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Abstract. A seller trades with q out of n buyers who have valuations a1 ≥ a2 ≥ . . . ≥
an > 0 via sequential bilateral bargaining. When q < n, buyer payoffs vary across equilibria

in the patient limit, but seller payoffs do not, and converge to

max
l≤q+1

[
a1 + a2 + . . .+ al−1

2
+ al+1 + . . .+ aq+1

]
.

If l∗ is the (generically unique) maximizer of this optimization problem, then each buyer

i < l∗ trades with probability 1 at the fair price ai/2, while buyers i ≥ l∗ are excluded from

trade with positive probability. Bargaining with buyers who face the threat of exclusion is

driven by a sequential outside option principle : the seller can sequentially exercise the outside

option of trading with the extra marginal buyer q + 1, then with the new extra marginal

buyer q, and so on, extracting full surplus from each buyer in this sequence and enhancing

the outside option at every stage. A seller who can serve all buyers (q = n) may benefit

from creating scarcity by committing to exclude some remaining buyers as negotiations

proceed. An optimal exclusion commitment, within a general class, excludes a single buyer

but maintains flexibility about which buyer is excluded. Results apply symmetrically to a

buyer bargaining with multiple sellers.

1. Introduction

Consider a seller whose supply is valuable to multiple buyers. If the seller is a monopo-

list, this is a classical setting, which is well understood under various assumptions regarding

information and price discrimination. Under complete information and perfect price discrim-

ination, the monopolist extracts all surplus from every buyer. We investigate what happens

in the complete information setting when the terms of trade are determined by bargaining

between the seller and each individual buyer. What profits does the seller earn and which

buyers does she trade with in a bargaining game with fixed supply? What payoffs do buyers

get? If there is no scarcity and the seller serves all buyers, then the standard equal (“fair”)

division of surplus between the seller and each buyer should be expected. However, if there

is scarcity and some buyers are necessarily “excluded,” then the seller should be able to

exploit competition among buyers and obtain higher than fair prices. This suggests that the

seller may benefit from limiting supply, and leads to a related question: if the seller may
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reduce supply or place more general restrictions on the sets of buyers she transacts with,

what restrictions will be most profitable and what outcomes will emerge?1

We consider a market in which a seller contracts independently with q out of n individual

buyers with respective values (net of seller cost) a1 ≥ a2 ≥ . . . ≥ an > 0. For convenience,

we use language suggesting that the seller is offering q units of the same “good” for sale,

and each buyer has unit demand. However, the seller’s transactions with each buyer may

be idiosyncratic; the main restriction we impose is that there are no externalities between

buyer valuations. We study the following bargaining game, which we refer to as the game

with supply q. Negotiations occur over time, and players have a common discount factor

δ ∈ (0, 1). In each round, the seller strategically picks a buyer to bargain with, and with

equal probability each of the two players proposes a price to the other. If the proposal is

accepted, then the seller trades with the buyer at the proposed price, the buyer exits the

game, and the seller continues to bargain with the remaining buyers in the next round. If

the proposal is rejected, then bargaining proceeds with the same set of buyers in the next

round. The game ends when the seller has traded with q buyers.

We analyze Markov perfect equilibria (MPEs) of the game with supply q—subgame perfect

equilibria (SPEs) in which each player’s strategy in a round depends only on the set of buyers

with whom the seller has not yet traded, and actions taken within that round.2 Our main

results concern limit MPE outcomes as δ goes to 1. We will frequently affix the qualifiers

“limit” and “asymptotic” to describe limit outcomes as δ → 1 in a collection of MPEs for

discount factors δ ∈ (0, 1) (but drop qualifiers for brevity in some cases).

If q = n, so all buyers can be served, then the seller splits the surplus equally with each

individual buyer, and her profits converge to a1/2+a2/2+ . . .+an/2 as δ → 1. This is closely

related to the classic result on convergence of (symmetric) non-cooperative bargaining in the

style of Rubinstein (1982) to the Nash (1950) bargaining solution (Binmore 1980; Binmore,

Rubinstein and Wolinsky 1986).

Suppose next that supply is smaller than the number of buyers (q < n). For the remainder

of the introduction (but not in the formal treatment), we assume for simplicity that buyer

values are distinct. Consider first the case in which the seller has unit supply (q = 1).

Proposition 1 in Manea (2018) characterizes MPEs in this simple case. If a2 ≤ a1/2, then

the seller bargains exclusively with buyer 1, and the two players split the gains equally,

trading at (average) price a1/2. In this case, the outside option of trading with buyer 2 is

1The importance of exclusion restrictions in the context of individually negotiated agreements with multiple
agents has been examined in applied work. Gal-Or (1997) emphasizes the power of exclusion in an early
paper. In the health economics literature, it has been widely noted that insurance companies offer “narrow”
hospital networks (e.g., Howard 2014; Liebman 2018; Ho and Lee 2019; Ghili 2022).
2SPEs usually have little predictive power in bargaining games with more than two players (e.g., Herrero
1985, Rubinstein and Wolinsky 1990, Abreu and Manea 2012a, Manea 2018, Elliott and Nava 2019), and
MPE is frequently invoked as an equilibrium refinement in such settings. In Abreu and Manea (2022), we
show that there is extreme variation in SPE outcomes even in the simple version of the model considered
here where n = 2 and q = 1.
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too weak to enhance the seller’s bargaining power in negotiations with buyer 1. If a2 > a1/2,

then for high δ, the seller randomizes between buyers 1 and 2 in equilibrium, and each

buyer trades at prices converging to a2, but the probability of bargaining (and trading) with

buyer 2 converges to 0 as δ goes to 1. Now, the outside option of trading with buyer 2 is

binding, and the seller exercises it with positive but vanishing probability as δ → 1. An

outside option principle emerges from this analysis of MPEs: the seller trades with buyer

1 with limit probability 1 at limit price max(a1/2, a2).3 Therefore, when q = 1 trade is

asymptotically efficient, and buyer 2 provides an endogenous outside option that has a limit

equilibrium value of a2.4

By analogy with the unit supply case, one might conjecture that when q > 1 the seller

should attain asymptotic profits of

(1)

q∑
i=1

max
(ai

2
, aq+1

)
.

However, this conjecture is incorrect. Formula (1) may be rationalized in terms of the

following presumptions: (i) the seller trades efficiently (with limit probability 1) with buyers

1, . . . , q ; (ii) bargaining with each of the buyers 1, . . . , q is driven by a fixed outside option

provided by the extra marginal buyer q + 1; (iii) the value of the outside option provided

by buyer q + 1 in equilibrium is aq+1 (i.e., buyer q + 1 has zero limit payoff). The first

two presumptions turn out to be incorrect, as they fail to take into account the dynamic

nature of outside options under sequential bargaining. For instance, consider a setting with

n = 3, q = 2 and suppose that a3 > a1/2, so that both buyers 2 and 3 constitute binding

outside options in bargaining with buyer 1 in subgames where the seller has a single unit left.

In this case, trading with buyer 2 in the first round at the highest (individually rational)

price of a2 is not (asymptotically) more profitable than trading with buyer 3 at a price of

a3. Indeed, in the next round, when bargaining with buyer 1, the seller obtains a price of a2

if buyer 2 is available as an outside option, but a lower price of a3 if buyer 3 is the outside

option. In either case, the seller’s profit would be a2 + a3. Hence, buyer 2 is valuable to the

seller both directly as a trading partner and indirectly as an outside option when bargaining

3The assumption of Markov behavior is important for this conclusion. In Abreu and Manea (2022), we
show that SPEs in the setting with n = 2, q = 1 are very permissive (in part expanding on a point made
by Rubinstein and Wolinsky (1990))—the price may be above or below the outside option price, and the
allocation may be asymptotically inefficient in either case. We proceed to propose refinements that are
behaviorally plausible in the context of this bargaining environment and yield the intuitive predictions of the
outside option principle. Although these refinements do not imply Markov behavior, they provide support
for MPE predictions in the bargaining game considered here. See also Maskin and Tirole (2001) and Bhaskar,
Mailath and Morris (2013) for alternative foundations for the Markov equilibrium assumption.
4In the original treatment (Binmore 1985; Binmore, Rubinstein and Wolinsky 1986; Sutton 1986; Binmore,
Shaked and Sutton 1989), outside options were assumed to have exogenous values that can be obtained by
traders without bargaining with third parties. Subsequent research on search and matching in labor markets
and bargaining in markets with multiple buyers and sellers emphasized the endogeneity of outside options
derived from bargaining with several parties.
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with buyer 1 in the event that the seller trades with buyer 3 first. Thus, buyer 2 might not

necessarily manage to “outbid” buyer 3 in the first round. This suggests that trade need not

be asymptotically efficient when q > 1, which we confirm in examples with n = 3, q = 2.

Although the extra marginal buyer q+1 may trade with positive limit probability as δ → 1

in a collection of MPEs, we prove that the seller is always able to extract full surplus from

buyer q + 1 (hence, the third presumption above is correct). This property of MPEs allows

us to replace the outside option principle for the case q = 1 with a sequential outside option

principle for the case q > 1. The seller can sequentially exercise outside options by trading

with the extra marginal buyer q + 1 at limit price aq+1, then trading with the new extra

marginal buyer q at limit price aq (buyer q becomes extra marginal in the subgame with

supply q − 1), and so on, thereby enhancing the outside option at every round. Since some

buyers may be too valuable to be excluded, it may be beneficial for the seller to exclude

a buyer l > 1 and include all lower index buyers. When buyer l is available, the threat of

replacing buyer i ≤ l − 1 with some higher value buyer is blunted, and the seller may be

unable to extract full surplus from buyer i. Nevertheless, we show that each buyer i must

pay at least a fair limit price of ai/2 as δ → 1 in any collection of MPEs. This leads to the

following lower bound on the seller’s asymptotic MPE profits:

(2) M∗q := max
l≤q+1

[
a1 + a2 + . . .+ al−1

2
+ al+1 + . . .+ aq+1

]
.

A polar argument leads to the surprising conclusion that M∗q also constitutes an upper

bound on the seller’s asymptotic MPE profits. Therefore, the seller’s profits converge to M∗q

in any collection of MPEs as δ → 1.

The static optimization problem displayed in (2) yields the seller’s payoffs in the dynamic

bargaining game with supply q < n. The optimization problem is also informative about

the seller’s behavior, in particular about which buyers get to trade with certainty and which

buyers face the threat of exclusion in equilibrium. In the generic case in which the static

optimization problem has a unique maximizer l∗, we establish that for sufficiently high δ, in

any MPE, buyers i < l∗ are guaranteed to be included—and trade at the fair price ai/2—

while buyers i ≥ l∗ are excluded with positive probability. Furthermore, if l∗ 6= q + 1, then

buyer l∗ is included with limit probability 1 as δ → 1.

While MPEs are (asymptotically) payoff equivalent for the seller, each buyer’s payoff and

probability of trade can vary across convergent sequences of MPEs. We develop a partial

characterization of buyer payoffs that leverages the formula for seller profits in every subgame.

We also consider a strategic situation in which the seller has unconstrained supply (q = n),

but can sharpen competition by excluding some buyers in the course of negotiations. An

exclusion commitment specifies a subset of buyers to be excluded from future negotiations

depending on the set of buyers who have already traded. This general formulation allows for

elaborate patterns of exclusion. Despite the potential multiplicity of MPEs in the bargaining
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game induced by some exclusion commitments, we find that an optimal exclusion commit-

ment can be defined unambiguously and takes a simple form: no buyer is excluded from

bargaining until n − 1 units are sold, and then the remaining buyer is excluded (this com-

mitment leads to the game with supply n− 1). Under this commitment, the seller excludes

a single buyer, but decides flexibly who to include at every stage. The result implies that

maintaining one unit of shortage allows the seller to extract the full benefits of exclusion,

and creating more scarcity or treating buyers asymmetrically cannot increase profits.

Finally, we discuss exclusion commitments in settings in which the seller has an exogenous

supply constraint q < n. In this case, in line with the intuition above, the seller does not

benefit from making commitments to exclude buyers before all available q units are sold. In

particular, a reduction in supply is detrimental to the seller.

We contrast our findings with those of Ho and Lee (2019), who were the first to analyze

exclusion commitments in a model of network formation via bargaining.5 In their model,

a “seller” who commits to form q links delegates q independent “representatives” to each

bargain over the formation of one link. When specialized to our setting, this delegated-

agent bargaining protocol delivers formula (1) for seller profits, and implies that the seller

may benefit from reducing supply. Ho and Lee’s representatives are compartmentalized

and cannot effectively coordinate to maximize joint profit, whereas in our model the seller

internalizes the dynamic implications of sequential trades with individual buyers.6 Our more

conventional bargaining protocol enables the seller to extract higher profits via the sequential

outside option principle embodied in formula (2).

The paper is organized as follows. Section 2 introduces the bargaining model, and Sec-

tion 3 provides a preliminary lemma and an example. In Section 4, we develop bargaining

theoretic principles that we use in Section 5 to obtain the formula for seller profits. Sec-

tion 6 characterizes included and excluded buyers. Sections 7 and 8 formalize our notion of

exclusion commitments and identify the optimal commitment. Section 9 concludes. Proofs

omitted in the main body of the paper appear in the Appendix.

5Also motivated by the questions of network endogeneity and optimal exclusion, Liebman (2018) considers
a bargaining model between a health insurer and several hospitals in which the insurer commits to a net-
work size and then bargains with randomly selected hospitals. His analysis restricts attention to equilibria
with immediate agreement, but such equilibria do not exist under random matching when hospitals are
heterogeneous and bargaining frictions are small. As this is the case we are primarily interested in, a direct
comparison with his results is not possible. Taking a cooperative approach, Ghili (2022) studies network
formation in the pairwise stability framework of Jackson and Wolinsky (1996) assuming that payoffs are
determined by Nash bargaining.
6Stole and Zwiebel (1996) and Arie, Grieco and Rachmilevitch (2017) analyze bargaining models in which a
player signs bilateral contracts with several others in sequence, but in their models the order of negotiations
is exogenous.
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2. Model

Consider a market where an agent, player 0, signs bilateral contracts with q out of n

players from the set N = {1, 2, . . . , n}. To fix terminology, we refer to player 0 as the seller,

to the players in N as buyers, and to the bilateral contracts as goods. In this language, the

seller has q ≤ n units of a good, and each of the n buyers has unit demand.7 Assume that

buyer i’s value for the good (net of seller cost) is ai, where a1 ≥ a2 ≥ . . . ≥ an > 0, and these

values are common knowledge. There are no externalities: buyer values are independent of

who else gets a unit of the good.

The seller trades with individual buyers sequentially. In every round t = 0, 1, . . ., the seller

(strategically) selects a buyer i to bargain with (among those who have not yet traded).

