyer [* carrying
all the burden of exclusion in the game. Indeed, buyer [* is almost certain to be included in
the limit 6 — 1. In particular, this means that the strategy delivering the lower bound on
limit seller profits in the proof of Theorem 1 is played with limit probability 0 in MPEs for
o — 1.

An example with n = 3,a1 = as = 3,a3 = 1 shows that weakening the hypothesis
ap« > ap+yq to require that a;p > a, in Theorem 2 does not guarantee the conclusion that
buyer [* trades with limit probability 1. In this example, we have that {* = 1 and a; > a3,
but there exists a class of MPEs with 7, = s = 1/4 and 73 = 1/2. In this class of MPEs,
the seller trades with buyer I* = 1 with limit probability 3/4 < 1 as § — 1.2

Theorem 2 generalizes to the version of the model in which the seller gets the opportunity
to make offers with probability p; € (0,1) when bargaining with buyer i. The corresponding
[* solves the optimization problem (11). The conclusion that a buyer i < I* for whom p; is
relatively small is included with probability 1 is counterintuitive. However, note that [* > ¢
implies that p;a; > a;=, so p; cannot be arbitrarily low when ¢ < [*. Another implication
of the result is that when [* = 1 and a; > ao, even if p; is relatively low and pia; < poas,
the seller trades with buyer 1 with limit probability 1 in MPEs for 6 — 1. This is in sharp
contrast with the fact that in a market with ¢ = 1 and pia; < psas, if the seller had to
commit to bargain exclusively with either buyer 1 or 2, she would choose buyer 2.

7. OPTIMAL EXCLUSION COMMITMENTS WHEN ¢ =n

We now turn to a strategic situation in which the seller has unconstrained supply ¢ = n, but
might find it profitable to increase competition between buyers via exclusion commitments.
We model such commitments as follows. An exclusion commitment £ is a function from
the set of all subsets of N to itself such that £(S) C S, £({i}) = {i} for all i € N, and
E(S) CE(S\{i}) for all i € S\ E(S). In the game with exclusion commitment £, bargaining
proceeds like in the game with supply q, but trade is restricted by &: after a history in

22This example admits two other classes of MPEs with m; = 0 and w3 = 0, respectively, similarly to the
example from Section 3.
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which the seller has not yet traded with a subset of buyers S, she excludes the buyers in
£(9), and may only bargain with buyers in S\ £(5); the game ends when £(S) = S. The
condition £({i}) = {i} for i € N ensures that the seller ultimately excludes at least one
buyer from trade. The condition £(S) C (S \ {i}) for i € S\ £(S) requires that exclusions
be irreversible: if the seller is committed to exclude a buyer at a given stage, she eliminates
that buyer from all future negotiations.?® As in the case of the game with exogenous supply,
the payoff relevant state for the definition of MPEs in the game with exclusion commitment
£ is given by S and the actions in the current round.

A salient class of exclusion commitments, which treats buyers symmetrically, is the §-
supply commitment for ¢ < n. This commitment, denoted by &9, is specified by £9(S) = S
if S| > n — ¢, and £9(S) = 0 otherwise. This means that the game ends exactly after g
trades. Hence, the game with g-supply commitment is identical to the game with supply q.

We seek to derive optimal exclusion commitments for the seller under the least and the
most favorable selection of MPEs asymptotically as § — 1. Let %°(€) denote the set of MPEs
in the game with an exclusion commitment £ in which players have a common discount factor
d, and ug (o, 0) denote the seller’s expected payoff under a strategy profile 0. We investigate
the following bounds and their associated optimal exclusion commitments &:

M = max liminf inf wg(o,?)
£ ol oexi(e)

M = max limsup sup ug(c,0).
€ =1 oexd(E)

Our main result about optimal exclusion commitments shows that the two bounds coincide,

and are achieved by the same exclusion commitment: the (n — 1)-supply commitment.?*

As the game with the (n — 1)-supply commitment is identical to the game with supply
n — 1, Theorem 1 implies that the common value of the bounds is M*™~1. This exclusion
commitment entails that the seller commits to exclude a single buyer but allows her the
flexibility to decide dynamically which buyer is excluded. Therefore, maintaining a single

unit of shortage at every stage allows the seller to extract all potential benefits of exclusion,

2If buyer j is excluded in state S but not in state S\ {i} for some buyer i with whom trade is allowed
in state S, then the potential competition offered by buyer j when bargaining with buyer ¢ in state S is
unnecessarily lost. For instance, in a situation where £(S) = S\ {i} and j € S\ (S \ {i}), buyer ¢ would
be a “gateway” to accessing buyer j from state S and could “hold up” the seller for half of the profits she
later collects from buyer j. Our formulation of exclusion commitments precludes such hold-ups (but allows
for others; see footnote 26).

24This is not always the only optimal commitment. For instance, if the optimization problem defining
M*(=1) has a maximizer [* > 1, then modifying the (n — 1)-supply commitment to rule out paths of trade
that exclude buyer 1 generates another optimal exclusion commitment £ (€ differs from £"~! only in that
E({1,i}) = {i} for i # 1). To achieve the asymptotic bound M*("~1 in the game with exclusion commitment
&, the seller can first trade with buyer 1 at a limit price of at least aq/2, which is feasible by the extension of
Lemma 2 to path independent exclusion commitments (such as £) mentioned in footnote 26, and then reach
a subgame in which &£ reduces to a (n — 2)-supply commitment, in which we know from Theorem 1 that the
seller can obtain an asymptotic payoff of as/2+ ...+ ap—1/24 apey1 + ... + an.
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and the seller does not benefit from exclusion commitments that treat buyers asymmetrically

or create additional scarcity.?®

Theorem 3 ((n—1)-supply commitment is optimal). The (n—1)-supply commitment solves

the mazimization problems associated with both M and M, and furthermore M = M =
M*(nfl).

Our permissive formulation of exclusion commitments implies that the conclusion of The-
orem 3 is correspondingly strong, while the optimal commitment we identify is simple and
does not exploit the permitted complexity. Thus, skeptics who feel that complex commit-
ments are implausible may be reassured by the simplicity of the result, and others need not
be concerned that allowing for additional complexity might lead to higher seller profits.

The proof leverages the body of results developed thus far. Since the (n — 1)-supply
commitment is one of the exclusion commitments £ allowed in the optimization problem
defining M, and by Theorem 1, the seller’s profit in any collection of MPEs for the game
with supply n — 1 converges to M*=1 for § — 1, it follows that M > A/*(»=1),

Lemmata 1 and 4 generalize to the game with any exclusion commitment without substan-
tial changes in the proofs.?® Then, a straightforward adaptation of the argument for Lemma
5 implies that in every collection of MPEs for the game with any exclusion commitment & for
discount factors § € (0, 1), the limit superior of the seller’s expected profit as 6 — 1 does not
exceed M*= Y Hence, M < M*"=Y_ As M > M, we conclude that M = M = M*"~1),
which means that the (n—1)-supply commitment is optimal for both optimization problems.

Theorem 2 implies that the (generically unique) maximizer [ in the optimization problem
defining M*(»=Y represents a cutoff for the buyers who are included with certainty in MPEs
under the optimal exclusion commitment for high §. By Corollary 1, these buyers must trade
at fair prices in the limit 6 — 1. The other buyers face the risk of exclusion and may have to
pay higher than fair prices (as discussed in the context of Corollary 1, some of these buyers
can also trade at fair prices).

