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A B S T R A C T

The ability to detect trace concentrations of arsenite, As (III), in real water solutions is impacted by co- 
contamination of other metals and co-occurring ions. The presence of copper (II) ions are the most likely co- 
contaminant in natural waters to interfere with electrochemical As (III) detection, due to the close oxidation 
potentials of Cu (II) and As (III). The use of well-oriented ultraflat Au(111) thin film electrodes provided 
increased peak separation and sensitivity for electrochemical deposition and oxidation of Cu (II) and As (III) in 
0.5 M sulfuric acid compared to an Au wire electrode. However, mixtures of Cu (II) and As (III) altered the 
oxidation peak positions during both cyclic voltammetry (CV) and linear stripping voltammetry (LSV) analysis. 
Calibration curves using the standard additions method in trace concentrations were conducted for Cu, As, and 
Cu & As solutions. Sweeping the potential at 10 mV s−1 during CV in Cu & As mixtures resulted in a sequential 
deposition condition where a layer of Cu inhibited co-deposition of As to the electrode. In contrast, the rapid 
potential stepping of LSV to a potential where Cu and As reduction simultaneously occurs produced a peak 
profile different from Cu or As alone. A larger oxidation peak during LSV was also observed when both Cu and As 
were present. X-ray photoelectron spectroscopy indicates a Cu-As alloy is formed on the surface after LSV 
deposition. 

SYNOPSIS: Analysis of Cu (II), As (III) and Cu (II) & As (III) mixtures suggests that a Cu3As intermetallic phase 
is formed during LSV which impacts trace As detection even in trace Cu conditions. This has important impli
cations for the ability to determine As concentrations near the MCL of 10 µg L−1 in natural water systems which 
may contain Cu (II) and other co-contaminants.   

1. Introduction

The World Health Organization and United States Environmental
Protection Agency considers 10 µg L−1 of As (III) toxic and carcinogenic 
[1,2]. A considerable portion of the U.S. and global population obtain 
their daily drinking water directly from surface or groundwater sources 
which are not protected by municipal water treatment systems [3–5]. In 
several studies of private water wells in the United States, arsenic 
exceeded the EPA maximum contaminant limit (MCL) in 7–10 % of wells 
[6,7]. To minimize exposure, detection of toxic As(III) at trace concen
trations is critical. 

By quickly and inexpensively quantifying As (III) in the field, elec
trochemical methods are valuable for identifying unsafe As 

concentrations and assessing remediation efficacy in natural water 
samples [8–10]. Techniques such as linear stripping voltammetry are 
proven to be accurate at part per billion (µg L−1) concentrations and are 
capable of detecting multiple co-occurring redox active species simul
taneously. Electrochemical detection for heavy metals in water therefore 
can be a lifesaving, portable, and rapid tool for supporting community 
health [11–14]. Gold (Au) electrodes are the standard for electro
chemical As detection due to their high nobility, reversible As (III) redox 
reaction, and broad region of stability [9,15–19]. Thin Au films, nano
particles, and microarrays on a variety of substrates have been investi
gated to identify low-cost and highly effective electrode materials 
[20–26]. Recent works have identified controlled Au surface 
morphology as a potential path to increased sensitivity and selectivity 
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for As (III) detection [27–33]. 
The use of electrochemical sensors with gold electrodes for arsenic 

detection may be negatively affected by interferences, including copper. 
Arsenic is commonly mobilized into water with many other anions such 
as sulfate and cations such as uranium, lead, iron, and copper [34,35]. 
Copper (II) is the most commonly cited cation interference with elec
trochemical As (III) detection and is used as an example interferant to 
determine the selectivity of novel electrodes [32,36–39]. Several studies 
have identified the mechanisms for sulfate assisted electrochemical Cu 
(II) reduction and oxidation at Au(111) surfaces which contribute to a 
characteristic three peak cyclic voltammogram [40–44]. The formation 
of Cu-As alloys during deposition and overlapping oxidation peaks has 
previously impeded our group’s ability to detect trace concentrations of 
As in the presence of high concentrations of Cu (II) [45,46]. 

The objective of this work is to assess the capability of a well- 
oriented and ultraflat Au(111) thin film, Au(UTF), to selectively detect 
As (III) in the presence of Cu (II). In this study, linear stripping vol
tammetry (LSV) and cyclic voltammetry (CV) were used to systemati
cally identify the impacts of Cu (II) co-contamination on As (III) 
detection using a Au(UTF) in multiple Cu(II) and As(III) concentration 
mixtures. 