Bargaining between the seller and buyer i in round t proceeds via the random-proposer

protocol: with probability 1/2 each of the two players proposes a price, and the other decides

whether to accept or reject the proposal. If the proposal is accepted, the seller trades with

buyer i at the proposed price, buyer i exits the game, and the seller continues to bargain

with the remaining buyers in round t+ 1. Otherwise, bargaining proceeds with the same set

of buyers in round t + 1. The game ends when the seller trades all q units.8 Players have

a common discount factor δ ∈ (0, 1): payoffs obtained in round t are discounted by δt. The

game has perfect information.

We call this the bargaining game with exogenous supply q, or the game with supply q

for short. We will also be interested in situations in which there is no inherent scarcity,

i.e., q = n, but the seller may strategically commit to exclude buyers in order to enhance

competition. The model with exclusion commitments is analyzed in Section 7.

We analyze Markov perfect equilibria (MPEs) of the game with supply q, which are sub-

game perfect equilibria in which each player’s strategy in every round depends only on the

state S—the set of buyers with whom the seller has not already traded—and the actions

taken within the round (including nature’s random selection of proposer). By definition, in

an MPE, behavior in any subgame that starts at the beginning of a bargaining round (before

the seller’s selection of a bargaining partner) in state S does not depend on the history of

play prior to that round. We refer to any such subgame as subgame S.

For any MPE of the game with supply q, let ui(S) denote the expected payoff of player

i ∈ S∪{0} in state S, and πi(S) the probability that the seller chooses to bargain with buyer

i in state S. Our main results apply to collections of MPEs for discount factors δ ∈ (0, 1) in

7The seller may customize the “good” for each buyer upon purchase; the setting with multiple units of a
homogenous good is a special case.
8Proposition 4.ii in Rubinstein and Wolinsky (1990) introduced this “voluntary matching” bargaining pro-
tocol (their wording emphasizes the seller’s strategic selection of bargaining partner, in contrast to random
matching) in a setting with unit supply. We employed similar bargaining protocols in Abreu and Manea
(2012b, 2022) and Manea (2018). This bargaining protocol is distinct from the “random proposer” protocol
of Elliott and Nava (2019) and Talamas (2019, 2020) whereby a “proposer” is randomly recognized in every
round, and the proposer strategically selects a bargaining partner but also makes the offer.
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the game with supply q, which for every δ in (0, 1) specify an MPE σδ of the game with supply

q in which players have discount factor δ. When the variables ui(S) and πi(S) associated

with a collection of MPEs (σδ)δ∈(0,1) converge as δ → 1, we will denote the corresponding

limits by ūi(S) and π̄i(S), respectively. We will also simplify notation by writing ui, πi, ūi, π̄i
for the variables ui(N), πi(N), ūi(N), π̄i(N) associated with the initial state N , respectively.

3. A Preliminary Lemma and an Example

Lemma 1 provides basic scaffolding for the arguments that follow. It first establishes that

in any MPE there is trade in every round, that is, if in some round, the seller bargains with

buyer i with positive probability in equilibrium, then conditional on approaching buyer i,

agreement is reached with probability 1. Hence, the game with supply q ends in q rounds.

The lemma also states that MPE variables satisfy the following conditions:

u0(S) ≥ 1

2
(ai + δu0(S \ {i})− δui(S)) +

1

2
δu0(S), with equality if πi(S) > 0(3)

ui(S) = πi(S)

(
1

2
(ai + δu0(S \ {i})− δu0(S)) +

1

2
δui(S)

)
+
∑

k∈S\{i}

πk(S)δui(S \ {k}),(4)

where u0(S \ {i}) = ui(S \ {k}) = 0 if |S| = n− q + 1 and i, k ∈ S.

Finally, the lemma shows that if the seller bargains with buyer i in state S in equilibrium

(and relevant variables converge), the price that buyer i pays in state S converges to ai−ūi(S)

regardless of whether the seller or buyer i is chosen to make the offer.

Lemma 1. In any MPE of the game with supply q, there is trade in every round, and

payoffs and the seller’s mixing probabilities satisfy conditions (3) and (4) for every state S.

If πi(S) > 0 along a sequence of MPEs associated with a sequence of discount factors going

to 1, and ui(S) converges to ūi(S), then both the price the seller offers to buyer i and the

price buyer i offers to the seller in state S converge to ai − ūi(S).

The formal proof of Lemma 1 and other proofs omitted in the main body of the paper

appear in the Appendix. To understand condition (3), note that the seller may select buyer

i for bargaining in state S, and if chosen to propose, can offer a price arbitrarily close to

ai − δui(S) that i will accept; following an agreement with buyer i, the seller obtains a

continuation equilibrium payoff of δu0(S \{i}). When buyer i is chosen to propose, the seller

may at worst reject i’s offer and enjoy a continuation payoff of δu0(S); in equilibrium, buyer

i will make an offer that makes the seller indifferent between accepting and rejecting. If the

seller bargains with buyer i with positive probability in state S, then her realized payoff from

trading with i should be equal to her equilibrium payoff u0(S). The buyer payoff equation

(4) has a similar interpretation.
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An example. With the preliminary analysis in place, we are able to solve simple examples.

This exercise illustrates how equilibria “work” and highlights a distinctive feature of our

bargaining game—the dynamic equilibrium evolution of outside options. It is also helpful

in developing appropriate conjectures. We are interested in the following questions, which

concern limit equilibrium outcomes as δ → 1: Is the MPE unique? If not, does each buyer

trade with the same probability in all MPEs? Are buyer payoffs constant across MPEs? Are

seller payoffs constant across MPEs?

We consider an example in which a seller with supply q = 2 bargains with three buyers

who have values a1 = 4, a2 = 3, a3 = 1. This example demonstrates that the answer to each

of the first three questions is negative. The negative answer to the second question implies

that MPEs are not always asymptotically efficient. Interestingly, the example is consistent

with the answer to the fourth question being positive.9

In any MPE for high δ, the seller must approach at least two buyers with positive prob-

ability in the initial state.10 For δ sufficiently close to 1, the example admits three classes

of MPEs that are distinguished by the set of buyers with whom the seller may trade in the

initial state. In one class, the seller trades with every buyer in the initial state. In the other

two classes, the seller trades with buyer 3 and only one of buyers 1 and 2, respectively, in

the initial state. Here, we derive the limit structure of each class of MPEs as δ → 1. In the

Appendix, we prove that each type of MPE exists for high δ.

We analyze the game from the “back,” starting with the simple subgames in which the

seller has a single unit remaining (after having traded with one buyer). Proposition 1 of

Manea (2018) characterizes the unique MPE outcomes for such subgames. In states {i, 3}
(i = 1, 2), the outside option of trading with buyer 3 is not sufficiently valuable to improve

the seller’s bargaining position with buyer i, and the seller sells the remaining unit with

probability 1 to buyer i at expected price ai/2: πi({i, 3}) = 1, u0({i, 3}) = ui({i, 3}) =

ai/2, u3({i, 3}) = 0. In state {1, 2}, the outside option of trading with buyer 2 is binding,

and the seller randomizes between buyers 1 and 2 in equilibrium, but the probability of

choosing buyer 2 converges to 0 as δ goes to 1; buyer 1 trades with limit probability 1 at

limit price a2: π̄1({1, 2}) = 1, ū0({1, 2}) = 3, ū1({1, 2}) = 1, ū2({1, 2}) = 0.

What about play in the initial state {1, 2, 3}, before any trade has happened? Lemma 1

implies that when the seller chooses to bargain with buyer i along a convergent sequence of

MPEs, trade takes place at the common limit price ai − ūi regardless of whether the seller

9These qualitative findings are robust to perturbations in the specified buyer values.
10More generally, in states where the seller has more than one good left, randomization between trading with
multiple buyers is a necessary feature of the seller’s strategy in any MPE for high δ. If the seller chose to
bargain with a single buyer in such a state in a proposed MPE, then that buyer would “hold up” the seller
for half of her gains from future trades. As we argue in the context of Lemma 2 in the next section, the seller
would then have a profitable deviation that involves changing the order of trades, thereby undermining the
putative MPE.
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or buyer i is picked to propose. It follows that

(5) ūi = π̄iūi +
∑

k∈N\{i}

π̄kūi(N \ {k}).

Since the seller must obtain her equilibrium payoff regardless of which buyer she trades with

in the initial state of the MPE, we have that

(6) πi > 0 for all δ =⇒ ū0 = ai − ūi + ū0(N \ {i}).

Note that we already know the limit equilibrium values ūi(N \ {k}) and ū0(N \ {i}) for

subgames following the first trade.

How does equilibrium multiplicity arise? At a high level, the seller’s randomization in the

initial state determines buyer equilibrium payoffs via (5), and in turn buyer payoffs have to

be compatible with the support of the seller’s randomization via (6). This system allows for

three consistent solutions with distinct buyer payoffs.

We next confirm the intuition that given the scarcity, the lowest valuation buyer must get

zero limit payoff in every sequence of MPEs. Since buyer 3 obtains zero payoff in states {1, 3}
and {2, 3}, equation (5) implies that ū3 > 0 only if π̄3 = 1. However, if π̄3 = 1, then (5) leads

to ū2 = ū2({1, 2}) = 0, and (6) (for i = 3) implies that ū0 = 1− ū3 + ū0({1, 2}) < 1 + 3 = 4.

Then, taking the limit δ → 1 in (3) (for i = 2) leads to ū0 ≥ 3− ū2 + ū0({1, 3}) = 3+4/2 = 5,

a contradiction. We conclude that ū3 = 0.

Consider now the class of MPEs in which for high δ, the seller approaches all three buyers

with positive probability in the initial state. Since π1, π2, π3 > 0, (6) implies that

ū0 = a1 − ū1 + ū0({2, 3}) = a2 − ū2 + ū0({1, 3}) = a3 − ū3 + ū0({1, 2}).

As ū0({2, 3}) = 1.5, ū0({1, 3}) = 2, ū0({1, 2}) = 3 and ū3 = 0, we have that ū0 = 4, ū1 = 1.5

and ū2 = 1. The required limit mixing probabilities are obtained by plugging these limit

payoffs in formula (5) for buyers i = 1, 2:11

1.5 = π̄1 × 1.5 + π̄2 × 2 + π̄3 × 1

1 = π̄1 × 1.5 + π̄2 × 1 + π̄3 × 0.

Combining these equations with π̄1 + π̄2 + π̄3 = 1 leads to the unique solution π̄1 = 0.5, π̄2 =

π̄3 = 0.25. In this class of MPEs, trade is inefficient with limit probability π̄3 = 0.25.

We now turn to a second class of MPEs, in which π1 = 0 and π2, π3 > 0 for high δ. In

this case, (6) implies that ū0 = a2 − ū2 + ū0({1, 3}) = a3 − ū3 + ū0({1, 2}). As ū0({1, 3}) =

2, ū0({1, 2}) = 3 and ū3 = 0, we obtain that ū0 = 4 and ū2 = 1. Noting that ū2({1, 2}) = 0,

formula (5) (for i = 2) and π1 = 0 imply that ū2 = 0 if π̄2 < 1. It follows that π̄2 = 1. Using

11Equation (5) for buyer 3 does not create any restriction on limit mixing probabilities because buyer 3 gets
limit payoff 0 in every state.
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(5) again (for i = 1) yields ū1 = 2. It is easy to verify the optimality of choosing π1 = 0 for

the seller.12 In this class of MPEs, trade is asymptotically efficient.13

The third class of MPEs is similar to the second, with the roles of buyers 1 and 2 inter-

changed. Analogous arguments imply that π̄1 = 1, and yield the limit payoffs for this class:

ū0 = 4, ū1 = 1.5, ū2 = 1.5, ū3 = 0.14

The following table summarizes each player’s limit payoffs and the seller’s first-round

mixing probabilities in the three classes of MPEs.

a1 = 4, a2 = 3, a3 = 1 ū0 ū1 ū2 ū3 (π̄1, π̄2, π̄3)

π1, π2, π3 > 0 4 1.5 1 0 (0.5, 0.25, 0.25)

π1 = 0; π2, π3 > 0 4 2 1 0 (0, 1, 0)

π2 = 0; π1, π3 > 0 4 1.5 1.5 0 (1, 0, 0)

In the first two classes of MPEs, the seller is indifferent between trading with buyer 2 at

(limit) price 2 and with buyer 3 at the lower price 1 in the first round. This is explained

by the impact of the first trade on the equilibrium value of the outside option—and thus

the bargaining power of buyer 1—in the second round. If the seller trades with buyer 2

first, then she can obtain only the “fair” price a1/2 = 2 from buyer 1 due to buyer 3’s

uncompetitiveness, while if she trades with buyer 3 first, then she can demand the higher

price a2 = 3 from buyer 1 due to buyer 2’s competitiveness. Despite the risk of being

excluded, buyer 2 does not have an incentive to (further) “outbid” buyer 3 by agreeing to

pay a price above 2 in equilibrium. If the seller were to make a more aggressive demand to

buyer 2, buyer 2 would decline, preferring to gamble on the MPE probability that the seller

will not trade with buyer 3 in the next round. We comment more on variation in buyer

strengths across the three classes of MPEs in the Appendix.

Although limit buyer payoffs and probabilities of trade vary across the three classes of

MPEs for this example, limit seller payoffs do not, and are equal to 4 in all MPEs. In

Section 5, we prove that limit MPE seller payoffs are unique in general, and derive a formula

for their value, which in this example reduces to ū0 = a2 + a3. Other common features of

MPEs in this example, which will also be explained by our results, are that buyer 1 trades

with limit probability 1 and that buyer 3 gets zero limit payoff.

12Given buyer 1’s equilibrium expectations, a first trade with buyer 1 would generate limit price a1− ū1 = 2,
and would be followed by a trade with buyer 2 at expected price a2/2 = 1.5. This would yield limit profit
3.5 for the seller, which is smaller than ū0 = 4.
13The existence of an asymptotically efficient MPE is not guaranteed in general. In the Online Appendix,
we discuss an example with n = 3, q = 2 and buyer values a1 = 5, a2 = 4, a3 = 3 in which asymptotically
efficient MPEs do not exist.
14Similar limit arguments establish that for high δ, there are no MPEs in which the seller chooses π3 = 0
and π1, π2 > 0. Since the seller needs to randomize among at least two buyers in the first round of every
MPE for high δ (see footnote 10), it follows that the three asymptotic structures described above constitute
the only potential limit points of MPEs as δ → 1.
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4. Key Lemmas

We now develop some core results upon which our subsequent analysis builds. These

results are intuitive, and indeed familiar in the case q = 1, but their complete proofs for the

case q > 1 are not straightforward. We present proof sketches at the end of the section.

