
1. Introduction

The effects of the dynamic solar activity on Earth and other solar system bodies are collectively known as space 

weather. The solar influence on geospace is manifested mainly though geomagnetic activity and increases in 

radiation levels (e.g., Pulkkinen, 2007). Known major drivers of space weather effects include solar wind (SW) 

structures and transients such as coronal mass ejections (CMEs), high-speed streams (HSSs), and their preceding 

stream interaction regions (SIRs). While the most extreme geomagnetic storms are usually associated with CMEs 

(e.g., Srivastava & Venkatakrishnan, 2004; Zhang et al., 2007), SIRs and their following HSSs are responsible 

for the majority of moderate activity (e.g., Echer et al., 2013; Gonzalez et al., 1999). During their propagation 

through the ambient SW, CMEs can interact with a variety of structures, including other CMEs (e.g., Lugaz 

et al., 2017; Manchester et al., 2017). Of particular interest are cases in which a CME is immediately followed 

by (and interacts with) a HSS, resulting in inhibited expansion of the ejecta and, often, in increased geoeffective-

ness (e.g., Fenrich & Luhmann, 1998; Lavraud & Rouillard, 2014; Maunder et al., 2022; Palmerio et al., 2022). 

Abstract Coronal mass ejections (CMEs) and high speed streams (HSSs) are large-scale transient 

structures that routinely propagate away from the Sun. Individually, they can cause space weather effects at the 

Earth, or elsewhere in space, but many of the largest events occur when these structures interact during their 

interplanetary propagation. We present the initial coupling of Open Solar Physics Rapid Ensemble Information 

(OSPREI), a model for CME evolution, with Mostly Empirical Operational Wind with a High Speed Stream, 

a time-dependent HSS model that can serve as a background for the OSPREI CME. We present several 

improvements made to OSPREI in order to take advantage of the new time-dependent, higher-dimension 

background. This includes an update in the drag calculation and the ability to determine the rotation of a 

yaw-like angle. We present several theoretical case studies, describing the difference in the CME behavior 

between a HSS background and a quiescent one. This behavior includes interplanetary CME propagation, 

expansion, deformation, and rotation, as well as the formation of a CME-driven sheath. We also determine how 

the CME behavior changes with the HSS size and initial front distance. Generally, for a fast CME, we see that 

the drag is greatly reduced within the HSS, leading to faster CMEs and shorter travel times. The drag reappears 

stronger if the CME reaches the stream interaction region or upstream solar wind, leading to a stronger shock 

with more compression until the CME sufficiently decelerates. We model a CME–HSS interaction event 

observed by Parker Solar Probe in January 2022. The model improvements create a better match to the observed 

in situ profiles.

Plain Language Summary Coronal mass ejections (CMEs) are structured bundles of plasma and 

magnetic field that randomly erupt from the Sun. The Sun also has regions of fast solar wind (SW) flowing 

out of it, which creates large structures routinely propagating outward known as high speed streams (HSSs). 

Both CMEs and HSS can have adverse effects if they impact Earth, so it is important to be able to model 

their evolution. Some of the most adverse effects happen when a CME interacts with a HSS. In this work, we 

combine a simple model for CMEs with a simple model for HSSs and explore their interaction. We look at 

a few completely theoretical studies, evaluating how a CME interacts with the fast HSS structure in the SW 

background, as opposed to the normal, relatively uniform slow SW. We also explore how the size and location 

of the HSS affect this interaction. We look at the changes in the propagation, expansion, deformation, and 

rotation of the CME, as well as a piling-up of SW material in front of it. We also compare the combined CME–

HSS model results with an event observed by Parker Solar Probe in January 2022.
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This scenario is especially relevant in the case of CMEs with weak or no eruptive signatures on the Sun (usually 

referred to as “stealth” CMEs; e.g., Nitta & Mulligan, 2017; Palmerio et al., 2021b), which can ultimately lead to 

so-called problem geomagnetic storms (Nitta et al., 2021) as a result of CME–HSS interaction.

When modeling the interplanetary propagation of CMEs for space weather forecasting, it is important not only 

to accurately simulate the properties of the ejecta itself, but also those of the SW background. While large efforts 

to benchmark the validation of a variety of ambient SW models are underway (e.g., Jian et al., 2015; MacNeice 

et al., 2018; Reiss et al., 2022), typical errors in simulating the arrival time of HSSs at 1 au are currently of 

the order of about 1 day (e.g., Gressl et al., 2014; Jian et al., 2011). Nevertheless, several studies have focused 

on evaluating the performance of a particular model in the context of simulating the ambient SW over a wide 

range of approaches, such as empirical/semi-empirical (e.g., Barnard & Owens, 2022; Milošić et al., 2023; Riley 

et al., 2017), machine learning (e.g., Liu et al., 2011; Raju & Das, 2021; Yang et al., 2018), and magnetohydrody-

namic or MHD (e.g., Hinterreiter et al., 2019; Huang et al., 2023; Lee et al., 2009) models. In addition to issues 

in modeling the ambient background, more realistic simulations of CME interactions with other SW structures 

usually require a description of the ejecta that includes an internal magnetic field, instead of a (simpler) hydro-

dynamic pulse. However, models that incorporate a magnetized ejecta are often computationally expensive in the 

context of Sun-to-Earth simulations (e.g., Jin et al., 2017; Török et al., 2018; Tóth et al., 2007) and/or necessitate 

a large number of input parameters to inject a CME at a certain inner boundary of the simulation domain (usually 

assumed at ∼0.1 au; e.g., Maharana et al., 2022; Scolini et al., 2019; Shiota & Kataoka, 2016), and are currently 

not practical for real-time forecasts.

