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Abstract. We introduce a new framework, Bayesian distributionally robust optimization
(Bayesian-DRO), for data-driven stochastic optimization where the underlying distribution is un-
known. Bayesian-DRO contrasts with most of the existing DRO approaches in the use of Bayesian
estimation of the unknown distribution. To make computation of Bayesian updating tractable,
Bayesian-DRO first assumes the underlying distribution takes a parametric form with unknown
parameter and then computes the posterior distribution of the parameter. To address the model
uncertainty brought by the assumed parametric distribution, Bayesian-DRO constructs an ambigu-
ity set of distributions with the assumed parametric distribution as the reference distribution and
then optimizes with respect to the worst case in the ambiguity set. We show the consistency of the
Bayesian posterior distribution and subsequently the convergence of objective functions and opti-
mal solutions of Bayesian-DRO. Our consistency result of the Bayesian posterior requires simpler
assumptions than the classical literature on Bayesian consistency. We also consider several ap-
proaches for selecting the ambiguity set size in Bayesian-DRO and compare them numerically. Our
numerical experiments demonstrate the out-of-sample performance of Bayesian-DRO in comparison
with Kullback--Leibler-based DRO (KL-DRO) and Wasserstein-based empirical DRO as well as risk-
neutral Bayesian risk optimization. Our numerical results shed light on how to choose the modeling
framework (Bayesian-DRO, KL-DRO, Wasserstein-DRO) for specific problems, but the choice for
general problems remains an important and open question.

Key words. distributionally robust optimization, data-driven stochastic optimization, Bayesian
consistency
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1. Introduction. Consider the following stochastic optimization problem:

min
x\in \scrX 

EQ[G(x, \xi )],(1.1)

where \scrX \subset Rn is a nonempty closed set, Q is a probability distribution of random
vector \xi supported on \Xi \subset Rd, and G :\scrX \times \Xi \rightarrow R is the cost function. The notation

EQ[Z] =
\int 

\Xi 

Z(\xi )dQ(\xi )(1.2)

emphasizes that the expectation is taken with respect to the probability measure1

(distribution) Q of random variable (measurable function) Z : \Xi \rightarrow R. We use the
same notation \xi viewed as a random vector or as its realization; the particular meaning
will be clear from the context.

In many applications, the underlying ``true"" distribution of \xi is not known and
should be derived (estimated) from the available data. A popular approach to deal
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1280 ALEXANDER SHAPIRO, ENLU ZHOU, AND YIFAN LIN

with this distributional uncertainty is to construct an ambiguity set M of probabil-
ity distributions and to consider the following minimax (worst-case) counterpart of
problem (1.1):

min
x\in \scrX 

sup
Q\in M

EQ[G(x, \xi )].(1.3)

Such a distributionally robust optimization (DRO) approach to stochastic pro-
gramming has a long history. In the setting of an inventory model, it was considered
in the pioneering paper [23]. Various methods have been developed for construc-
tion of the ambiguity sets, such as methods based on moment constraints (e.g., [5]),
\phi -divergence (e.g., [2]), Wasserstein distance (e.g., [8]), and Bayesian guarantees [13].

A different approach is to fit a parametric family P\theta , \theta \in \Theta , of distributions
to the (observed) data (\xi 1, . . . , \xi N ). We assume that the parameter set \Theta \subset Rk is
closed and that the parametric family is defined by density f(\cdot | \theta ). The value of
the parameter vector \theta is then estimated, say by the maximum likelihood method.
This involves two approximations of the ``true"" distribution. First, the parametric
family is just a model, and as the famous quote says, ``every model is wrong, but
some are useful."" Second, the estimated value of the parameter vector may not be
accurate especially when the available data are limited. The popular Bayesian ap-
proach is aimed at reducing variability of the parameter evaluation. That is, the
parameter vector \theta is assumed to be random whose probability distribution is sup-
ported on the set \Theta and defined by a prior probability density p(\theta ). Then given
the data (sample) \bfitxi (N) = (\xi 1, . . . , \xi N ), the posterior distribution is determined by
Bayes' rule,

p(\theta | \bfitxi (N)) =
f(\bfitxi (N)| \theta )p(\theta )\int 

\Theta 
f(\bfitxi (N)| \theta )p(\theta )d\theta ,(1.4)

where f(\bfitxi (N)| \theta ) =\prod N
i=1 f(\xi i| \theta ) is the conditional density of the sample by assuming

\xi i's are independent and identically distributed (i.i.d.).
Recently, [28] has taken the Bayesian approach with the motivation to use the

Bayesian posterior distribution (which encodes the likelihoods of all possibilities) to
replace the ambiguity set (which treats every possibility inside the set with equal
probability), and they further took a risk functional with respect to the posterior
distribution to allow a more flexible risk attitude. This leads to the Bayesian risk
optimization (BRO) formulation

min
x\in \scrX 

\rho \theta N
\bigl( 
E\xi | \theta [G(x, \xi )]

\bigr) 
,(1.5)

where \rho \theta N is a risk functional (such as expectation, mean-variance, value-at-risk, con-
ditional value-at-risk) taken with respect to the posterior distribution p(\theta | \bfitxi (N)), and
E\xi | \theta is the expectation taken with respect to the parametric distribution f(\xi | \theta ) condi-
tional on \theta . However, as mentioned above, the assumed parametric family introduces
model uncertainty.

In this paper, we propose a new formulation termed Bayesian distributionally
robust optimization (Bayesian-DRO), which poses robustness against the model un-
certainty (ambiguity) of the assumed parametric distributions while maintaining the
advantage of Bayesian estimation when data are limited. It constructs an ambiguity
set by taking the parametric distribution as the reference distribution and optimizes
the worst case of the Bayesian average of the true problem. More specifically, for every
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BAYESIAN DISTRIBUTIONALLY ROBUST OPTIMIZATION 1281

\theta \in \Theta let M\theta be a set of probability measures on (\Xi ,\scrB ). We propose the following
DRO formulation:

min
x\in \scrX 

E\theta N

\Biggl[ 
sup
Q\in M\theta 

EQ| \theta [G(x, \xi )]

\Biggr] 
,(1.6)

where EQ| \theta is the expectation with respect to distribution Q of \xi conditional on \theta and

E\theta N [Y ] :=

\int 

\Theta 

Y (\theta )p(\theta | \bfitxi (N))d\theta (1.7)

denotes the expectation of random variable Y : \Theta \rightarrow R with respect to the posterior
distribution p(\theta | \bfitxi (N)). We refer to M\theta as the ambiguity set ; a specific construction of
the ambiguity sets will be discussed in the next section. Please note that the posterior
distribution depends on choice of the prior density p(\theta ) and parametric model f(\cdot | \theta ).
The choice of both p(\theta ) and f(\cdot | \theta ) could be subject to ambiguity. In this paper we
mainly deal with ambiguity with respect to the parametric model. In section 2.1.3
we give a brief discussion of modeling ambiguity of the posterior distribution, which
of course also depends on ambiguity of the prior density.

We show the consistency of Bayesian posterior distributions. In particular, when
the parametric model is misspecified (i.e., when the true distribution lies outside
the parametric family of distributions), the posterior distribution converges to the
parametric distribution which has the minimum Kullback--Leibler (KL) divergence
(within the parametric family) from the true distribution. Consistency of Bayesian
posterior distribution under model misspecification has been studied in the literature
(e.g., [10, 14, 17]), but the assumptions required in our results are in general simpler
and easier to verify than constructing a testing sequence, as usually required in the
existing literature. Built on this result, we show the objective functions and optimal
solutions of Bayesian-DRO are strongly consistent.

When the ambiguity set is constructed using the KL divergence and its radius is
small, we show that Bayesian-DRO is approximately equivalent to a weighted sum of
the mean and standard deviation under the posterior distribution, where the weight
depends on the size of the ambiguity set. This reveals that the robustness of Bayesian-
DRO comes from the trade-off between the posterior mean and variability of the
solution performance. Similar interpretation of robustness has also been observed
in divergence-based empirical DRO (see [7, 11]), but the difference is that empirical
DRO trades off the empirical mean and standard deviation (i.e., with respect to the
empirical distribution) and in Bayesian-DRO these are with respect to the posterior
distribution. To determine the ambiguity set size, we propose several theoretical and
empirical methods and compare their performance numerically.

The rest of the paper is organized as follows. Section 2 formally introduces the
Bayesian-DRO formulation, discusses the construction of the ambiguity set, and un-
derstands the robustness of Bayesian-DRO by sensitivity analysis. Section 3 analyzes
convergence of Bayesian-DRO and considers how to determine the size of the am-
biguity set. Section 4 presents numerical results to illustrate the performance of
Bayesian-DRO in comparison with empirical DRO as well as BRO-mean. Section 5
concludes the paper with a brief discussion of future work.

2. Bayesian distributionally robust optimization. The risk-neutral formu-
lation of the Bayesian counterpart of problem (1.1) can be written as

min
x\in \scrX 

\bigl\{ 
g(x) :=E\theta N

\bigl[ 
E\xi | \theta [G(x, \xi )]

\bigr] \bigr\} 
,(2.1)
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1282 ALEXANDER SHAPIRO, ENLU ZHOU, AND YIFAN LIN

where the expectation E\xi | \theta is taken with respect to the distribution of \xi conditional
on \theta , defined by density f(\cdot | \theta ), and the expectation E\theta N is taken with respect to the
posterior distribution p(\theta | \bfitxi (N)) defined in (1.4). Note that the nested expectation
in (2.1) can be considered as the expectation with respect to the joint distribution
of \xi and \theta . An unbiased estimate of g(x) can be obtained by generating a random
realization of \theta according to the posterior distribution p(\theta | \bfitxi (N)) and then generating
a random realization of \xi \sim f(\cdot | \theta ) conditional on generated \theta . This allows us to
apply either the sample average approximation (SAA) or the stochastic approximation
optimization method for solving problem (2.1), provided that there is an efficient way
to generate such random samples.

Now let us consider the uncertainty with respect to the choice of the parametric
family of distributions of \xi , with a specified prior distribution of \theta , which is often
taken as an uninformative prior when there is no prior knowledge. We view (2.1)
as the nominal model with observed (given) data \bfitxi (N) and the reference parametric
family defined by the probability density function (pdf) f(\cdot | \theta ), \theta \in \Theta . We assume that
the ambiguity set M\theta consists of probability measures defined by density functions,
i.e., every distribution of the ambiguity set has respective pdf q(\cdot | \theta ), \theta \in \Theta . We also
assume that the ambiguity set contains the nominal distribution. There are many
ways in which the ambiguity set can be constructed, and we will discuss a specific
construction, well suited for our purposes, in section 2.1 below.