2. Experimental 

2.1. Materials Description and Characterization 

Ultraflat Au(111) Thin Film. Ultraflat Au(111) thin films, Au(UTF), 
were obtained from Platypus Technologies and have thickness of 
approx. 100 nm. The average grain area is 3.64 ± 0.2 µm2 with pre
dominantly Au(111) surface orientation. A new Au(UTF) electrode was 
used for each experiment. A CV from 0.7 to 1.7 V vs. RHE at 10 mV s−1 

was performed at the begginning of each experiment to assess surface 
orientation and electrochemical surface area for current density 
normalization of the Au(UTF) and Au(Wire) electrodes. As can be seen in 
Figure S1, the Au(UTF) surface oxidation begins with a shoulder in the 
positive sweep direction beginning at 1.4 V which leads to a single sharp 
peak at 1.6 V. This demonstrates that the Au surface is predomininantly 
Au(111) oriented as compared to the Au(Wire) electrode which presents 
a broad set of peaks from 1.4 to 1.6 V for Au oxidation indicating 
multiple surface orientations [47]. The area of the Au reduction peak 
occuring at 1.2 V was determined and a value of 660 μC cm−2 was used 
to normalize experimental results. The reference value used represents a 
three-electron transfer process per Au(111) surface atom with a specific 
current of 220 μC cm−2 per electron. 

2.2. Electrochemical characterization 

Electrochemical experiments were carried out in a 200 ml five port 
glass cell, using an Au wire as a counter electrode and a reversible 
hydrogen electrode (RHE) as a reference electrode with a fritted glass 
tube to separate the RHE from the solution. Voltammetric experiments 
were carried out at room temperature using a PalmSens 4 PALM-PS4. 
F2.05 portable potentiostat. The potentiostat uses digital circuitry, and 
signal smoothing, similar to most modern potentiostats. Our groups 
previous studies using the Au(UTF) thin films showed lower detection 
limits and smaller linear regions [48]. This study may be different due to 
a change in potentiostat type, electrode shape, or vessel configuration. 
This variation is why we recommend electrode calibration via known 
additions or other methods to confirm the linearity of analysis via 
stripping voltammetry. Linear stripping voltammetry experiments con
tained an initial equilibrium step at 0.7 V, a deposition step for 60 s at 
0 V and a sweep from 0 to 0.7 V at 10 mV s−1. Cyclic voltammetry for 
analysis of Cu and As was swept between 0.7 and 0 V beginning in the 
negative direction. All solutions were made using ultrapure water (18.2 
MΩ cm, Elga PureLab OptionQ), concentrated sulfuric acid (VWR, 95 wt 
%), As2O3 salt (Merck), and CuSO4 salt. A 75 mg L−1 (10−1 M) As (III) in 

0.5 M H2SO4 solution was used with to perform standard addition of As 
for trace As (III) detection and experiments. A 1 g L−1 (1.57 mM) Cu (II) 
solution was prepared and used as the stock solution for standard ad
ditions of Cu(II). Standard additions were performed for 5, 10, 15, 25, 
50, 75, 100, 125, and 175 μg L−1 As (III) and 250, 500, 1000, and 1500 
μg L−1 Cu (II) in 0.5 M H2SO4. The concentration of H2SO4 as supporting 
electrolyte was maintained at 0.5 M for all electrochemical experiments 
and stock solutions. The scan rate for all experiments was maintained at 
10 mV s − 1. For comparison of the Au(UTF) to a polycrystalline gold 
surface, the behavior of an Au(Wire) electrode was also studied in a 10 
mg L−1 Cu (II) solution. 

2.3. Physical characterization 

X-ray Photoelectron Spectroscopy. XPS measurements were per
formed using a Kratos Axis Ultra with a monochromatic Al Kα source 
operating at 150 W (1486.6 eV). The operating pressure was 2 × 10−9 

Torr. High-resolution spectra were acquired at a pass energy of 20 eV. 
XPS data was processed using Casa XPS software. To observe the Cu-As 
alloy in XPS the Au(UTF) electrode was placed in a 10 mg L−1 Cu (II) & 
750 μg L−1 As (III) mixture in the typical three electrode setup used 
throughout our study. Only the deposition step of the LSV was per
formed; 60 s at 0 V vs. RHE. After deposition the electrode was quickly 
removed from the cell, rinsed with ultrapure water (less than 10 s), and 
inserted into the XPS system. The XPS system was prepped in the next 
room, so the transfer process was as fast as possible. Angle resolved XPS 
(ARXPS) was performed to obtain a depth profile of elemental compo
sition. Decreasing the angle of beam entry results in increased beam 
interaction with the deposited surface layer. Therefore, changes in 
spectra for Cu and As during ARXPS are associated with variation in the 
adsorbed layer composition over the depth of the deposited film [49,50]. 