Lemma 2 shows that in any collection of MPEs of the game with supply q for δ ∈ (0, 1),

no buyer i can acquire the good for less than the “fair” price ai/2 in the limit as δ → 1. This

is intuitive because within each round in which the seller bargains with buyer i, the seller

and buyer i make offers with equal probability, but the seller has the additional advantage

of choosing her bargaining partner and possibly trading with other buyers if agreement is

not reached in the current round.

Lemma 2 (Buyers pay at least fair prices). In any collection of MPEs of the game with

supply q for discount factors δ ∈ (0, 1),

lim sup
δ→1

ui ≤
ai
2
.

Lemma 3 establishes that in the game with supply q < n, the payoffs of buyers q+1, . . . , n

converge to 0 as δ → 1.15 To get some perspective on this result, assume that buyer values are

distinct. For q = 1, the result asserts that all buyers other than the buyer with the highest

value have zero limit payoffs. This is an implication of Proposition 1 of Manea (2018). In

this case, the highest valuation buyer trades with limit probability 1, and all other buyers

with limit probability 0. The case q > 1 is more subtle: with sequential trade, a high value

buyer is valuable to the seller both as a direct trading partner in the current round and as a

better outside option when trading with other buyers in the future, and therefore might not

necessarily manage to “outbid” a lower valuation buyer.

Lemma 3 (Buyers q+ 1, . . . , n get zero payoffs under supply q). In any collection of MPEs

of the game with supply q < n for discount factors δ ∈ (0, 1), the payoffs of buyers q+1, . . . , n

converge to 0 as δ → 1.

Lemma 4 below establishes that a buyer i who trades with probability 1 in a sequence

of MPEs for δ → 1—even when this occurs with some delay and perhaps stochastically in

any given round—pays at most the fair price ai/2 in the limit. This result may be viewed

as a counterpoint to the outside option principle—a buyer who is never under the threat of

exclusion in equilibrium cannot be exploited (relative to fair pricing) by the seller.

Lemma 4 (Buyers sure to trade pay at most fair prices). Let (σδz)z≥0 be a sequence of MPEs

for the game with supply q in which the discount factors δz converge to 1 as z →∞. If the

15The result implies that every buyer i ≤ q with ai = aq+1 also gets a zero limit payoff (via an argument
that exchanges the labels of buyers i and q + 1). Hence, buyers with values that do not exceed the extra
marginal value get zero limit payoffs.
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seller trades with buyer i with probability 1 under σδz for all z ≥ 0, then

lim inf
z→∞

ui ≥
ai
2
.

We emphasize that “sure trade” in the naming of Lemma 4 refers to trade with exact

probability 1 in a sequence of MPEs associated with a sequence of discount factors converging

to 1. As discussed in the context of subgames in the example from the previous section, when

a1 > a2 > a1/2 in the setting with unit supply, trade with buyer 1 takes place with limit

probability 1 as δ → 1, but in this case the outside option of trading with buyer 2 is binding,

and buyer 1 pays a limit price of a2, which is above the fair price a1/2.

Lemmata 2 and 4 have the following corollary.

Corollary 1 (Fair pricing with sure trade). Let (σδz)z≥0 be a sequence of MPEs for the game

with supply q in which the discount factors δz converge to 1 as z → ∞. If the seller trades

with buyer i with probability 1 under σδz for all z ≥ 0, then the expected payoff of buyer i

converges to ai/2 as z →∞.

While this result echoes classic results on convergence to the Nash bargaining solution

in Rubinstein-style alternating-offer bargaining (Binmore 1980; Binmore, Rubinstein and

Wolinsky 1986), the argument here is more involved due to the presence of other buyers,

the seller’s strategic (and typically stochastic) selection of bargaining partner at every stage,

and the resultant non-stationary interaction between the seller and each buyer. In general,

the exact price a buyer pays in MPEs for a fixed δ depends on the state in which the buyer

trades, but the result shows that if the buyer is certain to trade, then all these prices converge

to the fair price as δ → 1.16

The example from the previous section demonstrates that although trading with exact

probability 1 is a sufficient condition, it is not a necessary condition for fair pricing in the

limit. Indeed, in the second class of MPEs in the example, buyer 1 trades with probability

smaller than 1 but converging to 1 for δ → 1 and obtains a limit payoff of a1/2 (buyer 2 is

in an analogous situation in the third class of MPEs).

We briefly turn to the game with unconstrained supply, i.e., q = n. By Lemma 1, in every

MPE of the game with supply q = n, there is trade in every round. It follows that the seller

trades with each buyer i with probability 1 in one of the first n rounds, and Corollary 1 and

Lemma 1 imply that trade takes place at an expected discounted price converging to ai/2

16We establish a result of a similar flavor for a network setting in earlier work (Abreu and Manea 2012b).
In that model, every link generates a unit surplus and each player needs to trade with a neighbor. We show
that every player who is guaranteed to trade in equilibrium—even when trade occurs in an evolving network
and potentially with different neighbors—obtains asymptotic payoffs of at least 1/2. Elliott and Nava (2019)
also obtain a related result in a network setting with heterogeneous link values. In the efficient MPEs they
analyze, every pair of players who trade with each other with probability 1 face a stationary environment of
trading opportunities with other neighbors, but these outside options cannot be binding. Consequently, each
such pair effectively trades in a stationary two-player bargaining game, and agreements reflect “Rubinstein
payoffs” independent of the state of the network.
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as δ → 1 (regardless of the timing of the agreement and nature’s selection of proposer in the

seller’s interaction with buyer i). We established the following result.

Corollary 2. In any collection of MPEs of the game with supply q = n for discount factors

δ ∈ (0, 1), each buyer i’s payoff converges to ai, and the seller’s profit converges to
∑

i∈N ai/2

as δ → 1.

We conclude the section by sketching some key steps in the proofs of Lemmata 2-4. Readers

satisfied with the intuitions provided above may proceed to the next section. Consider an

MPE for the game with discount factor δ. An important implication of Lemma 1 that the

proofs rely on is that

(7) ui =
2πi(1− δ)
2− δ − δπi

× ai + δu0(N \ {i})
2

+
∑

k∈N\{i}

πk(2− δ)
2− δ − δπi

× δui(N \ {k}).

Moreover, we have that

(8)
2πi(1− δ)
2− δ − δπi

+
∑

k∈N\{i}

πk(2− δ)
2− δ − δπi

= 1.

Therefore, formula (7) expresses buyer i’s MPE payoff as a convex combination of half of the

gains ai+δu0(N \{i}) generated by a trade between the seller and buyer i in the initial state,

and buyer i’s continuation payoffs δui(N \ {k}) after the seller trades with other buyers k in

the initial state. If πi = 1, then the weight 2πi(1− δ)/(2− δ− δπi) on the first term equals 1,

and the two players share the gains from trade ai + δu0(N \ {i}) equally. In this case, buyer

i becomes a “bottleneck” for the seller’s access to gains from future trades, which enables

him to “hold up” the seller for half of those gains. Lemma 2 shows that the seller is able to

avoid such hold-ups in equilibrium whenever her continuation profits have a positive limit.

More generally, it is possible that limδ→1 πi = 1 in a sequence of MPEs for δ → 1, and the

weight 2πi(1−δ)/(2−δ−δπi) has a positive limit, which depends on πi’s rate of convergence

to 1 as δ → 1. For instance, in the second class of MPEs for the example in the previous

section, the weight corresponding to buyer 2 converges to 2/5 as δ → 1. By contrast, if

limδ→1 πi < 1, then the weight converges to 0. In this case, buyer i’s asymptotic payoffs are

driven exclusively by his payoffs in subgames following trades with other buyers. Taking the

limit δ → 1 in (7) for a sequence of MPEs in which all state variables converge, we obtain

(9) ūi =
∑

k∈N\{i}

π̄k
1− π̄i

ūi(N \ {k}).

This formula facilitates inductive arguments in the proofs of Lemmata 2-4, with the case

π̄i = 1 requiring separate treatment. While in the latter case, formula (7) is not informative

about buyer i’s limit payoff without knowledge of πi’s rate of convergence to 1 as δ goes to

1, it carries the information that ūk = ūk(N \ {i}) when applied for buyers k 6= i, which we

leverage in the proofs.
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The proof of Lemma 2 proceeds by induction on q (with base case q = 0). For the inductive

step, it is sufficient to establish that ūi ≤ ai/2 for all i ∈ N for any sequence of MPEs in

which the state variables converge as δ → 1. From the induction hypothesis, we know that

ūi(N \ {k}) ≤ ai/2 for all k 6= i. If ū0(N \ {i}) = 0, then it is easy to reach the conclusion

from (7) and (8): each term in the convex combination describing buyer i’s payoff, including

(ai+δu0(N \{i}))/2, is asymptotically bounded above by ai/2. If π̄i < 1, then the conclusion

follows directly from (9). We are left with the case π̄i = 1 and ū0(N \ {i}) > 0 (which, as

noted earlier, arises for i = 2 in the second class of MPEs in the example from the previous

section). The latter inequality implies that the seller trades with some buyer k ∈ N \ {i}
with positive limit probability in the second round of the game after an agreement with i,

i.e., π̄k(N \{i}) > 0. As π̄i = 1, the arguments above imply that ūk = ūk(N \{i}). It follows

ū0 = ai − ūi + ak − ūk + ū0(N \ {i, k}). The seller may deviate to first trading with buyer

k at a price converging to ak − ūk, and then trading with buyer i at a price converging to

ai − ūi(N \ {k}) to obtain a limit profit of ak − ūk + ai − ūi(N \ {k}) + ū0(N \ {i, k}). For

this deviation not to be profitable for the seller for high δ in the sequence of MPEs, it must

be that ūi ≤ ūi(N \ {k}), which proves the inductive step via the induction hypothesis.

The proof of Lemma 3 also proceeds by induction on q. For the inductive step, consider a

buyer i ≥ q+ 1. We need to argue that ūi = 0. As in the case of Lemma 2, it is sufficient to

establish this for a sequence of MPEs in which state variables converge as δ → 1. A trade

with any buyer k 6= i leads to a game with supply q − 1 in which the induction hypothesis

implies that ūi(N \ {k}) = 0. If π̄i < 1, then (9) leads to ūi = 0. To deal with the delicate

case in which π̄i = 1, we consider a deviation whereby the seller switches the order of trades

with buyer i and another buyer k if q > 1 like in the proof of Lemma 2 (or trades with

another buyer j for which aj ≥ ai at limit price aj if q = 1).

For Lemma 4, we argue inductively that ūi ≥ ai/2 for every buyer i that trades with

probability 1 in a sequence of MPEs with δ → 1. Consider such a buyer i. If πk > 0 along

a subsequence, then buyer i must trade with probability 1 in subgame N \ {k}, which by

the induction hypothesis implies that ūi(N \ {k}) ≥ ai/2. The inductive step follows from

noting that the payoffs (ai + δu0(N \ {i}))/2 and δui(N \ {k}) in the convex combination

(7) are asymptotically bounded below by ai/2.

5. Seller Profits

The main result of this section establishes that the seller’s MPE payoffs are essentially

unique for δ close to 1, and provides a simple formula for the seller’s limit profit as δ goes to

1. The uniqueness of asymptotic seller payoffs is unexpected in light of the example discussed

in Section 3, which showcases multiple MPEs that are not asymptotically equivalent in terms

of buyer payoffs or trading probabilities.
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Theorem 1 (Seller profits). In any collection of MPEs of the game with supply q < n for

discount factors δ ∈ (0, 1), the seller’s expected profit converges as δ → 1 to

(10) M∗q := max
l≤q+1

[
a1 + a2 + . . .+ al−1

2
+ al+1 + . . .+ aq+1

]
.

To prove this theorem, we argue that M∗q constitutes both an upper and a lower bound

on the seller’s asymptotic profit in every sequence of MPEs for the game with supply q for

δ → 1. The first result establishes the upper bound.

Lemma 5 (Upper bound on seller profits). In any collection of MPEs of the game with

supply q < n for discount factors δ ∈ (0, 1),

lim sup
δ→1

u0 ≤M∗q.

We sketch the proof of Lemma 5 here. Consider an MPE of the game with supply q < n.

Let l be the smallest index of a buyer who trades with probability smaller than 1 in the

MPE. We have that l ≤ q + 1. By Lemma 1, the MPE generates a probability distribution

over sequences of q distinct buyers with whom the seller trades in the first q rounds of the

game. By definition, there exists at least one such sequence S that excludes buyer l but

includes buyers 1, 2, . . . , l − 1. Since choosing to bargain with buyers in the sequence S is

optimal for the seller, it must be that the seller’s MPE payoff is equal to her expected payoff

from trading over S. As S arises with positive probability in equilibrium, each buyer j < l

trades with probability 1 in the subgame following agreements with his predecessors in S.

Lemma 4 implies that the (limit) expected discounted price the seller collects from buyer j

in the subgame is at most aj/2. Hence, the seller’s limit payoff from trading with buyers

1, . . . , l− 1 over S does not exceed a1/2 + . . .+ al−1/2. The seller receives no payment from

buyer l along S, and can at most extract all surplus from the remaining q− l+ 1 buyers with

the highest valuations. If follows that the seller’s limit profit is bounded above by M∗q.

Remarkably, it is also the case that the seemingly coarse upper bound M∗q constitutes a

lower bound on the seller’s asymptotic profits in MPEs for the game with supply q as δ → 1.

Lemma 6 (Lower bound on seller profits). In any collection of MPEs of the game with

supply q < n for discount factors δ ∈ (0, 1),

lim inf
δ→1

u0 ≥M∗q.

To prove this result, let l∗ be a maximizer in the optimization problem defining M∗q, and

consider a collection of MPEs of the game with supply q < n for δ ∈ (0, 1). The seller

may deviate from her equilibrium strategy to a strategy that generates trades with buyers

in the sequence q + 1, q, . . . , l∗ + 1, l∗ − 1, . . . , 1 over a fixed but long enough time horizon

with probability arbitrarily close to 1. Under this deviation, the seller bargains successively

with each buyer in the sequence, rejecting all offers and waiting to become the proposer.

Upon being selected to propose to buyer i, the seller makes an offer that buyer i accepts
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in equilibrium. By Lemma 3, for high enough δ, buyer i = q + 1, q, . . . , l∗ + 1 will accept

price offers arbitrarily close to ai when it is his turn to trade. Similarly, by Lemma 2, buyer

i = l∗ − 1, . . . , 1 will accept price offers arbitrarily close to ai/2. Over a long enough time

horizon, the seller will win the coin toss against all buyers in the sequence with probability

arbitrarily close to 1, and the deviation secures seller profits arbitrarily close to M∗q for high

δ. We conclude that the seller’s asymptotic profits in the collection of MPEs are bounded

below by M∗q.