By constructing an ambiguity M\theta for each fixed \theta in (2.1), we define the Bayesian-
DRO problem (1.6), which is restated below for clarity:

min
x\in \scrX 

E\theta N

\Biggl[ 
sup
Q\in M\theta 

EQ| \theta [G(x, \xi )]

\Biggr] 
.(2.2)

For this problem, define the following distributionally robust functional:

R(Z) :=E\theta N

\Biggl[ 
sup
Q\in M\theta 

EQ| \theta [Z]

\Biggr] 
.(2.3)

This functional is defined on an appropriate linear space of measurable functions
(random variables) Z : \Xi \rightarrow R. The functional R can be viewed as a nested condi-
tional functional. We can refer to [20] for a detailed discussion of such conditional
functionals. For random variable Z : \Xi \rightarrow R, the respective expectation in (2.3) is

EQ| \theta [Z] =
\int 

\Xi 

Z(\xi )q(\xi | \theta )d\xi ,(2.4)

where q(\cdot | \theta ) is the pdf of Q\in M\theta . The maximum (supremum) in the right-hand side
of (2.3) is taken over all pdfs q\theta (\xi ) = q(\xi | \theta ) from the ambiguity set M\theta .

The distributionally robust counterpart of problem (2.1) is obtained by employing
the above distributionally robust functional. That is, problem (2.2) can be written as

min
x\in \scrX 

R(Gx),(2.5)

where Gx(\xi ) :=G(x, \xi ). Of course, it should be verified that the above distributionally
robust functionals are well defined for every Z = Gx, x \in \scrX . We will discuss this in
the next section.

Remark 2.1. In problem (2.2), if we take M\theta constant for all \theta \in \Theta , i.e., M\theta =
M for all \theta \in \Theta , then this problem becomes a DRO problem,

min
x\in \scrX 

sup
Q\in M

EQ[G(x, \xi )].(2.6)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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BAYESIAN DISTRIBUTIONALLY ROBUST OPTIMIZATION 1283

Hence, \{ M\theta , \theta \in \Theta \} in (2.2) can be viewed as a finer characterization of the ambi-
guity set based on the likelihood of each \theta , whereas the usual DRO takes a ``blanket""
ambiguity set for every \theta . Moreover, the outer expectation in (2.2) aggregates all \theta \in \Theta 
by their posterior density rather than fixating on the worst case in the ambiguity set.

When M\theta is a singleton consisting of only f(\cdot | \theta ), then (2.2) reduces to (2.1) or
BRO-mean (i.e., (1.5) with expectation being the risk functional). This implies that
as opposed to BRO-mean, Bayesian-DRO imposes additional robustness with respect
to the possibly misspecified likelihood.

2.1. Construction of the ambiguity set. Consider now construction of the
ambiguity set for the parametric family. The functional

\varrho | \theta (\cdot ) := sup
Q\in M\theta 

EQ| \theta [ \cdot ](2.7)

can be viewed as a coherent risk measure conditional on \theta \in \Theta . We have that EQ| \theta [Z] is
a function of \theta \in \Theta defined by the corresponding integral (see (2.4)) which is assumed
to be well defined. It could happen that by taking the maximum (supremum) of such
functions over possibly uncountable family of distributions, the resulting value \varrho | \theta (Z),
considered as a function of \theta \in \Theta , is not measurable. In that case the corresponding
integral, defining R(Z), does not exist. We will deal with this issue in the specific
construction below.

There are many ways in which the ambiguity sets can be constructed. The fol-
lowing approach, of the so-called \phi -divergence [4, 18], is general and flexible. Let
\phi : R \rightarrow R+ \cup \{ +\infty \} be a convex lower semicontinuous function such that \phi (1) = 0
and \phi (x) = +\infty for x < 0. For \epsilon \geq 0 and f\theta (\xi ) := f(\xi | \theta ) define the corresponding set
of pdfs q\theta (\xi ) = q(\xi | \theta ), representing the ambiguity set, as

M\theta 
\epsilon :=

\biggl\{ 
q\theta :

\int 

\Xi 

\phi 
\bigl( 
q\theta (\xi )/f\theta (\xi )

\bigr) 
f\theta (\xi )d\xi \leq \epsilon 

\biggr\} 
.(2.8)

That is, the ambiguity set consists of pdfs having \phi -divergence \leq \epsilon from the
reference parametric pdf f(\xi | \theta ). Note that M\theta 

\epsilon contains the reference measure (dis-
tribution) defined by the pdf f(\xi | \theta ). Note also that the probability measure defined
by the pdf q\theta in (2.8) is assumed to be absolutely continuous with respect to the
reference measure f\theta for every \theta \in \Theta .

Consider the conjugate \phi \ast (y) = supx\geq 0\{ yx - \phi (x)\} of \phi . Note that the conjugate
of \lambda \phi (\cdot ) is (\lambda \phi )\ast (y) = \lambda \phi \ast (y/\lambda ) for \lambda > 0. It can be shown by duality arguments (cf.
[1, 2, 25]) that for a random variable Z : \Xi \rightarrow R,

\varrho | \theta (Z) = inf
\lambda \geq 0,\mu 

\bigl\{ 
\lambda \epsilon + \mu +E\xi | \theta 

\bigl[ 
(\lambda \phi )\ast (Z  - \mu )

\bigr] \bigr\} 
.(2.9)

Hence, the functional (2.3) can be written as

R(Z) =E\theta 
\Bigl[ 

inf
\lambda >0,\mu 

E\xi | \theta 
\bigl[ 
\lambda \epsilon + \mu + \lambda \phi \ast 

\bigl( 
(Z  - \mu )/\lambda 

\bigr) \bigr] 

\underbrace{}  \underbrace{}  
\varrho | \theta (Z)

\Bigr] 
.(2.10)

The measurability of the infimum \varrho | \theta (Z) in the right-hand side of (2.9), considered
as a function of \theta , can be verified under mild regularity conditions. For example, we
have the following result.

Proposition 2.1. Suppose that for almost every (with respect to the Lebesgue
measure) \xi the density function f(\xi | \theta ) is lower semicontinuous in \theta \in \Theta . Then \varrho | \theta (Z)
is measurable in \theta .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1284 ALEXANDER SHAPIRO, ENLU ZHOU, AND YIFAN LIN

Proof. Since the conjugate function \phi \ast (\cdot ) is lower semicontinuous and f(\xi | \cdot ) is
lower semicontinuous, we have that for almost every \xi the function \lambda \epsilon +\mu +\lambda \phi \ast ((Z(\xi ) - 
\mu )/\lambda )f(\xi | \theta ) is lower semicontinuous in (\lambda ,\mu , \theta ). It follows by Fatou's lemma that its
integral

E\xi | \theta 
\bigl[ 
\lambda \epsilon + \mu + \lambda \phi \ast 

\bigl( 
(Z  - \mu )/\lambda 

\bigr) \bigr] 
=

\int 

\Xi 

[\lambda \epsilon + \mu + \lambda \phi \ast 
\bigl( 
(Z(\xi ) - \mu )/\lambda 

\bigr) 
]f(\xi | \theta )d\xi 

is lower semicontinuous in (\lambda ,\mu , \theta ) and hence is measurable. Therefore the above
integral is a normal integrand [22, Corollary 14.41], and hence its infimum over (\lambda ,\mu ) \in 
R+ \times R is measurable [22, Theorem 14.37].

2.1.1. Kullback--Leibler divergence. The KL divergence from a pdf q(\cdot ) to a
pdf f(\cdot ), on \Xi , is

DKL(q\| f) :=
\int 

\Xi 

q(\xi ) ln
\bigl( 
q(\xi )/f(\xi )

\bigr) 
d\xi =

\int 

\Xi 

(q(\xi )/f(\xi )) ln
\bigl( 
q(\xi )/f(\xi )

\bigr) 
f(\xi )d\xi .(2.11)

The KL divergence is a particular instance of the \phi -divergence with

\phi (x) := x lnx - x+ 1, x\geq 0.

The corresponding ambiguity setM\theta 
\epsilon is formed by pdfs q\theta such thatDKL(q\theta \| f\theta )\leq 

\epsilon . We will show that the KL divergence approach is in accordance with the consistency
of the Bayesian posterior distribution in section 3.1 and therefore is a natural approach
to construction of the corresponding ambiguity set.

We make the following assumption in the remainder of the paper: for x\in \scrX and
Z :=Gx it follows that

E\xi | \theta 
\bigl[ 
etZ

\bigr] 
<+\infty for any t\in R and \theta \in \Theta .(2.12)

For the KL divergence, given \lambda > 0 the minimizer over \mu in (2.9) is given by
\mu = \lambda lnE\xi | \theta [eZ/\lambda ], and hence the minimum becomes

\varrho | \theta (Z) = inf
\lambda >0

\Bigl\{ 
\lambda \epsilon + \lambda lnE\xi | \theta 

\bigl[ 
eZ/\lambda 

\bigr] \Bigr\} 
.(2.13)

Consequently, the DRO problem (2.3) can be written as

min
x\in \scrX 

E\theta N
\biggl[ 
inf
\lambda >0

\bigl\{ 
\lambda \epsilon + \lambda lnE\xi | \theta [eGx/\lambda ]

\bigr\} \biggr] 
.(2.14)

The above optimization problem (2.14) can be viewed as a two-stage stochastic
program with the second stage given by the optimization problem with respect to
\lambda > 0. It can be solved, for example, by the SAA method; we will discuss this further
in section 4.

2.1.2. Robustness via sensitivity analysis. We now consider the sensitivity
of the Bayesian-DRO objective value with respect to \epsilon , size of the ambiguity set. Note
that for \epsilon = 0 the minimum (infimum) in (2.13) is attained as \lambda \rightarrow +\infty and equals
E\xi | \theta [Z]. For \epsilon > 0 the optimization problem (2.13) has unique optimal solution \=\lambda ,
with \=\lambda tending to +\infty as \epsilon \downarrow 0.

Consider the minimization problem in the right-hand side of (2.13) for \theta \in \Theta 
and small \epsilon > 0. By condition (2.12), the log-moment generation function \Lambda (t) :=

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/1

5/
24

 to
 1

30
.2

07
.9

5.
2 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



BAYESIAN DISTRIBUTIONALLY ROBUST OPTIMIZATION 1285

lnE\xi | \theta [etZ ] is finite valued and infinitely differentiable with its first and second deriv-
atives at t = 0 being the respective mean and variance. Consequently, by using the
second-order Taylor expansion of the log-moment generating function, we can write

\lambda \epsilon + \lambda lnE\xi | \theta 
\bigl[ 
eZ/\lambda 

\bigr] 
= \lambda \epsilon + \mu + 1

2\sigma 
2/\lambda +O(\lambda  - 2),(2.15)

where2 \mu :=E\xi | \theta [Z], \sigma 2 := Var\xi | \theta (Z), and by minimizing the right-hand side of (2.15)
we obtain approximation \=\lambda \approx \sigma \surd 

2\epsilon 
of the optimal solution of (2.13) and consequently

for small \epsilon > 0 the approximation

min
\lambda >0

\Bigl\{ 
\lambda \epsilon + \lambda lnE\xi | \theta 

\bigl[ 
eZ/\lambda 

\bigr] \Bigr\} 
\approx \mu + \sigma 

\surd 
2\epsilon .(2.16)

Plugging the approximation (2.16) into the Bayesian-DRO problem (2.14) re-
veals that when the ambiguity set is small, Bayesian-DRO is approximately equal
to a weighted sum of the posterior mean and posterior standard deviation of the
performance function, with weight depending on the ambiguity set size \epsilon . A similar
interpretation of mean-variance trade-off has been observed for divergence-based em-
pirical DRO (see [7, 11]), but its mean and standard deviation are with respect to the
empirical distribution. Moreover, [12] shows that the empirical DRO can be inter-
preted as a trade-off between the mean and worst-case sensitivity (we refer the reader
to [12] for the definition of worst-case sensitivity); whether such an interpretation can
be extended to Bayesian-DRO will be left as a future work.