By definition, an exclusion commitment requires that at least one buyer does not trade.
It is possible that the seller attains higher profits without excluding any buyer: formally,

25This conclusion is somewhat counterintuitive. Consider an example with n = 30 and a; = ... = a9 =
100,a11 = ... = agp = 10,a21 = ... = azp = 1. It may be tempting to conjecture that in this market the
seller should optimally commit to exclude one buyer of each of the three types thereby extracting full surplus
from all but one buyer of every type.

26While Lemma 2 is not directly needed for the arguments here, we note parenthetically that it extends to the
game with exclusion commitment £ with straightforward proof modifications if £ is path independent, that
is, for every state S that can be reached in the game and all i # j € S, we have that j € (S\ {i})\E(S\ {i})
if and only if i € (S\ {4}) \ E(S\ {j}) (a key step in the argument for Lemma 2 concerns a deviation by
the seller to a strategy that changes the order of trade for a pair of buyers). An example of an exclusion
commitment that violates path independence for which Lemma 2 does not hold is given by £({1,2,3}) =
{3},€({1,3}) = {1,3},£({2,3}) = {3} in a setting with n = 3,¢ = 2. Under this commitment, buyer 3 is
always excluded, and the seller can trade with buyer 2 after buyer 1, but not the other way around. This
game has MPEs in which buyer 1 holds up the seller and gets limit payoff a1/2 + as/4.
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this corresponds to the game with supply ¢ = n, in which the seller obtains limit profits
> ien @i/2 by Corollary 2. Theorem 3 implies that the seller is better off with an optimal
exclusion commitment whenever M*™=1) > > ien @i/2.%" Note that this is often the case.
The condition M*®™=1 < 3™ a;/2 is equivalent to a; > @41 + ...+ a, for all | <n —1,
which in turn implies that a; > 2a;,5 for all [ < n — 2. This requires extreme differences in
valuations be maintained consistently through the sequence of buyers: if there exist three
consecutive buyers whose valuations do not drop by half, optimal commitments would strictly
dominate having no commitments.

Similarly, the condition [* # n invoked in Theorem 2 for the game with supply n—1 is likely
to be satisfied: I* = n implies that M*("~1) = dien\(ny @i/2 < Dien ai/2. When I* = n,
buyers 1,...,n — 1 are served with certainty in the game with (n — 1)-supply commitment.
In this case the seller would be better off in the game without exclusion, in which she trades
with all buyers with certainty.

When bargaining with an optimal commitment dominates bargaining without commit-
ment, the threat of exclusion enables the seller to extract higher payoffs by flexibly serving
n — 1 of the group of n buyers than she would by serving any subset of n — 1 buyers with
certainty, and indeed by serving all n buyers with certainty. It follows directly that one or
more buyers must trade with positive probability at higher than fair prices.

We conclude this section with a general MPE existence result.

Proposition 2 (Existence). An MPE exists for the game with any exogenous supply and

for the game with any exclusion commitment.?®

8. OPTIMAL EXCLUSION IN THE GAME WITH SUPPLY ¢ < n

Does a seller with supply ¢ < n benefit from making exclusion commitments stricter than
her exogenous supply constraint? An exclusion commitment £ is more restrictive than the
g-supply commitment £7 if £(5) = S whenever |S| = n — ¢ and, furthermore, £(5) = §
for some S with |S| > n — ¢. Again, the argument for Lemma 5 can be easily adapted to
show that M*? is an upper bound on limit profits the seller can obtain using any exclusion
commitment that is more restrictive than £?. On the other hand, Theorem 1 shows that
the seller’s limit profit in the game with supply ¢ is M*?. It follows that in the setting
with supply ¢ < n, the seller does not benefit from making commitments to exclude buyers

at any stage before all available ¢ units are sold (in the language of footnote 27, the seller

2TAn implication of Theorem 3 is that when this inequality is satisfied, a seller who owns ¢ > n units and has
the option to “burn” some units before bargaining proceeds would optimally burn ¢ —n + 1 units. Relatedly,
Manea (2021) discusses an example in which if buyers make offers more frequently than the seller, the seller
is better off supplying a single buyer instead of all.

28For q < n, the game with supply ¢ is identical to the game with g-supply commitment, so the only game
with exogenous supply outside the class of games with exclusion commitments is the game with supply ¢ = n.
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does not have an incentive to “burn” any of the ¢ units).?? In particular, for any § < g,
the ¢-supply exclusion commitment is detrimental to a seller with supply ¢ (this follows
directly from noting that M7 < M4Y). This conclusion echoes the intuition from the case
with unconstrained supply that any scarcity persisting through the trading process (¢ < n)
induces sufficient competition among buyers to deliver the gains of the sequential outside
option principle, and further exclusion does not benefit the seller.

This result does not hold in Ho and Lee’s (2019) delegated-agent model of bargaining with
threat of replacement. In that model, the seller announces a set of buyers (“network”) she
will “target.” The network consists of the most valuable ¢ < ¢ buyers. The seller then assigns
a representative to each buyer in the announced network, and instructs each representative
to bargain only with her assigned buyer and any buyer outside the network. Ho and Lee
show that the announced network forms in equilibrium with limit probability 1 as ¢ — 1,
and the seller’s limit profit is Y7, max (a;/2, ag11). This expression may be rewritten as

max

ap+as+ ... +a_1
I<G+1

9 + (Cj — l + 1)6Lq+1:| .

Observe that

ay+ ...+ a1 ~
— . <
e L

{a1+...+al1

2 +al+1—|—...+a,§+1} :M*li'

The difference aj41 + ... + ag+1 — (§ — 1+ 1)age1 > 0 in the expressions being maximized in
the two optimization problems above is due to the fact that under Ho and Lee’s bargaining
protocol, every representative relies on the outside option provided by the extra marginal
buyer ¢ + 1 when bargaining with her assigned buyer. In particular, if a representative
exercises the outside option of trading with buyer g+ 1, her assigned buyer does not become
available to the other representatives as a more valuable outside option. In other words,
the protocol followed by the seller’s representatives rules out the strategy underlying our
sequential outside option principle. For a fixed ¢, the total profits the seller achieves in
the setting of Ho and Lee are lower than M*? in general due to both the difference in the
maximand for every [ < ¢ — 1 and the possibility that the two optimization problems have
different maximizers [.

A seller with supply ¢ < n may benefit from reducing supply to some ¢ < g in the setting
of Ho and Lee. As noted above, the resulting total profits in this case are smaller than
or equal to M*?. In our setting, the seller cannot benefit from restricting supply because
M*1 < M+, For a concrete example, suppose that ¢ = 4 in a market with n = 5,a; =
as = az = a4 = 3,a5 = 2. Under the protocol of Ho and Lee, a commitment to supply only

three of the four units (“burn” one unit before bargaining) increases seller profits from 8 to

29Note7 however, that there are exclusion commitments €& more restrictive than £7 that generate the same
limit profits as £2. This is the case, for instance, if £({1,3}) = {3} and £(S) = £9(5) for all other states S
in the example from Section 3. If ¢ < n — 2, this is also the case if £(S) = £4(S)U{¢+2,...,n} for all S.
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9. In our model, the optimal exclusion commitment does not require a supply reduction and

generates profits of 11 in this example.