Thermodynamic Eh-pH Modelling. Arsenic and copper speciation 
and precipitation were modelled using the Geochemist’s Workbench 
Rxn program [51] with Visual Minteq’s thermodynamic database [52]. 
This database includes all major As(V), As(III), As(0), Cu(II), Cu(I), and 
Cu(0) species. Several Cu-As alloys (Cu3As, Cu(AsO2)2, Cu3AsO4, and 
Cu3(AsO4)2) were added to this database to determine their impact on 
Cu and As precipitation [53,54]. Cu and As speciation and precipitation 
was modelled at a Cu concentration of 1000 μg L−1, As concentration of 
750 μg L−1, at 25 ◦C, a pH range of 0 to 14, and under the entire Eh range 
where water does not dissociate. 

Statistical Analysis. Statistical analysis was performed in EXCEL to 
determine average and standard deviation of three consecutive mea
surements where applicable. The raw data was used to calculate the 
calibration plot of concentration vs. charge density. Limits of detection 
were determined using the equation LOD = (k * Sb)/m, where k was 
equal to 3 for a 98.3 % confidence level, Sb is the standard deviation for 
analysis of three blank curves, and m is the slope of the calibration 
curve. 

3. Results & discussion 

3.1. Increased sensitivity and selectivity for Cu & As at Au(UTF) 
compared to Au(wire) electrodes 

Predominantly (111) oriented Au(UTF) electrodes were compared to 
polycrystalline Au wire electrodes, Au(Wire), for their sensitivity to Cu 
(II) and As (III) redox processes. Concentrations of 10 mg L−1 Cu(II) or 
750 μg L−1 As (III) were used for this comparison. Fig. 1 presents CV 
studies between 0 and 0.7 V vs. RHE with a scan rate of 10 mV s−1 

starting in the negative direction. Table 1 contains charge and peak 
potentials for reduction and oxidation processes. Arsenic reduction and 
oxidation processes occur at lower potentials for the Au(UTF) electrode 
as compared to the Au(Wire) electrode (Fig. 1). The Au(UTF) also pre
sents higher redox peak amplitude over baseline capacitive current than 
the Au(wire) electrode, which may be attributed to preferential 
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orientation. 
The behavior of the Au(UTF) and Au(Wire) electrodes were 

compared in a 10 mg L−1 Cu (II) solution. Copper redox reactions 
occurred at three separate potentials due to differences in adsorbed Cu 
structure formation on the Au(UTF) surface [41,55,56]. Each peak was 

labeled for reference in the following analysis (Table 1B). Similar charge 
density for each reduction and oxidation process pair (O1 & R1, O2 & 
R2, O3 & R3) shows that the peaks are correlated and reversible. In 
previous studies on Cu redox at (111) oriented surfaces, peak pair R3 & 
O3 is often cited as the formation and dissolution of a 2/3 monolayer 
which is formed as a honeycomb structure on the Au(111) surface. Peak 
pair R2 & O2 is identified as the filling and dissolution of a 1:1 Cu to Au 
monolayer. Finally, peak pair R1 & O1 is associated with the formation 
of a bulk layer [56]. These peak pairs are relevant to discussion of CV 
studies. However, the oxidation peaks in LSV studies are taken to be 
indicators of the same processes. The combined charge for peaks O2 and 
O3 is 453 μC cm−2. The sum of these two oxidation peaks aligns well 
with the expected specific current from a two-electron surface stripping 
process which could be associated with the formation of a full 1:1 
monolayer of Cu at the Au(111) surface, 440 μC cm−2. However, we 

Fig. 1. Cyclic voltammograms comparing an ultraflat Au(111) thin film, Au(UTF), electrode compared to an Au wire, Au(Wire), electrode in A) 750 μg L−1 As (III) 
and B) 10 mg L−1 Cu (II) with 0.5 M H2SO4 supporting electrolyte. Scan rate 10 mV s−1; start in negative direction. 