2.1.3. Variants of Bayesian-DRO formulations. In this section we briefly
discuss some other possible DRO formulations in the Bayesian setting and their pros
and cons. We first consider the alternative formulation

min
x\in \scrX ,\lambda >0

E\theta N
\bigl[ 
\lambda \epsilon + \lambda lnE\xi | \theta [exp(Gx/\lambda )]

\bigr] 
.(2.17)

The nested Bayesian-DRO problem (2.14) can be viewed as a relaxation of problem
(2.17). In (2.17) the parameter \lambda is chosen before observing a realization of \theta , while
in (2.14) the parameter \lambda is a function of \theta . We have that the optimal value of the
Bayesian-DRO problem (2.14) is less than or equal to the optimal value of problem
(2.17). It could be noted that the relaxation (2.17) is computationally easier to solve
than (2.14), since it avoids nested Monte Carlo simulation that is needed in solving
the nested formulation (2.14).

Now let's consider another variant of formulation. As mentioned in section 1, the
posterior distribution depends on the choice of the prior density and parametric family.
In the above derivations we considered the ambiguity with respect to the reference
parametric pdf f(\cdot | \theta ), and consequently the corresponding Bayesian-DRO problem
(2.2). It is possible to apply the KL divergence ambiguity approach to the posterior
distribution rather than the parametric family. That is, for \epsilon > 0 let \scrM \epsilon be the family
of pdfs p(\theta ), \theta \in \Theta , such that DKL(p\| p(\cdot | \bfitxi (N)))\leq \epsilon . Let

\scrR (Y ) := sup
p\in \scrM \epsilon 

\biggl\{ 
Ep[Y ] =

\int 

\Theta 

Y (\theta )p(\theta )d\theta 

\biggr\} 
(2.18)

be the corresponding distributionally robust functional defined on a space of random
variables Y : \Theta \rightarrow R. Similar to (2.13) we have the following representation of that
functional:

\scrR (Y ) = inf
\lambda >0

\Bigl\{ 
\lambda \epsilon + \lambda lnE\theta N

\bigl[ 
eY/\lambda 

\bigr] \Bigr\} 
.(2.19)

2Of course, \mu and \sigma depend on \theta ; we suppress this in the notation.
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1286 ALEXANDER SHAPIRO, ENLU ZHOU, AND YIFAN LIN

The corresponding DRO problem is obtained by replacing the expectation E\theta N
in (2.1) with \scrR , that is, minimization of \scrR (E\xi | \theta [Gx]) over x \in \scrX . By (2.19) we can
write this optimization problem as

min
x\in \scrX ,\lambda >0

\lambda \epsilon + \lambda lnE\theta N
\bigl[ 
exp

\bigl( 
E\xi | \theta [Gx/\lambda ]

\bigr) \bigr] 
.(2.20)

Now by interchanging the expectation E\theta N and the supremum in the definition
(2.3) of the distributionally robust functional R, we can consider the functional

\Re (Z) := sup
Q\in M\theta 

E\theta N
\bigl[ 
EQ| \theta [Z]

\bigr] 
(2.21)

and the corresponding Bayesian-DRO problem. We have that \Re (\cdot ) \leq R(\cdot ) and the
inequality can be strict since the extreme measure Q in (2.3) could depend on \theta . The
maximization in (2.21) is over the pdfs of the ambiguity set. Because the expectation
with respect to these pdfs is inside the expectation E\theta N , it is not clear how to represent
the corresponding optimization problem in the KL divergence framework. It is also
not clear what could be an interpretation of the functional \Re and the corresponding
optimization problem.

3. Analysis. Suppose that the data \xi 1, . . . , \xi N are generated i.i.d. from the true

(data-generating) distribution Q\ast , i.e., \xi i
iid\sim Q\ast , and that Q\ast has density (pdf) denoted

q\ast . Recall that p(\theta ) denotes the prior pdf, f(\xi | \theta ) denotes the reference parametric
family, and p(\theta | \bfitxi (N)) denotes the posterior pdf as defined in (1.4).

3.1. Consistency of Bayesian posterior distributions. In this section we
discuss convergence of the posterior pdf p(\theta | \bfitxi (N)) as N goes to infinity. The analysis of
this section is a first step in establishing consistency of the Bayesian-DRO, discussed
in the next section. We make the following assumptions, which are relatively easy to
verify and well suited for the considered framework.

Assumption 3.1. (i) The set \Theta is convex compact with nonempty interior. (ii)
lnp(\theta ) is bounded on \Theta , i.e., there are constants c1 > c2 > 0 such that c1 \geq p(\theta )\geq c2
for all \theta \in \Theta . (iii) q\ast (\xi )> 0 for \xi \in \Xi . (iv) f(\xi | \theta )> 0, and hence p(\theta | \bfitxi (N))> 0, for all
\xi \in \Xi and \theta \in \Theta . (v) f(\xi | \theta ) is continuous in \theta \in \Theta . (vi) lnf(\xi | \theta ), \theta \in \Theta , is dominated
by an integrable (with respect to Q\ast ) function.

Assumptions (i)--(ii) provide sufficient conditions for uniform convergence of the
posterior distribution. Without these assumptions, convergence of the posterior still
holds but may not be uniform. The rest of Assumption 3.1 is regularity assumptions.

Consider function

\psi (\theta ) :=Eq\ast 
\bigl[ 
lnf(\xi | \theta )

\bigr] 
=

\int 

\Xi 

lnf(\xi | \theta )Q\ast (d\xi ) =
\int 

\Xi 

q\ast (\xi ) lnf(\xi | \theta )d\xi .(3.1)

Under Assumption 3.1, the function \psi : \Theta \rightarrow R is real valued. Moreover, we have
that for \theta \in \Theta ,

lim
\theta \prime \rightarrow \theta 

\psi (\theta \prime ) = lim
\theta \prime \rightarrow \theta 

\int 

\Xi 

lnf(\xi | \theta \prime )Q\ast (d\xi ) =
\int 

\Xi 

lim
\theta \prime \rightarrow \theta 

lnf(\xi | \theta \prime )Q\ast (d\xi ) = \psi (\theta ),

where we use continuity of f(\xi | \theta ) in \theta , and the interchange of the limit and integral
follows by the dominated convergence theorem since ln f(\cdot | \theta ) is dominated by an
integrable function. Thus \psi (\theta ) is continuous on \Theta .
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BAYESIAN DISTRIBUTIONALLY ROBUST OPTIMIZATION 1287

Consider the KL divergence

DKL

\bigl( 
q\ast \| f\theta 

\bigr) 
=

\int 

\Xi 

q\ast (\xi ) ln

\biggl( 
q\ast (\xi )
f(\xi | \theta )

\biggr) 
d\xi =Eq\ast [ln q\ast (\xi )] - Eq\ast [lnf(\xi | \theta )]\underbrace{}  \underbrace{}  

\psi (\theta )

.

Let

\Theta \ast := argmin
\theta \in \Theta 

DKL(q\ast \| f\theta ) = argmax
\theta \in \Theta 

Eq\ast [lnf(\xi | \theta )]\underbrace{}  \underbrace{}  
\psi (\theta )

.

Since the set \Theta is compact and \psi (\cdot ) is continuous, it follows that the set \Theta \ast is
nonempty. Note that if the model is correct, then \Theta \ast = \{ \theta \in \Theta : q\ast = f\theta \} .

For a point \theta \ast \in \Theta \ast and \epsilon > 0, define the sets

V\epsilon := \{ \theta \in \Theta : \psi (\theta \ast ) - \psi (\theta )\geq \epsilon \} , U\epsilon :=\Theta \setminus V\epsilon = \{ \theta \in \Theta : \psi (\theta \ast ) - \psi (\theta )< \epsilon \} .(3.2)

Since \psi (\theta \ast ) =max\theta \in \Theta \psi (\theta ), the sets V\epsilon and U\epsilon remain the same for any \theta \ast \in \Theta \ast .
Note that U\epsilon is a neighborhood of the set \Theta \ast . Since the set \Theta is convex with nonempty
interior, it follows that volume

\int 
U\epsilon 
d\theta , of the set U\epsilon , is greater than zero for any \epsilon > 0.

The following theorem shows that the posterior pdf p(\theta | \bfitxi (N)) converges almost
surely to a distribution with probability mass concentrated on \Theta \ast . If \Theta \ast is the sin-
gleton \{ \theta \ast \} , then p(\theta | \bfitxi (N)) converges almost surely to the Dirac delta function \delta (\theta \ast ).
The convergence is uniform in \theta \in \Theta regardless of the choice of the prior pdf p(\theta ). In
what follows, by writing w.p.1 (almost surely) we mean that the considered property
holds with probability one with respect to the probability measure Q\infty 

\ast . Construction
of the probability measure Q\infty 

\ast for the sequence \{ \xi 1, . . .\} is verified by Kolmogorov's
existence theorem. By saying that ``a property holds w.p.1 for N large enough,"" we
mean that there is a subset of the considered probability space having measure zero
such that for any element of the probability space outside this measure-zero set, there
is N \prime (depending on that element) such that the property holds for that element for
any N \geq N \prime .

Lemma 3.1. Suppose that Assumption 3.1 holds. Then for 0 < \beta < \alpha < \epsilon , it
follows that w.p.1 for N large enough

sup
\theta \in V\epsilon 

p(\theta | \bfitxi (N))\leq \kappa (\beta ) - 1e - N(\alpha  - \beta ),(3.3)

where V\epsilon and U\epsilon are defined in (3.2), and3 \kappa (\beta ) :=
\int 
U\beta 
d\theta .

Proof. Define

\phi N (\theta ) :=N - 1 lnf(\bfitxi (N)| \theta ) =N - 1
N\sum 

i=1

lnf(\xi i| \theta ).

