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ARTICLE INFO ABSTRACT

Keywords: The ability to detect trace concentrations of arsenite, As (III), in real water solutions is impacted by co-
Arsenic contamination of other metals and co-occurring ions. The presence of copper (II) ions are the most likely co-
Copper

contaminant in natural waters to interfere with electrochemical As (III) detection, due to the close oxidation

R potentials of Cu (II) and As (III). The use of well-oriented ultraflat Au(111) thin film electrodes provided
Gold single crystals . . . . L. s .
Gold Thin Films increased peak separation and sensitivity for electrochemical deposition and oxidation of Cu (II) and As (III) in
Water 0.5 M sulfuric acid compared to an Au wire electrode. However, mixtures of Cu (II) and As (III) altered the
oxidation peak positions during both cyclic voltammetry (CV) and linear stripping voltammetry (LSV) analysis.
Calibration curves using the standard additions method in trace concentrations were conducted for Cu, As, and
Cu & As solutions. Sweeping the potential at 10 mV s~! during GV in Cu & As mixtures resulted in a sequential
deposition condition where a layer of Cu inhibited co-deposition of As to the electrode. In contrast, the rapid
potential stepping of LSV to a potential where Cu and As reduction simultaneously occurs produced a peak
profile different from Cu or As alone. A larger oxidation peak during LSV was also observed when both Cu and As
were present. X-ray photoelectron spectroscopy indicates a Cu-As alloy is formed on the surface after LSV
deposition.

SYNOPSIS: Analysis of Cu (II), As (III) and Cu (II) & As (III) mixtures suggests that a CugAs intermetallic phase
is formed during LSV which impacts trace As detection even in trace Cu conditions. This has important impli-
cations for the ability to determine As concentrations near the MCL of 10 pg L™! in natural water systems which
may contain Cu (II) and other co-contaminants.

Electrochemical detection

1. Introduction concentrations and assessing remediation efficacy in natural water

samples [8-10]. Techniques such as linear stripping voltammetry are

The World Health Organization and United States Environmental
Protection Agency considers 10 ug L™ of As (III) toxic and carcinogenic
[1,2]. A considerable portion of the U.S. and global population obtain
their daily drinking water directly from surface or groundwater sources
which are not protected by municipal water treatment systems [3-5]. In
several studies of private water wells in the United States, arsenic
exceeded the EPA maximum contaminant limit (MCL) in 7-10 % of wells
[6,7]. To minimize exposure, detection of toxic As(III) at trace concen-
trations is critical.

By quickly and inexpensively quantifying As (III) in the field, elec-
trochemical methods are valuable for identifying unsafe As
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proven to be accurate at part per billion (ug L) concentrations and are
capable of detecting multiple co-occurring redox active species simul-
taneously. Electrochemical detection for heavy metals in water therefore
can be a lifesaving, portable, and rapid tool for supporting community
health [11-14]. Gold (Au) electrodes are the standard for electro-
chemical As detection due to their high nobility, reversible As (III) redox
reaction, and broad region of stability [9,15-19]. Thin Au films, nano-
particles, and microarrays on a variety of substrates have been investi-
gated to identify low-cost and highly effective electrode materials
[20-26]. Recent works have identified controlled Au surface
morphology as a potential path to increased sensitivity and selectivity
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for As (III) detection [27-33].

The use of electrochemical sensors with gold electrodes for arsenic
detection may be negatively affected by interferences, including copper.
Arsenic is commonly mobilized into water with many other anions such
as sulfate and cations such as uranium, lead, iron, and copper [34,35].
Copper (II) is the most commonly cited cation interference with elec-
trochemical As (III) detection and is used as an example interferant to
determine the selectivity of novel electrodes [32,36-39]. Several studies
have identified the mechanisms for sulfate assisted electrochemical Cu
(II) reduction and oxidation at Au(111) surfaces which contribute to a
characteristic three peak cyclic voltammogram [40-44]. The formation
of Cu-As alloys during deposition and overlapping oxidation peaks has
previously impeded our group’s ability to detect trace concentrations of
As in the presence of high concentrations of Cu (II) [45,46].