Table 1A 
Reduction and oxidation peak potentials during CV in 750 μg L−1 As (III) related 
to Fig. 1B.  

Electrode Reduction Peak Potential V vs. 
RHE 

Oxidation Peak Potential V vs. 
RHE 

Au(UTF) 0.15 0.31 
Au 

(Wire) 
0.25 0.33  
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observed that peak O3 accounts for only 2/5 of this charge instead of the 
expected 2/3 for the formation of a Cu honeycomb structure. This 
variance from expected ratios may be due to the presence of multiple 
randomly rotated Au(111) crystals with grain boundaries in the film 
resulting in various Au(111) terrace sizes [41]. However, the charge 
ratios may also be influenced by co-adsorbed sulfate [55,57]. The cur
rent density correlation to theoretical values and the ability to observe 
these processes in sharp and mostly separated peaks shows the quality of 
the Au(111) surfaces on the Au(UTF) for observing electrochemical 
processes with increased sensitivity and selectivity as shown in our 
previous studies [48]. 

The Au(UTF) presented better peak separation and sensitivity to each 
process as compared to the Au(Wire). The following experiments and 
data analysis are focused on results of studies with the Au(UTF), due to 
the focus of this study being on the impact of Au(111) surface orienta
tion on detection of Cu and As. 

3.2. Cu limitation of as deposition for Cu & As mixtures during cyclic 
voltammetry 

Cyclic voltammetry studies in solutions containing both Cu and As 
were performed to provide detailed insights into the impacts of co- 
occurring Cu when electrochemically detecting As (III). We found that 
co-occurrence of Cu and As in solution limited the deposition of As (III). 
When 10 mg L−1 Cu (II) and 750 μg L−1 As (III) were present in solution, 
the CV shows that the mixture resembled that of a CV in Cu alone more 
than As alone (Fig. 2). Copper deposition starts at roughly 0.2 V more 
positive (0.6 to 0.3 V) than As deposition (0.3 to 0 V), so a Cu layer may 
be forming on the Au surface prior to reaching a low enough potential 
for As deposition. This formation of a Cu layer inhibits the detection of a 

peak at the predicted As deposition potential. However, the orientation 
and purity of the Cu film is unknown. We confirmed limited As depo
sition by comparing the charge passed during redox of the mixture and 
the individual analytes (Table 2). The charge associated with co- 
deposition was not the sum of charge associated with Cu alone and As 
alone. Therefore, charge additive and independent deposition of Cu and 
As cannot be assumed. 

3.3. Increased deposition and oxidation charge for Cu & as mixtures 
during linear stripping voltammetry 

3.3.1. Studies with 10mg L−1 cu (II) & 750 μg L−1 As (III) mixtures 
In contrast to CV studies, linear stripping voltammetry analysis of the 

same solution conditions showed increased charges for mixtures as 
compared to individual analytes. Fig. 3A shows the LSV stripping peak 
for 10 mg L−1 Cu alone, 750 μg L−1 As alone, and the 10 mg L−1 Cu & 
750 μg L−1 As mixture with a deposition time of 60 s at 0 V. The LSV 
analysis was performed directly after each CV study without removing 

Table 1B 
Reduction and oxidation charge densities at the Au(UTF) electrode for three phase Cu redox peaks 1, 2, and 3 in 10 mg L−1 Cu (II) during cyclic voltammetry and linear 
stripping voltammetry.  

Peak Potential Range V vs. 
RHE 

CV Reduction Charge Density 
μC cm−2 

Peak  Potential Range V vs. 
RHE 

CV Oxidation Charge Density 
μC cm−2 

LSV Oxidation Charge Density 
μC cm−2 

R3 0.3- 0.6 185 O3 0.46 0.4 - 0.6 183 151 
R2 0.15 - 0.3 250 O2 0.35 0.3 - 0.4 V 270 264 
R1 0 - 0.15 286 O1 0.25 0.2 - 0.3 V 275 338  

Fig. 2. Cyclic voltammetry at the Au(UTF) electrode in 750 μg L−1 As (III), 10 mg L−1 Cu, and 10 mg L−1 Cu & 750 μg L−1 As (III) mixture with 0.5 M H2SO4 
supporting electrolyte. Scan rate 10 mV s−1; start in negative direction. 