9. CONCLUSION

This paper studies bilateral bargaining between a seller and multiple buyers. The results
are most interesting when the seller is unable to serve all buyers either because supply is
limited or because the seller commits to excluding some potential buyers. Our analysis
reveals that commitments to contract with fewer than the available number of buyers could
be a highly effective bargaining tool. We quantify the resultant benefits to the seller. The
theory applies symmetrically to the case of a buyer negotiating with multiple sellers.

Our main results characterize seller profits as well as prices, payoffs and trading probabil-
ities for individual buyers under exogenous supply constraints. We also investigate optimal
exclusion commitments in the absence of supply constraints. In the process, we formalize
exclusion commitments in a general way. The analysis uncovers some key bargaining theo-
retic principles for the environments considered. On the one hand, buyers cannot hold up the
seller in the sense of paying less than fair prices. On the other hand, buyers who are included
with certainty must trade at exactly fair prices. Our theory yields a novel sequential outside
option principle that captures the role of scarcity in inducing competition between buyers
when several successive transactions are possible. With sequential trade, the outside option
changes dynamically, and in particular may become increasingly more attractive, enabling a
seller who contracts with multiple buyers to extract more surplus than if she were to threaten
buyers with a static outside option, as assumed in preceding research on exclusion. We show
that in equilibrium the seller optimally chooses a top segment of buyers to include with
certainty at fair prices, and exploits the others via the sequential outside option principle.

In many applications, there are externalities between buyers. A buyer’s marginal value
may depend on the set of buyers that the seller ultimately contracts with. In future research,
we seek to address this generalization. We also hope to explore extensions to settings with
multiple sellers and multiple buyers.

APPENDIX

Proof of Lemma 1. Consider an MPE for the game with supply ¢. In subgame S, the seller
can trade only with buyers in S. It follows that the total surplus created in subgame S is
bounded above by . ¢ a;. As ug(S) > 0, we have that

(12) duw(S) < > w(S) <) an

ics i€SU{0} i€s
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Hence, there exists i € S such that u;(S) < a;.*° Since the seller has the option to bargain
with buyer ¢ in the first period of subgame S and make an acceptable offer that leaves buyer
i with utility arbitrarily close to du;(S), but otherwise demand positive prices and refuse all
offers in the future, we have that

As every buyer i € S will reject offers that yield utility smaller than du;(S) in state
S of the MPE, the payoff the seller receives when making an offer is bounded above by
max;es(a; + dug(S\ {i}) — du;(5)). Standard arguments demonstrate that the seller expects
a payoff of dug(S) in the event the buyer chosen for bargaining is selected to be the proposer
(regardless of whether the offer is accepted or rejected). Then, uo(S) > 0 implies that
max;es(a; + oug(S \ {i}) — 0u;(S)) > dug(S). As the seller can obtain a payoff arbitrarily
close to a; + oug(S \ {i}) — du;(S) by making an acceptable offer to buyer 4, it must be that
7;(S) > 0 only if 7 maximizes the expression a; + 0ug(S \ {i}) — du;(.S). For such i, we know
that a; + dug(S \ {i}) — 0u;(S) > due(S).

Optimality of MPE strategies requires that if m;(S) > 0, and the seller is selected to
be the proposer, then she makes an offer that yields utility du;(.S) for buyer i and utility
a; + dug(S\ {i}) — du;(S) > dug(S) for the seller, and buyer ¢ must accept the offer with
probability 1 in equilibrium. Similarly, if buyer i is the proposer, he makes an offer that
yields utility dug(S) for the seller, and the seller accepts it with probability 1. The payoff
equations follow.

Finally, we prove the statement regarding limit prices. Consider a sequence of MPEs asso-
ciated with a sequence of discount factors (4, ),>¢ under which 7;(S) > 0 and lim,_,», u;(S) =
w;(S). For all z > 0, the arguments above lead to

wo(S) = %mi 6.u0(S\ {i}) — b.ui(S)) + %@UO(S),

which implies that §,uo(S) — d,ue(S \ {i}) converges to a; — u;(S) for z — co. When the
seller makes an offer to buyer 7 in subgame S, the equilibrium price a; — d,u;(S) converges
to a; — w;(S) as z — oo. If instead buyer i is the proposer, then the equilibrium price
3.uo(S) — d,up(S \ {i}) converges to the same limit. O

MPEs in subgames with two buyers and one good. In a subgame {1, j} in which buyers ¢ and
7 with ¢ < 7 are competing for a single unit, the unique MPE outcomes can be derived from
the proof of Proposition 1 in Manea (2018).*! If a; < a;/2, then for any § € (0,1), the

30The only change necessary to extend this proof to the game with an exclusion commitment & involves
replacing the set S with the set of buyers S\ £(S) who are still permitted to trade in state S in this sequence
of arguments. By definition, under any exclusion commitment &, only buyers in S\ £(S) can trade in
subgame S.

31See also Abreu and Manea (2022) for an extensive discussion of the structure of MPEs in this case.
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outside option of trading with buyer j is not binding in the MPE (7;({i,j}) = 0), and
uo({t,7}) = wi{i, j}) = @i/2,u;({4,5}) = 0.

If a; > a;/2, then for § in the non-empty interval (2(1 — a;/a;),1), the outside option is
binding (7;({,j}) > 0), and the unique MPE payoffs are given by

wlfigy = CEEAETLZS

2(4 — 30)
o (240-20%)a;— (2-0)(3—2d)a; + (2—0)A
wlthgy) = 26(4 — 30)
- (240 — 28%)a; — (2 — 0)(3 — 20)a; + (2 — H)A
wli.dp) = L ,
where A := \/(3 —20)%(a7 + a3) — 2(7 — 86 + 20%)a;a;. O

Ezistence of the MPEs described in the example from Section 3. Define A; := a;+duo({1, 2, 3}\
{i}) for every buyer i = 1,2, 3 (with uo({1,2,3} \ {¢}) specified in the previous section).

To establish the existence of the first class of MPEs, we restrict 73 to the interval [3/16,5/16],
and derive values for m from MPE conditions as a function of § and 73, with the under-
standing that 7 is given by 1 — my — 73 in all expressions. Applying (7) for ¢ = 1,2 and
letting j = 3 — ¢, we obtain

2m(1—-9) Ay m;(2—-9)
(13) YT —om 2 2—6—om,
Furthermore, equation (7) for i = 3 reduces to
2m3(1 —0) As
(1) BT —om 2
because ugz({1,3}) = u3({2,3}) = 0 (as implied by the discussion in the previous section).

(2-9)

Su;({i,3}) + ;jé—méui({l, 21).