The objective of this work is to assess the capability of a well-
oriented and ultraflat Au(111) thin film, Au(UTF), to selectively detect
As (III) in the presence of Cu (I). In this study, linear stripping vol-
tammetry (LSV) and cyclic voltammetry (CV) were used to systemati-
cally identify the impacts of Cu (II) co-contamination on As (III)
detection using a Au(UTF) in multiple Cu(II) and As(III) concentration
mixtures.

2. Experimental
2.1. Materials Description and Characterization

Ultraflat Au(111) Thin Film. Ultraflat Au(111) thin films, Au(UTF),
were obtained from Platypus Technologies and have thickness of
approx. 100 nm. The average grain area is 3.64 + 0.2 pm2 with pre-
dominantly Au(111) surface orientation. A new Au(UTF) electrode was
used for each experiment. A CV from 0.7 to 1.7 V vs. RHE at 10 mV s}
was performed at the begginning of each experiment to assess surface
orientation and electrochemical surface area for current density
normalization of the Au(UTF) and Au(Wire) electrodes. As can be seen in
Figure S1, the Au(UTF) surface oxidation begins with a shoulder in the
positive sweep direction beginning at 1.4 V which leads to a single sharp
peak at 1.6 V. This demonstrates that the Au surface is predomininantly
Au(111) oriented as compared to the Au(Wire) electrode which presents
a broad set of peaks from 1.4 to 1.6 V for Au oxidation indicating
multiple surface orientations [47]. The area of the Au reduction peak
occuring at 1.2 V was determined and a value of 660 pC cm ™2 was used
to normalize experimental results. The reference value used represents a
three-electron transfer process per Au(111) surface atom with a specific
current of 220 pC cm™2 per electron.

2.2. Electrochemical characterization

Electrochemical experiments were carried out in a 200 ml five port
glass cell, using an Au wire as a counter electrode and a reversible
hydrogen electrode (RHE) as a reference electrode with a fritted glass
tube to separate the RHE from the solution. Voltammetric experiments
were carried out at room temperature using a PalmSens 4 PALM-PS4.
F2.05 portable potentiostat. The potentiostat uses digital circuitry, and
signal smoothing, similar to most modern potentiostats. Our groups
previous studies using the Au(UTF) thin films showed lower detection
limits and smaller linear regions [48]. This study may be different due to
a change in potentiostat type, electrode shape, or vessel configuration.
This variation is why we recommend electrode calibration via known
additions or other methods to confirm the linearity of analysis via
stripping voltammetry. Linear stripping voltammetry experiments con-
tained an initial equilibrium step at 0.7 V, a deposition step for 60 s at
0V and a sweep from 0 to 0.7 V at 10 mV s~ L. Cyclic voltammetry for
analysis of Cu and As was swept between 0.7 and 0 V beginning in the
negative direction. All solutions were made using ultrapure water (18.2
MQ cm, Elga PureLab OptionQ), concentrated sulfuric acid (VWR, 95 wt
%), Asp0s3 salt (Merck), and CuSO4 salt. A 75 mg L1 (10’1 M) As (ITI) in
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0.5 M H,SO4 solution was used with to perform standard addition of As
for trace As (III) detection and experiments. A1 g L1 (1.57 mM) Cu (I)
solution was prepared and used as the stock solution for standard ad-
ditions of Cu(Il). Standard additions were performed for 5, 10, 15, 25,
50, 75, 100, 125, and 175 pg L~! As (TII) and 250, 500, 1000, and 1500
Hg L~! Cu (II) in 0.5 M H,S04. The concentration of HySO4 as supporting
electrolyte was maintained at 0.5 M for all electrochemical experiments
and stock solutions. The scan rate for all experiments was maintained at
10 mV s ~ L. For comparison of the Au(UTF) to a polycrystalline gold
surface, the behavior of an Au(Wire) electrode was also studied in a 10
mg L 1cu (II) solution.

2.3. Physical characterization

X-ray Photoelectron Spectroscopy. XPS measurements were per-
formed using a Kratos Axis Ultra with a monochromatic Al Ka source
operating at 150 W (1486.6 eV). The operating pressure was 2 x 107°
Torr. High-resolution spectra were acquired at a pass energy of 20 eV.
XPS data was processed using Casa XPS software. To observe the Cu-As
alloy in XPS the Au(UTF) electrode was placed in a 10 mg L lcun &
750 pg L~! As (1) mixture in the typical three electrode setup used
throughout our study. Only the deposition step of the LSV was per-
formed; 60 s at 0 V vs. RHE. After deposition the electrode was quickly
removed from the cell, rinsed with ultrapure water (less than 10 s), and
inserted into the XPS system. The XPS system was prepped in the next
room, so the transfer process was as fast as possible. Angle resolved XPS
(ARXPS) was performed to obtain a depth profile of elemental compo-
sition. Decreasing the angle of beam entry results in increased beam
interaction with the deposited surface layer. Therefore, changes in
spectra for Cu and As during ARXPS are associated with variation in the
adsorbed layer composition over the depth of the deposited film [49,50].