Table 2 
Total oxidation and reduction charge during CV at the Au(UTF) electrode in 750 
μg L−1 As (III), 10 mg L−1 Cu, and 750 μg L−1 As (III) + 10 mg L−1 Cu mixture 
with 0.5 M H2SO4 supporting electrolyte.  

Solution Reduction Charge Density 
μC cm−2 

Oxidation Charge Density 
μC cm−2 

Blank (0.5 M H2SO4) 34 3 
750 μg L¡1 As 752 710 
10 mg L¡1 Cu 788 613 
10 mg L¡1 Cu & 750 μg 

L¡1 As 
960 727  
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the Au(UTF) electrode for consistency. 
First, we discuss differences in LSV and CV studies for the individual 

analytes. The oxidation peak associated with bulk Cu dissolution (O1) 
was increased during LSV compared to CV in 10 mg L−1 Cu (II) 
(Table 1B). This may be due to more time spent below 0.15 V during LSV 
than CV, where bulk Cu formation is favorable. The higher potential 
peaks for Cu dissolution (O2 and O3) during LSV show lower current 
during LSV than CV. In solutions with As alone, LSV results in increased 
oxidation peak charge compared to CV experiments (Table 3). This 

increase is likely due to more time in a potential region which is 
favorable for As deposition. The total width of the As detection peak is 
100 mV, which is a small potential region compared to polycrystalline 
electrodes at similar concentrations of As, even when specialized pulse 
voltammetry techniques are utilized [9,15,17,32]. 

Here we discuss the differences between CV and LSV studies in co- 
occurring Cu (II) and As (III). When both 10 mg L−1 Cu (II) and 750 
μg L−1 As (III) were present, LSV analysis resulted in a drastic increase in 
charge from 727 μC cm−2 for CV to 4921 μC cm−2 for LSV. This increase 
is higher than expected for an additive process where Cu and As were 
independently co-depositing at the Au surface. Additionally, the peak 
potential for the Cu and As mixture is 0.325 V with a shoulder peak at 
0.375 V. Since the peak potentials do not align with the peak potential 
for Cu or As alone this result suggests a new intermetallic phase has been 
formed which is predicted by the Cu-As phase diagram [58–60]. Perhaps 
the increase in deposition charge is due to the suppression of parasitic 
reactions such as concurrent hydrogen evolution [61]. 

3.3.2. Studies with 1500 μg L−1 Cu (II) and 175 μg L−1 As (III) 
Linear stripping voltammetry results are shown in Fig. 3B. The 

oxidation profile for Cu (II) alone shows two peaks at 0.35 V and 0.45 V. 
These oxidation peaks are associated with the dissolution of a monolayer 
surface structure. The lack of an oxidation peak at 0.25 V, when per
forming LSV in 1500 μg L−1 Cu (II) alone, indicates that not enough Cu 
was deposited onto the surface during the deposition process to fill 
beyond a 1:1 monolayer. The peak for 175 μg L−1 As (III) alone has a 
primary peak at 0.25 V with a shoulder at about 0.35 V. With both Cu 
and As in solution the predominant peak is at 0.36 V with shoulders on 
both sides. As an estimation, the oxidation charge during 1500 μg L−1 Cu 
(II) alone would be equal to about 81 % of a monolayer, and the charge 
for 175 μg L−1 As alone would correlate to about 19 % of a monolayer 
(Table 3). 

3.4. Formation of Cu-As alloy 

X-ray photoelectron spectroscopy (XPS) and thermodynamic 
modelling provide evidence that a Cu-As alloy is being formed during 
the deposition phase of LSV analysis. Fig. 4A presents elemental 
composition at 0, 20, 40 and 60◦ of sample tilt using angle resolved XPS 
analysis on the surface of the Au(UTF). The XPS analysis were conducted 
directly after deposition in a solution with co-occurring Cu & As. The 
elemental percentage of As increases from 6 to 18% elemental (8–26 wt 
%) as the angle of the film is tilted from 0 to 60◦. This is shown by a 
decrease in the peak intensity for Cu while there was not as significant a 
change in the spectra for As during ARXPS (Figure S2). An increase in 
concentration with tilt angle indicates that As is more concentrated to
wards the surface of the adlayer than towards the Au(111) surface. This 
provides evidence that Cu may be forming a UPD layer initially and then 
subsequent layers include the formation of the Cu-As alloy. The con
centration range determined is within the range where Cu3As and other 
Cu-As alloys are formed according to metallurgical modelling [58–60]. 