One unique tool, potentially capable of forecasting the Sun-to-Earth evolution of CMEs on the time scales 

required for predictions, is the Open Solar Physics Rapid Ensemble Information (OSPREI; Kay, Mays, & 

Collado-Vega, 2022) suite of models. OSPREI combines models for the coronal trajectory of a CME with an 

interplanetary model and a model for synthetic in situ profiles. Kay, Mays, and Collado-Vega  (2022) pres-

ent the initial coupling of these three models into a fully linked package capable of ensemble simulations 

and automatically-generated visualizations relevant to space weather predictions. OSPREI, and its individual 

components, have successfully reproduced both the arrival times and in situ properties of many observed CMEs 

(e.g., Kay & Gopalswamy, 2017; Kay & Gopalswamy, 2018; Kay, Nieves-Chinchilla, & Jian, 2020; Ledvina 

et al., 2023; Palmerio et al., 2021a). The initial version of OSPREI, however, was only capable of simulating 

CMEs in a simple, quiescent SW background.

With thoughts of the OSPREI interplanetary SW background in mind, Kay et al. (2023) developed the Mostly 

Empirical Operational Wind with a High Speed Stream (MEOW-HiSS) model. Based upon a set of MHD HSS 

simulations, MEOW-HiSS is a simplified model that can essentially instantaneously generate a one-dimensional 

SW profile given the HSS size and distance. The model is time-dependent and can reproduce the original MHD 

results within 10% accuracy for the radial velocity, density, magnetic field, and temperature. Kay et al. (2023) 

compared MEOW-HiSS results with observed HSSs at 1 au and found that it was able to reproduce the in situ 

observations over the full HSS profile with average errors of 10% in the radial velocity, as well as 50% in the 

number density, absolute radial magnetic field, absolute longitudinal magnetic field, and temperature. Using solar 

rotation to relate time and longitude, MEOW-HiSS can also convert a 1D radial profile to values over the full 2D 

equatorial plane.

Kay et al. (2023) focused only on MEOW-HiSS as a standalone tool for simulating the SW, but suggested the 

potential use as a background for OSPREI or any other interplanetary CME model. In this work, we present the 

initial coupling between OSPREI and MEOW-HiSS. Section 2 describes the two models in detail, including 

several improvements made to OSPREI. Section 3 presents several completely theoretical cases that illustrate the 

typical interaction between the CME and HSS, and Section 4 shows a rather extreme example. In Section 5 we 

explore the effects of different HSS properties on the CME–HSS interaction mechanism. Finally, in Section 6 we 

compare the combined modeling results with an observed CME.

2. OSPREI and MEOW-HiSS

OSPREI was originally designed to operate with a simple, static 1D SW background. We have modified it to 

couple with MEOW-HiSS, allowing the interplanetary portion of OSPREI to utilize a time-dependent 2D back-

ground SW. To take advantage of this additional information we have also introduced several improvements to the 
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interplanetary modeling portion of OSPREI. In this section, we first describe the most recent versions of OSPREI 

and MEOW-HiSS, and then the specific changes made to OSPREI for this work.

2.1. OSPREI

OSPREI combines three different models to form a full Sun-to-Earth (or any other relevant endpoint) simulation. 

The first model is Forecasting a CME's Altered Trajectory (ForeCAT; Kay et al., 2013, 2015), which simulates 

the nonradial motion of a CME in the corona based on the solar magnetic forces. Within ForeCAT, and the rest 

of OSPREI, a CME is represented by a rigid torus. Both the toroidal axis and the cross section perpendicular to 

the axis can take on elliptical shapes. The torus can expand in size and change in both aspect ratios (axial and 

cross-sectional), but it is not arbitrarily deformable.

In ForeCAT, the radial motion and expansion are prescribed by the user, which can be as simple as setting the 

maximum speed and angular width of the CME in the corona. ForeCAT simulates the deflection of CME from 

the magnetic pressure gradients and magnetic tension from the background solar magnetic field, causing a change 

in the latitude and longitude of the CME. Any net torque from these magnetic forces causes a rotation about the 

radial vector extending through the nose of the CME torus. In most cases, these magnetic forces become negli-

gible by 5 R⊙ (Kay & Opher, 2015). Typically, we run ForeCAT until 21.5 R⊙ (0.1 au) to ensure that we capture 

any coronal deflection or rotation and because it is the distance most commonly used as the inner boundary of the 

heliospheric domain in interplanetary simulations (e.g., Odstrcil, 2003; Verbeke et al., 2019).

At 0.1 au, OSPREI transitions into the ANother Type of Ensemble Arrival Time Results (ANTEATR; Kay & 

Gopalswamy, 2018; Kay, Mays, & Collado-Vega, 2022; Kay, Mays, & Verbeke, 2020; Kay & Nieves-Chinchilla, 

2021a, 2021b) component. ANTEATR started out as a simple, 1D drag model. In ANTEATR, the drag force, FD 

is calculated in the same manner as hydrodynamic drag

�� = ���CME�SW(�CME − �SW)|�CME − �SW| (1)

where CD is the drag coefficient, ACME is the cross-sectional area of the CME in the direction of motion, ρSW is 

the SW density, and vCME and vSW are the CME and SW speeds, respectively.