The seller’s indifference between trading with each buyer ¢ = 1,2 and buyer 3 leads to

For i = 1,2, we plug the formulae for u; and uz from (13) and (14) in (15), multiply the
resulting equality by 2(2 — § — dm;) using the substitution 7 = 1 — m — 73, and collect
the terms containing 7, to obtain a linear equation in 7y of the form z;(d, w3)my = y;(0, 73).
Even though we do not consider the case 6 = 1 in our analysis of the game, note that
all terms above are well defined for § = 1 (when w3 € [3/16,5/16]), and z; and y; are
continuous functions on the compact domain {(d,m3)|0 € [0, 1], 75 € [3/16,5/16]}. By the
Heine-Cantor theorem, x; and y; are uniformly continuous over the domain. It follows that
for every € > 0, there exists d(¢) € [0,1) such that the value of each of these functions for
any (0,7m3) € D(e) := [d(e), 1] x [3/16,5/16] is within ¢ of its corresponding value at (1, 73).
We find that for all w3 € [3/16,5/16],

33'1(5 = 1,71'3) = 1, y1(§ = 1,7'('3) = T3, 1'2((5 = 1,77'3) = 1, y2<5 = 1,7T3> =1- 37T3.
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If e < 1, then x;(d,73) > 0 for all (6, 73) € D(e). Consider the function f: D(1/8) — R
defined by f(d,m3) = y1(9, m3)/x1(6, m3) — y2(0, m3)/x2(0, m3). We have that f(0 = 1,7m3) =
Ay — 1. Then, f(6,m3 = 3/16) < 0 < f(d,m3 = 5/16) for all 6 € [0(1/8),1]. As f is
continuous in its second argument, the intermediate value theorem implies that for every
d € [0(1/8),1], there exists m3(0) € (3/16,5/16) such that f(d,75(6)) = 0. Define my(d) =
y1(9,m3(9))/x1(d, m3(0)). For sufficiently small ¢, if § € [§(¢), 1), then m(d) € (1/8,3/8).

We conclude that for small enough ¢, the game with any discount factor § € [d(¢), 1)
has an MPE in which (7, ma, m3) = (1 — m2(0) — m3(9), m2(9), m3(9)). Buyer payoffs in this
MPE are obtained by substituting (7, 72, 73) in (13) and (14); the obtained values are clearly
positive. The seller’s payoff is given by the common value of 2/(2—§)(A; —ou;) fori =1,2,3
(consequence of (15)), and is positive because A3 > 0 and (14) implies that uz < A3/2. The
MPE must have the asymptotic structure derived in Section 3 for 6 — 1.

We next establish the existence of the second class of MPEs. For m; = 0,m € [0,1] and
d € (0,1), let u;(0, ) denote the expression on the right-hand side of formula (7), in which
we substitute m3 = 1 — my. Define

f(5, 7T2) = AQ — 5U2(5, 7T2) — (A3 — 5U3((5, 7T2)).

Note that lims_,; Ay = 5,lims 1 A3 = 4, and limg_,; us(0, M = 0) = 0, u3(d, M = 0) = A3/2,
while ug (6, m = 1) = Ag/2,lims_1 uz(d, 7 = 1) = 0. It follows that lims_,; f(,m =0) =3
and lims_, f(0,m = 1) = —1.5. Since f is continuous in 0, there exists 0 € [0,1) such
that f(0,m2 =0) >0 > f(d,my = 1) for 6 € (9,1). Then, the continuity of f in its second
argument implies the existence of m5(d) € (0, 1) such that f(J, m2(d)) = 0. The corresponding
steps in Section 3 demonstrate that lims_,; mo(d) = 1, and that for § close to 1 there exists
an MPE for the game with discount factor ¢ in which (7, ma, 75) = (0, m2(6), 73(6)).

The existence proof for the third class of MPEs is analogous to that for the second class. [

Buyer strengths in the three classes of MPEs for the example. Each buyer ¢ = 1,2 is in the
most favorable position if the seller trades first with the other buyer 7 = 3 — ¢ because buyer
3 provides a weak (and non-binding) outside option following a trade with j. The second
and the third classes of MPEs showcase these dynamic equilibrium forces vividly as they
involve respective trades with buyers 2 and 1 in the first round with limit probability 1.
Consequently, buyers 1 and 2 receive their highest possible asymptotic MPE payoffs—half
of their values—in the second and the third class of MPEs, respectively (see Lemma 2).
The first class of MPEs yields the lowest asymptotic payoffs for both buyers 1 and 2
because it entails trading with buyer 3 with limit probability 0.25. In this event, buyers 1
and 2 compete for the remaining unit, and the outside option provided by buyer 2 is binding
when the seller is bargaining with buyer 1. This leads to low payoffs for both buyers in
the subgame following a trade with buyer 3, @;({1,2}) = 1 and u2({1,2}) = 0, and in the
overall game, u; = 1.5 and 4y = 1. In the second class of MPEs, buyer 2 also has a low
payoff of us = 1. In this case, a positive limit probability of trading with buyer 3 would be
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an extremely powerful threat to buyer 2, leading via (5) to 4y = 0. Implementing the threat
with small but vanishing probability as 6 — 1 (w3 > 0, but 73 = 0) is sufficient to exploit
buyer 2 and drive his limit payoff down to 1, thereby maintaining the seller’s indifference
between trading with buyers 2 and 3 in the initial state. Similar equilibrium forces determine
buyer 1’s weak position in the third class of MPEs. ([l

Proof of Lemma 2. We establish the result for all games with supply ¢ by induction on gq.
The base case ¢ = 0 is trivial as all buyers receive zero payoffs in a degenerate game in which
no trade is possible.

For the inductive step, consider the game with supply ¢, and fix a corresponding collection
of MPEs (0°)sc(0,1)- It is sufficient to show that if u; converges over a sequence of §’s going to
1, then its limit is at most a;/2 for every buyer i. We can assume by passing to a subsequence
(02):>0 — 1 that all equilibrium variables u;, u;(S), 7;, 7;(S) converge as z — oo to limits
denoted by @;,u;(S), 7;, 7;(S). We need to prove that u; < a;/2 for all i € N.

Following an agreement with buyer k, players reach subgame N\ {k}—a game with supply
g — 1, in which the induction hypothesis applies. Hence, u;(N \ {k}) < a;/2 for all k # i.

Fix a discount factor ¢ belonging to the sequence (6,) and a buyer i € N such that m; > 0
under ¢°. By Lemma 1, we have that

(16)  wy — %(ai—l—(Suo(N\{i})—5ui)+%5u0

(17) u o= m <% (a; + dug(N \ {i}) — dug) + %&LZ) + Z mou; (N \ {k}).
kEN\{i}
Solving the pair of equations (16) and (17) with unknowns g and u; and reorganizing terms,
we obtain formula (7) from Section 4 (when 7; = 0, this formula follows directly from (17)
even though (16) is not valid in this case). The identities (8) and (9) from Section 4 will
also be useful.
If 7; < 1, then (9) leads to

_ T _ a;
= Y T aV\ () < Y
11— 2
keN\{i}

If ug(N\{i}) = 0, then for any ¢ > 0, there exists z such that if z > z, then d,ug(N\{i}) <
2e and O,u;(N \ {k}) < a;/2 + ¢ for all k € N\ {i}. Equations (7) and (8) then lead to
u; < a;/2+ ¢ for all z > z. Hence, @; < a;/2.

