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Abstract—The US lacks a complete national database of private
prior permission required airports due to insufficient federal
requirements for regular updates. The initial data entry into
the system is usually not refreshed by the Federal Aviation
Administration (FAA) or local state Department of Transporta-
tion. However, outdated or inaccurate information poses risks to
aviation safety. This paper suggests a deep learning (DL) approach
using Google Earth satellite imagery to identify and locate airport
landing sites. The study aims to demonstrate the potential of DL
algorithms in processing satellite imagery and improve the preci-
sion of the FAA’s runway database. We evaluate the performance
of Faster Region-based Convolutional Neural Networks using
advanced backbone architectures, namely Resnet101 and Resnet-
X152, in the detection of airport runways. We incorporate negative
samples, i.e., highways images, to enhance the performance of the
model. Our simulations reveal that Resnet-X152 outperformed
Resnet101 achieving a mean average precision of 76%.

Index Terms—Machine learning; Object detection; Airport
runway detection

I. INTRODUCTION

The Federal Aviation Administration (FAA) maintains a
comprehensive database of public and private landing zones
that provide vital information to pilots in the event of an
emergency. The accuracy of this database, which includes
latitude and longitude coordinates, is of utmost importance to
the FAA for ensuring aviation safety. Unfortunately, inconsis-
tencies and a lack of reporting updates have led to inaccuracies
in the database’s landings and runways information. Such
inaccuracies can have devastating consequences, as pilots may
receive erroneous information, leading to fuel depletion or even
fatal accidents. As such, it is imperative to validate the existing
database and address any discrepancies.

Traditionally, the problem of detecting airport runways
in aerial images has been predominantly approached using
feature-engineering solutions and classical image processing
techniques [1]-[4]. For instance, Han et al. [1] proposed an
automated method based on identifying long rectangular shapes
and using runway intensity and contrast for verification. Liu et
al. [4] employed texture segmentation and shape detection in
conjunction with the Hough Transform for runway segmenta-
tion. While these approaches have shown effectiveness, they

are limited by manual feature engineering and may not capture
the complexity of runway detection accurately.

Deep Learning (DL) algorithms offer an objective and data-
driven approach to object detection and classification, making
them a promising alternative to feature engineering, espe-
cially in the context of satellite imagery [5]-[7]. Pritt et al.
[5] demonstrated the potential of DL to accomplish precise
object detection in satellite imagery, utilizing an ensemble
of convolutional neural networks (CNNs) and other Neural
Networks (NNs). They classified objects and facilities from
the Intelligence Advanced Research Projects Agency (IARPA)
Functional Map of the World (fMoW) dataset. Given the
advantages of DL techniques over traditional image process-
ing approaches for detecting objects in satellite imagery, we
propose an approach that leverages DL to accurately detect
and locate airport runways.

In this paper, we present a comprehensive pipeline that
utilizes DL techniques to detect and locate runways in satellite
imagery, distinguishing them from highways. We incorporate
image resolution manipulation as a critical parameter for
identifying runway features and include negative samples,
specifically highway images, in the training set to mitigate
false detections. To evaluate the performance of our proposed
method, we implement and compare two DL models based
on the Faster Region-based CNN (R-CNN) architecture. Fur-
thermore, we introduce a unique dataset specifically designed
for runway detection in satellite imagery, which will be made
publicly available to facilitate future research in DL-based
object detection.

II. PROPOSED METHODOLOGY

This study outlines a comprehensive pipeline that utilizes
DL to: create a high-quality labeled dataset of runway in-
stances from satellite imagery, select suitable DL models,
compute performance metrics for each model, identify areas
for improvement, and propose a solution to improve model
performance by including negative samples in the training set.



(a) A satellite runway image.

A. Data Acquisition and Preparation

To ensure the accuracy and reliability of the data source,
the Airport Data and Information Portal (ADIP) provided
by the FAA is utilized as the primary source of data. The
ADIP can be accessed from the following link: https://adip.
faa.gov/agis/public/#/airportSearch/advanced. This portal offers
a comprehensive repository of latitude and longitude data for
all accessible airports. We subsequently implement a manual
filtering process to ensure that our dataset consists only of
airports with paved runways, which are of interest in this study.
Below, we provide a description of the data extraction process
and outline the information required to replicate our labeling.