ANTEATR originally represented the background SW with a constant velocity and the density inversely propor-

tional to radial distance squared, with the parameters scaled using their 1 au values. A single drag force was calcu-

lated using the CME speed and the expected SW speed at the distance of the toroidal axis at the CME nose. At this 

time, the CME's angular size and shape were assumed to remain constant. While the drag force and evolution of 

the CME velocity were 1D, ANTEATR still used the full 3D CME shape to determine the time of first impact at 

a desired location. Kay, Mays, and Verbeke (2020) showed that using an ensemble of this first, most-simplified, 

version of ANTEATR was still able to reproduce arrival time results within about 6 hr.

A series of improvements have been made to ANTEATR in recent years. Kay and Nieves-Chinchilla (2021a) 

introduced the Physics-driven Approach to Realistic Axial Deformation and Expansion (PARADE) version. With 

PARADE, magnetic, thermal, and drag forces are calculated near the CME nose and flanks and used to simu-

late the expansion and deformation (change in aspect ratio) of a CME, rather than assuming the size and shape 

remain fixed. Calculating these forces requires a flux rope model and the internal temperature of the CME. As 

the CME has an elliptical cross section, PARADE incorporated the elliptic-cylindrical (EC) flux rope model 

of Nieves-Chinchilla et  al.  (2018), and assumed a constant internal temperature. PARADE also requires the 

magnetic field and temperature of the background SW, which were set to follow a Parker spiral magnetic field and 

a power-law dependence for the temperature. PARADE reproduces the observed tendency of CMEs to “pancake” 

or flatten in the radial direction relative to the perpendicular direction (e.g., Riley & Crooker, 2004). PARADE 

generates CMEs with average internal density, magnetic field strength, and temperature generally similar to those 

observed near 1 au.

Kay, Nieves-Chinchilla, et al.  (2022) added the Pile Up Procedure (PUP) to ANTEATR, which simulates the 

development of a CME-driven sheath during interplanetary propagation. Using the Rankine–Hugoniot jump 

conditions, PUP determines the compression at the shock (or discontinuity). This is then used to determine the 

amount of SW swept up into the CME-driven sheath at each time step, as well as the properties within the sheath. 

The current version of OSPREI includes both the PARADE and PUP updates to ANTEATR, but also allows the 

user to turn them off if desired.
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The final component of OSPREI is the ForeCAT In situ Data Observer (FIDO; Kay et al., 2017), which generates 

in situ profiles given a synthetic satellite location. This initially was limited to magnetic field profiles simply 

using a flux rope model and the relative location of a satellite as the CME passes over it. As ANTEATR has 

evolved to simulate more properties, FIDO has also expanded to include the CME velocity, density, and tempera-

ture, as well as the sheath profile. Initially, ANTEATR and FIDO were run sequentially with ANTEATR ceasing 

at the time of first contact and FIDO assuming that the CME continued propagation with the same bulk and 

expansion velocities. This, however, excluded any evolution that continued beyond the time of first contact. While 

mostly minimal in previous versions, we expect there can be more significant continued evolution when the CME 

is actively interacting with a HSS. As such, ANTEATR and FIDO now run in parallel within OSPREI so that 

the CME continues evolving as synthetic in situ measurements are being generated. For further information on 

OSPREI see Kay, Mays, and Collado-Vega (2022). We also include in Figure S1 a revised version of the sche-

matic within Kay, Mays, and Collado-Vega (2022) that shows the updated version of OSPREI used in this work.

2.2. MEOW-HiSS

MEOW-HiSS is essentially a set of coefficients, based on multilayered regressions, that can be used to scale a 

predetermined set of empirical functions to mimic radial profiles of a HSS from an MHD simulation. It is based 

upon a set of European Heliospheric Forecasting Information Asset (EUHFORIA; Pomoell & Poedts,  2018) 

simulations for an idealized HSS emanating from a circular coronal hole (CH) at the inner boundary of the helio-

spheric domain (set at 21.5 R⊙ or 0.1 au). For each CH area, radial profiles were extracted at multiple simulation 

times, which correspond to different HSS front distances along a constant radial direction. The profiles for indi-

vidual plasma parameters can be broken down into small regions that are well-described by simple mathematical 

functions (e.g., a straight line or an exponential).

MEOW-HISS uses three regions to represent the SIR, one for the HSS plateau, and another for the tail, in addi-

tion to the upstream and downstream regions (ahead of and behind the HSS, respectively). Kay et al. (2023) first 

found the location of the region boundaries within each profile. For each CH, a regression was performed to get 

each boundary location as a function of time. In most cases a first order polynomial is sufficient, suggesting that 

each boundary moves with nearly constant velocity in the MHD simulation. These time-dependent polynomial 

coefficients are then fit as a function of CH area to get a new set of regression coefficients. In practice, MEOW-

HiSS takes an input CH area and the HSS front distance at the start of the simulation. It uses the CH area to 

determine the appropriate time-dependent coefficients for this HSS. The front distance then relates MEOW-HiSS 

simulation time to the corresponding time in the original MHD simulation. The boundary locations can then be 

determined at any time relative to the start of the MEOW-HiSS simulation.

The same approach is used for the actual HSS properties within MEOW-HiSS. For a single plasma parameter 

(radial speed, density, radial magnetic field, longitudinal magnetic field, or temperature), the same type of mathe-

matical function is used to create a segment within a specific region across all times and CH areas. Each segment 

is constrained by one to three critical values, depending on the specific function, which are all determined directly 

from the MHD simulation. For example, for all CH areas and simulation times, a linear profile is used to represent 

the radial velocity in the first two regions of the SIR. This linear segment is constrained by critical values at two 

points.