Since the two bounds on the seller’s asymptotic payoffs in the game with supply q delivered

by Lemmata 5 and 6 coincide, they must be tight. Therefore, in any collection of MPEs for

the game with supply q, the seller’s profits converge to M∗q as δ → 1, which proves Theorem

1.

We remark that while the strategy underlying the proof of Lemma 6 enables the seller to

achieve her limit MPE payoff M∗q asymptotically in the game with supply q, it does not

necessarily describe the seller’s behavior in any MPE, and may even be played with limit

probability 0 as δ → 1. Indeed, when the maximizer in (10) is unique and different from

q + 1, this is an implication of forthcoming Theorem 2.

Sequential outside option principle. Theorem 1 yields a sequential outside option prin-

ciple for settings in which a seller trades sequentially with several, but not all, potential

buyers. Recall that the standard outside option principle implies that if the seller has one

unit for sale and there are multiple buyers, the second highest valuation is a lower bound on

the price the seller can extract from the highest-value buyer. Similarly, if there are q units

for sale and n buyers, if we think of the extra marginal buyer q+1 as a static outside option,

q · aq+1 should be a lower bound on seller profits.17 In our dynamic bargaining process, the

seller can sequentially exercise the outside option by trading with the extra marginal buyer

q + 1 first, the new extra marginal buyer q next, and so on; the outside option provided by

the extra marginal buyer improves every round. In particular, this argument implies that the

seller can extract a profit of a2 + . . .+aq+1 by trading in sequence with buyers q+ 1, q, . . . , 2.

This is the value of the maximand in (10) for l = 1. Our formula for seller profits (10)

recognizes that it might be too costly to exclude buyers with high valuations, and combines

Lemma 3 with Lemma 2. The latter implies that the seller can trade with buyers from a top

interval of valuations at fair (or better) prices.

For another perspective on the sequential exercise of outside options, we revisit the example

from the introduction in which n = 3, q = 2 and a3 > a1/2. As argued there, trading with

buyer 2 in the first round even at the highest possible price of a2 is not more valuable than

trading with buyer 3 at a price of a3 (which is feasible in the limit for δ → 1 by Lemma 3).

This is because in the next round, when bargaining with buyer 1, the seller can demand a

17The model of Ho and Lee (2019) applied to our setting actually predicts limit seller payoffs of q ·aq+1 when
the outside option provided by buyer q+1 is binding for buyers 1, . . . , q. See Section 8 for further discussion.
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price of a2 if buyer 2 is available as an outside option, but a lower price of a3 if buyer 3 is the

outside option. In either case, the seller’s limit profit is a2 + a3. This example shows that

buyers who are more valuable for inclusion may also be more valuable for exclusion when

additional units remain to be sold to even more valuable buyers.

Prices and buyer payoffs. In the example from Section 3, we have seen that limit prices

and payoffs for the buyers, unlike limit profits for the seller, may vary across MPEs of the

game with supply q when 1 < q < n. What can then be said about a buyer’s limit prices

and payoffs along a sequence of MPEs? Frequently quite a bit, even with relatively coarse

information about the seller’s mixing probabilities in the class of MPEs in question.

A sequence of MPEs for the game with supply q associated with a sequence of discount

factors δ going to 1 is said to be convergent if the corresponding variables ui(S) and πi(S)

as well as the support of π(S) converge along the sequence. Since there is a finite set of

possible supports for the seller’s randomization among buyers in every state S, convergence

of the support of π(S) is equivalent to the support being constant far enough in the sequence;

hence, for each i ∈ S, either πi(S) = 0 or πi(S) > 0 after a point in the sequence. Every

sequence of MPEs contains a subsequence that is convergent according to this definition.

Consider a convergent sequence of MPEs for the game with supply q < n, and fix a state

S and a buyer i ∈ S such that πi(S) > 0 for δ near 1. Lemma 1 implies that trade with

buyer i in state S takes place at limit price ū0(S)− ū0(S \ {i}).18 Note that we know ū0(S)

and ū0(S \{i}): they can be computed explicitly by applying Theorem 1 to subgames S and

S\{i}, respectively. More importantly, Lemma 1 implies that ū0(S) = ai+ū0(S\{i})−ūi(S),

which leads to

ūi(S) = ai + ū0(S \ {i})− ū0(S).

Hence, buyer i’s limit payoff in state S can be determined without knowledge of the exact

probability πi(S) (as long as it is positive) or granular details of the different paths of trade

with buyer i starting from state S.

We classify buyer i’s trades in the overall game based on sequences of trades with other

buyers i1, . . . , ik that lead to buyer i’s first chance to trade with positive probability in

state S = N \ {i1, . . . , ik}, i.e., πi(N \ {i1, . . . , ik}) > 0, and πi(N \ {i1, . . . , ik′}) = 0 for

k′ < k. We then use the formula for ūi(S) above to account for trades made by buyer i

immediately after such sequences (in state S) or following intermediate trades with other

buyers (in states S ′ ⊂ S). This leads to the following result, which expresses buyer i’s limit

payoff in the overall game as a weighted sum of terms ai + ū0(S \ {i}) − ū0(S), where the

weight θ̄i(S) assigned to state S is derived from the limit equilibrium probability of trade

with sequences of buyers i1, . . . , ik that have the above properties (the formal definition of

θ̄i(S) can be found in the Appendix).

18As earlier, we use bar notation for the limits of equilibrium variables along the sequence of MPEs.
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Proposition 1 (Buyer payoffs). For any convergent sequence of MPEs of the game with

supply q < n, we have that

ūi =
∑
S3i

θ̄i(S)(ai + ū0(S \ {i})− ū0(S)).

If πi(N) > 0 for δ close to 1, then θ̄i(N) = 1 and θ̄i(S) = 0 for all other S containing i.

Proposition 1 then implies that ūi = ai + ū0(N \ {i})− ū0(N). The result summarizes what

can be said more generally about ūi. The computation of θ̄i(S) requires knowledge of the

seller’s mixing probabilities for other buyers who get opportunities to trade before buyer i

has a chance, but not of the probabilities with which the seller bargains with i in different

states. In some cases, the seller’s mixing probabilities for those other buyers may be inferred

from their limit payoffs, which in turn can be determined from Proposition 1. In the Online

Appendix, we show how this type of exercise leads to a quick derivation of buyers’ limit

payoffs and trading probabilities in the example from Section 3.19

Generalization to heterogeneous proposal probabilities. Consider a more general

model in which when bargaining with buyer i, the seller gets the opportunity to make an

offer with probability pi ∈ (0, 1) and buyer i with complementary probability. In this version

of the model, fair pricing for buyer i corresponds to the price piai, and the formula for limit

seller profits generalizes to20

(11) max
l≤q+1

[p1a1 + p2a2 + . . .+ pl−1al−1 + al+1 + . . .+ aq+1] .

We comment on some intriguing implications for which buyers are included and excluded

under this bargaining protocol in Section 6.

Extension to random matching. Our bargaining protocol allows the seller to strategi-

cally choose which buyer she bargains with in every round. An alternative protocol entails

random matching between the seller and individual buyers according to exogenously given

probabilities. The protocol with strategic choice of bargaining partner is easier to work with

and also seems more natural in our setting, in which the seller with multiple units may wish

to trade only with a particular subset of buyers. An awkwardness of the random matching

protocol is that the seller gets matched to bargain with buyers that she does not have an

incentive to trade with, and such matches lead to delay in equilibrium. Nevertheless, our

results extend: the seller can replicate strategic choice of bargaining partners simply by

waiting to be matched with a desired buyer at an expected cost of delay that vanishes as

19Nonetheless, limit buyer payoff equations do not always carry sufficient information about limit mixing
probabilities, as we discuss in the Online Appendix in the context of the example mentioned in footnote 13.
20Note that piai may not be decreasing in i. Indeed, the sequence (piai)

n
i=1 may even be increasing, and one

might conjecture an analogue of the profit formula based on reindexing the buyers in terms of the decreasing
order of piai. Interestingly, the straightforward generalization is the correct one, and our upper and lower
bound arguments extend directly to this case.
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δ → 1. At a high level, this is why Theorem 1 and the supporting lemmata extend with

minor modifications.21 We provide details in the Appendix.

In the Online Appendix, we revisit the example from Section 3 in the context of random

matching, and argue that there are exact analogues to each of the three classes of MPEs we

derived for the benchmark model. Hence, asymptotic inefficiency and multiplicity of MPEs

persist in this alternative model.

6. Included and Excluded Buyers

Theorem 1 reveals a close connection between the maximum M∗q in the simple static

optimization problem displayed in (10) and the seller’s profits in the complex dynamic bar-

gaining game with supply q < n. As we have seen concretely in the example from Section

3, the seller can attain the total profits M∗q in a variety of ways and from different sets of

buyers in equilibrium. Nevertheless, Theorem 2 below shows that the optimization problem

is also informative—via its maximizers l—about which buyers are certain to trade and which

buyers face the threat of “exclusion” in the game.

Generically, the static optimization problem has a unique maximizer l∗. For this generic

case, we show that every buyer i < l∗ trades with probability 1 in any MPE for high enough δ.

The converse is also true: every buyer i ≥ l∗ trades with probability less than 1 in MPEs for

high δ. Thus, buyers i < l∗ are guaranteed to be “included”—and hence by Corollary 1 trade

at the fair price ai/2 in the limit as δ → 1—while buyers i ≥ l∗ are “excluded” with positive

probability in equilibrium for high δ. We establish that if l∗ 6= q+ 1 and al∗ > al∗+1, then in

any collection of MPEs for δ ∈ (0, 1), buyer l∗ trades with limit probability 1 as δ → 1. In

this case, l∗ is the buyer with the highest value that is excluded with positive probability in

equilibrium, but the probability of excluding l∗ vanishes as δ → 1. However, if l∗ = q + 1,

then in MPEs for high δ, the seller trades with the top q buyers with probability 1, and

hence trades with buyer l∗ with probability 0. We also prove that the seller trades only with

buyers with the top q+ 1 valuations, extending the logic of “two is enough for competition”

to situations with multiple transactions: an extra buyer is enough for competition. In the

Appendix, we state and prove a general version of the theorem that also deals with non-

generic cases in which the static optimization problem (10) has multiple maximizers. The

proofs of the claims track the evolution of the formula for seller profits in subgames as trade

takes place (and involve further use of the supporting lemmata).

Theorem 2 (Included and excluded buyers). Fix q < n, and suppose that the optimization

problem displayed in (10) has a unique maximizer l∗. Then, there exists δ < 1 such that

21We conjecture that the generalization of our results as embodied in (11) extends to any sequential bilateral
bargaining protocol that allows the seller to mimic strategic choice of partners at an expected cost of delay
going to zero for δ → 1 (as long as in every bargaining round with buyer i, the seller and buyer i make offers
with probabilities (pi, 1− pi)).
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the following statements hold for every MPE of the game with supply q and discount factor

δ > δ.

• The seller trades with buyer i with probability 1 if and only if i < l∗.

• If l∗ = q + 1, then the seller trades exclusively with buyers 1, . . . , q.

• The seller trades with probability 0 with any buyer i for which ai < aq+1.

If l∗ 6= q + 1 and al∗ > al∗+1, then in any collection of MPEs of the game with supply q for

δ ∈ (0, 1), the probability that the seller trades with buyer l∗ converges to 1 as δ → 1.

The result also highlights subtle differences between the static optimization problem defin-

ing M∗q and the equilibrium of the dynamic bargaining game: the missing term correspond-

ing to the value of buyer l∗ in the formula for M∗q does not translate into buyer l∗ carrying

all the burden of exclusion in the game. Indeed, buyer l∗ is almost certain to be included in

the limit δ → 1. In particular, this means that the strategy delivering the lower bound on

limit seller profits in the proof of Theorem 1 is played with limit probability 0 in MPEs for

δ → 1.

An example with n = 3, a1 = a2 = 3, a3 = 1 shows that weakening the hypothesis

al∗ > al∗+1 to require that al∗ > an in Theorem 2 does not guarantee the conclusion that

buyer l∗ trades with limit probability 1. In this example, we have that l∗ = 1 and a1 > a3,

but there exists a class of MPEs with π̄1 = π̄2 = 1/4 and π̄3 = 1/2. In this class of MPEs,

the seller trades with buyer l∗ = 1 with limit probability 3/4 < 1 as δ → 1.22

Theorem 2 generalizes to the version of the model in which the seller gets the opportunity

to make offers with probability pi ∈ (0, 1) when bargaining with buyer i. The corresponding

l∗ solves the optimization problem (11). The conclusion that a buyer i < l∗ for whom pi is

relatively small is included with probability 1 is counterintuitive. However, note that l∗ > i

implies that piai ≥ al∗ , so pi cannot be arbitrarily low when i < l∗. Another implication

of the result is that when l∗ = 1 and a1 > a2, even if p1 is relatively low and p1a1 < p2a2,

the seller trades with buyer 1 with limit probability 1 in MPEs for δ → 1. This is in sharp

contrast with the fact that in a market with q = 1 and p1a1 < p2a2, if the seller had to

commit to bargain exclusively with either buyer 1 or 2, she would choose buyer 2.

7. Optimal Exclusion Commitments When q = n

We now turn to a strategic situation in which the seller has unconstrained supply q = n, but

might find it profitable to increase competition between buyers via exclusion commitments.

We model such commitments as follows. An exclusion commitment E is a function from

the set of all subsets of N to itself such that E(S) ⊆ S, E({i}) = {i} for all i ∈ N , and

E(S) ⊆ E(S \{i}) for all i ∈ S \E(S). In the game with exclusion commitment E , bargaining

proceeds like in the game with supply q, but trade is restricted by E : after a history in

22This example admits two other classes of MPEs with π1 = 0 and π2 = 0, respectively, similarly to the
example from Section 3.
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which the seller has not yet traded with a subset of buyers S, she excludes the buyers in

E(S), and may only bargain with buyers in S \ E(S); the game ends when E(S) = S. The

condition E({i}) = {i} for i ∈ N ensures that the seller ultimately excludes at least one

buyer from trade. The condition E(S) ⊆ E(S \ {i}) for i ∈ S \ E(S) requires that exclusions

be irreversible: if the seller is committed to exclude a buyer at a given stage, she eliminates

that buyer from all future negotiations.23 As in the case of the game with exogenous supply,

the payoff relevant state for the definition of MPEs in the game with exclusion commitment

E is given by S and the actions in the current round.

A salient class of exclusion commitments, which treats buyers symmetrically, is the q̃-

supply commitment for q̃ < n. This commitment, denoted by E q̃, is specified by E q̃(S) = S

if |S| > n − q̃, and E q̃(S) = ∅ otherwise. This means that the game ends exactly after q̃

trades. Hence, the game with q̃-supply commitment is identical to the game with supply q̃.