Thermodynamic Eh-pH Modelling. Arsenic and copper speciation
and precipitation were modelled using the Geochemist’s Workbench
Rxn program [51] with Visual Minteq’s thermodynamic database [52].
This database includes all major As(V), As(III), As(0), Cu(Il), Cu(I), and
Cu(0) species. Several Cu-As alloys (CusAs, Cu(AsO2)2, CugAsO4, and
Cus3(AsO4)2) were added to this database to determine their impact on
Cu and As precipitation [53,54]. Cu and As speciation and precipitation
was modelled at a Cu concentration of 1000 pg L1, As concentration of
750 pg L1, at 25 °C, a pH range of 0 to 14, and under the entire Eh range
where water does not dissociate.

Statistical Analysis. Statistical analysis was performed in EXCEL to
determine average and standard deviation of three consecutive mea-
surements where applicable. The raw data was used to calculate the
calibration plot of concentration vs. charge density. Limits of detection
were determined using the equation LOD = (k * Sb)/m, where k was
equal to 3 for a 98.3 % confidence level, Sb is the standard deviation for
analysis of three blank curves, and m is the slope of the calibration
curve.

3. Results & discussion

3.1. Increased sensitivity and selectivity for Cu & As at Au(UTF)
compared to Au(wire) electrodes

Predominantly (111) oriented Au(UTF) electrodes were compared to
polycrystalline Au wire electrodes, Au(Wire), for their sensitivity to Cu
(II) and As (III) redox processes. Concentrations of 10 mg L~ cu( or
750 pg L~! As (III) were used for this comparison. Fig. 1 presents CV
studies between 0 and 0.7 V vs. RHE with a scan rate of 10 mV s~}
starting in the negative direction. Table 1 contains charge and peak
potentials for reduction and oxidation processes. Arsenic reduction and
oxidation processes occur at lower potentials for the Au(UTF) electrode
as compared to the Au(Wire) electrode (Fig. 1). The Au(UTF) also pre-
sents higher redox peak amplitude over baseline capacitive current than
the Au(wire) electrode, which may be attributed to preferential
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Fig. 1. Cyclic voltammograms comparing an ultraflat Au(111) thin film, Au(UTF), electrode compared to an Au wire, Au(Wire), electrode in A) 750 pg L1 As (IID)

and B) 10 mg L~ Cu (I1) with 0.5 M H,SO4 supporting electrolyte. Scan rate 10 mV s~

Table 1A
Reduction and oxidation peak potentials during CV in 750 pg L™ As (III) related
to Fig. 1B.

Electrode Reduction Peak Potential V vs. Oxidation Peak Potential V vs.
RHE RHE
Au(UTF) 0.15 0.31
Au 0.25 0.33
(Wire)
orientation.

The behavior of the Au(UTF) and Au(Wire) electrodes were
compared in a 10 mg L~! Cu (D) solution. Copper redox reactions
occurred at three separate potentials due to differences in adsorbed Cu
structure formation on the Au(UTF) surface [41,55,56]. Each peak was

L. start in negative direction.

labeled for reference in the following analysis (Table 1B). Similar charge
density for each reduction and oxidation process pair (O1 & R1, 02 &
R2, O3 & R3) shows that the peaks are correlated and reversible. In
previous studies on Cu redox at (111) oriented surfaces, peak pair R3 &
03 is often cited as the formation and dissolution of a 2/3 monolayer
which is formed as a honeycomb structure on the Au(111) surface. Peak
pair R2 & 02 is identified as the filling and dissolution of a 1:1 Cu to Au
monolayer. Finally, peak pair R1 & O1 is associated with the formation
of a bulk layer [56]. These peak pairs are relevant to discussion of CV
studies. However, the oxidation peaks in LSV studies are taken to be
indicators of the same processes. The combined charge for peaks O2 and
03 is 453 pC cm 2. The sum of these two oxidation peaks aligns well
with the expected specific current from a two-electron surface stripping
process which could be associated with the formation of a full 1:1
monolayer of Cu at the Au(111) surface, 440 pC cm 2 However, we
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Table 1B
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Reduction and oxidation charge densities at the Au(UTF) electrode for three phase Cu redox peaks 1, 2, and 3 in 10 mg L™ Cu (II) during cyclic voltammetry and linear

stripping voltammetry.