Kay et  al.  (2023) found the critical values for all combinations of CH areas and HSS front distances (front 

distance being a more convenient measure than MHD time). A first set of regressions relates the value at each 

point to the front distance, then a second regression relates these distance coefficients to the CH area. In opera-

tion, MEOW-HiSS runs in reverse of the development with the CH area determining the distance coefficients, 

then the distance coefficients determining the critical values, which then establish the segment within a region. 

Kay et al. (2023) contains a more detailed description of the development and use of MEOW-HiSS.

Figure 1 demonstrates MEOW-HiSS results in the equatorial plane for a 8 × 10 10 km 2 area CH when the HSS 

front is at 1 au. Panel (a) shows the regions in the empirical HSS in alternating colors of blue and orange. The 

front three regions correspond to the SIR, followed by an orange plateau region, and a blue tail. The black region 

corresponds to quiescent SW. We also label regions of “higher” and “lower” longitude. We use a heliocentric 

coordinate system (typically Stonyhurst) where the longitude increases toward solar west, which we will refer 

to as higher longitude throughout this work. At the higher longitude edge of the MEOW-HiSS HSS we see the 

frontmost region of the SIR extend to far radial distances but sharply drop off in longitude. This is where the 
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empirical relations begin to break down as the HSS disappears from the domain. The effect is only this drastic in 

the contours of distinct regions, the relations still create a gradual decay in plasma properties. Figure 1b shows 

the modeled velocity for the same HSS configuration, which has a much smoother boundary at higher longitudes.

We note that this is the first iteration of MEOW-HiSS, which is based exclusively on MHD simulations of a HSS 

generated from a circular CH at the equator. In real cases, we expect there to be latitudinal variations and asym-

metry in the CH shape. These aspects will be incorporated into future versions of MEOW-HiSS and their effects 

on CME propagation analyzed at that time.

2.3. Improvements in OSPREI

All of the regressions were performed on HSS MHD profiles normalized by a quiescent MHD profile. Accord-

ingly, MEOW-HiSS returns the relative change in a parameter, which then needs to be scaled back to physical 

units using a quiescent profile. In OSPREI, we use the same quiescent profile that was previously used as the 

ANTEATR background—constant speed, density that falls with distance-squared, Parker spiral magnetic field, 

and power-law temperature, all of which are normalized by the values at 1 au (or the appropriate distance of 

interest for cases in which the satellite is not near Earth). OSPREI has a very modular design so coupling with 

MEOW-HiSS is essentially just an extra call to the MEOW-HiSS module after the call to the quiescent SW 

module. No other modifications to the code are required, however, we have made several improvements, specifi-

cally to ANTEATR, in light of having a significantly improved SW background.

2.3.1. Drag Calculation

The first improvement is in the manner in which we calculate the drag force, which we illustrate in the top panels 

of Figure 2. The gray torus represents an edge-on view of the simulated CME, and different colored arrows repre-

sent different forces. Previously, ANTEATR calculated the drag at a single point in the center of the cross section 

using the bulk CME speed and the expected SW velocity at this point. This is a simplification as an expanding (or 

contracting) CME will have a gradient in the local velocity as one passes through the CME. However, particularly 

in the case of a uniform background, the single-point approximation is not likely that different from the average 

drag in a precise calculation.

MEOW-HiSS introduces the possibility of having very different environments ahead of and behind the CME. 

For example, if a HSS begins overtaking a slow CME, then we expect that the drag on the back side of the CME 

Figure 1. Example Mostly Empirical Operational Wind with a High Speed Stream results. Panel (a) shows the regions of 

the high speed stream using alternating blue and orange sections. Panel (b) shows contours of the velocity for the same case 

shown in panel (a).
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would tend to accelerate it. The CME front, however, may still be interacting with slow, quiescent wind, so there 

the drag force would want to decelerate the CME. Calculating the expected drag in the center might produce 

something near the average of these two forces, but it is an oversimplification that neglects the possibility that 

competing forces at the front and back could create a compression or squashing of the CME. We note that this 

is an idealized conceptualization for a simplified model, in a real event the regions directly upstream and down-

stream will not be pristine HSS, but rather interaction regions influenced by both the HSS and the CME.

We have converted ANTEATR to use a two-point drag calculation where we calculate the forces at the front and 

back of the cross section at the CME nose. The illustration in Figure 2 shows a less extreme example than the 

previous hypothetical example. Here, we have a slightly stronger drag force at the front (dark blue) than at the 

Figure 2. (Top) Cartoon illustrating the change in the drag calculation. The gray arcs represent an edge-on view of a coronal mass ejection (CME). Previously, the drag 

force was calculated at a single point, illustrated with the single dark blue arrow at the single black dot in the top left CME. Now, we calculate the drag force at the front 

and back of the CME, indicated by the dark blue and light blue arrows. The average of these two values determines the net drag on the CME. The difference between 

them determines the amount of compression or expansion from the differential drag. (Bottom) Cartoon showing the yaw rotation. We determine the drag force at both 

edges (dark blue arrows). The difference between these determines a torque about the CME nose (black dot), which causes a rotation we refer to as a change in the yaw.

 1
5

4
2

7
3

9
0

, 2
0

2
3

, 1
1

, D
o

w
n

lo
ad

ed
 fro

m
 h

ttp
s://ag

u
p

u
b

s.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
2

9
/2

0
2

3
S

W
0

0
3

6
4

7
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

5
/0

7
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



Space Weather

KAY ET AL.