For the rest of the proof, assume that 7; = 1 and @o(V \ {i}) > 0. The latter inequality

implies that the seller trades with some buyer k& € N \ {i} with positive limit probability
dz

in the second round after reaching the agreement with ¢ under o Hence, ¢ > 2 and

(N \ {i}) > 0.
Since 7; = 1 > 0, taking the limit z — oo for in equation (16) for § = ¢, we obtain

(18) o = a; + uo(N \ {i}) — @;.
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Similarly, 7, (N \ {¢}) > 0 implies that

(19) uo(N\A{i}) = ar + a0 (N \ {4, k}) — ap(N\ {i}).
As m; = 1, it must be that

(20) up = up(N\ {i}).
Putting equalities (18)-(20) together, we obtain

(21) g = a; + ap + uo(N \ {i, k}) — u; — ug.

Since the seller may bargain with buyer k in state N and with buyer i in state N \ {k},
we have that

v

ar + (N \ {k}) — @
(N \{k}) > ai+ao(N\{i,k}) —a(N\ {k}),

Ug

and hence
(22) Uy > a; + ap + tg(N \ {i, k}) — a;(N\ {k}) — t.

Then, (21) and (22) imply that @; < @;(N \ {k}). Since u;(N \ {k}) < a;/2, we conclude

Proof of Lemma 3. We prove the claim for all games with supply ¢ and any number of buyers
n > ¢ by induction on ¢, with the base case ¢ = 0 being trivial like in the proof of Lemma
2 (applying the inductive hypothesis requires a reindexing of the buyers in decreasing order
of valuations in subgames). For the inductive step, fix ¢ > 1, and consider a collection of
MPEs (¢°)s5¢(0,1) for the game with supply ¢, and a buyer i > ¢+ 1. If buyer ¢’s payoff under
0% does not converge to 0 for § — 1, then there exists a sequence of discount factors going
to 1 for which ’s payoff converges to a positive limit. By passing to a subsequence, we can
assume that the other equilibrium variables also converge. We will establish that u; = 0,
contradicting the hypothesis above.

For any k € N \ {i}, buyer i’s value is among the highest ¢ in subgame N \ {k}. Since
subgame N \ {k} is a game with supply ¢ — 1, the induction hypothesis implies that

(23) @G(N\ {k}) = 0,Vk € N\ {i}.

If 7; < 1, then (9) implies that

B= 3 (N (k).

keN\{i} =~ ¢

Using (23), we conclude that u; = 0.
Consider now the case 7; = 1. Applying (9) for buyers j # 4, we obtain u; = u;(N \ {i}).
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If ¢ = 1,2 then 4y = a; — @; < a; < ap. As n > 2, there exists j € {1,2} \ {i} for which
u; = uj(N \ {¢}) = 0. Since the seller may deviate to trading with such a buyer j at a limit
price of aj, it follows that @y > a;. We conclude that a; < a; < @y = a; — @ < a; < ag,
which is possible only if all weak inequalities hold with equality. In particular, a; — u; = a;
leads to u; = 0, as claimed.

Now suppose that ¢ > 2. Then the game with supply ¢ does not end after the seller trades
with buyer 7 in the first round. In subgame N \ {i}, there exists a fixed j # i such that
7j(N'\ {i}) > 0. The conditions 7; > 0 and 7;(N \ {i}) > 0 along with Lemma 1 lead to

g = a; — U + Uo(N \ {i}) = a; — @; + aj — u;(N \ {i}) + ao(N \ {4, 7})-
As u; = u;(N \ {i}), we obtain
(24) Uy = a; — Ui + a; —u; + uo(N \ {7, 5}).

The seller has the option to deviate and trade with buyer j first at a limit price of a; — 4,
and with ¢ second at a price of a; —@; (N \ {j}) = a; (by (23), we have that @;(N\ {j}) = 0).
Optimality of the seller’s strategy in the sequence of MPEs requires that this deviation does
not generate a higher limit profit for the seller:

(25) Uo zaj—ﬂj—Fai"‘aO(N\{i?j})'
Formula (24) and inequality (25) imply that @; < 0, and hence @; = 0. O

Proof of Lemma 4. We prove the result by induction on ¢, with the base case ¢ = 0 being
trivial as all buyers trade with probability 0, not 1, in a degenerate game. Following an
agreement with buyer k, players reach subgame N \ {k}—a game with supply ¢— 1, in which
the induction hypothesis applies.

For the inductive step, consider a sequence of discount factors (0, ).>¢ converging to 1 and
an associated sequence of MPEs (0°%).s¢ for the game with supply ¢ such that the seller
trades with buyer 7 with probability 1 under ¢ for all z > 0.

It is sufficient to prove that if u; converges along a subsequence of (9,).>o, then its limit
is at least a;/2. We can assume by passing to a subsequence that all equilibrium variables
Up, Ug(S), T, T(S) converge as z — oo to limits denoted by ug, ug(S), g, Tk (S), and fur-
thermore that the set K = {k € N|m; > 0 under 0%} is constant for all 2 > 0.** We need
to show that u; > a;/2.

Fix ¢ > 0. For k£ € K, we have that m; > 0, and the assumption that the seller trades
with buyer i with probability 1 under ¢% for all z implies that the seller trades with buyer
i with probability 1 in subgame N \ {k} under ¢ for all z. The induction hypothesis then

32The case ¢ = 1 follows from Manea’s (2018) Proposition 1. Here we provide a self-contained treatment.
33The sequence ((ug(S), 7k(S))k.s, K).>0 derived from the sequence of MPEs (0°%),5¢ is contained in a
compact subset of a Euclidean space, so by the Bolzano-Weierstrass theorem it admits a convergent subse-
quence. Since K can take only a finite set of values, convergence on component K of the subsequence is
equivalent to K being constant starting at some point in the subsequence.
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shows that @;(N \ {k}) > a;/2 for all k € K\ {i}. Hence, there exists z such that if z > z,
then 6,u;(N \ {k}) > a;/2 — ¢ for all k € K. Given the definition of K, note that the range
N\ {i} can be replaced by K \ {i} in the summations from equations (7) and (8). Then,

a; + dug(N \ {i})

> % and 0,u;(N \ {k}) > a;/2 —&,Vk € K \ {i},

2
imply that w; > a;/2 — € for all 2 > z. As ¢ > 0 was chosen arbitrarily, it follows that
u; > a;/2, as asserted. O

Proof of Lemma 5. Fix a collection of MPEs (05)56(071) for the game with supply ¢ < n. For
every ¢ € (0,1), there exists at least one buyer with whom the seller trades with probability
smaller than 1 under ¢?; let [(0°) € N be the smallest index among buyers with this property.
Clearly, I(0?) < ¢+ 1.

It is sufficient to prove that if uy converges along a sequence (9,).>o going to 1, then its
limit does not exceed M*?. We can assume by passing to a subsequence that all equilibrium
variables uy, ux(.S), g, mp(S) converge as z — oo (to limits denoted by uy, ux(.S), Tk, T (S))-
Since N is finite, the subsequence can be selected to additionally satisfy [(0%%) = i for a fixed
1 <q+1andall 2> 0. We need to establish that g < M™*?.

By Lemma 1, for every z > 0, the MPE ¢ generates a probability distribution over
sequences of ¢ different buyers that the seller approaches for bargaining in the first ¢ rounds
(with each approach resulting in an agreement). As [(0°#) = i, there exists one such sequence
S that arises with positive probability under 0% and excludes buyer i. By passing to a
subsequence of (4,).>o if necessary, we can assume that S is the same for all z. Since trading
over S is a best response for the seller under the MPE ¢% the seller’s equilibrium payoff is
equal to her expected payoff from selecting bargaining partners in the sequence S.34

As S arises with positive probability under % and [(0%) = 4, each buyer j < i is guar-
anteed to trade under ¢’ in the subgame following agreements with his predecessors in the
sequence S. Lemma 4 implies that the expected discounted price in the agreement with
buyer j along S converges to a limit less than or equal to a;/2 as z — .