Peak  Potential Range V vs. CV Reduction Charge Density Peak

Potential Range V vs.

CV Oxidation Charge Density
-2

LSV Oxidation Charge Density
2

RHE pC cm ™2 pC cm pCcem™
R3 0.3- 0.6 185 03 0.46 0.4-0.6 183 151
R2 0.15-0.3 250 02 035 0.3-04V 270 264
R1 0-0.15 286 01 025 0.2-03V 275 338

observed that peak O3 accounts for only 2/5 of this charge instead of the
expected 2/3 for the formation of a Cu honeycomb structure. This
variance from expected ratios may be due to the presence of multiple
randomly rotated Au(111) crystals with grain boundaries in the film
resulting in various Au(111) terrace sizes [41]. However, the charge
ratios may also be influenced by co-adsorbed sulfate [55,57]. The cur-
rent density correlation to theoretical values and the ability to observe
these processes in sharp and mostly separated peaks shows the quality of
the Au(111) surfaces on the Au(UTF) for observing electrochemical
processes with increased sensitivity and selectivity as shown in our
previous studies [48].

The Au(UTF) presented better peak separation and sensitivity to each
process as compared to the Au(Wire). The following experiments and
data analysis are focused on results of studies with the Au(UTF), due to
the focus of this study being on the impact of Au(111) surface orienta-
tion on detection of Cu and As.

3.2. Cu limitation of as deposition for Cu & As mixtures during cyclic
voltammetry

Cyclic voltammetry studies in solutions containing both Cu and As
were performed to provide detailed insights into the impacts of co-
occurring Cu when electrochemically detecting As (III). We found that
co-occurrence of Cu and As in solution limited the deposition of As (III).
When 10 mg L™ Cu (II) and 750 pg L™! As (III) were present in solution,
the CV shows that the mixture resembled that of a CV in Cu alone more
than As alone (Fig. 2). Copper deposition starts at roughly 0.2 V more
positive (0.6 to 0.3 V) than As deposition (0.3 to 0 V), so a Cu layer may
be forming on the Au surface prior to reaching a low enough potential
for As deposition. This formation of a Cu layer inhibits the detection of a

160 ——————1

peak at the predicted As deposition potential. However, the orientation
and purity of the Cu film is unknown. We confirmed limited As depo-
sition by comparing the charge passed during redox of the mixture and
the individual analytes (Table 2). The charge associated with co-
deposition was not the sum of charge associated with Cu alone and As
alone. Therefore, charge additive and independent deposition of Cu and
As cannot be assumed.

3.3. Increased deposition and oxidation charge for Cu & as mixtures
during linear stripping voltammetry

3.3.1. Studies with 10mg L™ cu (II) & 750 pg L1 As (IlI) mixtures

In contrast to CV studies, linear stripping voltammetry analysis of the
same solution conditions showed increased charges for mixtures as
compared to individual analytes. Fig. 3A shows the LSV stripping peak
for 10 mg L' Cu alone, 750 pg L™! As alone, and the 10 mg L™! Cu &
750 pg L~! As mixture with a deposition time of 60 s at 0 V. The LSV
analysis was performed directly after each CV study without removing

Table 2

Total oxidation and reduction charge during CV at the Au(UTF) electrode in 750
pg L~! As (1), 10 mg L™! Cu, and 750 pg L™ As (III) + 10 mg L™! Cu mixture
with 0.5 M H,SO4 supporting electrolyte.

140
120
1004
80
60
40

20

Charge Density (LA * cm?)