1) Google Static Maps API: To collect the satellite
images required for this study, we developed a custom
Python script that utilizes the Google static maps API, ac-
cessible at https://developers.google.com/maps/documentation/
maps-static/overview. This API provides access to Google
Earth’s high-resolution imagery, allowing us to acquire images
of our selected locations. By supplying the script with a CSV
file containing the airport coordinates (latitude and longitude),
the images are automatically retrieved and downloaded. Figure
la illustrates a sample satellite image of runways obtained
from Google Maps, providing a visual reference for the runway
instances under investigation.

2) Image Annotation: We utilized the open-source graph-
ical image annotation tool called “LabelMe” (available at
https://pypi.org/project/labelme) to manually annotate airport
runways in our dataset. The annotation process involves out-
lining bounding boxes and polygons around each runway. To
ensure accuracy, we meticulously labeled each runway within
multi-runway airports, resulting in a total of 4204 annotated
runway instances out of 4000 images. Figure 1b showcases an

(b) A satellite image with two runway instances and their
corresponding bounding boxes.

example image with a labeled bounding box delineating the
runways. These bounding boxes define the Region of Interest
(Rol) for each image and serve as ground truth labels for the
DL model to learn the corresponding coordinates.

B. Deep Learning Model

DL models have been extensively used for object detection
tasks because of their exceptional performance [7]-[9]. How-
ever, there is still room for improvement by incorporating tech-
niques such as transfer learning, hyper-parameter fine-tuning,
and data augmentation, which can adapt the models to specific
tasks and data characteristics. In our study, we leverage the
Faster R-CNN (Region-based Convolutional Neural Network)
model [10], and employ the aforementioned techniques to
enhance the model’s performance. The Faster R-CNN model
offers several advantages, including end-to-end training, opti-
mized computational efficiency, flexibility and scalability, and
top performance in object detection tasks. These advantages
make it a powerful tool for various applications requiring
precise and efficient object detection. The Detectron2 frame-
work, developed by the Facebook Al Research lab (FAIR), was
utilized for implementing Faster R-CNN. Two distinct ResNet
backbone architectures, namely ResNet-101 and ResNet-X152,
were employed in our study. The models were sourced
from the FAIR’s model zoo, accessible at https://github.com/
facebookresearch/detectron2/blob/main/MODEL_Z00O.md.

1) Multi-Scale Training: The performance of object detec-
tion models highly depends on the ability to accurately detect
objects of varying sizes and scales [11]. This is particularly
relevant in the context of aerial imagery, which often encom-
passes objects with significant size variations.



To ensure consistent image resolution throughout our dataset,
we adopt a strategy of employing three different image sizes:
1500 x 1500, 3000 x 3000, and 6000 x 6000, while maintaining
a fixed map size of 5000 x 5000 using the Google Maps
static APIL. This approach ensures that the level of detail in the
images remains uniform, allowing for equitable visibility of the
underlying terrain in each image. We posit that the inclusion
of images with diverse sizes and resolutions in the training set
enhances the model’s performance, enabling it to accurately
detect objects across a spectrum of sizes and scales.

2) Data Augmentation: We used random brightness, con-
trast, saturation, lightning, rotation, flip, and grayscale trans-
formation to augment the original dataset.

3) Transfer Learning: We imported the COCO [12]-trained
weights and initialized the model with these pre-trained
weights.

4) Fine-Tuning: Our optimal training configuration consists
of a batch size of 16, a learning rate of 0.005, a momentum
of 0.9, and a weight decay of 0.0001. The model was trained
using stochastic gradient descent.