We seek to derive optimal exclusion commitments for the seller under the least and the

most favorable selection of MPEs asymptotically as δ → 1. Let Σδ(E) denote the set of MPEs

in the game with an exclusion commitment E in which players have a common discount factor

δ, and u0(σ, δ) denote the seller’s expected payoff under a strategy profile σ. We investigate

the following bounds and their associated optimal exclusion commitments E :

M = max
E

lim inf
δ→1

inf
σ∈Σδ(E)

u0(σ, δ)

M = max
E

lim sup
δ→1

sup
σ∈Σδ(E)

u0(σ, δ).

Our main result about optimal exclusion commitments shows that the two bounds coincide,

and are achieved by the same exclusion commitment: the (n − 1)-supply commitment.24

As the game with the (n − 1)-supply commitment is identical to the game with supply

n − 1, Theorem 1 implies that the common value of the bounds is M∗(n−1). This exclusion

commitment entails that the seller commits to exclude a single buyer but allows her the

flexibility to decide dynamically which buyer is excluded. Therefore, maintaining a single

unit of shortage at every stage allows the seller to extract all potential benefits of exclusion,

23If buyer j is excluded in state S but not in state S \ {i} for some buyer i with whom trade is allowed
in state S, then the potential competition offered by buyer j when bargaining with buyer i in state S is
unnecessarily lost. For instance, in a situation where E(S) = S \ {i} and j ∈ S \ E(S \ {i}), buyer i would
be a “gateway” to accessing buyer j from state S and could “hold up” the seller for half of the profits she
later collects from buyer j. Our formulation of exclusion commitments precludes such hold-ups (but allows
for others; see footnote 26).
24This is not always the only optimal commitment. For instance, if the optimization problem defining
M∗(n−1) has a maximizer l∗ > 1, then modifying the (n− 1)-supply commitment to rule out paths of trade
that exclude buyer 1 generates another optimal exclusion commitment E (E differs from En−1 only in that
E({1, i}) = {i} for i 6= 1). To achieve the asymptotic bound M∗(n−1) in the game with exclusion commitment
E , the seller can first trade with buyer 1 at a limit price of at least a1/2, which is feasible by the extension of
Lemma 2 to path independent exclusion commitments (such as E) mentioned in footnote 26, and then reach
a subgame in which E reduces to a (n− 2)-supply commitment, in which we know from Theorem 1 that the
seller can obtain an asymptotic payoff of a2/2 + . . .+ al∗−1/2 + al∗+1 + . . .+ an.



22

and the seller does not benefit from exclusion commitments that treat buyers asymmetrically

or create additional scarcity.25

Theorem 3 ((n−1)-supply commitment is optimal). The (n−1)-supply commitment solves

the maximization problems associated with both M and M , and furthermore M = M =

M∗(n−1).

Our permissive formulation of exclusion commitments implies that the conclusion of The-

orem 3 is correspondingly strong, while the optimal commitment we identify is simple and

does not exploit the permitted complexity. Thus, skeptics who feel that complex commit-

ments are implausible may be reassured by the simplicity of the result, and others need not

be concerned that allowing for additional complexity might lead to higher seller profits.

The proof leverages the body of results developed thus far. Since the (n − 1)-supply

commitment is one of the exclusion commitments E allowed in the optimization problem

defining M , and by Theorem 1, the seller’s profit in any collection of MPEs for the game

with supply n− 1 converges to M∗(n−1) for δ → 1, it follows that M ≥M∗(n−1).

Lemmata 1 and 4 generalize to the game with any exclusion commitment without substan-

tial changes in the proofs.26 Then, a straightforward adaptation of the argument for Lemma

5 implies that in every collection of MPEs for the game with any exclusion commitment E for

discount factors δ ∈ (0, 1), the limit superior of the seller’s expected profit as δ → 1 does not

exceed M∗(n−1). Hence, M ≤ M∗(n−1). As M ≥ M , we conclude that M = M = M∗(n−1),

which means that the (n−1)-supply commitment is optimal for both optimization problems.

Theorem 2 implies that the (generically unique) maximizer l in the optimization problem

defining M∗(n−1) represents a cutoff for the buyers who are included with certainty in MPEs

under the optimal exclusion commitment for high δ. By Corollary 1, these buyers must trade

at fair prices in the limit δ → 1. The other buyers face the risk of exclusion and may have to

pay higher than fair prices (as discussed in the context of Corollary 1, some of these buyers

can also trade at fair prices).

By definition, an exclusion commitment requires that at least one buyer does not trade.

It is possible that the seller attains higher profits without excluding any buyer: formally,

25This conclusion is somewhat counterintuitive. Consider an example with n = 30 and a1 = . . . = a10 =
100, a11 = . . . = a20 = 10, a21 = . . . = a30 = 1. It may be tempting to conjecture that in this market the
seller should optimally commit to exclude one buyer of each of the three types thereby extracting full surplus
from all but one buyer of every type.
26While Lemma 2 is not directly needed for the arguments here, we note parenthetically that it extends to the
game with exclusion commitment E with straightforward proof modifications if E is path independent, that
is, for every state S that can be reached in the game and all i 6= j ∈ S, we have that j ∈ (S \{i})\E(S \{i})
if and only if i ∈ (S \ {j}) \ E(S \ {j}) (a key step in the argument for Lemma 2 concerns a deviation by
the seller to a strategy that changes the order of trade for a pair of buyers). An example of an exclusion
commitment that violates path independence for which Lemma 2 does not hold is given by E({1, 2, 3}) =
{3}, E({1, 3}) = {1, 3}, E({2, 3}) = {3} in a setting with n = 3, q = 2. Under this commitment, buyer 3 is
always excluded, and the seller can trade with buyer 2 after buyer 1, but not the other way around. This
game has MPEs in which buyer 1 holds up the seller and gets limit payoff a1/2 + a2/4.
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this corresponds to the game with supply q = n, in which the seller obtains limit profits∑
i∈N ai/2 by Corollary 2. Theorem 3 implies that the seller is better off with an optimal

exclusion commitment whenever M∗(n−1) >
∑

i∈N ai/2.27 Note that this is often the case.

The condition M∗(n−1) ≤
∑

i∈N ai/2 is equivalent to al ≥ al+1 + . . . + an for all l ≤ n − 1,

which in turn implies that al ≥ 2al+2 for all l ≤ n− 2. This requires extreme differences in

valuations be maintained consistently through the sequence of buyers: if there exist three

consecutive buyers whose valuations do not drop by half, optimal commitments would strictly

dominate having no commitments.

Similarly, the condition l∗ 6= n invoked in Theorem 2 for the game with supply n−1 is likely

to be satisfied: l∗ = n implies that M∗(n−1) =
∑

i∈N\{n} ai/2 <
∑

i∈N ai/2. When l∗ = n,

buyers 1, . . . , n− 1 are served with certainty in the game with (n− 1)-supply commitment.

In this case the seller would be better off in the game without exclusion, in which she trades

with all buyers with certainty.

When bargaining with an optimal commitment dominates bargaining without commit-

ment, the threat of exclusion enables the seller to extract higher payoffs by flexibly serving

n − 1 of the group of n buyers than she would by serving any subset of n − 1 buyers with

certainty, and indeed by serving all n buyers with certainty. It follows directly that one or

more buyers must trade with positive probability at higher than fair prices.

We conclude this section with a general MPE existence result.

Proposition 2 (Existence). An MPE exists for the game with any exogenous supply and

for the game with any exclusion commitment.28

8. Optimal Exclusion in the Game with Supply q < n

Does a seller with supply q < n benefit from making exclusion commitments stricter than

her exogenous supply constraint? An exclusion commitment E is more restrictive than the

q-supply commitment Eq if E(S) = S whenever |S| = n − q and, furthermore, E(S) = S

for some S with |S| > n − q. Again, the argument for Lemma 5 can be easily adapted to

show that M∗q is an upper bound on limit profits the seller can obtain using any exclusion

commitment that is more restrictive than Eq. On the other hand, Theorem 1 shows that

the seller’s limit profit in the game with supply q is M∗q. It follows that in the setting

with supply q < n, the seller does not benefit from making commitments to exclude buyers

at any stage before all available q units are sold (in the language of footnote 27, the seller

27An implication of Theorem 3 is that when this inequality is satisfied, a seller who owns q ≥ n units and has
the option to “burn” some units before bargaining proceeds would optimally burn q−n+1 units. Relatedly,
Manea (2021) discusses an example in which if buyers make offers more frequently than the seller, the seller
is better off supplying a single buyer instead of all.
28For q < n, the game with supply q is identical to the game with q-supply commitment, so the only game
with exogenous supply outside the class of games with exclusion commitments is the game with supply q = n.
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does not have an incentive to “burn” any of the q units).29 In particular, for any q̃ < q,

the q̃-supply exclusion commitment is detrimental to a seller with supply q (this follows

directly from noting that M q̃ < M q). This conclusion echoes the intuition from the case

with unconstrained supply that any scarcity persisting through the trading process (q < n)

induces sufficient competition among buyers to deliver the gains of the sequential outside

option principle, and further exclusion does not benefit the seller.

This result does not hold in Ho and Lee’s (2019) delegated-agent model of bargaining with

threat of replacement. In that model, the seller announces a set of buyers (“network”) she

will “target.” The network consists of the most valuable q̃ ≤ q buyers. The seller then assigns

a representative to each buyer in the announced network, and instructs each representative

to bargain only with her assigned buyer and any buyer outside the network. Ho and Lee

show that the announced network forms in equilibrium with limit probability 1 as δ → 1,

and the seller’s limit profit is
∑q̃

i=1 max (ai/2, aq̃+1). This expression may be rewritten as

max
l≤q̃+1

[
a1 + a2 + . . .+ al−1

2
+ (q̃ − l + 1)aq̃+1

]
.

Observe that

max
l≤q̃+1

[
a1 + . . .+ al−1

2
+ (q̃ − l + 1)aq̃+1

]
≤ max

l≤q̃+1

[
a1 + . . .+ al−1

2
+ al+1 + . . .+ aq̃+1

]
= M∗q̃.

The difference al+1 + . . .+ aq̃+1 − (q̃ − l + 1)aq̃+1 ≥ 0 in the expressions being maximized in

the two optimization problems above is due to the fact that under Ho and Lee’s bargaining

protocol, every representative relies on the outside option provided by the extra marginal

buyer q + 1 when bargaining with her assigned buyer. In particular, if a representative

exercises the outside option of trading with buyer q+ 1, her assigned buyer does not become

available to the other representatives as a more valuable outside option. In other words,

the protocol followed by the seller’s representatives rules out the strategy underlying our

sequential outside option principle. For a fixed q̃, the total profits the seller achieves in

the setting of Ho and Lee are lower than M∗q̃ in general due to both the difference in the

maximand for every l ≤ q̃ − 1 and the possibility that the two optimization problems have

different maximizers l.

A seller with supply q < n may benefit from reducing supply to some q̃ < q in the setting

of Ho and Lee. As noted above, the resulting total profits in this case are smaller than

or equal to M∗q̃. In our setting, the seller cannot benefit from restricting supply because

M∗q̃ < M∗q. For a concrete example, suppose that q = 4 in a market with n = 5, a1 =

a2 = a3 = a4 = 3, a5 = 2. Under the protocol of Ho and Lee, a commitment to supply only

three of the four units (“burn” one unit before bargaining) increases seller profits from 8 to

29Note, however, that there are exclusion commitments E more restrictive than Eq that generate the same
limit profits as Eq. This is the case, for instance, if E({1, 3}) = {3} and E(S) = Eq(S) for all other states S
in the example from Section 3. If q ≤ n− 2, this is also the case if E(S) = Eq(S) ∪ {q + 2, . . . , n} for all S.



25

9. In our model, the optimal exclusion commitment does not require a supply reduction and

generates profits of 11 in this example.

9. Conclusion

This paper studies bilateral bargaining between a seller and multiple buyers. The results

are most interesting when the seller is unable to serve all buyers either because supply is

limited or because the seller commits to excluding some potential buyers. Our analysis

reveals that commitments to contract with fewer than the available number of buyers could

be a highly effective bargaining tool. We quantify the resultant benefits to the seller. The

theory applies symmetrically to the case of a buyer negotiating with multiple sellers.

Our main results characterize seller profits as well as prices, payoffs and trading probabil-

ities for individual buyers under exogenous supply constraints. We also investigate optimal

exclusion commitments in the absence of supply constraints. In the process, we formalize

exclusion commitments in a general way. The analysis uncovers some key bargaining theo-

retic principles for the environments considered. On the one hand, buyers cannot hold up the

seller in the sense of paying less than fair prices. On the other hand, buyers who are included

with certainty must trade at exactly fair prices. Our theory yields a novel sequential outside

option principle that captures the role of scarcity in inducing competition between buyers

when several successive transactions are possible. With sequential trade, the outside option

changes dynamically, and in particular may become increasingly more attractive, enabling a

seller who contracts with multiple buyers to extract more surplus than if she were to threaten

buyers with a static outside option, as assumed in preceding research on exclusion. We show

that in equilibrium the seller optimally chooses a top segment of buyers to include with

certainty at fair prices, and exploits the others via the sequential outside option principle.

In many applications, there are externalities between buyers. A buyer’s marginal value

may depend on the set of buyers that the seller ultimately contracts with. In future research,

we seek to address this generalization. We also hope to explore extensions to settings with

multiple sellers and multiple buyers.

Appendix

Proof of Lemma 1. Consider an MPE for the game with supply q. In subgame S, the seller

can trade only with buyers in S. It follows that the total surplus created in subgame S is

bounded above by
∑

i∈S ai. As u0(S) ≥ 0, we have that

(12)
∑
i∈S

ui(S) ≤
∑

i∈S∪{0}

ui(S) ≤
∑
i∈S

ai.
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Hence, there exists i ∈ S such that ui(S) ≤ ai.
30 Since the seller has the option to bargain

with buyer i in the first period of subgame S and make an acceptable offer that leaves buyer

i with utility arbitrarily close to δui(S), but otherwise demand positive prices and refuse all

offers in the future, we have that

u0(S) ≥ 1

2
(ai − δui(S)) > 0.