By the law of large numbers (LLN) we have for \theta \in \Theta that

lim
N\rightarrow \infty 

\phi N (\theta ) = \psi (\theta ) w.p.1.(3.4)

Hence we can write

N - 1 ln[f(\bfitxi (N)| \theta )] = \psi (\theta ) + \varepsilon N (\theta ),(3.5)

3Recall that under Assumption 3.1, \kappa (\beta )> 0 for any \beta > 0.
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1288 ALEXANDER SHAPIRO, ENLU ZHOU, AND YIFAN LIN

where \varepsilon N (\theta ) tends to 0 w.p.1 for any \theta \in \Theta . Now for \theta \ast \in \Theta \ast and \theta \in V\epsilon we have

lnp(\theta \ast | \bfitxi (N)) - lnp(\theta | \bfitxi (N)) = lnf(\bfitxi (N)| \theta \ast ) - lnf(\bfitxi (N)| \theta ) + lnp(\theta \ast ) - lnp(\theta ).(3.6)

It follows by (3.5) that

N - 1[lnp(\theta \ast | \bfitxi (N)) - lnp(\theta | \bfitxi (N))] =\psi (\theta \ast ) - \psi (\theta ) + \varepsilon N (\theta \ast ) - \varepsilon N (\theta )(3.7)

+N - 1[lnp(\theta \ast ) - lnp(\theta )].

Consider a point \theta \in V\epsilon . Then

N - 1[lnp(\theta \ast | \bfitxi (N)) - lnp(\theta | \bfitxi (N))]\geq \epsilon + \gamma N (\theta ),(3.8)

where \gamma N (\theta ) tends to zero w.p.1. It follows that for any \alpha \in (0, \epsilon ), w.p.1 for N large
enough

lnp(\theta \ast | \bfitxi (N)) - lnp(\theta | \bfitxi (N))\geq N\alpha ,(3.9)

or equivalently

e - N\alpha p(\theta \ast | \bfitxi (N))\geq p(\theta | \bfitxi (N)).(3.10)

In a similar way by using (3.7), we obtain for \theta \in U\epsilon and \beta \in (0, \epsilon ) that w.p.1 for N
large enough

lnp(\theta \ast | \bfitxi (N)) - lnp(\theta | \bfitxi (N))\leq N\beta ,

or equivalently

e - N\beta p(\theta \ast | \bfitxi (N))\leq p(\theta | \bfitxi (N)).(3.11)

Now let us show that w.p.1 for N large enough

p(\theta \ast | \bfitxi (N))\leq eN\beta /\kappa (\beta ).(3.12)

Indeed since p(\theta | \bfitxi (N)) is a density we have

1 =

\int 

\Theta 

p(\theta | \bfitxi (N))d\theta \geq 
\int 

U\beta 

p(\theta | \bfitxi (N))d\theta \geq e - N\beta \kappa (\beta )p(\theta \ast | \bfitxi (N)),

where for the last inequality we used (3.11) with \kappa (\beta ) =
\int 
U\beta 
d\theta .

By Assumption 3.1 the set \Theta is compact and ln f(\xi | \theta ), \theta \in \Theta , is dominated by
an integrable (with respect to Q\ast ) function. Then by the uniform LLN (e.g., [26,
Theorem 7.48]) the limit (3.4) can be strengthened to the uniform limit

lim
N\rightarrow \infty 

sup
\theta \in \Theta 

| \phi N (\theta ) - \psi (\theta )| = 0 w.p.1,(3.13)

i.e., \varepsilon N (\theta ) =N - 1 ln[f(\bfitxi (N)| \theta )] - \psi (\theta ) tends to 0 w.p.1 uniformly in \theta \in \Theta . Assumption
3.1 further supposes that lnp(\theta ) is bounded on \Theta , i.e., there are constants c1 > c2 > 0
such that c1 \geq p(\theta )\geq c2 for all \theta \in \Theta . Then

N - 1[lnp(\theta \ast | \bfitxi (N)) - lnp(\theta | \bfitxi (N))] = \psi (\theta \ast ) - \psi (\theta ) + \eta N (\theta ),(3.14)
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BAYESIAN DISTRIBUTIONALLY ROBUST OPTIMIZATION 1289

where

\eta N (\theta ) := \varepsilon N (\theta \ast ) - \varepsilon N (\theta ) +N - 1[lnp(\theta \ast ) - lnp(\theta )]

tends to 0 w.p.1 uniformly in \theta \in \Theta . Thus for any \alpha \in (0, \epsilon ) we have that w.p.1 for N
large enough

lnp(\theta \ast | \bfitxi (N))\geq N\alpha + sup
\theta \in V\epsilon 

lnp(\theta | \bfitxi (N)).(3.15)

By (3.12) it follows that for 0<\beta <\alpha < \epsilon , w.p.1 for N large enough

sup
\theta \in V\epsilon 

p(\theta | \bfitxi (N))\leq e - N\alpha p(\theta \ast | \bfitxi (N))\leq e - N(\alpha  - \beta )/\kappa (\beta ).(3.16)

This completes the proof.

Let \theta N be random vector with the posterior pdf p(\theta | \bfitxi (N)). We have that prob-
ability of the event \{ \theta N \in V\epsilon \} is given by the integral

\int 
V\epsilon 
p(\theta | \bfitxi (N))d\theta . Consequently

under Assumption 3.1, we have by (3.3) that for any \epsilon > 0, w.p.1 for N large enough,

Prob\{ \theta N \in V\epsilon \} \leq \kappa (\beta ) - 1\nu e - N(\alpha  - \beta ),(3.17)

where \nu is volume of the set \Theta . It follows that probability of the event \{ \theta N \in U\epsilon \} 
converges w.p.1 to one as N \rightarrow \infty . Note that for an appropriate \epsilon > 0, the set
U\epsilon =\Theta \setminus V\epsilon can be an arbitrarily tight neighborhood of the set \Theta \ast . Therefore by (3.17)
we have the following result.

Theorem 3.1. Suppose that Assumption 3.1 holds. Then with w.p.1 the distance
from \^\theta N to the set \Theta \ast converges in probability to zero. In particular if \Theta \ast = \{ \theta \ast \} is
the singleton, then for almost every sequence \{ \xi 1, . . .\} , we have that \theta N converges in
probability to \theta \ast .

Remark 3.1. Convergence of Bayesian posterior distributions has been studied
for a long time, dating back to Doob's consistency [6]. We refer the reader to [10]
for a nice overview of Bayesian consistency results. Our analysis here resembles the
proof and result of Schwartz consistency [24], but we do not require the assumption of
the existence of a testing sequence, which is a common assumption in many Bayesian
consistency results (e.g., [24, 10, 14, 29]) but usually is hard to verify in practice.
Instead we impose simpler and maybe stronger assumptions (see Assumption 3.1).
These assumptions are easy to verify and sufficient for our problems.

3.2. Consistency of Bayesian optimization problems. As in the previous
section, by writing w.p.1 we mean this with respect to the probability measure Q\infty 

\ast .
Consider a function H :\scrX \times \Theta \rightarrow R and the corresponding optimization problem

min
x\in \scrX 

\biggl\{ 
E\theta N [Hx] =

\int 

\Theta 

H(x, \theta )p(\theta | \bfitxi (N))d\theta 

\biggr\} 
.(3.18)

In this section we discuss convergence of the optimal value and the set of optimal
solutions of the above problem as N \rightarrow \infty . In the considered applications the function
H(x, \theta ) is given by

H(x, \theta ) :=E\xi | \theta [G(x, \xi )] and H(x, \theta ) := supQ\in M\theta EQ| \theta [G(x, \xi )](3.19)

in the cases of the risk-neutral Bayesian problem (2.1) and the Bayesian-DRO problem
(2.2), respectively. Note that in both cases, the function H(x, \theta ) is convex in x if
G(x, \xi ) is convex in x.

Let us discuss convergence of random variablesHx(\theta N ) =H(x, \theta N ), \theta N \sim p(\cdot | \bfitxi (N)).
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1290 ALEXANDER SHAPIRO, ENLU ZHOU, AND YIFAN LIN

Lemma 3.2. Suppose that Assumption 3.1 holds and \Theta \ast = \{ \theta \ast \} is the singleton.
Then for any upper semicontinuous4 function h : \Theta \rightarrow R it follows that

lim
N\rightarrow \infty 

\int 

\Theta 

h(\theta )p(\theta | \bfitxi (N))d\theta = h(\theta \ast ) w.p.1.(3.20)

Proof. Let \epsilon > 0 and consider \gamma \epsilon := sup\theta \in U\epsilon 
h(\theta ) - h(\theta \ast ). By the definition (3.2)

we have that V\epsilon \cup U\epsilon = \Theta . Note that since \theta \ast \in U\epsilon , we have that \gamma \epsilon \geq 0. Note also
that since function h(\theta ) is upper semicontinuous, it attains its maximum over \theta \in \Theta ,
and thus the constant

\lambda := sup
\theta \in \Theta 

\{ h(\theta ) - h(\theta \ast )\} 

is finite (and nonnegative). Then we can write
\bigm| \bigm| \bigm| \bigm| 
\int 

\Theta 

h(\theta )p(\theta | \bfitxi (N))d\theta  - h(\theta \ast )

\bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| 
\int 

\Theta 

h(\theta )p(\theta | \bfitxi (N))d\theta  - h(\theta \ast )
\int 

\Theta 

p(\theta | \bfitxi (N))d\theta 

\bigm| \bigm| \bigm| \bigm| 

=

\bigm| \bigm| \bigm| \bigm| 
\int 

U\epsilon 

\bigl( 
h(\theta ) - h(\theta \ast )

\bigr) 
p(\theta | \bfitxi (N))d\theta 

+

\int 

Ve

\bigl( 
h(\theta ) - h(\theta \ast )p(\theta | \bfitxi (N))d\theta 

\bigm| \bigm| \bigm| \bigm| 

\leq \gamma \epsilon 

\int 

U\epsilon 

p(\theta | \bfitxi (N))d\theta + \lambda 

\int 

V\epsilon 

p(\theta | \bfitxi (N))d\theta 

\leq \gamma \epsilon + \lambda 

\int 

V\epsilon 

p(\theta | \bfitxi (N))d\theta .

By (3.3) the term
\int 
V\epsilon 
p(\theta | \bfitxi (N))d\theta can be arbitrarily small w.p.1 for N large enough.

Since h(\cdot ) is upper semicontinuous and U\epsilon shrinks to \{ \theta \ast \} as \epsilon \downarrow 0, we have that
limsup\epsilon \downarrow 0 \gamma \epsilon \leq 0. Because \gamma \epsilon \geq 0, it follows that \gamma \epsilon tends to zero as \epsilon \downarrow 0. Consequently
the assertion (3.20) follows.