10.1029/2023SW003647

7 of 31

back (light blue), but both correspond to decelerating the CME. This is representative of what one might see in an 

expanding CME propagating faster than a uniform background SW. The pictorial vector math illustrates how the 

front and back drag forces are averaged to determine the bulk drag (purple arrow) but the difference determines 

an inward squashing force (maroon arrows).

While the example is only shown at the nose, we note that we actually calculate the drag force at both the nose and 

the flanks as the PARADE version of ANTEATR uses the difference in the forces to determine the deformation 

of the toroidal axis. The new version does the two-point calculation at both the nose and flanks. The difference 

in the bulk drag determines the axial deformation. We use the average squashing from the nose and flanks as we 

currently can only simulate a cross section that is uniform along the full toroidal axis.

2.3.2. Yaw Rotation

The second improvement is the addition of interplanetary rotation about an axis running through the CME nose 

and perpendicular to the toroidal axis. The rotation is determined from the differential drag forces at the flanks of 

the CME. In the case of a uniform background SW and a symmetric CME, there is no net torque, so we would not 

have expected any rotation with the previous version of OSPREI. MEOW-HiSS, however, breaks the symmetry.

The bottom half of Figure 2 illustrates this rotation. On the left, the black dot at the CME nose shows the axis of 

rotation (perpendicular to the page) and the dashed lines represent the lever arms for determining the net torque. 

The blue arrows represent different drag forces, with the bottom flank having a stronger decelerating force in this 

example. The right shows the corresponding expected rotation. We refer to this as a rotation in the “yaw,” though 

we note that a true yaw rotation is through the center of mass whereas we determine a rotation about the nose, 

primarily for the computational simplicity of keeping the nose pointed in the radial direction.

Simulating the yaw rotation requires calculating the net torque on the CME and using the moment of inertia to 

convert this into an angular acceleration. We first determine the radial drag force at each flank. For the CME 

speed, we determine the full velocity vector (bulk motion and expansion) at the outer edge of each flank (see the 

location of the blue arrows in the bottom left of Figure 2) and take the component in the radial direction. MEOW-

HiSS only provides a 2D SW, so we project the outer flank locations onto the equatorial plane and use the corre-

sponding position to determine the local SW properties. This ignores any latitudinal variation in the HSS, which 

certainly exists. This oversimplification will be the worst for a highly inclined CME. A highly inclined CME, 

however, will have minimal longitudinal separation so our approach will underestimate any variation between 

the flanks and therefore underestimate any yaw rotation. Future work will expand MEOW-HiSS to account for 

latitudinal variations and at that point we will refine this drag force calculation.

We then determine the lever arms, L, from the flank edges to the nose (dashed lines in bottom left panel of 

Figure 2) and use these, in combination with the forces, to determine the torque, τ on the CME.

� = �1 × ��1 + �2 × ��2 = �CME� (2)

The moment of inertia, ICME can then be used to determine the angular acceleration, α. To keep the problem 

tractable, we derived ICME for an elliptic torus with a circular cross section as

�CME = 2�CME�
2

CS
�Ax

[
�
(
1 − �2

Ax

)(
(�Ax�Ax +�CS)

2
+

3

4
�2

CS

)
+

�2

Ax

�2
Ax

�
(
1 − �2

Ax

)

−
2(�Ax�Ax + �CS)�Ax

�Ax

√
1 − �2

Ax

tan−1

√
1 − �2

Ax

�Ax

⎤
⎥⎥⎥⎦

 (3)

where ρCME is the density of the CME, RAx is the half-width of the toroidal axis in the perpendicular direction, RCS 

is the radius of the cross section, δAx is the aspect ratio of the axis (radial divided by perpendicular), and K and E 

are complete elliptic integrals of the first and second kinds. We approximate RCS as the cross-sectional radius in 

the perpendicular direction for CMEs with an elliptical cross section.

We determine α at each time step, which determines a change in the angular velocity, ω, of the CME. We conserve 

angular momentum, ICMEω, and adjust ω at each time step based on any changes in ICME before including any 
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additional acceleration. If α becomes negligible then the yaw rotation will slow down as the CME grows in size, 

which increases ICME.

This form of solid body rotation is something that can be easily calculated in an analytic code such as OSPREI, 

but is clearly an oversimplification of the physical processes at play. Similar approximations are often made in 

simple models of CME behavior, such as the frequent use of one-dimensional drag in arrival time models. CMEs 

are not rigid, coherent structures on global scales (Owens et al., 2017), so their overall behavior is the aggregate 

of a series of localized distortions. Still, we believe that the solid body rotation is a useful mathematical construct 

that moves OSPREI closer toward reproducing the real world behavior of CMEs.

3. Theoretical Case Studies

We first present several purely theoretical cases (without specific observational counterparts) and closely examine 

the interaction between the CME and HSS in detail before expanding to parameter space analysis and reproducing 

actual observations. All CMEs are initiated at 0° latitude, 0° longitude, and with their toroidal axis lying in the 

equatorial plane (0° inclination). Table 1 lists the remaining input parameters for these cases. For the initial prop-

erties of the CME itself, this includes the velocity of the CME front, vF, the mass, MCME, the half face-on width, 

AW, the half edge-on width, AW⊥, the yaw, the aspect ratio of the axis, δAx, the aspect ratio of the cross section, 

δCS, the internal temperature, TCME, the magnetic field at the center of the flux rope, B, the corresponding flux 

rope parameter B0, the EC flux rope model parameters τ and C, the adiabatic index, γ, an expansion parameter that 

varies between initial self-similar expansion or convective expansion, fExp, the drag parameter, Cd, and the initial 

distance. For the SW, this includes the number density, nSW, radial velocity, vSW, total magnetic field strength, BSW, 

and temperature TSW. For a more thorough description of these inputs see Kay, Mays, and Collado-Vega (2022).