Solution Reduction Charge Density Oxidation Charge Density
uC em—2 pC cm~2

Blank (0.5 M H,S0,) 34 3

750 ug L' As 752 710

10mg L' Cu 788 613

10mgL 'Cu&750pg 960 727
L7'As

- — Blank

—— 750 pg/L As

—— 10 mg/L Cu

—— 750 ng/L As + 10 mg/L Cu

T T T
01 00 0.1 0.2

T T T T T
03 04 05 06 07 08

Potential (V vs. RHE)

Fig. 2. Cyclic voltammetry at the Au(UTF) electrode in 750 pg L~ As (III), 10 mg L ™! Cu, and 10 mg L™ Cu & 750 pg L~! As (III) mixture with 0.5 M H,SO,4

-1

supporting electrolyte. Scan rate 10 mV s ; start in negative direction.
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Fig. 3. Linear stripping voltammetry at the Au(UTF) electrode in A) 750 pg L™!
As (I11), 10 mg L ! Cu, and 10 mg L™ Cu (II) & 750 pg L' As (III) mixture and
B) 175 pg L1 As (1), 1500 pg L ! Cu (II), and 1500 pg L™ Cu (II) & 175 pg L !
As (IIT) mixture, with 0.5 M H,SO, supporting electrolyte. Deposition for 60 s at
0 V vs. RHE and a scan rate of 10 mV s~ .

the Au(UTF) electrode for consistency.

First, we discuss differences in LSV and CV studies for the individual
analytes. The oxidation peak associated with bulk Cu dissolution (O1)
was increased during LSV compared to CV in 10 mg L~ Cu (I
(Table 1B). This may be due to more time spent below 0.15 V during LSV
than CV, where bulk Cu formation is favorable. The higher potential
peaks for Cu dissolution (02 and O3) during LSV show lower current
during LSV than CV. In solutions with As alone, LSV results in increased
oxidation peak charge compared to CV experiments (Table 3). This

Table 3
Oxidation peak charge density during LSV for Au(UTF) in analysis of individual
species and mixtures with 0.5 M H,SO4 supporting electrolyte.

Solution Oxidation Charge Density pC cm ™2
Blank (0.5 M H,SO,) 7

750 ug L' As 857

10mg L™ Cu 768

10mg L' Cu & 750 pg L' As 4921

175 pg L' As 125

1500 pg L' Cu 358

1500 pg L' Cu & 175 pg L' As 462

Electrochimica Acta 489 (2024) 144220

increase is likely due to more time in a potential region which is
favorable for As deposition. The total width of the As detection peak is
100 mV, which is a small potential region compared to polycrystalline
electrodes at similar concentrations of As, even when specialized pulse
voltammetry techniques are utilized [9,15,17,32].

Here we discuss the differences between CV and LSV studies in co-
occurring Cu (II) and As (III). When both 10 mg L ! Cu (ID) and 750
g L1 As (I1I) were present, LSV analysis resulted in a drastic increase in
charge from 727 pC cm™2 for CV to 4921 pC cm ™2 for LSV. This increase
is higher than expected for an additive process where Cu and As were
independently co-depositing at the Au surface. Additionally, the peak
potential for the Cu and As mixture is 0.325 V with a shoulder peak at
0.375 V. Since the peak potentials do not align with the peak potential
for Cu or As alone this result suggests a new intermetallic phase has been
formed which is predicted by the Cu-As phase diagram [58-60]. Perhaps
the increase in deposition charge is due to the suppression of parasitic
reactions such as concurrent hydrogen evolution [61].

3.3.2. Studies with 1500 ug L1 Cu (I) and 175 ug L1 As (IID)

Linear stripping voltammetry results are shown in Fig. 3B. The
oxidation profile for Cu (II) alone shows two peaks at 0.35 V and 0.45 V.
These oxidation peaks are associated with the dissolution of a monolayer
surface structure. The lack of an oxidation peak at 0.25 V, when per-
forming LSV in 1500 pg L1 Cu (II) alone, indicates that not enough Cu
was deposited onto the surface during the deposition process to fill
beyond a 1:1 monolayer. The peak for 175 pg L™ As (III) alone has a
primary peak at 0.25 V with a shoulder at about 0.35 V. With both Cu
and As in solution the predominant peak is at 0.36 V with shoulders on
both sides. As an estimation, the oxidation charge during 1500 pg L ! Cu
(II) alone would be equal to about 81 % of a monolayer, and the charge
for 175 pg L1 As alone would correlate to about 19 % of a monolayer
(Table 3).