Clearly, the seller cannot extract a price greater than a; from any buyer j > ¢ in the
sequence S. Since the seller does not trade with buyer ¢ over S, and there are ¢ buyers in S,

we have that
a+as+...+a;—1

ﬂog 9 —|—ai+1+...—|—aq+1§M*q.

O

3476 better understand this claim, note that every Markov behavior strategy of the seller can be decomposed
into two dimensions: mixing probabilities between buyers in every state at the beginning of a round, and
proposal and acceptance decisions at every state within a round. In an MPE, the seller’s strategy must
be optimal against buyer strategies (and moves by nature), and hence the seller’s decisions on the first
dimension should also be optimal when we fix her play on the second dimension and the others’ strategies.
This implies that the seller should be indifferent between all sequences of buyers that occur in equilibrium
(given the expected payoffs derived from bargaining with each buyer over each such sequence).
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Definition of 0(S) and proof of Proposition 1. Fix a convergent sequence of MPEs, and con-

sider a (possibly empty) sequence of trades with buyers iy, ..., 4, distinct from ¢ such that
mi(N\ {i1,...,i}) > 0 and m;(N \ {i1,...,ixr}) = 0 for &' < k. Let Z; denote the set of
sequences (i1, ...,7;) with this property. Note that every trade of buyer i occurs after one

and only one sequence in Z;, either immediately or following intermediate trades with other
buyers. Hence, buyer ¢’s limit payoff in the overall game can be expressed as an expected
value of the payofts

u;(S) = a; + (S \ {i}) — ()

over sequences (i, ...,4) in Z; such that {i1,...,i} = N\ S.
Let i, iy = Wiy (V)T (N\ {01 }) ..., (N \ {41, ...,7k—1}) denote the probability that the
seller trades in sequence with buyers 41, . ..,4; (with the value corresponding to the empty

sequence understood to be 1), and define

9_1‘(5) = Z Tt yeosige -

(il,...,ik)EIiZ{Zj,...,ik}:N\S

We have that

u; = Z Ty i Wi (N \ {1, ..o ik }) = Zﬂi(s) Z Tt i

(il,..‘,ik)eLﬂ S3i (il,...,ik)EIrL:{’il,...,ik}ZN\S
= 0:(8)ui(S) =Y _6:(S)(a;i + uo(S\ {i}) — ().
EY S3i
This establishes the desired result. O

Proof modifications for the game with random matching. Suppose that in every state S, each
buyer i € S is randomly matched to bargain with the seller with probability p;(S) > 0. Let
u;(S) denote the expected payoff of player i € S U {0} in subgame S, and m;(S) be the
probability that the seller trades with buyer i in state S (conditional on reaching state S,
but not conditional on buyer ¢ being randomly matched with the seller in state .S; thus,
mi(S) < pi(9)). As in the benchmark model, it is sufficient to consider sequences of MPEs
for discount factors § — 1 in which the variables u;(S) and m;(S) converge. It is useful to
focus on subsequences of MPEs with the additional property that the support of 7(S) is
constant for every state S, so that for any fixed pair ¢ € S, either m;(S) > 0 or 7;(.S) = 0 uni-
formly in the subsequence. With random matching, the seller may be matched with a buyer
with whom agreement is not incentive compatible, and this will cause trading delay. The
analogue of the “trade in every round” property from Lemma 1 in the model with random
matching is that in every state there is a buyer with whom the seller trades with probability
1 conditional on being matched: for every S, there exists i € S such that m;(S) = p;(9).
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The payoff equations under random matching can be written as follows:

w(s) = Y m(s) (5ot bulS\ 1) - u () + goul®) + (1= S m(s) )suls

keS kesS

w(S) = m(S) (% (ai—|—5u0(5\{i})—5u0(S))+%5ui(S)>
+ ) wk(S)aui(S\{k}H(1—27%(5))5%(5).

keS\{i}

While the seller is no longer indifferent between trading with every buyer ¢ € S for which
m:(S) > 0, optimality of the seller’s strategy implies that in every state S the seller should
be indifferent between all buyers in the support of 7(.5) in the patient limit. For a sequence
of MPEs in which 7;(S) > 0 and state variables converge (to limits denoted by a bar), this
means that

As in the case of the game with strategic choice of bargaining partner, in state S buyer 4
trades at an asymptotic price of a; — @;(S) regardless of whether he wins the coin toss to
propose when getting matched. Taking the limit 6 — 1 in buyer i’s payoff equation for the
initial state N, the asymptotic indifference property leads to the following counterpart to

(9):

_ _ T _
(26) om0 = wu= Y. s u(V\ kD).
JeN\{i} keN\{i} “=IeN\{i} ©J

This condition plays a key role in extending the proofs of Lemmata 2-6 to the model with
random matching.

Formulae (7) and (8) rely on the seller’s exact indifference when mixing between buyers
and do no have immediate analogues in the setting with random matching. The use of these
formulae in the treatment of the case uo(/V \ {i}) = 0 in the proof of Lemma 2 can be
circumvented by noting that uo(N \ {i}) = 0 implies that ¢ = 1. The game with random
matching for ¢ = 1 can be analyzed separately to argue that u; < a;/2.

The proof of Lemma 4 relies more extensively on (7) and (8). We can deal with the case
> jen\iiy T > 0 via (26). Consider now the case Yy gy T; = 0. It must be that for high
enough ¢, we have that m; = p;(N) and 7; < p;(N) for j # ¢. It follows that

Then, the seller’s payoff equation leads to

w< Y m (%(ai  Bup(N\ {i}) — Gus) + %&LO) + (1 -y wk) uo.

keN keN
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This leads to an upper bound for uy that depends on u;, which can be substituted in buyer
i’s payoff equation to obtain a lower bound on u; similar to the right hand-side of (7):
w > 2m;(1 — 9) L @ Oup(NA{i})
(1 =040 5enm)(2 =20+ 03 en gy ™) 2
Z TR(2 =20+ 63 ;cn )

x Suy (N \ {k}).

The sum of the coefficients in the equation above simplifies to

ZjeNﬂj
1—(5+5ZJEN7T]"

which converges to 1 as 6 — 1 (both the numerator and the denominator converge to

7; > 0).% This makes it possible to proceed with the inductive proof of Lemma 4 as in the
benchmark model.

For the game with random matching, the crucial step identifying the sequence of buyers
S in Lemma 5 does not rely on exact indifference for the seller, but instead uses the seller’s
asymptotic indifference. We can construct a sequence over which trade occurs with positive
probability (this can be defined based solely on the support of every 7 (S), which is constant in
the subsequence of MPEs under consideration)—and hence generates the seller’s asymptotic
MPE payoff—which excludes buyer [ and includes buyers 1,...,l — 1. This allows us to
extend Theorem 1 to the model with random matching. 0

Theorem 2 (General version). Let [* and [* be the smallest and the largest indices | that
achieve the mazimum in (10), respectively, and let [(o) denote the lowest index of a buyer
with whom the seller trades with probability less than 1 under strategy profile o. There exists
0 < 1 such that every MPFE o of the game with supply q for any discount factor d > 0 satisfies
the following properties:

e [(0) is a maximizer in the optimization problem (10).

o [fi <[, then the seller trades with buyer i with exact probability 1.

o Ifi>I*, then the seller trades with buyer i with probability smaller than 1.
o If a; < agq1, then the seller trades with buyer i with probability 0.