We use a fast and an average CME as an example of the interaction. We note that the speed of the average CME 

is slightly above average, but we refer to it as average for simplicity. The fast and average CME properties are the 

same as used in Kay, Nieves-Chinchilla, et al. (2022). For the quiescent SW at 1 au, we use the default values from 

Kay, Mays, and Collado-Vega (2022), which differ slightly from those in Kay, Nieves-Chinchilla, et al. (2022) 

where they were tuned to match the MHD simulation.

To start, we run only the ANTEATR component of OSPREI. Each subfigure within Figures 3–5 shows ANTE-

ATR results in a standardized format, highlighting the evolution of both the CME and sheath properties versus 

CME Fast Avg Slow SW

vF (km/s) 1,200 630 330 nSW (cm −3) 5.0

MCME (10 15 g) 10 5 3 vSW (km/s) 440

AW (°) 46 31 31 BSW (nT) 6.9

AW⊥ (°) 18 10 10 log (TSW) (K) 4.79

Yaw (°) 0 0 0

δAx 0.6 0.53 0.7

δCS 0.6 0.7 0.7

log (TCME) (K) 5.88 5.30 5.48

B (nT) 3,200 1,350 1,000

B0 (nT) 5,333 1,929 1,667

τ 1 1 1

C 1.927 1.927 1.927

γ 1.33 1.33 1.33

fExp 0.5 0.5 0.5

Cd 1 1 1

R0 (R⊙) 21.5 21.5 21.5

Table 1 

ANTEATR Input Parameters
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radial distance. The top panel shows a visual representation of the radial width (at the nose) of the sheath and 

CME versus the corresponding distance of the CME front. The panel includes the shock or discontinuity (maroon 

line), the sheath (maroon shaded), the front and back of the CME (black lines), and the extent of the CME (gray 

Figure 3. Profiles for the fast coronal mass ejection (CME) results with different solar wind (SW) backgrounds. Panel (a) shows an ambient background and (b) a 

static high speed stream (HSS) with area 8 × 10 10 km 2 and front at 1 au. Panels (c) and (d) show a time-dependent 8 × 10 10 km 2 background, aligned to have the CME 

either enter (c) or exit (d) the HSS at the same distance as in panel (b). Within each panel, the top row shows a graphical representation of the extent of the sheath 

(maroon) and the CME (gray) versus the distance of the CME front. The HSS is shown in a similar manner with the alternating light blue and orange showing the 

different regions within the Mostly Empirical Operational Wind with a High Speed Stream HSS (3 stream interaction region, 1 plateau, 1 tail). The second row shows 

the velocity of the sheath (maroon), CME front (black), and SW at the location of the CME front (blue dashed). The third row shows the edge-on angular width of 

the CME (black) and the axial aspect ratio (maroon). The fourth row shows the yaw angle of the CME (black) and the rotational speed (maroon). The fifth row shows 

the Alfvénic Mach number of the shock (black) and the number density within the sheath (maroon). Finally, the bottom panel shows the signed logarithm of the 

acceleration from various forces: the total radial acceleration of the CME (black), the bulk drag (purple), the pancaking from drag (maroon), the axial magnetic forces 

(dashed light blue), the magnetic pressure (dashed green), and the thermal pressure (dashed yellow). The fine dashed, horizontal line indicates the zero value.
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shaded). The second row shows the speed of the shock (maroon) and the CME front (black), and the background 

SW speed (blue dashed line). The third row shows AW (black) and δAx (maroon). In general, the behavior of the 

axial and cross-sectional width and aspect ratio are similar, which is why we only show the axial values. The 

fourth row shows the yaw (black) and the angular velocity (maroon). The fifth row shows the Alfvénic Mach 

number of the shock (MA, black), and the number density in the sheath (nSh, maroon). Finally, the bottom row 

shows accelerations (calculated from the forces) acting upon the CME. This includes the total acceleration in the 

radial direction (black), the bulk drag (purple), the pancaking or squashing drag (maroon), the axial magnetic 

forces (dashed light blue), the magnetic pressure (dashed green), and the thermal pressure (yellow). The acceler-

ations are shown in a “signed logarithm” format such that for some arbitrary a

log∗10(�) = sign(�)log10(|�|) (4)

and any values of |a| less than 1 are set to a. This unscaled region for absolute values less than one is shaded light 

gray. For the signed logarithm, positive values indicate an outward acceleration in the radial direction, either in 

the sense of a bulk motion or an outward expansion of the cross section.

For cases including a HSS, we show the location of the HSS within the standardized profile figure sing the same 

alternating bands of light blue and orange as in Figure 1. Within the top panel, we shade the background to show 

the radial extent of the different regions at each time step/CME front distance. For a static HSS, the regions will 

appear as perfectly horizontal lines within the panel. When the HSS propagates outward the regions become 

inclined. The three regions at the farthest distance (along the y-axis) correspond to the SIR, the next closest to 

the Sun the plateau, with the tail being closest to the Sun. All five regions may not be visible at all distances if 

the HSS extends beyond the range of the panel. Within the other five panels, the background is shaded along the 

x-axis of the panel according to the region of the CME front at that time/distance.