As every buyer i ∈ S will reject offers that yield utility smaller than δui(S) in state

S of the MPE, the payoff the seller receives when making an offer is bounded above by

maxi∈S(ai + δu0(S \ {i})− δui(S)). Standard arguments demonstrate that the seller expects

a payoff of δu0(S) in the event the buyer chosen for bargaining is selected to be the proposer

(regardless of whether the offer is accepted or rejected). Then, u0(S) > 0 implies that

maxi∈S(ai + δu0(S \ {i}) − δui(S)) > δu0(S). As the seller can obtain a payoff arbitrarily

close to ai + δu0(S \ {i})− δui(S) by making an acceptable offer to buyer i, it must be that

πi(S) > 0 only if i maximizes the expression ai + δu0(S \ {i})− δui(S). For such i, we know

that ai + δu0(S \ {i})− δui(S) > δu0(S).

Optimality of MPE strategies requires that if πi(S) > 0, and the seller is selected to

be the proposer, then she makes an offer that yields utility δui(S) for buyer i and utility

ai + δu0(S \ {i}) − δui(S) > δu0(S) for the seller, and buyer i must accept the offer with

probability 1 in equilibrium. Similarly, if buyer i is the proposer, he makes an offer that

yields utility δu0(S) for the seller, and the seller accepts it with probability 1. The payoff

equations follow.

Finally, we prove the statement regarding limit prices. Consider a sequence of MPEs asso-

ciated with a sequence of discount factors (δz)z≥0 under which πi(S) > 0 and limz→∞ ui(S) =

ūi(S). For all z ≥ 0, the arguments above lead to

u0(S) =
1

2
(ai + δzu0(S \ {i})− δzui(S)) +

1

2
δzu0(S),

which implies that δzu0(S) − δzu0(S \ {i}) converges to ai − ūi(S) for z → ∞. When the

seller makes an offer to buyer i in subgame S, the equilibrium price ai − δzui(S) converges

to ai − ūi(S) as z → ∞. If instead buyer i is the proposer, then the equilibrium price

δzu0(S)− δzu0(S \ {i}) converges to the same limit. �

MPEs in subgames with two buyers and one good. In a subgame {i, j} in which buyers i and

j with i < j are competing for a single unit, the unique MPE outcomes can be derived from

the proof of Proposition 1 in Manea (2018).31 If aj ≤ ai/2, then for any δ ∈ (0, 1), the

30The only change necessary to extend this proof to the game with an exclusion commitment E involves
replacing the set S with the set of buyers S \E(S) who are still permitted to trade in state S in this sequence
of arguments. By definition, under any exclusion commitment E , only buyers in S \ E(S) can trade in
subgame S.
31See also Abreu and Manea (2022) for an extensive discussion of the structure of MPEs in this case.
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outside option of trading with buyer j is not binding in the MPE (πj({i, j}) = 0), and

u0({i, j}) = ui({i, j}) = ai/2, uj({i, j}) = 0.

If aj > ai/2, then for δ in the non-empty interval (2(1 − aj/ai), 1), the outside option is

binding (πj({i, j}) > 0), and the unique MPE payoffs are given by

u0({i, j}) =
(3− 2δ)(ai + aj)−∆

2(4− 3δ)

ui({i, j}) =
(2 + δ − 2δ2)ai − (2− δ)(3− 2δ)aj + (2− δ)∆

2δ(4− 3δ)

uj({i, j}) =
(2 + δ − 2δ2)aj − (2− δ)(3− 2δ)ai + (2− δ)∆

2δ(4− 3δ)
,

where ∆ :=
√

(3− 2δ)2(a2
i + a2

j)− 2(7− 8δ + 2δ2)aiaj. �

Existence of the MPEs described in the example from Section 3. DefineAi := ai+δu0({1, 2, 3}\
{i}) for every buyer i = 1, 2, 3 (with u0({1, 2, 3} \ {i}) specified in the previous section).

To establish the existence of the first class of MPEs, we restrict π3 to the interval [3/16, 5/16],

and derive values for π2 from MPE conditions as a function of δ and π3, with the under-

standing that π1 is given by 1 − π2 − π3 in all expressions. Applying (7) for i = 1, 2 and

letting j = 3− i, we obtain

(13) ui =
2πi(1− δ)
2− δ − δπi

Ai
2

+
πj(2− δ)

2− δ − δπi
δui({i, 3}) +

π3(2− δ)
2− δ − δπi

δui({1, 2}).

Furthermore, equation (7) for i = 3 reduces to

(14) u3 =
2π3(1− δ)
2− δ − δπ3

A3

2

because u3({1, 3}) = u3({2, 3}) = 0 (as implied by the discussion in the previous section).

The seller’s indifference between trading with each buyer i = 1, 2 and buyer 3 leads to

(15) Ai − δui = A3 − δu3.

For i = 1, 2, we plug the formulae for ui and u3 from (13) and (14) in (15), multiply the

resulting equality by 2(2 − δ − δπi) using the substitution π1 = 1 − π2 − π3, and collect

the terms containing π2 to obtain a linear equation in π2 of the form xi(δ, π3)π2 = yi(δ, π3).

Even though we do not consider the case δ = 1 in our analysis of the game, note that

all terms above are well defined for δ = 1 (when π3 ∈ [3/16, 5/16]), and xi and yi are

continuous functions on the compact domain {(δ, π3)|δ ∈ [0, 1], π3 ∈ [3/16, 5/16]}. By the

Heine-Cantor theorem, xi and yi are uniformly continuous over the domain. It follows that

for every ε > 0, there exists δ(ε) ∈ [0, 1) such that the value of each of these functions for

any (δ, π3) ∈ D(ε) := [δ(ε), 1]× [3/16, 5/16] is within ε of its corresponding value at (1, π3).

We find that for all π3 ∈ [3/16, 5/16],

x1(δ = 1, π3) = 1, y1(δ = 1, π3) = π3, x2(δ = 1, π3) = 1, y2(δ = 1, π3) = 1− 3π3.
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If ε < 1, then xi(δ, π3) > 0 for all (δ, π3) ∈ D(ε). Consider the function f : D(1/8) → R
defined by f(δ, π3) = y1(δ, π3)/x1(δ, π3) − y2(δ, π3)/x2(δ, π3). We have that f(δ = 1, π3) =

4π3 − 1. Then, f(δ, π3 = 3/16) < 0 < f(δ, π3 = 5/16) for all δ ∈ [δ(1/8), 1]. As f is

continuous in its second argument, the intermediate value theorem implies that for every

δ ∈ [δ(1/8), 1], there exists π3(δ) ∈ (3/16, 5/16) such that f(δ, π3(δ)) = 0. Define π2(δ) =

y1(δ, π3(δ))/x1(δ, π3(δ)). For sufficiently small ε, if δ ∈ [δ(ε), 1), then π2(δ) ∈ (1/8, 3/8).

We conclude that for small enough ε, the game with any discount factor δ ∈ [δ(ε), 1)

has an MPE in which (π1, π2, π3) = (1 − π2(δ) − π3(δ), π2(δ), π3(δ)). Buyer payoffs in this

MPE are obtained by substituting (π1, π2, π3) in (13) and (14); the obtained values are clearly

positive. The seller’s payoff is given by the common value of 2/(2−δ)(Ai−δui) for i = 1, 2, 3

(consequence of (15)), and is positive because A3 > 0 and (14) implies that u3 ≤ A3/2. The

MPE must have the asymptotic structure derived in Section 3 for δ → 1.

We next establish the existence of the second class of MPEs. For π1 = 0, π2 ∈ [0, 1] and

δ ∈ (0, 1), let ui(δ, π2) denote the expression on the right-hand side of formula (7), in which

we substitute π3 = 1− π2. Define

f(δ, π2) = A2 − δu2(δ, π2)− (A3 − δu3(δ, π2)).

Note that limδ→1 A2 = 5, limδ→1 A3 = 4, and limδ→1 u2(δ, π2 = 0) = 0, u3(δ, π2 = 0) = A3/2,

while u2(δ, π2 = 1) = A2/2, limδ→1 u3(δ, π2 = 1) = 0. It follows that limδ→1 f(δ, π2 = 0) = 3

and limδ→1 f(δ, π2 = 1) = −1.5. Since f is continuous in δ, there exists δ ∈ [0, 1) such

that f(δ, π2 = 0) > 0 > f(δ, π2 = 1) for δ ∈ (δ, 1). Then, the continuity of f in its second

argument implies the existence of π2(δ) ∈ (0, 1) such that f(δ, π2(δ)) = 0. The corresponding

steps in Section 3 demonstrate that limδ→1 π2(δ) = 1, and that for δ close to 1 there exists

an MPE for the game with discount factor δ in which (π1, π2, π3) = (0, π2(δ), π3(δ)).

The existence proof for the third class of MPEs is analogous to that for the second class. �

Buyer strengths in the three classes of MPEs for the example. Each buyer i = 1, 2 is in the

most favorable position if the seller trades first with the other buyer j = 3− i because buyer

3 provides a weak (and non-binding) outside option following a trade with j. The second

and the third classes of MPEs showcase these dynamic equilibrium forces vividly as they

involve respective trades with buyers 2 and 1 in the first round with limit probability 1.

Consequently, buyers 1 and 2 receive their highest possible asymptotic MPE payoffs—half

of their values—in the second and the third class of MPEs, respectively (see Lemma 2).

The first class of MPEs yields the lowest asymptotic payoffs for both buyers 1 and 2

because it entails trading with buyer 3 with limit probability 0.25. In this event, buyers 1

and 2 compete for the remaining unit, and the outside option provided by buyer 2 is binding

when the seller is bargaining with buyer 1. This leads to low payoffs for both buyers in

the subgame following a trade with buyer 3, ū1({1, 2}) = 1 and ū2({1, 2}) = 0, and in the

overall game, ū1 = 1.5 and ū2 = 1. In the second class of MPEs, buyer 2 also has a low

payoff of ū2 = 1. In this case, a positive limit probability of trading with buyer 3 would be
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an extremely powerful threat to buyer 2, leading via (5) to ū2 = 0. Implementing the threat

with small but vanishing probability as δ → 1 (π3 > 0, but π̄3 = 0) is sufficient to exploit

buyer 2 and drive his limit payoff down to 1, thereby maintaining the seller’s indifference

between trading with buyers 2 and 3 in the initial state. Similar equilibrium forces determine

buyer 1’s weak position in the third class of MPEs. �

Proof of Lemma 2. We establish the result for all games with supply q by induction on q.

The base case q = 0 is trivial as all buyers receive zero payoffs in a degenerate game in which

no trade is possible.

For the inductive step, consider the game with supply q, and fix a corresponding collection

of MPEs (σδ)δ∈(0,1). It is sufficient to show that if ui converges over a sequence of δ’s going to

1, then its limit is at most ai/2 for every buyer i. We can assume by passing to a subsequence

(δz)z≥0 → 1 that all equilibrium variables uj, uj(S), πj, πj(S) converge as z → ∞ to limits

denoted by ūj, ūj(S), π̄j, π̄j(S). We need to prove that ūi ≤ ai/2 for all i ∈ N .

Following an agreement with buyer k, players reach subgame N \{k}—a game with supply

q − 1, in which the induction hypothesis applies. Hence, ūi(N \ {k}) ≤ ai/2 for all k 6= i.

Fix a discount factor δ belonging to the sequence (δz) and a buyer i ∈ N such that πi > 0

under σδ. By Lemma 1, we have that

u0 =
1

2
(ai + δu0(N \ {i})− δui) +

1

2
δu0(16)

ui = πi

(
1

2
(ai + δu0(N \ {i})− δu0) +

1

2
δui

)
+

∑
k∈N\{i}

πkδui(N \ {k}).(17)

Solving the pair of equations (16) and (17) with unknowns u0 and ui and reorganizing terms,

we obtain formula (7) from Section 4 (when πi = 0, this formula follows directly from (17)

even though (16) is not valid in this case). The identities (8) and (9) from Section 4 will

also be useful.

If π̄i < 1, then (9) leads to

ūi =
∑

k∈N\{i}

π̄k
1− π̄i

ūi(N \ {k}) ≤
ai
2
.

If ū0(N \{i}) = 0, then for any ε > 0, there exists z such that if z ≥ z, then δzu0(N \{i}) ≤
2ε and δzui(N \ {k}) ≤ ai/2 + ε for all k ∈ N \ {i}. Equations (7) and (8) then lead to

ui ≤ ai/2 + ε for all z ≥ z. Hence, ūi ≤ ai/2.

For the rest of the proof, assume that π̄i = 1 and ū0(N \ {i}) > 0. The latter inequality

implies that the seller trades with some buyer k ∈ N \ {i} with positive limit probability

in the second round after reaching the agreement with i under σδz . Hence, q ≥ 2 and

π̄k(N \ {i}) > 0.

Since π̄i = 1 > 0, taking the limit z →∞ for in equation (16) for δ = δz we obtain

(18) ū0 = ai + ū0(N \ {i})− ūi.
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Similarly, π̄k(N \ {i}) > 0 implies that

(19) ū0(N \ {i}) = ak + ū0(N \ {i, k})− ūk(N \ {i}).

As π̄i = 1, it must be that

(20) ūk = ūk(N \ {i}).

Putting equalities (18)-(20) together, we obtain

(21) ū0 = ai + ak + ū0(N \ {i, k})− ūi − ūk.

Since the seller may bargain with buyer k in state N and with buyer i in state N \ {k},
we have that

ū0 ≥ ak + ū0(N \ {k})− ūk
ū0(N \ {k}) ≥ ai + ū0(N \ {i, k})− ūi(N \ {k}),

and hence

(22) ū0 ≥ ai + ak + ū0(N \ {i, k})− ūi(N \ {k})− ūk.

Then, (21) and (22) imply that ūi ≤ ūi(N \ {k}). Since ūi(N \ {k}) ≤ ai/2, we conclude

that ūi ≤ ai/2. �

Proof of Lemma 3. We prove the claim for all games with supply q and any number of buyers

n > q by induction on q, with the base case q = 0 being trivial like in the proof of Lemma

2 (applying the inductive hypothesis requires a reindexing of the buyers in decreasing order

of valuations in subgames). For the inductive step, fix q ≥ 1, and consider a collection of

MPEs (σδ)δ∈(0,1) for the game with supply q, and a buyer i ≥ q+ 1. If buyer i’s payoff under

σδ does not converge to 0 for δ → 1, then there exists a sequence of discount factors going

to 1 for which i’s payoff converges to a positive limit. By passing to a subsequence, we can

assume that the other equilibrium variables also converge. We will establish that ūi = 0,

contradicting the hypothesis above.

For any k ∈ N \ {i}, buyer i’s value is among the highest q in subgame N \ {k}. Since

subgame N \ {k} is a game with supply q − 1, the induction hypothesis implies that

(23) ūi(N \ {k}) = 0, ∀k ∈ N \ {i}.

If π̄i < 1, then (9) implies that

ūi =
∑

k∈N\{i}

π̄k
1− π̄i

ūi(N \ {k}).

Using (23), we conclude that ūi = 0.