In both settings of (3.19) it can be verified under standard regularity conditions
that Hx(\cdot ) is upper semicontinuous on \Theta . Indeed, in the risk-neutral case we have

lim
\theta \prime \rightarrow \theta 

Hx(\theta 
\prime ) = lim

\theta \prime \rightarrow \theta 

\int 
Gx(\xi )f(\xi | \theta \prime )d\xi =

\int 
lim
\theta \prime \rightarrow \theta 

Gx(\xi )f(\xi | \theta \prime )d\xi =Hx(\theta ),(3.21)

i.e., Hx(\cdot ) is continuous, provided that f(\xi | \theta ) is continuous in \theta \in \Theta and the limit
and integral can be interchanged (this can be ensured by the respective dominance
condition). In the DRO setting of the KL divergence approach, we have that

Hx(\theta ) = inf
\lambda >0

\Bigl\{ 
\lambda \epsilon + \lambda lnE\xi | \theta [eGx/\lambda ]

\Bigr\} 
.(3.22)

The above function is finite valued by assumption (2.12). Since infimum of a family
of continuous functions is upper semicontinuous, it follows that the above Hx(\cdot ) is
upper semicontinuous provided that E\xi | \theta [eGx/\lambda ] is continuous in \theta .

For x \in \scrX suppose that Hx(\cdot ) is upper semicontinuous on \Theta . Then under the
assumptions of Lemma 3.2 we have by (3.20) that

lim
N\rightarrow \infty 

E\theta N [Hx] =H(x, \theta \ast ) w.p.1.(3.23)

4Recall that function h(\theta ) is said to be upper semicontinuous if h(\theta ) \geq limsup\theta \prime \rightarrow \theta h(\theta 
\prime ) for

\theta \in \Theta . Of course, any continuous function is upper semicontinuous.
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BAYESIAN DISTRIBUTIONALLY ROBUST OPTIMIZATION 1291

The above can be viewed as a pointwise LLN for random variables Hx(\theta N ). Under
mild additional assumptions this pointwise LLN can be extended (we will discuss this
below) to the respective uniform LLN:

lim
N\rightarrow \infty 

sup
x\in \scrX 

\bigm| \bigm| E\theta N [Hx] - H(x, \theta \ast )
\bigm| \bigm| = 0 w.p.1.(3.24)

Now consider the limiting optimization problem

min
x\in \scrX 

H(x, \theta \ast ).(3.25)

Denote by \vargamma N and \vargamma \ast the optimal value of the respective problems (3.18) and
(3.25) and the corresponding sets

\scrS N := argmin
x\in \scrX 

E\theta N [Hx] and \scrS \ast := argmin
x\in \scrX 

H(x, \theta \ast )

of optimal solutions. Suppose that the optimal value \vargamma \ast of problem (3.25) is finite.
Then the uniform LLN (3.24) implies that (e.g., [26, Proposition 5.2])

lim
N\rightarrow \infty 

\vargamma N = \vargamma \ast w.p.1.(3.26)

Under mild additional conditions, it is possible to show that the uniform LLN
implies that5

lim
N\rightarrow \infty 

D(\scrS N ,\scrS \ast ) = 0 w.p.1(3.27)

(see, e.g., [26, Theorems 5.3 and 5.4]). This means that if xN is an optimal solution
of problem (3.18), then the distance from xN to \scrS \ast tends to zero w.p.1. In particular,
if \scrS \ast = \{ x\ast \} is the singleton, then xN converges to x\ast w.p.1.

Let us discuss now the uniform LLN (3.24). It is relatively easy to derive the
uniform LLN in the following convex case.

Assumption 3.2. Suppose that the set \scrX is compact and there is a convex
neighborhood6 \scrV of \scrX such that function H(\cdot , \theta ) is finite valued convex on \scrV for
every \theta \in \Theta .

Convexity of H(\cdot , \theta ) implies convexity of the expectation function
\int 
\Theta 
H(\cdot , \theta )

p(\theta | \bfitxi (N))d\theta . It is known by convex analysis that an extended real valued convex
function is continuous on the interior of its domain. Moreover, if fk : Rn \rightarrow R is a
sequence of convex functions and f : Rn \rightarrow R is a convex function such that its do-
main has a nonempty interior, and fk(x) converges to f(x) for all x in a dense subset
of Rn, then fk(\cdot ) converges uniformly to f(\cdot ) on every compact subset of Rn which
does not contain a boundary point of the domain of f (e.g., [22, Theorem 7.17]).
By using this result it is not difficult to derive the following uniform LLN (e.g., [26,
Theorem 7.50]).

Proposition 3.1. Suppose that Assumption 3.2 is fulfilled and the pointwise
LLN (3.23) holds for every x\in \scrV . Then the uniform LLN (3.24) follows.

Without the convexity assumption we need to impose additional conditions. The
following is similar to a derivation of the uniform LLN in the standard case (e.g., [26,
Theorem 7.48]).

5By D(A,B) we denote the deviation of set A \subset Rn from set B \subset Rn, that is, D(A,B) :=
supx\in A dist(x,B), with dist(x,B) = supy\in B \| x - y\| .

6By the ``neighborhood"" we mean that the set \scrV is open and \scrX \subset \scrV .
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1292 ALEXANDER SHAPIRO, ENLU ZHOU, AND YIFAN LIN

Theorem 3.2. Suppose that Assumption 3.1 holds, the set \Theta \ast = \{ \theta \ast \} is the
singleton, the set \scrX is compact, and the function H(x, \theta ) is continuous on \scrX \times \Theta .
Then the uniform LLN (3.24) follows.

Proof. For a point \=x \in \scrX , a sequence \nu k of positive numbers converging to zero,
and \scrV k := \{ x\in \scrX : \| x - \=x\| \leq \nu k\} , consider

\Delta k(\theta ) := sup
x\in \scrV k

| H(x, \theta ) - H(\=x, \theta )| , \theta \in \Theta .

Since H(x, \theta ) is continuous on \scrX \times \Theta and \scrX is compact, it follows that \Delta k(\cdot ) is
continuous on \Theta . Then by Lemma 3.2 we have that

lim
N\rightarrow \infty 

E\theta N [\Delta k] =\Delta k(\theta 
\ast ) w.p.1.(3.28)

By continuity of H(\cdot , \theta \ast ), we have that \Delta k(\theta 
\ast ) tends to zero as k\rightarrow \infty . We also have

by Lemma 3.2 that

lim
N\rightarrow \infty 

E\theta N [H\=x] =H(\=x, \theta \ast ) w.p.1.(3.29)

Furthermore for x\in \scrV k,
\bigm| \bigm| E\theta N [Hx] - E\theta N [H\=x]

\bigm| \bigm| \leq 
\bigm| \bigm| E\theta N [Hx] - H(\=x, \theta \ast )

\bigm| \bigm| +
\bigm| \bigm| E\theta N [H\=x] - H(\=x, \theta \ast )

\bigm| \bigm| 
\leq E\theta N [\Delta k] +

\bigm| \bigm| E\theta N [H\=x] - H(\=x, \theta \ast )
\bigm| \bigm| .

It follows that for a given \epsilon > 0 there is a neighborhood \scrW of \=x such that w.p.1 for
N large enough

sup
x\in \scrX \cap \scrW 

\bigm| \bigm| E\theta N [Hx] - E\theta N [H\=x]
\bigm| \bigm| \leq \epsilon .(3.30)

The proof can be completed now exactly in the same way as in the proof of Theorem
7.48 in [26] by using compactness of the set \scrX .

The assumed continuity of H(x, \theta ) on \scrX \times \Theta can be verified under mild regularity
conditions. That is, assume that G(x, \xi ) is continuous in x \in \scrX , f(\xi | \theta ) is continuous
in \theta \in \Theta , and Gx(\xi )f\theta (\xi ), (x, \theta )\in \scrX \times \Theta , is dominated by an integrable function. Then
in the risk-neutral case the continuity of H(x, \theta ) can be verified similarly to (3.21). In
the DRO setting, with H(x, \theta ) given in (3.22), the continuity of H(x, \theta ) also follows
since the objective function in the right-hand side minimization of problem (3.22) is
strictly convex in \lambda > 0, and thus the corresponding minimizer is unique. By convexity
of the objective function, this minimizer is a continuous function of (x, \theta ) \in \scrX \times \Theta .
Therefore, for (x, \theta ) in a neighborhood of a considered point the minimization can
be restricted to a bounded (compact) subset of R+, and hence the continuity at the
considered point follows.

3.3. Determination of the ambiguity set size. We consider how to deter-
mine the ambiguity set size \epsilon in the Bayesian-DRO problem (2.14). Recall that
Q\ast denotes the true distribution of \xi with q\ast denoting its pdf, and \mu := E\xi | \theta [Z],
\sigma 2 := Var\xi | \theta (Z) for Z : \Xi \rightarrow R. The true objective function can be written as

EQ\ast [Z] = \mu +E\xi | \theta 
\biggl[ 
Z(\xi )

q\ast (\xi ) - f(\xi | \theta )
f(\xi | \theta )

\biggr] 

= \mu +E\xi | \theta 
\biggl[ 
(Z(\xi ) - \mu )

q\ast (\xi ) - f(\xi | \theta )
f(\xi | \theta )

\biggr] 
,
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BAYESIAN DISTRIBUTIONALLY ROBUST OPTIMIZATION 1293

where the second equality uses the fact E\xi | \theta [ q\ast (\xi ) - f(\xi | \theta )f(\xi | \theta ) ] = 0. Applying the Cauchy--
Schwarz inequality to the right-hand side of the equation above, we have

EQ\ast [Z]\leq \mu + \sigma E\xi | \theta 

\Biggl[ \biggl( 
q\ast (\xi ) - f(\xi | \theta )

f(\xi | \theta )

\biggr) 2
\Biggr] 1/2

,

where the last term can be simplified as

E\xi | \theta 

\Biggl[ \biggl( 
q\ast (\xi ) - f(\xi | \theta )

f(\xi | \theta )

\biggr) 2
\Biggr] 
=EQ\ast 

\biggl[ 
q\ast (\xi )
f(\xi | \theta )

\biggr] 
 - 1.

If we let 2\epsilon =EQ\ast [
q\ast (\xi )
f(\xi | \theta ) ] - 1, then by (2.16) we have

EQ\ast [Z]\leq \mu + \sigma 
\surd 
2\epsilon \approx min

\lambda >0

\Bigl\{ 
\lambda \epsilon + \lambda lnE\xi | \theta 

\bigl[ 
eZ/\lambda 

\bigr] \Bigr\} 
,(3.31)

which implies the objective value of the Bayesian-DRO problem (2.14) is an upper
bound on the true objective value. Note here \epsilon depends on \theta .

A plausible idea of choosing the ambiguity set size is to make sure the ambiguity
set contains the true distribution. That is, we would set

\epsilon (\theta ) =DKL(q\ast \| f\theta ).

When q\ast is close to f\theta , we can writeDKL(q\ast \| f\theta )\approx EQ\ast [
q\ast (\xi )
f(\xi | \theta ) ] - 1. However, (3.31)

shows even choosing \epsilon half of the size, i.e., \epsilon = (EQ\ast [
q\ast (\xi )
f(\xi | \theta ) ] - 1)/2, the Bayesian-DRO

objective is still an upper bound on the true objective, which indicates this choice of
ambiguity set size might be too conservative. Moreover, since q\ast is unknown and has
to be replaced by a continuous approximation of its empirical distribution, the number
of samples required to achieve a certain approximation accuracy grows exponentially
in dimension, which makes this method impractical in high dimension.