3.1. Fast CME

Figure 3a shows results for the fast CME in a quiescent background. Figure 3b shows results including a static HSS 

with the front at 0.8 au, generated from an 8 × 10 10 km 2 CH. Figures 3c and 3d show results for a time-dependent 

version of the same size HSS, with the CME either entering (c) or exiting (d) the HSS at the same radial distance 

as the static case.

Figure 3a shows that in the quiescent background, the fast CME drives a shock and, throughout its propagation, 

the CME gradually decreases in velocity, slightly expands in size, pancakes, and accumulates a sheath. We see 

no yaw rotation due to the longitudinally-uniform background SW. Looking at the forces, we see that the drag 

force acts to decelerate the CME, as expected given that it propagates faster than the background SW. The axial 

magnetic forces also slow down the radial motion. The thermal pressure continually causes the CME to expand 

outward throughout propagation. The magnetic pressure oscillates between expansion and contraction as the 

CME magnetic pressure changes relative to that of the background SW. The CME conserves magnetic flux so its 

magnetic pressure changes as the CME volume changes. This case is expanding in angular width but pancaking 

in aspect ratio, producing competing effects that cause the initial variations in the direction of this force. The drag 

forces remain high (absolute value > 100 cm/s 2) through the duration of the simulation but the internal forces 

drop below 1 cm/s 2 by about 0.6 au.

In Figure 3b, the CME mostly behaves the same as in the quiescent background until the nose reaches the back 

of the tail of the static HSS at about 0.18 au. As the CME front enters the HSS tail, the drag between the CME 

and the background SW decreases, which can be seen in the acceleration panel. This causes there to be less 

decelera tion in the bulk velocity, less expansion and pancaking, and a weaker shock and less accumulation of 

material into the sheath. The CME continues experiencing weaker drag throughout the plateau (0.3–0.73 au) 

until it emerges into the SIR. At this point, the drag rapidly increases because the background velocity begins 

approaching the quiescent value while the background density is high in this interaction region. The CME begins 

decelerating, expanding, and pancaking at a faster rate while driving a stronger shock and accumulating more SW 

material into the sheath.

We do see a slight rotation in the yaw before the front enters the tail at 0.18 au. At close distances, one flank of 

the CME experiences the tail of the HSS while the other is in the quiescent SW. The side of the CME at higher 

longitudes first experiences the higher speed HSS background, so it experiences less drag on this side, causing 
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it to rotate in a negative or clockwise direction when observed from above from solar north. As the CME pushes 

into the HSS it reaches a point when both flanks are embedded in the fast wind and the torque disappears. The 

continued radial motion eventually brings the higher longitude flank beyond the SIR so that it is embedded in the 

quiescent SW while the other flank is still in the core of the HSS. At this point, the rotational velocity becomes 

positive and begins slowing down the clockwise rotation. We only see a few degrees of total yaw rotation. Intu-

ition, based on general remote-sensing CME observations and more sophisticated simulations, suggests that we 

certainly do not expect there to be tens of degrees of yaw rotation, but, in later sections, we will explore whether 

these relatively small rotations are at all meaningful for in situ predictions.

Using a static HSS versus a time-dependent background does not fundamentally change any of the ways in which 

the CME interacts with the different regions of the HSS, it only changes the distance at which those interactions 

occur and the duration within each region. For a fast CME, the drag will decrease as the CME enters the tail, be at 

a minimum within the plateau, then rapidly increase as the CME reaches the SIR and eventually the upstream SW. 

When the CME nose is behind the HSS the flank at higher longitude experiences less drag and the yaw rotates 

clockwise. As the CME moves toward and beyond the HSS front, the flank at lower longitudes experiences less 

drag and the yaw rotates counterclockwise.

In Figure 3c, the CME starts behind the HSS, propagates into the tail then remains in the plateau for the remain-

der of the propagation to 1 au. This causes it to spend more time in regions with weak drag and never reach the 

SIR where the properties begin “recovering” toward the quiescent values. In contrast, for the case in Figure 3d, 

the CME front begins in the plateau and eventually moves to within the SIR as the CME approaches 1 au. The 

CME experiences less drag for the first 0.6 au of propagation so it maintains a velocity well above 1,000 km/s 

during this time and drives a stronger shock (relative to the quiescent case) at farther distances. The results 

for the interaction of the CME with a time-dependent HSS are analogous to those seen with a static HSS in 

Kay, Nieves-Chinchilla, et al. (2022), the time-dependence just changes the timing of the different behaviors. In 

Section 5 we quantify how parameter space variations in the HSS size and initial distance correspond to timing 

differences that affect the final properties at 1 au.

3.2. Average CME

Figure 4 shows the same as Figure 3, but for the average CME. This CME moves slightly faster than the quiescent 

background so we see a slight deceleration due to drag in Figure 4a, but the magnitude is much less than for the 

fast case. The CME exhibits expansion and pancaking and is able to form a weak shock and accumulate some SW 

material. The sheath duration is actually comparable to that of the fast case, but the average case has much less 

compression within this region.

For the static HSS (Figure 4b), the CME moves slower than the background SW within most of the HSS. The 

shock speed drops to zero midway through the HSS tail when the HSS speed exceeds that of the CME front. At 

this point, the CME continues with whatever sheath it has accumulated but no additional material is gained. The 

bulk drag force becomes positive and works to accelerate the CME. The CME velocity does increase by about 

10 km/s, but this is not noticeable on the scale of Figure 4b. Once the CME exits the HSS, which it can only do 

because this is a static case, the background SW speed decreases and the drag force returns to decelerating the 

CME. The average CME exhibits the same clockwise rotation followed by counterclockwise motion as the fast 

CME, but the magnitude is less than a degree.