3.4. Formation of Cu-As alloy

X-ray photoelectron spectroscopy (XPS) and thermodynamic
modelling provide evidence that a Cu-As alloy is being formed during
the deposition phase of LSV analysis. Fig. 4A presents elemental
composition at 0, 20, 40 and 60° of sample tilt using angle resolved XPS
analysis on the surface of the Au(UTF). The XPS analysis were conducted
directly after deposition in a solution with co-occurring Cu & As. The
elemental percentage of As increases from 6 to 18% elemental (8-26 wt
%) as the angle of the film is tilted from O to 60°. This is shown by a
decrease in the peak intensity for Cu while there was not as significant a
change in the spectra for As during ARXPS (Figure S2). An increase in
concentration with tilt angle indicates that As is more concentrated to-
wards the surface of the adlayer than towards the Au(111) surface. This
provides evidence that Cu may be forming a UPD layer initially and then
subsequent layers include the formation of the Cu-As alloy. The con-
centration range determined is within the range where CusAs and other
Cu-As alloys are formed according to metallurgical modelling [58-60].

Thermodynamic modelling for an aqueous electrolyte containing 0.5
M H,S04, 1 mg L™t Cu (II), and 750 pg L ~ ! As (III) indicates that at the
concentrations of interest CusAs is likely to be formed at a slightly higher
potential than As alone (Fig. 4B). Although the thermodynamic char-
acteristics of a bulk metal alloy are different from those in solution
deposited thin films, the alloying phenomena cited in metallurgical
studies may explain increased deposition and peak charge density for
mixtures of 10 mg L~! Cu (ID & 750 Hg L' As (IID compared the in-
dividual species at the Au(UTF) surface during LSV [58,60]. A limitation
of this study is that XPS and electrochemical data are not capable of
discerning the structure of the intermetallic. Further studies using
electron diffraction or atomic imaging are needed to determine if elec-
trochemical deposition of the Cu-As intermetallic is forming a solid so-
lution, or an ordered phase.
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mg L' Cu (ID and 750 pg L™ 1 As (11I) mixture B) Eh vs. pH diagram for 750 pg L' As (I11), 1 mg L' Cu (ID at 25 °C and 1.013 bars, generated using Geo-

chemist’s Workbench.

3.5. Co-occurrence of Cu limits selectivity for trace as detection

The Au(UTF) was highly effective at detecting Cu (II) alone near 1
mg L1 and trace concentrations of As (III) alone. The Au(UTF) was used
to generate standard additions method calibration curves for 250, 500,
1000, and 1500 pg L1 (3.9,7.9,15.7 and 23.6 pM) Cu (II) as well as 5,
10,15, 25, 50, 75, 100, 125, and 175 pug L! (0.07,0.13,0.20, 0.33,0.67,
1, 1.34, 1.67, and 2.3 pM) As (III), in 0.5 M HSOg4, Fig. 5A and C,
respectively. Linear regression analysis showed that the adjusted R? for
Cu (II) and As (III) detection were 0.901 and 0.999, respectively (Fig. 5B
& D). This results in theoretical limits of detection (LOD) of 45 pg L™}
(0.7 pM) Cu (II) alone and 0.6 pg L1 (0.01 puM) As (III) alone at the Au

(UTF) electrode. Sub part per billion detections of As (III) demonstrates
accurate detection below the MCL while using LSV which is a method
that can be automated and applied to a large set of electrodes.

The standard additions curves for trace As (III) alone presents three
peaks associated with surface structure sensitive oxidation of As and
sulfate. A small peak at 0.54 V, which is consistent throughout all curves
including the blank, is commonly associated with the dissolution of an
ordered sulfate layer at Au(111) electrode surfaces [62,63]. With in-
cremental additions of As (III) to achieve between 5 and 25 pg LY a
peak with a bell shape increases at 0.35 V. However, at 50 pg L1 As (III)
a second peak at 0.27 V begins to increase and eventually becomes the
dominant peak at higher As (III) concentrations. The initial peak at 0.35
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Fig. 5. Linear stripping voltammetry curves produced by standard additions method for trace detection of A) 5, 10, 15, 25, 50, 75, 100, 125, and 175 pg L1 As (IID)
with B) associated As (III) calibration curve and C) 250, 500, 1000, and 1500 pug L~! Cu (1) with D) associated Cu (II) calibration curve.