Now we consider a different method, which is inspired by [3]. We choose the
ambiguity set to be the minimum KL ball containing at least one distribution under
which the corresponding problem has the same optimal solution as the true problem.
More specifically, we define a set of distributions as

\scrQ (x\ast ) := \{ Q : x\ast \in argmin
x

EQ[G(x, \xi )]\} ,

where x\ast is an optimal solution to the true problem. When G(x, \xi ) is convex in x and
x\ast is an interior point of \scrX , we can simplify by the first-order optimality condition,

\scrQ (x\ast ) = \{ Q :EQ[\nabla xG(x
\ast , \xi )] = 0\} .

In general, we can represent the condition in \scrQ (x\ast ) by KKT conditions. Clearly,
Q\ast \in \scrQ (x\ast ), i.e., the true distribution falls in the set \scrQ (x\ast ). Now we set the ambiguity
set size by minimizing the KL divergence from \scrQ (x\ast ) to f\theta :

\^\epsilon (\theta ) = min
q\in \scrQ (x\ast )

DKL(q| | f\theta ).(3.32)

We do not know the optimal solution x\ast , so in implementation we can replace
x\ast by the empirical optimal solution \^xN , which is the optimal solution to the SAA
problem minx\in \scrX E \^QN

[G(x, \xi )], where \^QN is the empirical distribution of the data

\bfitxi (N). Since \^xN  - x\ast = Op(N
 - 1/2) under certain regularity conditions, in particular

if the true optimal x\ast is unique (see section 5.1 of [26]), and under mild conditions
\epsilon (\theta ,x) =minq\in \scrQ (x)DKL(q| | f\theta ) is a smooth function in x, one can expect that \epsilon (\theta , \^xN )
is a good approximation of \^\epsilon (\theta ).
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1294 ALEXANDER SHAPIRO, ENLU ZHOU, AND YIFAN LIN

4. Numerical experiments. In this section, we demonstrate the performance
of Bayesian-DRO on problems of one dimension and multidimension with randomness
having continuous and finite support, respectively. The Bayesian-DRO problem (2.14)
is restated as follows:

min
x\in \scrX 

E\theta N
\biggl[ 
inf
\lambda >0

\Bigl\{ 
\lambda \epsilon + \lambda lnE\xi | \theta 

\Bigl[ 
eGx/\lambda 

\Bigr] \Bigr\} \biggr] 
,(4.1)

where N is the number of data points, and Gx stands for the cost function G(x, \xi ).
In implementation, we apply SAA (e.g., [26]) to solve problem (4.1). We generate
100 samples of \theta from the posterior distribution p(\theta | \bfitxi (N)) and 100 samples of \xi from
the reference distribution f(\xi | \theta ) conditioned on each sampled \theta . We compare the
following approaches.

(1) Bayesian-DRO, with prespecified ambiguity set size \epsilon , which varies in a certain
range.

(2) Bayesian-DRO, with ambiguity set size \epsilon 1(\theta ) = DKL(q\ast \| f(\cdot ; \theta )), where the
unknown true distribution q\ast is estimated by the empirical distribution of the
data.

(3) Bayesian-DRO, with ambiguity set size \epsilon 2(\theta ) =
\epsilon 1(\theta )
2 . It halves \epsilon 1 to reduce

the overestimation, as shown in Section 3.3.
(4) Bayesian-DRO, with ambiguity set size \epsilon 3(\theta ), that is, solving problem (3.32)

with x\ast replaced by the empirical optimal solution to the SAA problem
minx\in \scrX E \^QN

[G(x, \xi )], where \^QN is the empirical distribution.
(5) Bayesian average, that is, solving the Bayesian average problem (2.1), which

is the risk-neutral Bayesian average and is equivalent to letting \epsilon = 0 in
Bayesian-DRO.

(6) Empirical approach, that is, solving the SAA problem minx\in \scrX E \^QN
[G(x, \xi )].

(7) When the distribution of \xi has a finite support \{ \xi 1, . . . , \xi m\} , we compare with
empirical-DRO (KL) in [12]. Specifically, we solve the following optimization
problem:

min
x\in \scrX 

max
Q

EQ[G(x, \xi )] s.t.
m\sum 

i=1

qi log

\biggl( 
qi
\^pi

\biggr) 
\leq \epsilon ,

\sum 

i:\^pi>0

qi = 1, qi \geq 0,

where Q = [q1, . . . , qm], and \^pi is the probability mass on \xi i in the empirical
distribution.

(8) We also compare with the DRO-Wasserstein. That is, we solve the following
optimization problem:

min
x\in \scrX 

max
Q

EQ[G(x, \xi )] s.t. Wp(Q, \^QN )\leq \~\epsilon ,(4.2)

where Wp(Q, \^QN ) is the Wasserstein distance of order p between Q and the
empirical distribution \^QN , and \~\epsilon is the ambiguity set size. The dual of (4.2)
is given by [8, 3, 9]

min
x\in \scrX ,\lambda \geq 0

\lambda \~\epsilon p +
1

N

N\sum 

i=1

sup
\xi \in \Xi 

[G(x, \xi ) - \lambda d(\xi , \^\xi i)
p],

where \Xi is the space of \xi , d(\xi , \^\xi i) is the metric (or distance function) between
two points \xi and \^\xi i, and \{ \^\xi i\} Ni=1 are the data points. In our experiments, we
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BAYESIAN DISTRIBUTIONALLY ROBUST OPTIMIZATION 1295

consider Wasserstein distance of order p = 1,2, and the metric is chosen to
be the Euclidean norm. It is shown in [8] that, under mild assumptions, the
DRO problems over Wasserstein balls can be reformulated as finite convex
programs.

When the randomness has finite support, we choose the prior distribution in
Bayesian-DRO and Bayesian average to be an uninformative Dirichlet distribution
on \theta . Sampling from a Dirichlet posterior distribution given the data is the same as
Bayesian bootstrapping [15]. Please note that in this case, we implicitly choose the
parameterized family to contain all discrete distributions on the support, which is the
correct model. Numerical results for finite-support examples are shown in the online
appendix.

When the distribution of \xi is continuous, we compute the ambiguity set sizes in
Bayesian-DRO with the following implementation details.

\bullet In Bayesian-DRO with ambiguity set size \epsilon 1(\theta ) and \epsilon 2(\theta ), the KL divergence
from the empirical distribution to the reference distribution is estimated us-
ing the estimation method in [19]. Specifically, we compute the empirical
cumulative distribution function (cdf) given the data, construct linear inter-
polation of the empirical cdf, and then use the finite difference method to
compute the estimated KL divergence as

\widehat DKL(Q\| f(\cdot ; \theta )) = 1

N

N\sum 

i=1

log

\left( 
 

\delta Pc

\Bigl( 
\^\xi i

\Bigr) 

\Delta f
\Bigl( 
\^\xi i;\theta 

\Bigr) 

\right) 
 ,

where \{ \^\xi i\} Ni=1 are the data points, Pc is the linear interpolation of the empir-
ical cdf, \delta Pc(\^\xi i) = Pc(\^\xi i) - Pc(\^\xi i  - \Delta ), and \Delta <mini\{ \^\xi i  - \^\xi i - 1\} .

\bullet In Bayesian-DRO with ambiguity set size \epsilon 3(\theta ), to compute the minimum KL
ball, we conduct Monte Carlo sampling from f(\xi | \theta ). Essentially, we employ
SAA to solve the problem

min
q

1

L

L\sum 

i=1

log

\biggl( 
q(\xi i)

f(\xi i| \theta )

\biggr) 
q(\xi i)

f(\xi i| \theta )

s.t.
1

L

L\sum 

i=1

q(\xi i)

f(\xi i| \theta )
= 1,

1

L

L\sum 

i=1

\nabla xG(x
\ast , \xi i)

q(\xi i)

f(\xi i| \theta )
= 0, q(\xi i)\geq 0,

where \xi 1, . . . , \xi L are L = 100 samples drawn from f(\xi | \theta ). We solve this
optimization problem using Gurobi 9.1 with Python 3.7 API and the scipy
package in Python. Algorithmic description of this approach can be found in
Algorithm 1 in the appendix.

We evaluate the performance of each algorithm following the procedure in [12],
as follows. All algorithms are run for K = 200 replications. In each replication
j = 1, . . . ,K, we collect N data points \^\xi 1, . . . , \^\xi N drawn i.i.d. from the true distribu-
tion P\theta c . Then we run each algorithm with the same dataset and obtain its optimal
solution, denoted by x(j)(\epsilon ), where \epsilon is the corresponding ambiguity set size. We
then compute \mu (j)(\epsilon ) = EP\theta c

[G(x(j)(\epsilon ), \xi )] and v(j)(\epsilon ) = VarP\theta c
[G(x(j)(\epsilon ), \xi )], i.e., the

(mean and variance) performance of the obtained solutions under the true system. The
out-of-sample mean and variance are then approximated using these K = 200 replica-
tions, with \^\mu N (\epsilon ) = 1

K

\sum K
j=1 \mu 

(j)(\epsilon ) and \^vN (\epsilon ) = 1
K

\sum K
j=1 v

(j)(\epsilon )+ 1
K - 1

\sum K
j=1(\mu 

(j)(\epsilon ) - 
\^\mu N (\epsilon ))2.
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1296 ALEXANDER SHAPIRO, ENLU ZHOU, AND YIFAN LIN

4.1. One-dimensional newsvendor with continuous randomness. In this
subsection, we run experiments on a one-dimensional newsvendor problem when the
randomness \xi has a continuous distribution and the data all come from the true
distribution (see [21] for a review on newsvendor models). We summarize the notation
used in the classical newsvendor problem as follows.

\bullet x: order amount, assumed to be in [0,M ]; M is the maximal order amount.
\bullet \xi : random customer demand.
\bullet b: backorder cost per unit.
\bullet h: holding cost per unit.
\bullet c: ordering cost per unit.

The cost function is given by G(x, \xi ) = h(x - \xi )+ + b(\xi  - x)+ + cx, where (\cdot )+ =
max(\cdot ,0). We assume the customer demand \xi \in \Xi , where \Xi = (0,\infty ). Parameters
used in the newsvendor problem are summarized as follows: maximal ordering amount
M = 50, backorder cost b= 8, holding cost h= 3, ordering cost c= 0.