Thermodynamic modelling for an aqueous electrolyte containing 0.5 
M H2SO4, 1 mg L−1 Cu (II), and 750 μg L − 1 As (III) indicates that at the 
concentrations of interest Cu3As is likely to be formed at a slightly higher 
potential than As alone (Fig. 4B). Although the thermodynamic char
acteristics of a bulk metal alloy are different from those in solution 
deposited thin films, the alloying phenomena cited in metallurgical 
studies may explain increased deposition and peak charge density for 
mixtures of 10 mg L−1 Cu (II) & 750 μg L−1 As (III) compared the in
dividual species at the Au(UTF) surface during LSV [58,60]. A limitation 
of this study is that XPS and electrochemical data are not capable of 
discerning the structure of the intermetallic. Further studies using 
electron diffraction or atomic imaging are needed to determine if elec
trochemical deposition of the Cu-As intermetallic is forming a solid so
lution, or an ordered phase. 

Fig. 3. Linear stripping voltammetry at the Au(UTF) electrode in A) 750 μg L−1 

As (III), 10 mg L−1 Cu, and 10 mg L−1 Cu (II) & 750 μg L−1 As (III) mixture and 
B) 175 μg L−1 As (III), 1500 μg L−1 Cu (II), and 1500 μg L−1 Cu (II) & 175 μg L−1 

As (III) mixture, with 0.5 M H2SO4 supporting electrolyte. Deposition for 60 s at 
0 V vs. RHE and a scan rate of 10 mV s−1. 

Table 3 
Oxidation peak charge density during LSV for Au(UTF) in analysis of individual 
species and mixtures with 0.5 M H2SO4 supporting electrolyte.  

Solution Oxidation Charge Density μC cm−2 

Blank (0.5 M H2SO4) 7 
750 μg L¡1 As 857 
10 mg L¡1 Cu 768 
10 mg L¡1 Cu & 750 μg L¡1 As 4921 
175 μg L¡1 As 125 
1500 μg L¡1 Cu 358 
1500 μg L¡1 Cu & 175 μg L¡1 As 462  
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3.5. Co-occurrence of Cu limits selectivity for trace as detection 

The Au(UTF) was highly effective at detecting Cu (II) alone near 1 
mg L−1 and trace concentrations of As (III) alone. The Au(UTF) was used 
to generate standard additions method calibration curves for 250, 500, 
1000, and 1500 μg L−1 (3.9, 7.9, 15.7 and 23.6 μM) Cu (II) as well as 5, 
10, 15, 25, 50, 75, 100, 125, and 175 μg L−1 (0.07, 0.13, 0.20, 0.33, 0.67, 
1, 1.34, 1.67, and 2.3 μM) As (III), in 0.5 M H2SO4, Fig. 5A and C, 
respectively. Linear regression analysis showed that the adjusted R2 for 
Cu (II) and As (III) detection were 0.901 and 0.999, respectively (Fig. 5B 
& D). This results in theoretical limits of detection (LOD) of 45 μg L−1 

(0.7 μM) Cu (II) alone and 0.6 μg L−1 (0.01 μM) As (III) alone at the Au 

(UTF) electrode. Sub part per billion detections of As (III) demonstrates 
accurate detection below the MCL while using LSV which is a method 
that can be automated and applied to a large set of electrodes. 

The standard additions curves for trace As (III) alone presents three 
peaks associated with surface structure sensitive oxidation of As and 
sulfate. A small peak at 0.54 V, which is consistent throughout all curves 
including the blank, is commonly associated with the dissolution of an 
ordered sulfate layer at Au(111) electrode surfaces [62,63]. With in
cremental additions of As (III) to achieve between 5 and 25 μg L−1, a 
peak with a bell shape increases at 0.35 V. However, at 50 μg L−1 As (III) 
a second peak at 0.27 V begins to increase and eventually becomes the 
dominant peak at higher As (III) concentrations. The initial peak at 0.35 

Fig. 4. A) Angle resolved X-ray photoelectron spectroscopy showing the elemental composition at the Au(UTF) surface after 60 s of deposition at 0 V vs. RHE in 10 
mg L−1 Cu (II) and 750 μg L− 1 As (III) mixture B) Eh vs. pH diagram for 750 μg L−1 As (III), 1 mg L−1 Cu (II) at 25 ◦C and 1.013 bars, generated using Geo
chemist’s Workbench. 
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V becomes a shoulder and continues to have a maximum peak current 
near 6 μA at concentrations above 50 μg L−1. This may be due to satu
ration of imperfections at the surface of the Au(UTF) which are not Au 
(111) oriented such as grain boundaries. Grain boundaries and other 
non (111) oriented surfaces may be adsorbing As (III) through under
potential deposition and thus require a higher potential to strip from the 
surface [48]. 