Furthermore, every collection of MPFEs (05)56(071) of the game with supply q for discount
factors § € (0,1) has the following asymptotic properties for 6 — 1:

o Ifi < I*, then the probability that the seller trades with buyer i converges to 1, and
the expected payoff of buyer i under o converges to a;/2.

35This expression can be interpreted as the present value of a prize of 1 received at a stochastic time in an
environment where the probability of getting the prize at a given date conditional on not having received it
earlier is 3\ m;, which reflects the fact that the first trade takes place with probability ;. m; in the
game with random matching.
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o Ifl*#q+1 and ap > a1, then the probability that the seller trades with buyer I*
converges to 1.

o IfI* = q+1, then the seller trades with buyers 1,. .., q with probability converging to
1.

Proof of general version of Theorem 2. We prove the first claim of the result by contradic-
tion. If the claim is not true, then there exist a sequence of discount factors 6, — 1 and
associated equilibria 0% such that (o) is not a maximizer in the optimization problem
(10). Moreover, the sequence may be selected such that [(¢°) = j for some fixed j and all
z > 0. Then, the argument from Lemma 5 shows that
ap+as+...+a;1
2

Since g = M*? by Theorem 3, it follows that j achieves the maximum M*? in the optimiza-

Uy > +aj+1+...+an§M*q.

tion problem (10), contradicting the assumption [(0%) = j is not a maximizer in (10).

The second claim of the result follows from the first. Since [(0) is a maximizer in (10) for
every MPE ¢ when § > 0, the definition of [* implies that [* < (o).

The proof of the third claim proceeds by contradiction similarly to the first. If the claim
is not true, then there exists a buyer i > [* and a sequence of discount factors (d.).>o
such that the seller trades with buyer i with probability 1 under ¢% for all z > 0. As
above, (0.).>0 can be selected so that [(¢°) = j for a fixed j and all z. Since i trades with
probability 1 under 0%, we have that j # i, and hence i > j. Moreover, each buyer in the
set K ={1,2,...,j —1,i} trades with probability 1 under o% for all z.

Following steps analogous to the proof of Lemma 5, the seller’s payoff under ¢% is equal
to her expected payoff from selecting bargaining partners in a fixed sequence that excludes
buyer j and includes each buyer k € K at a limit (discounted) price of at most a;/2. This
means that the seller obtains at most fair prices from buyers 1,2,...,7 — 1 and can extract
at most full surplus from a set of ¢ — j + 1 buyers different from buyer j, with strictly less

than full surplus extraction from buyer ¢. We conclude that

_ a+...+a;_ N
Ug < L 5 ]1+aj+1—|—...+aq+1§Mq,

which contradicts Theorem 3.

For the fourth claim, we argue by induction on ¢ that for all ¢ > 0, in every MPE of
the game with supply ¢ for high enough 6, any buyer ¢ for which a; < a,4; trades with
probability 0 (applying the inductive hypothesis requires a reindexing of buyers in subgames
as in Lemma 3). The base case ¢ = 0 is trivial.

To prove the inductive step, assume that ¢ > 1, and fix a buyer ¢ for which a; < ag4;.
Suppose that there exists a sequence of MPEs of the game with supply ¢ for discount factors
(0.).>0 converging to 1 along which the seller trades with buyer ¢ with positive probability in
the first period of the game. By passing to a subsequence of (9.).>o along which all relevant
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MPE variables converge, we have that
g < a; + g(N \ {i}).

Since the seller has the option to first trade with buyer ¢ + 1 at a limit price of a,; by
Lemma 3, the optimality of her equilibrium strategy implies that

Uy > ag1 + uo(N \ {g +1}).

Note that both subgames N \ {i} and N \ {¢+ 1} have supply ¢ — 1. When applied to each
subgame, Theorem 1 implies that the seller’s limit payoff depends only on the top ¢ buyer
values. Since ¢ > ¢ 4+ 1, buyers k£ < ¢ have the top ¢ valuations in either subgame, and
hence @o(N \ {i}) = uo(N \ {¢+1}). However, a,+1 > a; generates a contradiction with the
inequalities above. This argument establishes that for sufficiently high 9§, the seller does not
trade with buyer ¢ in the first period of any MPE.

As buyer i does not have one of the top ¢ values in subgame N \ {j} for any j # i, the
induction hypothesis implies that in all MPEs for high enough 4, the seller should trade with
buyer ¢ with probability 0 in every such subgame. Therefore, the seller trades with buyer ¢
with probability 0 in any MPE for high enough .

For the second half of the result, fix a collection of MPEs (0°)5¢(0.1) of the game with
supply ¢ for discount factors § € (0, 1).

We first prove the claim regarding payoffs in the first statement. For an argument by
contradiction, assume that the expected payoff of buyer i < [* does not converge to a;/2 as
§ — 1. Consider a sequence of discount factors d, — 1 such that buyer i’s payoff under ¢%:
converges to a different limit 4;. By Lemma 2, @; < a;/2, so it must be that 4; < a;/2. As
z — 00, the seller can deviate from O'SZ to successively trade with buyer ¢ at a limit price of
a; — 1;, then with each buyer j = ¢+ 1,q,...,l* + 1 at limit price a; by Lemma 3, and then
with each buyer j = 1,...,1* — 1 different from 7 at a limit price of at least a;/2 by Lemma
2. This deviation delivers the following lower bound on the seller’s limit profit:

I*—1
o > a;—Ui+ap gy +.. F g1+ Y C;—J >
=L

CL1+CL2—|——|—CL[*_1
2

*
+al_*+1+...—|—a/q+1 == M q,

where the strict inequality is a consequence of a; — u; > a;/2, and the equality follows from
the definition of I*. Thus, @, > M*?, contradicting Theorem 3.

We established that #; = a;/2 for every buyer i < [*. Lemma 2 then implies that every
such buyer trades with limit probability 1 under ¢° as § — 1.

We prove the second claim of the second half of the result also by contradiction. Assume
that [* # ¢+ 1 and a;. > ap +1, and suppose that the probability that the seller trades
with buyer [* under ¢° does not converge to 1 for § — 1. Then, there exists a sequence of
discount factors 6, — 1 such that the probability that the seller trades with buyer {* under
0% converges to a limit less than 1, and MPE variables converge. It follows that there exists
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a path over which the seller trades under ¢°¢ with limit probability greater than 0 as z — oo
with a sequence of buyers (iy, ..., i,) that does not include I*.

As argued above, each buyer i < [* obtains a limit payoff of a;/2 under 0% as z — oc.
Since Lemma 2 implies that buyer i pays a limit price of at least a;/2 in every state he
trades with the seller, buyer ¢ should pay a price that converges to a;/2 in every subgame
that arises with positive limit probability under ¢% as z — oo.