In the first experiment, we test the performance of our proposed algorithms under
model misspecification. Specifically, the true distribution of the customer demand is
normal distribution with mean 10 and variance 100 truncated above 0. In Bayesian-
DRO, we choose the parametric family f(\xi | \theta ) to be the exponential distribution with
rate parameter \theta . To have closed-form posterior update, we use the conjugate prior of
gamma distribution with parameter (1,1). Please note this choice of prior distribution
is only for computational convenience. If the Bayesian updating does not admit closed-
form posterior, we may use Monte Carlo simulation, such as Markov chain Monte
Carlo methods, to draw samples from the posterior; we only need sample average
approximation of the expectations when solving the Bayesian-DRO problem. Figure 1
shows the out-of-sample mean-variance frontiers (with varying \epsilon values) of different
algorithms for data size N = 5 and 20. For the empirical approach (abbreviated
as empirical), Bayesian average approach (abbreviated as Bayesian average), and
Bayesian-DRO with calibrated ambiguity set size \epsilon 1(\theta ), \epsilon 2(\theta ), \epsilon 3(\theta ), their performance
is denoted by one point (not a frontier) in the figure. Note that for empirical-DRO with
Wasserstein distance (abbreviated as W. in the figure) of order p= 1, it is equivalent
to the empirical approach (see Remark 6.7 in [8] and Theorem 3.2 in [16]) and is
independent of the ambiguity set size. Table 1 shows the out-of-sample performance
of variants of Bayesian-DRO when data size is N = 5 and 20, respectively; solving
the true problem (abbreviated as true) is included as a benchmark for all compared

(a) N = 5. (b) N = 20.

Fig. 1. Newsvendor with continuous support: out-of-sample mean-variance frontiers of differ-
ent algorithms under different \epsilon values. Data size N is 5 and 20, respectively. Bayesian-DRO has
model misspecification.
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BAYESIAN DISTRIBUTIONALLY ROBUST OPTIMIZATION 1297

Table 1
Newsvendor with continuous support: out-of-sample performance of variants of Bayesian-DRO

with model misspecification. Data size N is 5 and 20, respectively.

N

N

ε1 ε2 ε3 Bayesian avg. Empirical True

ε value 0.58(0.04) 0.29(0.02) 0.07(0.01) - - -

solution 26.13(0.80) 24.04(0.65) 18.15(0.38) 15.46(0.31) 16.44(0.38) 17.41

mean 43.14(0.33) 41.62(0.71) 36.16(0.53) 35.81(0.31) 36.77(0.25) 30.96

variance 802.24(2.39) 769.72(2.11) 823.97(2.56) 1119.30(2.73) 1082.21(2.93) 640.59

=20 ε1 ε2 ε3 Bayesian avg. Empirical True

ε value 0.34(0.02) 0.17(0.01) 0.03(0.00) - - -

solution 24.36(0.38) 22.13(0.30) 18.30(0.17) 16.16(0.15) 16.97(0.17) 17.41

mean 38.62(0.54) 36.19(0.60) 33.22(0.07) 32.22(0.06) 32.20(0.07) 30.96

variance 478.74(1.62) 485.15(1.49) 601.01(1.95) 832.66(2.38) 754.11(2.22) 640.59

=5

(a) N = 5. (b) N = 20.

Fig. 2. Newsvendor with continuous randomness: out-of-sample mean-variance frontiers of
different algorithms under different \epsilon values. Data size N is 5 and 20, respectively. Bayesian-DRO
chooses the correct model.

algorithms; standard errors of the average \epsilon values, the obtained solutions, and the
out-of-sample performances are shown within the parentheses in the table.

In the second experiment, we test the performance of our proposed algorithms
without model misspecification. Specifically, the true distribution of the customer
demand is exponential distribution with mean 20. We choose the parametric family
f(\xi | \theta ) to be the correct model, i.e., the exponential distribution with rate parameter
\theta . Figure 2 shows the out-of-sample mean-variance frontiers (with varying \epsilon values)
of different algorithms for data size N = 5 and 20. Table 2 shows the out-of-sample
performance of variants of Bayesian-DRO when data size is N = 5 and 20, respectively.

We have the following observations from the two experiments above.
(1) Trade-off between out-of-sample mean and variance. Both Bayesian-

DRO and empirical-DRO show the trade-off. As the ambiguity set size \epsilon 
grows larger, the out-of-sample mean deteriorates, which trades for more ro-
bustness in terms of smaller out-of-sample variance. The empirical approach
is equivalent to empirical-DRO with \epsilon = 0, and the Bayesian average is equiva-
lent to Bayesian-DRO with \epsilon = 0. Therefore, the empirical approach and the
Bayesian average produce solutions with larger out-of-sample variance and
smaller out-of-sample mean compared to empirical-DRO and Bayesian-DRO,
respectively.

(2) Model misspecification affects the performance of Bayesian-DRO.
When there is model misspecification, Bayesian-DRO underperforms empirical-
DRO with Wasserstein distance of order p = 2, as can be seen from the
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1298 ALEXANDER SHAPIRO, ENLU ZHOU, AND YIFAN LIN

Table 2
Newsvendor with continuous randomness: out-of-sample performance of variants of Bayesian-

DRO without model misspecification. Data size N is 5 and 20, respectively.

worse mean-variance frontier in Figure 1. If we choose the correct model,
Bayesian-DRO outperforms empirical-DRO with Wasserstein distance of or-
der p = 2, as can be seen from Figure 2. This is expected, since a poorly
chosen model, which serves as the reference distribution of the ambiguity set
in Bayesian-DRO, deteriorates the performance of Bayesian-DRO. However,
the ambiguity set in Bayesian-DRO still provides robustness against model
misspecification, as it can be seen from Figure 1 that Bayesian-DRO (with
\epsilon 3) has about the same out-of-sample mean but much smaller variance than
Bayesian average (which is equivalent to \epsilon = 0 in Baysian-DRO).

(3) Bayesian-DRO outperforms empirical-DRO with KL divergence.
In almost all the experiments, the mean-variance frontier of Bayesian-DRO
dominates that of empirical-DRO (KL). The reason is that the ambiguity
sets of Bayesian-DRO contain distributions supported on the domain of the
randomness if the prior distribution is chosen to cover the domain, whereas
the empirical-DRO with KL divergence only allows probability distributions
in the ambiguity set that are absolutely continuous with respect to the empir-
ical distribution (i.e., the observed data points) and leaves out distributions
supported on the unobserved domain.

(4) Parameter-dependent ambiguity set size outperforms prespecified
ones. For Bayesian-DRO with parameter-dependent ambiguity set size \epsilon 2(\theta ),
\epsilon 3(\theta ), the out-of-sample performances are better compared to Bayesian-DRO
with prespecified ambiguity set size (i.e., fixed \epsilon for all \theta ). It shows we can gain
better performance for Bayesian-DRO by tuning an appropriate parameter-
dependent ambiguity set size, although this incurs more computational cost.

(5) Large data size reduces model uncertainty. As expected, solutions
of all the methods become more stabilized (smaller variance) as data size
increases. In particular, solution of the empirical approach gets closer to the
true optimal solution with more data.

4.2. Multidimensional newsvendor with continuous randomness. In this
subsection, we consider a three-dimensional newsvendor problem with multi-items,
where the newsvendor sells three kinds of items (see [27] for a review on newsven-
dor models). Assume the customer demands for each kind of item are indepen-
dent and follow normal distribution with mean 10, 12, 15 and standard deviation
20, 20, 20, respectively, truncated above 0. The objective function is given by
G(x, \xi ) =

\sum 3
i=1 hi(xi  - \xi i)

+ + bi(\xi i  - xi)
+. We set hi = 3, bi = 8 for i= 1,2,3.

The parametric distribution we choose is the exponential distribution with rate
parameter \theta i for each customer demand for item i. Figure 3 shows the out-of-sample
mean-variance frontiers (with varying \epsilon values) of different algorithms when data size

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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BAYESIAN DISTRIBUTIONALLY ROBUST OPTIMIZATION 1299

Fig. 3. Multidimensional newsvendor with continuous randomness: out-of-sample mean-
variance frontiers of different algorithms under different \epsilon values. Data size N is 10. Bayesian-DRO
has model misspecification.

Table 3
Multidimensional newsvendor with continuous randomness: out-of-sample performance of vari-

ants of Bayesian-DRO that has model misspecification. Data size N is 10.

N ε1 ε2 ε3 Bayesian avg. Empirical True
ε value 1.05(0.03) 0.53(0.02) 0.17(0.01) - - -
sol error 20.95(0.50) 18.84(0.43) 11.67(0.32) 10.33(0.28) 12.37(0.39) 0.00
mean 254.72(2.09) 238.56(1.83) 198.21(0.78) 184.13(0.76) 190.28(0.95) 171.28

variance 4585.39(35.09) 4759.10(28.18) 5845.42(16.55) 10030.76(20.25) 8613.13(20.35) 7066.05

=10

N = 10. Table 3 shows the out-of-sample performance of variants of Bayesian-DRO
when data size N = 10; in addition to out-of-sample performance, we also show the
solution error, which is obtained by calculating each solution's Euclidean distance
from the true optimal solution; standard errors of the average \epsilon values, the obtained
solution error, and the out-of-sample performances are shown within the parentheses
in the table. Similar to the one-dimensional newsvendor problem, Bayesian-DRO
outperforms empirical-DRO (KL) in the multidimensional newsvendor problem.

5. Conclusions and future work. We propose a new formulation, Bayesian
distributionally robust optimization, or Bayesian-DRO, to address the ambiguity
about the probability distribution in static stochastic optimization. Bayesian-DRO
takes advantage of Bayesian estimation of parametric distributions and at the same
time imposes robustness against the uncertainty introduced by the assumed paramet-
ric model. When the ambiguity set is constructed using KL divergence and the size
of the set is small, the robustness of Bayesian-DRO can be interpreted as a trade-off
between the posterior mean and standard deviation of the cost function. We show
the strong consistency of Bayesian posterior distributions and subsequently show the
convergence of objectives and optimal solutions of Bayesian-DRO problems. More-
over, we consider several methods of determining the ambiguity set size in Bayesian-
DRO. Our numerical results demonstrate that when data are limited, Bayesian-DRO
has superior out-of-sample performance compared to KL-based empirical DRO, the
Bayesian-average approach, and the empirical approach; Bayesian-DRO outperforms
Wasserstein-based empirical DRO when the parametric family is correctly chosen (i.e.,
no model misspecification) but underperforms when there is model misspecification.
More research is needed to fully understand the connections between these frameworks
(Bayesian-DRO, empirical-DRO, BRO) and how to choose a framework for specific

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1300 ALEXANDER SHAPIRO, ENLU ZHOU, AND YIFAN LIN

data-driven stochastic optimization problems.
The nature of sequential Bayesian updating makes Bayesian approaches especially

amenable to multistage (dynamic) settings where data come sequentially in time. One
of the future works will extend Bayesian-DRO to multistage stochastic optimization,
including multistage stochastic programming, stochastic control, and Markov decision
processes.

5. Appendix A. Supplementary numerical experiments.

A.1. Algorithm 1: Bayesian-DRO with ambiguity set size \bfitepsilon 3.