Concentrations of Cu alone from 250 to 1500 μg L−1 Cu (II) show that 
increasing concentration results in two separate oxidation peaks. A peak 
at 0.45 V is present at 250 and 500 μg L−1 Cu (II), and a second peak at 
0.35 V is present as 1000 and 1500 μg L−1 Cu(II) (Fig. 5C). This is 
consistent with previous sections showing that there is a maximal po
tential for the peak at 0.45 V due to the formation of an ordered sub- 
monolayer of Cu followed by the filling of a 1:1 monolayer at an Au 
(111) surface. 

The Au(UTF) was used to generate curves for 5, 10, 15, 25, 50, 75, 
100, 125, and 175 μg L−1 As (III) in the presence of 1500 μg L−1 Cu (II) 
(Fig. 6A & B). The initial peaks associated with 1500 μg L−1 Cu (II) are at 
0.34 and 0.45 V. With increasing As (III) concentrations the lower po
tential peak shifts from 0.34 to 0.37 V. The higher potential peak de
creases in current from 37 to 19 μA and becomes a shoulder to the lower 
energy peak. The calibration curves show deviation from linearity was 
higher in the presence of Cu and As as indicated by a decrease in the 
residual sum of squares compared to As alone. The limit of detection for 
As (III) increased to 43.7 μg L−1 (0.58 μM). The increased limit of 
detection effectively eliminates the ability to detect As at the maximum 

contaminant level with 1500 μg L−1 Cu (II) present [64]. 
Similar to the experiment above, the Au(UTF) was used to detect Cu 

standard additions of 250, 500, 1000, and 1500 μg L−1 Cu (II) in a so
lution containing 175 μg L−1 As (III) (Fig. 6C & D). Before Cu is added to 
solution there is a peak at 0.25 V, which is associated with 175 μg L−1 As 
(III). When 250 μg L−1 Cu (II) is added, the initial peak shifts positively 
to 0.3 V and a second peak at 0.44 V is introduced. Further additions of 
Cu (II) to 1500 μg L−1 continue to shift the lower potential peak to 0.35 
V. The peak at 0.44 V also increases with increasing Cu concentration. 
This shows that concentrations as low at 250 μg L−1 Cu (II) can severely 
impact the peak shape and ability to detect trace As (III) at the Au(UTF) 
surface. 

4. Conclusions 

The results of this study demonstrated that the use of a highly ori
ented and ultraflat Au(111) surface provided increased sensitivity for Cu 
and As redox compared to polycrystalline electrodes. However, the Au 
(UTF) was not able to accurately detect As (III) in the presence of high 
concentrations of Cu (II) due to Cu-As alloy formation. The standard 
additions method was used to detect As (III) alone with a LOD of 0.6 μg 
L−1 in 0.5 M H2SO4 showing highly sensitive detection using a nanofilm 
of Au and the readily automatable LSV method. However, when 1500 μg 
L−1 Cu (II) was present the LOD was increased to 43.7 μg L−1, making 
the electrode ineffective for detection at the 10 μg L−1 MCL for As (III). 

Cyclic voltammetry studies in Cu and As mixtures showed that 

Fig. 5. Linear stripping voltammetry curves produced by standard additions method for trace detection of A) 5, 10, 15, 25, 50, 75, 100, 125, and 175 μg L−1 As (III) 
with B) associated As (III) calibration curve and C) 250, 500, 1000, and 1500 μg L−1 Cu (II) with D) associated Cu (II) calibration curve. 
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sequential deposition of Cu then As lead to limited As deposition. 
However, when deposition is performed through LSV by a rapid step to a 
potential where both Cu and As are deposited there is an increase in 
oxidation peak charge density compared to Cu or As alone. At the con
centrations studied, modelling illustrated that a stable Cu3As species 
may be formed which is likely the cause for increased deposition when 
both Cu and As are present. This work provides insights into electro
chemical Cu-As alloy formation on well-oriented Au(111) electrodes. 
Ultimately, our findings highlight the importance of Cu (II) removal 
before electrochemical analysis of As (III). 
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