Consider now the case π̄i = 1. Applying (9) for buyers j 6= i, we obtain ūj = ūj(N \ {i}).
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If q = 1,32 then ū0 = ai − ūi ≤ ai ≤ a2. As n ≥ 2, there exists j ∈ {1, 2} \ {i} for which

ūj = uj(N \ {i}) = 0. Since the seller may deviate to trading with such a buyer j at a limit

price of aj, it follows that ū0 ≥ aj. We conclude that a2 ≤ aj ≤ ū0 = ai − ūi ≤ ai ≤ a2,

which is possible only if all weak inequalities hold with equality. In particular, ai − ūi = ai

leads to ūi = 0, as claimed.

Now suppose that q ≥ 2. Then the game with supply q does not end after the seller trades

with buyer i in the first round. In subgame N \ {i}, there exists a fixed j 6= i such that

π̄j(N \ {i}) > 0. The conditions π̄i > 0 and π̄j(N \ {i}) > 0 along with Lemma 1 lead to

ū0 = ai − ūi + ū0(N \ {i}) = ai − ūi + aj − ūj(N \ {i}) + ū0(N \ {i, j}).

As ūj = ūj(N \ {i}), we obtain

(24) ū0 = ai − ūi + aj − ūj + ū0(N \ {i, j}).

The seller has the option to deviate and trade with buyer j first at a limit price of aj− ūj,
and with i second at a price of ai− ūi(N \{j}) = ai (by (23), we have that ūi(N \{j}) = 0).

Optimality of the seller’s strategy in the sequence of MPEs requires that this deviation does

not generate a higher limit profit for the seller:

(25) ū0 ≥ aj − ūj + ai + ū0(N \ {i, j}).

Formula (24) and inequality (25) imply that ūi ≤ 0, and hence ūi = 0. �

Proof of Lemma 4. We prove the result by induction on q, with the base case q = 0 being

trivial as all buyers trade with probability 0, not 1, in a degenerate game. Following an

agreement with buyer k, players reach subgame N \{k}—a game with supply q−1, in which

the induction hypothesis applies.

For the inductive step, consider a sequence of discount factors (δz)z≥0 converging to 1 and

an associated sequence of MPEs (σδz)z≥0 for the game with supply q such that the seller

trades with buyer i with probability 1 under σδz for all z ≥ 0.

It is sufficient to prove that if ui converges along a subsequence of (δz)z≥0, then its limit

is at least ai/2. We can assume by passing to a subsequence that all equilibrium variables

uk, uk(S), πk, πk(S) converge as z → ∞ to limits denoted by ūk, ūk(S), π̄k, π̄k(S), and fur-

thermore that the set K = {k ∈ N |πk > 0 under σδz} is constant for all z ≥ 0.33 We need

to show that ūi ≥ ai/2.

Fix ε > 0. For k ∈ K, we have that πk > 0, and the assumption that the seller trades

with buyer i with probability 1 under σδz for all z implies that the seller trades with buyer

i with probability 1 in subgame N \ {k} under σδz for all z. The induction hypothesis then

32The case q = 1 follows from Manea’s (2018) Proposition 1. Here we provide a self-contained treatment.
33The sequence ((uk(S), πk(S))k,S ,K)z≥0 derived from the sequence of MPEs (σδz )z≥0 is contained in a
compact subset of a Euclidean space, so by the Bolzano-Weierstrass theorem it admits a convergent subse-
quence. Since K can take only a finite set of values, convergence on component K of the subsequence is
equivalent to K being constant starting at some point in the subsequence.
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shows that ūi(N \ {k}) ≥ ai/2 for all k ∈ K \ {i}. Hence, there exists z such that if z ≥ z,

then δzui(N \ {k}) ≥ ai/2− ε for all k ∈ K. Given the definition of K, note that the range

N \ {i} can be replaced by K \ {i} in the summations from equations (7) and (8). Then,

ai + δu0(N \ {i})
2

≥ ai
2

and δzui(N \ {k}) ≥ ai/2− ε, ∀k ∈ K \ {i},

imply that ui ≥ ai/2 − ε for all z ≥ z. As ε > 0 was chosen arbitrarily, it follows that

ūi ≥ ai/2, as asserted. �

Proof of Lemma 5. Fix a collection of MPEs (σδ)δ∈(0,1) for the game with supply q < n. For

every δ ∈ (0, 1), there exists at least one buyer with whom the seller trades with probability

smaller than 1 under σδ; let l(σδ) ∈ N be the smallest index among buyers with this property.

Clearly, l(σδ) ≤ q + 1.

It is sufficient to prove that if u0 converges along a sequence (δz)z≥0 going to 1, then its

limit does not exceed M∗q. We can assume by passing to a subsequence that all equilibrium

variables uk, uk(S), πk, πk(S) converge as z →∞ (to limits denoted by ūk, ūk(S), π̄k, π̄k(S)).

Since N is finite, the subsequence can be selected to additionally satisfy l(σδz) = i for a fixed

i ≤ q + 1 and all z ≥ 0. We need to establish that ū0 ≤M∗q.

By Lemma 1, for every z ≥ 0, the MPE σδz generates a probability distribution over

sequences of q different buyers that the seller approaches for bargaining in the first q rounds

(with each approach resulting in an agreement). As l(σδz) = i, there exists one such sequence

S that arises with positive probability under σδz and excludes buyer i. By passing to a

subsequence of (δz)z≥0 if necessary, we can assume that S is the same for all z. Since trading

over S is a best response for the seller under the MPE σδz , the seller’s equilibrium payoff is

equal to her expected payoff from selecting bargaining partners in the sequence S.34

As S arises with positive probability under σδz and l(σδz) = i, each buyer j < i is guar-

anteed to trade under σδz in the subgame following agreements with his predecessors in the

sequence S. Lemma 4 implies that the expected discounted price in the agreement with

buyer j along S converges to a limit less than or equal to aj/2 as z →∞.

Clearly, the seller cannot extract a price greater than aj from any buyer j > i in the

sequence S. Since the seller does not trade with buyer i over S, and there are q buyers in S,

we have that

ū0 ≤
a1 + a2 + . . .+ ai−1

2
+ ai+1 + . . .+ aq+1 ≤M∗q.

�

34To better understand this claim, note that every Markov behavior strategy of the seller can be decomposed
into two dimensions: mixing probabilities between buyers in every state at the beginning of a round, and
proposal and acceptance decisions at every state within a round. In an MPE, the seller’s strategy must
be optimal against buyer strategies (and moves by nature), and hence the seller’s decisions on the first
dimension should also be optimal when we fix her play on the second dimension and the others’ strategies.
This implies that the seller should be indifferent between all sequences of buyers that occur in equilibrium
(given the expected payoffs derived from bargaining with each buyer over each such sequence).
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Definition of θ̄(S) and proof of Proposition 1. Fix a convergent sequence of MPEs, and con-

sider a (possibly empty) sequence of trades with buyers i1, . . . , ik distinct from i such that

πi(N \ {i1, . . . , ik}) > 0 and πi(N \ {i1, . . . , ik′}) = 0 for k′ < k. Let Ii denote the set of

sequences (i1, . . . , ik) with this property. Note that every trade of buyer i occurs after one

and only one sequence in Ii, either immediately or following intermediate trades with other

buyers. Hence, buyer i’s limit payoff in the overall game can be expressed as an expected

value of the payoffs

ūi(S) = ai + ū0(S \ {i})− ū0(S)

over sequences (i1, . . . , ik) in Ii such that {i1, . . . , ik} = N \ S.

Let π̄i1,...,ik = π̄i1(N)π̄i2(N \{i1}) . . . π̄ik(N \{i1, . . . , ik−1}) denote the probability that the

seller trades in sequence with buyers i1, . . . , ik (with the value corresponding to the empty

sequence understood to be 1), and define

θ̄i(S) =
∑

(i1,...,ik)∈Ii:{i1,...,ik}=N\S

π̄i1,...,ik .

We have that

ūi =
∑

(i1,...,ik)∈Ii

π̄i1,...,ik ūi(N \ {i1, . . . , ik}) =
∑
S3i

ūi(S)
∑

(i1,...,ik)∈Ii:{i1,...,ik}=N\S

π̄i1,...,ik

=
∑
S3i

θ̄i(S)ūi(S) =
∑
S3i

θ̄i(S)(ai + ū0(S \ {i})− ū0(S)).

This establishes the desired result. �

Proof modifications for the game with random matching. Suppose that in every state S, each

buyer i ∈ S is randomly matched to bargain with the seller with probability pi(S) > 0. Let

ui(S) denote the expected payoff of player i ∈ S ∪ {0} in subgame S, and πi(S) be the

probability that the seller trades with buyer i in state S (conditional on reaching state S,

but not conditional on buyer i being randomly matched with the seller in state S; thus,

πi(S) ≤ pi(S)). As in the benchmark model, it is sufficient to consider sequences of MPEs

for discount factors δ → 1 in which the variables ui(S) and πi(S) converge. It is useful to

focus on subsequences of MPEs with the additional property that the support of π(S) is

constant for every state S, so that for any fixed pair i ∈ S, either πi(S) > 0 or πi(S) = 0 uni-

formly in the subsequence. With random matching, the seller may be matched with a buyer

with whom agreement is not incentive compatible, and this will cause trading delay. The

analogue of the “trade in every round” property from Lemma 1 in the model with random

matching is that in every state there is a buyer with whom the seller trades with probability

1 conditional on being matched: for every S, there exists i ∈ S such that πi(S) = pi(S).
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The payoff equations under random matching can be written as follows:

u0(S) =
∑
k∈S

πk(S)

(
1

2
(ak + δu0(S \ {k})− δuk(S)) +

1

2
δu0(S)

)
+

(
1−

∑
k∈S

πk(S)

)
δu0(S)

ui(S) = πi(S)

(
1

2
(ai + δu0(S \ {i})− δu0(S)) +

1

2
δui(S)

)
+

∑
k∈S\{i}

πk(S)δui(S \ {k}) +

(
1−

∑
k∈S

πk(S)

)
δui(S).

While the seller is no longer indifferent between trading with every buyer i ∈ S for which

πi(S) > 0, optimality of the seller’s strategy implies that in every state S the seller should

be indifferent between all buyers in the support of π(S) in the patient limit. For a sequence

of MPEs in which πi(S) > 0 and state variables converge (to limits denoted by a bar), this

means that

ū0(S) = ai − ūi(S) + ū0(S \ {i}).

As in the case of the game with strategic choice of bargaining partner, in state S buyer i

trades at an asymptotic price of ai − ūi(S) regardless of whether he wins the coin toss to

propose when getting matched. Taking the limit δ → 1 in buyer i’s payoff equation for the

initial state N , the asymptotic indifference property leads to the following counterpart to

(9):

(26)
∑

j∈N\{i}

π̄j > 0 =⇒ ūi =
∑

k∈N\{i}

π̄k∑
j∈N\{i} π̄j

ūi(N \ {k}).

This condition plays a key role in extending the proofs of Lemmata 2-6 to the model with

random matching.

Formulae (7) and (8) rely on the seller’s exact indifference when mixing between buyers

and do no have immediate analogues in the setting with random matching. The use of these

formulae in the treatment of the case ū0(N \ {i}) = 0 in the proof of Lemma 2 can be

circumvented by noting that ū0(N \ {i}) = 0 implies that q = 1. The game with random

matching for q = 1 can be analyzed separately to argue that ūi ≤ ai/2.

The proof of Lemma 4 relies more extensively on (7) and (8). We can deal with the case∑
j∈N\{i} π̄j > 0 via (26). Consider now the case

∑
j∈N\{i} π̄j = 0. It must be that for high

enough δ, we have that πi = pi(N) and πj < pj(N) for j 6= i. It follows that

ai + δu0(N \ {i})− δui ≥ δu0 ≥ aj + δu0(N \ {j})− δuj, ∀j 6= i.

Then, the seller’s payoff equation leads to

u0 ≤
∑
k∈N

πk

(
1

2
(ai + δu0(N \ {i})− δui) +

1

2
δu0

)
+

(
1−

∑
k∈N

πk

)
δu0.
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This leads to an upper bound for u0 that depends on ui, which can be substituted in buyer

i’s payoff equation to obtain a lower bound on ui similar to the right hand-side of (7):

ui ≥
2πi(1− δ)

(1− δ + δ
∑

j∈N πj)(2− 2δ + δ
∑

j∈N\{i} πj)
× ai + δu0(N \ {i})

2
+

∑
k∈N\{i}

πk(2− 2δ + δ
∑

j∈N πj)

(1− δ + δ
∑

j∈N πj)(2− 2δ + δ
∑

j∈N\{i} πj)
× δui(N \ {k}).

The sum of the coefficients in the equation above simplifies to∑
j∈N πj

1− δ + δ
∑

j∈N πj
,

which converges to 1 as δ → 1 (both the numerator and the denominator converge to

π̄i > 0).35 This makes it possible to proceed with the inductive proof of Lemma 4 as in the

benchmark model.

For the game with random matching, the crucial step identifying the sequence of buyers

S in Lemma 5 does not rely on exact indifference for the seller, but instead uses the seller’s

asymptotic indifference. We can construct a sequence over which trade occurs with positive

probability (this can be defined based solely on the support of every π(S), which is constant in

the subsequence of MPEs under consideration)—and hence generates the seller’s asymptotic

MPE payoff—which excludes buyer l and includes buyers 1, . . . , l − 1. This allows us to

extend Theorem 1 to the model with random matching. �

Theorem 2 (General version). Let l∗ and l̄∗ be the smallest and the largest indices l that

achieve the maximum in (10), respectively, and let l(σ) denote the lowest index of a buyer

with whom the seller trades with probability less than 1 under strategy profile σ. There exists

δ < 1 such that every MPE σ of the game with supply q for any discount factor δ > δ satisfies

the following properties:

• l(σ) is a maximizer in the optimization problem (10).

• If i < l∗, then the seller trades with buyer i with exact probability 1.

• If i ≥ l̄∗, then the seller trades with buyer i with probability smaller than 1.

• If ai < aq+1, then the seller trades with buyer i with probability 0.

Furthermore, every collection of MPEs (σδ)δ∈(0,1) of the game with supply q for discount

factors δ ∈ (0, 1) has the following asymptotic properties for δ → 1:

• If i < l̄∗, then the probability that the seller trades with buyer i converges to 1, and

the expected payoff of buyer i under σδ converges to ai/2.

35This expression can be interpreted as the present value of a prize of 1 received at a stochastic time in an
environment where the probability of getting the prize at a given date conditional on not having received it
earlier is

∑
j∈N πj , which reflects the fact that the first trade takes place with probability

∑
j∈N πj in the

game with random matching.
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• If l̄∗ 6= q + 1 and al̄∗ > al̄∗+1, then the probability that the seller trades with buyer l̄∗

converges to 1.