Algorithm 1: Bayesian-DRO with ambiguity set size ε3.

input : data points of size N , number of θ samples Nθ, number of ξ
samples Nξ, number of Monte Carlo samples to compute the
ambiguity set size L

output: optimal solution x(ε3)
Solve for the SAA solution x∗

N ;
for i = 1 ← 1 to Nθ do

Simulate θi from posterior distribution p(θ|ξ(N));

Simulate {ξj}Lj=1 from reference distribution f(ξ|θi), solve the
optimization problem

ε3(θi) = min
q

1

L

L∑

j=1

log(
q(ξj)

f(ξi|θi)
)
q(ξi)

f(ξj |θ)

s.t.
1

L

L∑

j=1

q(ξj)

f(ξj |θi)
= 1,

1

L

L∑

j=1

∇xG(x∗
N , ξj)

q(ξj)

f(ξj |θi)
= 0, q(ξj) ≥ 0;

Simulate {ξ̂j}Nξ

j=1 from reference distribution f(ξ|θi) and store them as

dataset Di;

end
Solve the Bayesian-DRO problem and obtain the optimal solution x(ε3)

min
x∈X ,λi>0


 1

Nθ

Nθ∑

i=1



λiε3 (θi) + λi log


1

Nξ

∑

ξ̂∈Di

exp
(
G(x, ξ̂)/λi

)



.

A.2. One-dimensional newsvendor with finite-support randomness. In
this subsection, we first run experiments on a one-dimensional newsvendor problem
when the randomness \xi has a finite support and the data all come from the true
distribution. Different from the continuous-support case, the random customer de-
mand is assumed to take discrete values in \{ 1,2, . . . ,14,15\} . The true probability
mass \theta c \in \Delta 15 is unknown to the decision maker, where \Delta 15 stands for a probabil-
ity simplex. Parameters used in the newsvendor problem are summarized as follows:
maximal ordering amount M = 20, backorder cost b= 10, holding cost h= 2, ordering
cost c= 3.

Figure 4 shows the out-of-sample mean-variance frontiers (with varying \epsilon values)
of different algorithms for data sizes N = 5, 10, 50, and 1000. Table 4 shows the
out-of-sample performance of each algorithm when data size is N = 5,10,50,1000,
respectively. Similar to the continuous-support case, Bayesian-DRO performs better
than empirical-DRO in most cases , as the mean-variance frontier of Bayesian-DRO

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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BAYESIAN DISTRIBUTIONALLY ROBUST OPTIMIZATION 1301

(a) N = 5. (b) N = 10.

(c) N = 50. (d) N = 1000.

Fig. 4. Newsvendor with finite-support randomness: out-of-sample mean-variance frontiers of
different algorithms under different \epsilon values. Data size varies from 5,10,50, to 1000.

dominates that of empirical-DRO (KL). Note that for a small data size, empirical-
DRO (KL) will only put nonnegative probability mass on the support point \^\xi that
has been observed in the data. On the other hand, by imposing an appropriate prior
(in this problem we use a noninformative Dirichlet prior whose domain is a uniform
distribution on the support of \xi ), Bayesian-DRO can put nonnegative probability mass
on all the support points. Also note that the mean-variance frontiers of Bayesian-DRO
and empirical-DRO get closer as the data size N goes to infinity due to the reduced
model uncertainty.

Next, we consider a contaminated data model, where 80\% data are generated
from the true distribution and 20\% data are generated from an arbitrary distribu-
tion. In particular, the arbitrary distribution is randomly generated (specified by
its probability mass) and is different in each replication. Figure 5 shows the out-of-
sample mean-variance frontiers (with varying \epsilon values) of different algorithms for data
size N = 5 and 50. Table 5 shows the out-of-sample performance of all variants of
Bayesian-DRO when data size is N = 5 and 50, respectively. Similar to the noncon-
taminated case, Bayesian-DRO outperforms other benchmarks even when data are
contaminated. Note that the solution of the empirical approach does not get closer
to the true optimal solution with more data, since part of the data are not from the
true distribution and possibly become outliers.

A.3. Multidimensional portfolio optimization with finite-support
randomness. In this subsection, we consider a five-dimensional portfolio optimiza-
tion problem when the randomness \xi has finite support and the data all come from the
true distribution. We summarize notation used in the portfolio optimization problem
as follows.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1302 ALEXANDER SHAPIRO, ENLU ZHOU, AND YIFAN LIN

Table 4
Newsvendor with finite-support randomness: out-of-sample performance of variants of

Bayesian-DRO. Data size N varies from 5, 10, 50, to 1000.

=5 ε1 ε2 ε3 Bayesian avg. Empirical True

ε value 0.99(0.02) 0.50(0.01) 0.14(0.01) - - -

solution 12.77(0.17) 12.70(0.17) 11.29(0.14) 8.59(0.06) 8.55(0.24) 7.00

mean 50.92(0.43) 50.22(0.50) 49.24(0.47) 48.90(0.02) 50.01(0.28) 47.21

variance 72.27(2.15) 75.12(2.28) 101.24(2.38) 465.08(2.91) 693.63(3.63) 770.56

=10 ε1 ε2 ε3 Bayesian avg. Empirical True

ε value 0.60(0.01) 0.30(0.01) 0.07(0.01) - - -

solution 12.28(0.16) 12.20(0.14) 10.61(0.10) 8.57(0.09) 7.50(0.20) 7.00

mean 50.20(0.37) 49.54(0.28) 48.93(0.30) 47.87(0.05) 48.94(0.15) 47.21

variance 71.99(2.07) 74.97(2.09) 91.97(2.14) 461.88(2.55) 786.58(3.56) 770.56

=50 ε1 ε2 ε3 Bayesian avg. Empirical True

ε value 0.14(0.00) 0.07(0.00) 0.02(0.00) - - -

solution 11.24(0.04) 10.91(0.05) 9.26(0.06) 7.99(0.10) 7.36(0.13) 7.00

mean 50.44(0.05) 49.51(0.06) 48.22(0.04) 47.87(0.04) 48.21(0.05) 47.21

variance 118.65(1.99) 178.06(1.88) 241.68(1.89) 513.35(2.08) 761.45(2.86) 770.56

=1000 ε1 ε2 ε3 Bayesian avg. Empirical True

ε value 0.006(0.00) 0.003(0.00) 0.001(0.00) - - -

solution 8.08(0.01) 7.82(0.01) 7.25(0.03) 7.18(0.05) 6.93(0.06) 7.00

mean 47.42(0.03) 47.12(0.03) 47.03(0.02) 47.32(0.01) 47.39(0.02) 47.21

variance 544.42(0.92) 593.85(1.29) 691.00(1.15) 728.15(1.47) 801.66(1.50) 770.56

N

N

N

N

(a) N = 5. (b) N = 50.

Fig. 5. Newsvendor with finite support: out-of-sample mean-variance frontiers of different al-
gorithms under different \epsilon values with contaminated data. Data size N is 5 and 50, respectively.

Table 5
Newsvendor with finite support: out-of-sample performance of variants of Bayesian-DRO algo-

rithm with contaminated data. Data size N is 5 and 50, respectively.

=5 ε1 ε2 ε3 Bayesian avg. Empirical True

ε value 1.00(0.02) 0.50(0.01) 0.07(0.01) - - -

solution 12.02(0.10) 11.72(0.13) 10.01(0.16) 8.59(0.08) 7.41(0.24) 7.00

mean 52.09(0.16) 51.58(0.27) 48.68(0.26) 48.29(0.05) 50.04(0.21) 47.21

variance 73.12(1.97) 87.09(1.98) 155.98(2.27) 459.39(2.47) 872.79(4.43) 770.56

=50 ε1 ε2 ε3 Bayesian avg. Empirical True

ε value 0.13(0.00) 0.06(0.00) 0.02(0.00) - - -

solution 11.32(0.05) 10.72(0.06) 9.18(0.05) 7.86(0.11) 7.46(0.12) 7.00

mean 49.97(0.06) 49.04(0.07) 48.63(0.11) 48.53(0.03) 48.26(0.04) 47.21

variance 153.08(1.41) 247.25(1.53) 321.62(1.63) 568.38(2.58) 684.59(2.69) 770.56

N

N
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BAYESIAN DISTRIBUTIONALLY ROBUST OPTIMIZATION 1303

(a) N = 10. (b) N = 50.

Fig. 6. Portfolio optimization with finite support: out-of-sample mean-variance frontiers of
different algorithms under different \epsilon values. Data size N is 10 and 50, respectively.

Table 6
Portfolio optimization with finite support: out-of-sample performance of variants of Bayesian-

DRO. Data size N is 10 and 50, respectively.

=10N

N

ε1 ε2 ε3 Bayesian avg. Empirical True

ε value 0.49(0.01) 0.25(0.01) 0.47(0.02) - - -

sol error 0.73(0.01) 0.70(0.02) 0.79(0.01) 0.76(0.05) 0.80(0.04) 0.00

mean -0.01(0.00) -0.03(0.00) -0.02(0.00) -0.09(0.01) -0.06(0.01) -0.17

variance 0.23(0.01) 0.31(0.01) 0.28(0.00) 0.62(0.01) 0.58(0.02) 0.59

=50 ε1 ε2 ε3 Bayesian avg. Empirical True

ε value 0.10(0.00) 0.05(0.00) 0.18(0.01) - - -

sol error 0.53(0.02) 0.48(0.02) 0.61(0.01) 0.33(0.04) 0.40(0.04) 0.00

mean -0.09(0.00) -0.11(0.00) -0.08(0.00) -0.15(0.00) -0.13(0.00) -0.17

variance 0.33(0.01) 0.39(0.01) 0.27(0.00) 0.62(0.01) 0.66(0.01) 0.59

\bullet x: holding positions of assets. x\in [0,1]5,
\sum 5
i=1 xi = 1.

\bullet \xi : random returns of assets. \xi i takes values in \{  - 1,0,1\} for i= 1, . . . ,5.
The cost function is given by G(x, \xi ) = - \xi \top x. Note that we do not allow shorting

(i.e., xi > 0, i = 1, . . . ,5) and impose a budget constraint (
\sum 5
i=1 xi = 1). The true

probability mass of dimension i, denoted by \theta ci \in \Delta 3, is unknown to the decision
maker.

Figure 6 shows the out-of-sample mean-variance frontiers (with varying \epsilon values)
of different algorithms for data size N = 5 and 50. Table 6 shows the out-of-sample
performance of variants of Bayesian-DRO when data size is N = 10 and 50, respec-
tively. In addition to out-of-sample performance, we also show the solution error,
which is obtained by calculating each solution's Euclidean distance from the true
optimal solution, with sample standard deviation within the parentheses in the ta-
bles. Similar to the one-dimensional newsvendor problem, Bayesian-DRO outperforms
other benchmarks in the multidimensional portfolio optimization problem.
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