5) Incorporating Negative Samples: A significant challenge
arises from the visual resemblance between runways and
highways, as exemplified by a representative satellite image
depicting a highway in Fig. 2. To address the concern of
erroneous detection, we adopt a strategic approach in our train-
ing by incorporating negative sample instances that encompass
highways. This incorporation of negative samples allows us
to refine the model’s discriminatory ability and enhance its
accuracy in distinguishing between runways and highways.
A carefully curated dataset comprising 1000 satellite images
of highways was collected, encompassing diverse urban and
rural landscapes. Stringent measures were taken to guarantee
the absence of runways within these highway images, as
the inclusion of runway instances in negative samples could
potentially introduce ambiguity and hinder the model’s ability
to discriminate between runways and highways effectively.

C. Performance metrics and Evaluation:

The assessment of object detection models involves the
utilization of metrics, such as precision, recall, and intersection
over union (IoU) scores [13]. Precision quantifies the ratio
of correctly detected objects to the total number of predicted
objects, while recall measures the ratio of correctly identified
objects to the total number of actual objects. The IoU score
calculates the overlap between predicted and ground truth
regions, indicating the level of agreement between them.

The Mean Average Precision (mAP) is a comprehensive
metric that combines precision and recall by considering false
positives (FP) and false negatives (FN) at a specified IoU
threshold. For Faster-RCNN models, mAP is commonly used
as the primary evaluation metric, measuring the average pre-
cision at a 0.5 IoU threshold across all object classes [10].
The 0.5 IoU threshold signifies a substantial overlap between
predicted and ground truth bounding boxes. Evaluating the

Fig. 2: A highway satellite image (rural view).

TABLE I: Model performance comparison

B ackbone Precision | Recall Fl- TP FN mAP
Architecture score

ResNet-101 0.99 0.82 0.9 81.8% | 182% | 73%
ResNet-X152 0.99 0.88 093 | 91.7% 8.3% 76%

mAP provides a reliable and consistent measure of the model’s
performance across the entire dataset.

1) Validation Data: To evaluate the performance of our
models, we curated a validation set comprising a total of 300
images. Within this set, we carefully selected 200 images that
contain 242 instances of runways. Additionally, we included
100 images that depict highways.

III. RESULTS AND DISCUSSION

To ensure a fair comparison between the two models, we
used identical configuration settings, including the learning
rate, batch size, and the number of iterations, for both ResNet-
101 and ResNet-X152 backbones. Despite achieving similar
precision scores, ResNet-X152 outperforms ResNet-101 with
a higher mAP score of 0.76. Table I summarizes the results.
ResNet-X15 achieved a True Positive (TP) of 91.7% (vs. 81.8%
for ResNet-101 ) and a False Negative (FN) of 8.3%. Figure
3 shows sample images of TP and FP predictions for both
models.

The model’s limited capability to detect runways in certain
instances can be attributed to the suboptimal quality of the
runway depicted in the satellite image. We show a sample
image in Fig. 4. This is supported by the indistinctness of
critical runway attributes, such as marking signs, which impairs
the model’s capacity to precisely recognize and localize the
runway. These results highlight the importance of considering
the quality of satellite imagery when training and evaluating
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Fig. 3: Examples of True Positive (TP) and False Positive (FP) predictions for (a) ResNet-101 and (b) ResNet-X152 models.

Fig. 4: Example of a false negative (FN) Detection.

runway detection models, as it can significantly impact their
performance.

IV. CONCLUSION

This paper addressed the challenging task of runway identi-
fication and localization in satellite imagery using the Faster
R-CNN region-based detector. Two Faster R-CNN models
were evaluated and compared, trained, and validated on a
meticulously labeled dataset of airports provided by the FAA.
Various techniques were applied to enhance performance and
prevent overfitting, including the incorporation of a balanced
dataset of 1000 highway satellite images into the train-
ing set. The ResNet-X152 backbone achieved 99% preci-
sion and 88% recall. The findings have important implica-
tions for aviation safety, with the potential to update and
enhance the FAA database for improved emergency land-
ing location identification. Furthermore, the study contributes
to the research community by creating a publicly available

runway detection dataset (https://github.com/RowanMAVRC/
Airport-High-Resolution-Satellite-Imagery-Dataset.)
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