• If l̄∗ = q+ 1, then the seller trades with buyers 1, . . . , q with probability converging to

1.

Proof of general version of Theorem 2. We prove the first claim of the result by contradic-

tion. If the claim is not true, then there exist a sequence of discount factors δz → 1 and

associated equilibria σδz such that l(σδz) is not a maximizer in the optimization problem

(10). Moreover, the sequence may be selected such that l(σδz) = j for some fixed j and all

z ≥ 0. Then, the argument from Lemma 5 shows that

ū0 ≤
a1 + a2 + . . .+ aj−1

2
+ aj+1 + . . .+ an ≤M∗q.

Since ū0 = M∗q by Theorem 3, it follows that j achieves the maximum M∗q in the optimiza-

tion problem (10), contradicting the assumption l(σδz) = j is not a maximizer in (10).

The second claim of the result follows from the first. Since l(σ) is a maximizer in (10) for

every MPE σ when δ > δ, the definition of l∗ implies that l∗ ≤ l(σ).

The proof of the third claim proceeds by contradiction similarly to the first. If the claim

is not true, then there exists a buyer i ≥ l̄∗ and a sequence of discount factors (δz)z≥0

such that the seller trades with buyer i with probability 1 under σδz for all z ≥ 0. As

above, (δz)z≥0 can be selected so that l(σδz) = j for a fixed j and all z. Since i trades with

probability 1 under σδz , we have that j 6= i, and hence i > j. Moreover, each buyer in the

set K = {1, 2, . . . , j − 1, i} trades with probability 1 under σδz for all z.

Following steps analogous to the proof of Lemma 5, the seller’s payoff under σδz is equal

to her expected payoff from selecting bargaining partners in a fixed sequence that excludes

buyer j and includes each buyer k ∈ K at a limit (discounted) price of at most ak/2. This

means that the seller obtains at most fair prices from buyers 1, 2, . . . , j − 1 and can extract

at most full surplus from a set of q − j + 1 buyers different from buyer j, with strictly less

than full surplus extraction from buyer i. We conclude that

ū0 <
a1 + . . .+ aj−1

2
+ aj+1 + . . .+ aq+1 ≤M∗q,

which contradicts Theorem 3.

For the fourth claim, we argue by induction on q that for all q ≥ 0, in every MPE of

the game with supply q for high enough δ, any buyer i for which ai < aq+1 trades with

probability 0 (applying the inductive hypothesis requires a reindexing of buyers in subgames

as in Lemma 3). The base case q = 0 is trivial.

To prove the inductive step, assume that q ≥ 1, and fix a buyer i for which ai < aq+1.

Suppose that there exists a sequence of MPEs of the game with supply q for discount factors

(δz)z≥0 converging to 1 along which the seller trades with buyer i with positive probability in

the first period of the game. By passing to a subsequence of (δz)z≥0 along which all relevant
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MPE variables converge, we have that

ū0 ≤ ai + ū0(N \ {i}).

Since the seller has the option to first trade with buyer q + 1 at a limit price of aq+1 by

Lemma 3, the optimality of her equilibrium strategy implies that

ū0 ≥ aq+1 + ū0(N \ {q + 1}).

Note that both subgames N \ {i} and N \ {q + 1} have supply q− 1. When applied to each

subgame, Theorem 1 implies that the seller’s limit payoff depends only on the top q buyer

values. Since i > q + 1, buyers k ≤ q have the top q valuations in either subgame, and

hence ū0(N \ {i}) = ū0(N \ {q+ 1}). However, aq+1 > ai generates a contradiction with the

inequalities above. This argument establishes that for sufficiently high δ, the seller does not

trade with buyer i in the first period of any MPE.

As buyer i does not have one of the top q values in subgame N \ {j} for any j 6= i, the

induction hypothesis implies that in all MPEs for high enough δ, the seller should trade with

buyer i with probability 0 in every such subgame. Therefore, the seller trades with buyer i

with probability 0 in any MPE for high enough δ.

For the second half of the result, fix a collection of MPEs (σδ)δ∈(0,1) of the game with

supply q for discount factors δ ∈ (0, 1).

We first prove the claim regarding payoffs in the first statement. For an argument by

contradiction, assume that the expected payoff of buyer i < l̄∗ does not converge to ai/2 as

δ → 1. Consider a sequence of discount factors δz → 1 such that buyer i’s payoff under σδz

converges to a different limit ūi. By Lemma 2, ūi ≤ ai/2, so it must be that ūi < ai/2. As

z →∞, the seller can deviate from σδz0 to successively trade with buyer i at a limit price of

ai − ūi, then with each buyer j = q + 1, q, . . . , l̄∗ + 1 at limit price aj by Lemma 3, and then

with each buyer j = 1, . . . , l̄∗ − 1 different from i at a limit price of at least aj/2 by Lemma

2. This deviation delivers the following lower bound on the seller’s limit profit:

ū0 ≥ ai− ūi+al̄∗+1 + . . .+aq+1 +
l̄∗−1∑

j=1,j 6=i

aj
2
>
a1 + a2 + . . .+ al̄∗−1

2
+al̄∗+1 + . . .+aq+1 = M∗q,

where the strict inequality is a consequence of ai − ūi > ai/2, and the equality follows from

the definition of l̄∗. Thus, ū0 > M∗q, contradicting Theorem 3.

We established that ūi = ai/2 for every buyer i < l̄∗. Lemma 2 then implies that every

such buyer trades with limit probability 1 under σδ as δ → 1.

We prove the second claim of the second half of the result also by contradiction. Assume

that l̄∗ 6= q + 1 and al̄∗ > al̄∗+1, and suppose that the probability that the seller trades

with buyer l̄∗ under σδ does not converge to 1 for δ → 1. Then, there exists a sequence of

discount factors δz → 1 such that the probability that the seller trades with buyer l̄∗ under

σδz converges to a limit less than 1, and MPE variables converge. It follows that there exists
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a path over which the seller trades under σδz with limit probability greater than 0 as z →∞
with a sequence of buyers (i1, . . . , iq) that does not include l̄∗.

As argued above, each buyer i < l̄∗ obtains a limit payoff of ai/2 under σδz as z → ∞.

Since Lemma 2 implies that buyer i pays a limit price of at least ai/2 in every state he

trades with the seller, buyer i should pay a price that converges to ai/2 in every subgame

that arises with positive limit probability under σδz as z →∞.

Let k be the largest index such that ik > l̄∗. Note that k is well defined given the

assumption that l̄∗ 6= q + 1. Consider the subgame S := N \ {i1, . . . ik−1}, which has supply

q − k + 1. It must be that π̄ik(S) > 0.

Define J = S \ {l̄∗, ik}. For j ∈ J , we have that j < l̄∗, so the seller obtains a limit price

of exactly aj/2 when trading with buyer j as argued above. The seller can extract a price

of at most aik from buyer ik, so her limit profit in subgame S does not exceed

M(S) :=
aik+1

+ . . .+ aiq
2

+ aik .

Applying Theorem 1 to subgame S, we get that ū0(S) ≥M(S). Hence, ū0(S) = M(S).

Since π̄ik(S) > 0, we have that π̄l̄∗(S) < 1, and a version of formula (9) leads to

(27) ūl̄∗(S) =
∑

j∈S\{l̄∗}

π̄j(S)

1− π̄l̄∗(S)
ūl̄∗(S \ {j}).

Subgame S \ {ik} has supply q − k, and contains q − k buyers ik+1, . . . , iq > l̄∗. Lemma 3

implies that ūl̄∗(S \ {ik}) = 0.

Consider now any j ∈ J with π̄j(S) > 0, so that subgame S \ {j} is reached with positive

limit probability under σδz as z → ∞. As argued above, the seller trades with buyer j at

limit price aj/2 in subgame S, and has to trade with every other buyer j′ ∈ J \ {j} with

limit probability 1 at limit price aj′/2 in subgame S \ {j}. Hence,

ū0(S \ {j}) = M(S)− aj/2 & ūj′(S \ {j}) = aj′/2, ∀j′ ∈ J \ {j}.

Since the maximum total surplus achievable in subgame S \ {j} is
∑

j′∈J\{j} aj′ + al̄∗ , it

follows that

ūl̄∗(S \ {j}) ≤
∑

j′∈J\{j}

aj′ + al̄∗ − ū0(S \ {j})−
∑

j′∈J\{j}

ūj′(S \ {j}) = al̄∗ − aik .

As π̄ik(S) > 0, ūl̄∗(S \ {ik}) = 0, ūl̄∗(S \ {j}) ≤ al̄∗ − aik for all j ∈ J with π̄j(S) > 0, and

al̄∗ − aik ≥ al̄∗ − al̄∗+1 > 0, equation (27) implies that

ūl̄∗(S) < al̄∗ − aik .

However, in subgame S, the seller can deviate from σδz0 to bargain with l̄∗ and trade at

limit price al̄∗ − ūl̄∗(S) > aik , and then bargain with each buyer j ∈ J and trade at a limit

price of at least aj/2 by Lemma 2 for z →∞. This deviation generates a limit profit greater

than M(S) for the seller, contradicting ū0(S) = M(S).
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Finally, if l̄∗ = q + 1, then the first claim of the second half of the result implies that the

seller trades with each of the q buyers i < l̄∗ with limit probability 1. If l̄∗ = l∗ = q+ 1, then

the second claim of the first half of the result implies that the seller must trade with buyers

1, . . . , q with exact probability 1 for sufficiently high δ. �

Proof of Proposition 2. We establish the existence of an MPE for the bargaining game with

exclusion commitment. The proof for the bargaining game with exogenous supply is analo-

gous.

Consider the game with an exclusion commitment E . It will be convenient to use the

notation I(S) := S \ E(S). We inductively construct MPE expected payoffs and bargaining

probabilities for all players working backward from terminal states. Let m be the maximum

number of trades possible under E . In every subgame in which the seller has traded with

exactly m buyers (terminal nodes), the payoffs of all players are 0. Assuming that we

specified MPE strategies for subgames in which the seller has traded with at least m′ + 1

buyers, we next construct MPE expected payoffs and bargaining probabilities for subgames

in which the seller has traded with exactly m′ buyers. Consider such a subgame S. We will

argue that the constructed payoffs satisfy

ui(S) ≥ 0, ∀i ∈ I(S) ∪ {0}(28) ∑
i∈I(S)∪{0}

ui(S) ≤
∑
i∈I(S)

ai.(29)

Consider a candidate payoff profile (ui(S))i∈I(S) for the “active” buyers in state S contained

in the simplex

U = {(ui(S))i∈I(S)|ui(S) ≥ 0, ∀i ∈ I(S);
∑
i∈I(S)

ui(S) ≤
∑
i∈I(S)

ai}.

We construct a correspondence F : U ⇒ U as follows. For every (ui(S))i∈I(S) ∈ U , let u′0(S)

be the payoff the seller can attain by making acceptable offers to optimally selected buyers

and Π(S) ⊆ ∆(I(S)) the set of optimal bargaining probabilities for the seller in state S:

u′0(S) =
1

2− δ
max
i∈I(S)

(ai + δu0(S \ {i})− δui(S))(30)

Π(S) = ∆
(

arg max
i∈I(S)

(ai + δu0(S \ {i})− δui(S))
)
.(31)

The correspondence F maps (ui(S))i∈I(S) to the set of profiles (u′i(S))i∈I(S) given by

(32)

u′i(S) = πi(S)

(
1

2
(ai + δu0(S \ {i})− δu′0(S)) +

1

2
δui(S)

)
+

∑
k∈I(S)\{i}

πk(S)δui(S \ {k})

for any selection of bargaining probabilities π(S) ∈ Π(S).

F is convex-valued because Π(S) is a convex set for every element of U .
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We next argue that the range of F is indeed included in U . For any (ui(S))i∈I(S) ∈ U ,

there exists i ∈ I(S) such that ai > δui(S). Otherwise,
∑

i∈I(S) ui(S) ≥ (
∑

i∈I(S) ai)/δ >∑
i∈I(S) ai. It follows that there exists i ∈ I(S) such that ai + δu0(S \ {i})− δui(S) > 0, and

hence u′0(S) > 0.

Then, for any π(S) ∈ Π(S), the condition πi(S) > 0 implies that u′0(S) < ai + δu0(S \
{i}) − δui(S), which leads to δu′0(S) < ai + δu0(S \ {i}) − δui(S). Therefore, ai + δu0(S \
{i})− δu′0(S) > δui(S) ≥ 0. Since all other terms appearing on the right-hand side of (32)

are non-negative, we conclude that u′i(S) ≥ 0 for all i ∈ I(S).

We are left to show that
∑

i∈I(S) u
′
i(S) ≤

∑
i∈I(S) ai. Given conditions (30) and (31), u′0(S)

solves the following equation for any π(S) ∈ Π(S):

(33) u′0(S) =
∑
i∈I(S)

πi(S)

(
1

2
(ai + δu0(S \ {i})− δui(S)) +

1

2
δu′0(S)

)
.

Summing up equations (32) over all i ∈ I(S) and equation (33), we obtain∑
i∈I(S)∪{0}

u′i(S) =
∑
i∈I(S)

πi(S)(ai + δ
∑

k∈(I(S)\{i})∪{0}

uk(S \ {i}))

≤ max
i∈I(S)

(
ai + δ

∑
k∈I(S\{i})

ak

)
≤
∑
i∈I(S)

ai.

The first inequality follows from the fact that condition (29) holds for subgame S \ {i}
(formally, we set uk(S \ {i}) = 0 for k ∈ E(S \ {i})), and the second from the requirement

that E satisfies E(S) ⊆ E(S \{i}) for i ∈ S \E(S) = I(S), and hence I(S \{i}) ⊆ I(S)\{i}.
Since u′0(S) varies continuously with (ui(S))i∈I(S), and Π(S) has closed graph as a corre-

spondence defined on U , it follows that F has closed graph. Kakutani’s fixed-point theorem

then implies that F has a fixed point (ui(S))i∈I(S). We then define u0(S) to be the corre-

sponding u′0(S) and recover the probabilities (πi(S))i∈I(S) associated with the fixed point.

We can now construct an MPE. In state S, the seller chooses to bargain with buyer i

with probability πi(S). When the seller bargains with buyer i, if the seller is selected to be

the proposer, she offers an acceptable price that gives the buyer utility δui(S), and similarly

the buyer makes an acceptable offer that gives the seller utility δu0(S). A simple inductive

argument combined with the payoff equations above proves that the constructed strategies

generate the expected payoffs given by u. By the single-deviation principle, the specification

of bargaining probabilities and offers in state S, in conjunction with the assumed behavior

in subgames following a trade in state S, induces an MPE. �
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