V becomes a shoulder and continues to have a maximum peak current
near 6 pA at concentrations above 50 pg L™!. This may be due to satu-
ration of imperfections at the surface of the Au(UTF) which are not Au
(111) oriented such as grain boundaries. Grain boundaries and other
non (111) oriented surfaces may be adsorbing As (III) through under-
potential deposition and thus require a higher potential to strip from the
surface [48].

Concentrations of Cu alone from 250 to 1500 pg L™ Cu (II) show that
increasing concentration results in two separate oxidation peaks. A peak
at 0.45 V is present at 250 and 500 pg L ™! Cu (II), and a second peak at
0.35 V is present as 1000 and 1500 pg L~ cu(in (Fig. 5C). This is
consistent with previous sections showing that there is a maximal po-
tential for the peak at 0.45 V due to the formation of an ordered sub-
monolayer of Cu followed by the filling of a 1:1 monolayer at an Au
(111) surface.

The Au(UTF) was used to generate curves for 5, 10, 15, 25, 50, 75,
100, 125, and 175 pg L™ As (III) in the presence of 1500 pg L™} Cu (I)
(Fig. 6A & B). The initial peaks associated with 1500 pg L~ Cu (D) are at
0.34 and 0.45 V. With increasing As (III) concentrations the lower po-
tential peak shifts from 0.34 to 0.37 V. The higher potential peak de-
creases in current from 37 to 19 pA and becomes a shoulder to the lower
energy peak. The calibration curves show deviation from linearity was
higher in the presence of Cu and As as indicated by a decrease in the
residual sum of squares compared to As alone. The limit of detection for
As (III) increased to 43.7 pg L™ (0.58 pM). The increased limit of
detection effectively eliminates the ability to detect As at the maximum

contaminant level with 1500 pg L 1cu (II) present [64].

Similar to the experiment above, the Au(UTF) was used to detect Cu
standard additions of 250, 500, 1000, and 1500 pg L~! Cu (ID) in a so-
lution containing 175 pg L1 As (1ID) (Fig. 6C & D). Before Cu is added to
solution there is a peak at 0.25 V, which is associated with 175 pg L™! As
(II1). When 250 pg L' Cu (ID) is added, the initial peak shifts positively
to 0.3 V and a second peak at 0.44 V is introduced. Further additions of
Cu (II) to 1500 pg L~ continue to shift the lower potential peak to 0.35
V. The peak at 0.44 V also increases with increasing Cu concentration.
This shows that concentrations as low at 250 pg L™ Cu (II) can severely
impact the peak shape and ability to detect trace As (III) at the Au(UTF)
surface.

4. Conclusions

The results of this study demonstrated that the use of a highly ori-
ented and ultraflat Au(111) surface provided increased sensitivity for Cu
and As redox compared to polycrystalline electrodes. However, the Au
(UTF) was not able to accurately detect As (III) in the presence of high
concentrations of Cu (II) due to Cu-As alloy formation. The standard
additions method was used to detect As (III) alone with a LOD of 0.6 pg
L1 in 0.5 M H,S04 showing highly sensitive detection using a nanofilm
of Au and the readily automatable LSV method. However, when 1500 pg
L~! Cu (II) was present the LOD was increased to 43.7 pg L™}, making
the electrode ineffective for detection at the 10 pg L~! MCL for As (III).

Cyclic voltammetry studies in Cu and As mixtures showed that
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Fig. 6. Selected LSV curves produced by standard additions method for trace detection of A) 5, 10, 15, 25, 50, 75, 100, 125, and 175 pg L' As (II) to a solution
containing 1500 pg L~! Cu (1I) with B) associated As (III) calibration curve, and C) 250, 500, 1000, and 1500 pg L~ Cu (ID) to a solution containing 175 pg L' As (11D

with D) associated Cu (II) calibration curve.

sequential deposition of Cu then As lead to limited As deposition.
However, when deposition is performed through LSV by a rapid step to a
potential where both Cu and As are deposited there is an increase in
oxidation peak charge density compared to Cu or As alone. At the con-
centrations studied, modelling illustrated that a stable CusAs species
may be formed which is likely the cause for increased deposition when
both Cu and As are present. This work provides insights into electro-
chemical Cu-As alloy formation on well-oriented Au(111) electrodes.
Ultimately, our findings highlight the importance of Cu (II) removal
before electrochemical analysis of As (III).
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