Let k be the largest index such that i, > [*. Note that k is well defined given the
assumption that [* # ¢ + 1. Consider the subgame S := N \ {iy,...4,_1}, which has supply
q — k + 1. It must be that 7; (S) > 0.

Define J = S\ {I*,i}. For j € J, we have that j < I*, so the seller obtains a limit price
of exactly a;/2 when trading with buyer j as argued above. The seller can extract a price
of at most a;, from buyer ¢, so her limit profit in subgame S does not exceed
M(S) = Zin +‘2‘ T
Applying Theorem 1 to subgame S, we get that ug(S) > M (S). Hence, uy(S) = M(S).

Since 7, (S) > 0, we have that 7 (S) < 1, and a version of formula (9) leads to

7;(5)

(27) 0 (S) = Twﬂﬁ(s \ {7}
JES\{I*} .

Subgame S\ {ix} has supply ¢ — k, and contains ¢ — k buyers i1, . ..,i, > [*. Lemma 3
implies that uz (S \ {ix}) = 0.

Consider now any j € J with 7;(.S) > 0, so that subgame S\ {j} is reached with positive
limit probability under ¢% as z — oo. As argued above, the seller trades with buyer j at
limit price a;/2 in subgame S, and has to trade with every other buyer j' € J \ {j} with
limit probability 1 at limit price a; /2 in subgame S\ {j}. Hence,

uo(S\{j}) = M(S) —a;/2 & uy(S\{j}) = a;/2,V5 € J\{j}.

Since the maximum total surplus achievable in subgame S\ {j} is > ey @y + az, it
follows that

i (S\GH < Y aptap —uo(S\{GH) — Y uy(S\{j}) = ap — a.
J'e\{5} J'e\{s}
As 7, (9) > 0, up (S \ {ix}) = 0,4 (S\ {j}) < ap —a, for all j € J with 7;(S) > 0, and
ag — a;, > ap — ap; > 0, equation (27) implies that

up-(9) < ap — A, -

However, in subgame S, the seller can deviate from agz to bargain with [* and trade at
limit price ap — up(S) > a;,, and then bargain with each buyer j € J and trade at a limit
price of at least a;/2 by Lemma 2 for z — oo. This deviation generates a limit profit greater
than M (S) for the seller, contradicting wo(S) = M (S5).
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Finally, if [* = ¢ + 1, then the first claim of the second half of the result implies that the
seller trades with each of the ¢ buyers i < [* with limit probability 1. If [* = [* = ¢+ 1, then
the second claim of the first half of the result implies that the seller must trade with buyers
1,...,q with exact probability 1 for sufficiently high ¢. U

Proof of Proposition 2. We establish the existence of an MPE for the bargaining game with
exclusion commitment. The proof for the bargaining game with exogenous supply is analo-
gous.

Consider the game with an exclusion commitment £. It will be convenient to use the
notation Z(S) := S\ £(5). We inductively construct MPE expected payoffs and bargaining
probabilities for all players working backward from terminal states. Let m be the maximum
number of trades possible under £. In every subgame in which the seller has traded with
exactly m buyers (terminal nodes), the payoffs of all players are 0. Assuming that we
specified MPE strategies for subgames in which the seller has traded with at least m’ + 1
buyers, we next construct MPE expected payoffs and bargaining probabilities for subgames
in which the seller has traded with exactly m’ buyers. Consider such a subgame S. We will

argue that the constructed payoffs satisfy

(28) w;(S) > 0,Vi € Z(S) U {0}
(29) Yo w®) <> an
i€Z(S)U{0} i€Z(S)

Consider a candidate payoff profile (u;(.S));cz(s) for the “active” buyers in state S contained
in the simplex

U = {(ui(9))iez(s)lui(S) > 0,Vi € Z(5); Z u;(S) < Z ai}.
i€Z(S) i€Z(S)

We construct a correspondence F : U = U as follows. For every (u;(S))icz(s) € U, let ug(S)
be the payoff the seller can attain by making acceptable offers to optimally selected buyers
and I1(S) C A(Z(S)) the set of optimal bargaining probabilities for the seller in state S:

(30) W(S) = g mas (o + 6uo(S\ (1) — Su(S)
(31) I(S) = A al;gzr(r;?x(ai + 0up(S\ {i}) — dui(9))).

The correspondence F' maps (u;(5))icz(s) to the set of profiles (u(S))icz(s) given by
(32)

u(5) = m(5) (3 0+ SualS\ (1) = () + 3u(5) )+ m(S)6uls\ (kD

keZ(S)\{:}

for any selection of bargaining probabilities w(S) € I1(S).
F' is convex-valued because II(.S) is a convex set for every element of U.
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We next argue that the range of F is indeed included in Y. For any (u;(5))icz(s) € U,
there exists ¢ € Z(S5) such that a; > du;(S). Otherwise, >, 7o ui(S) = (X ,ez(s)@i)/0 >
> icz(s) @ 1t follows that there exists i € Z(.S) such that a; +0uo(S\ {1}) — du;(S) > 0, and
hence uy(S) > 0.

Then, for any 7(S) € II(S), the condition 7;(S) > 0 implies that uy(S) < a; + dug(S \
{i}) — 6u;(S), which leads to duj(S) < a; + dug(S \ {i}) — du;(S). Therefore, a; + duy(S \
{i}) — duy(S) > du;(S) > 0. Since all other terms appearing on the right-hand side of (32)
are non-negative, we conclude that «}(S) > 0 for all i € Z(S).

We are left to show that >, 7 u;(S) < 3 75 @i- Given conditions (30) and (31), ug(S)
solves the following equation for any 7(S) € TI(S):

(3) () = 3 (8) (5 s+ dualS\ {3D) — du($) + 0ui(S) )

1€Z(S)

Summing up equations (32) over all i € Z(S) and equation (33), we obtain

Y. W)=Y mS)a+s Y, w(S\{i})

i€Z(S)U{0} i€Z(S) ke(Z(S)\{i})u{0}
< max |a; + 0 ) a;.
) ( kez§{z}> Zg%
The first inequality follows from the fact that condition (29) holds for subgame S\ {i}
(formally, we set u,(S \ {i}) =0 for k € £(S \ {i})), and the second from the requirement
that & satisfies £(5) C E(S\{i}) fori € S\ E(S) = Z(S), and hence Z(S\ {i}) C Z(S5)\{i}.
Since ug(.S) varies continuously with (u;(.S))iez(s), and II(S) has closed graph as a corre-
spondence defined on U, it follows that F' has closed graph. Kakutani’s fixed-point theorem
then implies that /' has a fixed point (u;(5))icz(s). We then define uo(S) to be the corre-
sponding ug(S) and recover the probabilities (7;(.5));ez(s) associated with the fixed point.
We can now construct an MPE. In state S, the seller chooses to bargain with buyer @
with probability 7;(.5). When the seller bargains with buyer ¢, if the seller is selected to be
the proposer, she offers an acceptable price that gives the buyer utility du;(S), and similarly
the buyer makes an acceptable offer that gives the seller utility dug(S). A simple inductive
argument combined with the payoff equations above proves that the constructed strategies
generate the expected payoffs given by u. By the single-deviation principle, the specification
of bargaining probabilities and offers in state S, in conjunction with the assumed behavior
in subgames following a trade in state S, induces an MPE. 0
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