For the time-dependent background cases, the initial CME speed is barely faster than the propagation speed of 

this HSS. In Figure 4c the CME enters the tail of the HSS and remains there for the duration of the propagation. At 

0.58 au, it eventually reaches the point where the HSS speed exceeds that of the CME and the shock disappears. 

The velocity differential is minimal so we do not get a significant acceleration from the bulk drag. In Figure 4d, 

the CME begins near the outer boundary of the plateau so no shock initially forms and the drag acts to accelerate 

the CME. The CME reaches a peak speed of 660 km/s before starting to decelerate as it enters the SIR. Once the 

SW speed drops sufficiently the shock forms and the CME sheath begins to grow. In this case, we consistently 

see a large pancaking force. Typically, pancaking is expected from a fast CME running into the slower upstream 

SW, we see that it also can occur when a slower CME is pushed from behind by fast SW. As with the fast CME, 

these time-dependent results largely reproduce the behavior found for the static case in Kay, Nieves-Chinchilla, 

et al. (2022), although we see some added effects when a CME is pushed from behind due to the addition of the 

two-point drag sampling the background both upstream and downstream of the CME.
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4. An Extreme Illustrative Case

We present another purely theoretical case where we have tuned the simulation to maximize the effects of a HSS 

pushing a slow CME from behind. The parameters for this case are listed in the “slow” column of Table 1. It uses 

the same quiescent SW parameters as the previous theoretical cases, but we initiate MEOW-HiSS with a HSS 

front at 0.05 au and originating from a 500 × 10 10 km 2 CH. This embeds the CME toward the back of the SIR at 

the start of the simulation. Figure 5 shows the results for this case in the same format as Figures 3 and 4.

The velocity panel shows that the CME speed is initially lower than that of the HSS and no shock forms. The 

accelerations show a strong forward push from the bulk drag, but the differential drag causes a strong compres-

sion of the CME. The CME speed slowly increases toward that of the background SW, finally reaching it around 

1 au. As the CME speed increases, both drag accelerations slowly decrease.

We see that the CME AW initially increases due to the magnetic and thermal pressure. As the aspect ratio changes 

acceleration the magnetic pressure changes directions several times below 0.3 au. The thermal pressure continues 

to correspond to acceleration, but the magnetic pressure is much more sensitive to the aspect ratio of the cross 

section, which is continually decreasing at this point. Beyond 0.3 au we see a slow decrease in the AW. The CME 

increases radial speed but the expansion velocities remain lower than the values corresponding to self-similar 

expansion, so both the AW and the aspect ratio decrease.

We see a small counterclockwise rotation in the yaw. The rotational velocity is largest near the Sun, where there 

is the most imbalance of forces with one edge embedded in the CME and the other in the quiescent SW. As the 

CME propagates the HSS moves toward the nose of the CME and the force imbalance decreases and disappears. 

The rotational velocity decreases over time to conserve angular momentum as the CME expands.

To better visualize the interaction between this slow CME and the HSS we show contours of the total velocity 

within the equatorial plane in Figure 6. The CME is oriented so that the toroidal axis of the CME lies within 

the equatorial plane. The white line outlines the outer edge of the CME flux rope. We emphasize that while 

our results can be visualized similarly to the common method for many hydrodynamic and MHD simulations, 

OSPREI is not a full 3D simulation where the plasma properties are self-consistently evolved across grid cells. 

MEOW-HiSS does provide plasma properties for the time-dependent background SW in the equatorial plane, 

but the CME is simply added on top within these images. OSPREI only calculates forces at a few specific points 

and uses them to change the speed, size, and shape of a torus, then uses conservation laws to evolve the internal 

properties. We then just use these to replace the portion of the equatorial plane corresponding to the CME with 

the appropriate speed.

The top row shows the evolution of the slow CME interacting with the HSS and the bottom row shows simulation 

results using the same CME inputs without any background HSS. The pale blue dots represent the location of four 

synthetic satellites at 0.12, 0.35, 0.70, and 0.99 au (25, 75, 150, and 213 R⊙). We use FIDO to simulate profiles 

at these points, which we discuss later on. The three panels within each row correspond to the first contact at 

each of the three outermost satellites, with the corresponding simulation time listed above each panel. We see 

that the CME interacting with the HSS arrives at each satellite earlier than the CME in the quiescent background. 

The difference in the arrival time increases as the CME propagates farther, reaching a difference of 22.8 hr at the 

farthest satellite close to 1 au.

Figure 6 also highlights the differing evolution in the CME speed and shape. Even within the leftmost panel, 

there is a noticeable difference in speed between the two cases, with the HSS case being faster, and this difference 

continues to increase over the temporal domain of the simulation. We note that both cases do have the CME 

accelerating, as the slow CME is slower than even the quiescent background. For both cases, we see that the CME 

is faster near the edges than at the nose, which corresponds to the pancaking of the CME. We also can see the 

difference in the width of the CME cross section in the radial direction. At 0.99 au, the CME is twice as wide in 

the quiescent simulation than in that with the HSS. Combining this with the difference in speed leads to a much 

shorter duration when the CME is pushed by the HSS. The yaw rotation is minimal for this case, so no significant 

rotation can be seen in Figure 6.

Figure 7 shows the in situ profiles corresponding to the synthetic satellites shown in Figure 6. The red family of 

colors (pink, red, maroon, and brown) corresponds to the case with the HSS, and the blue family of colors (light 

blue, blue, navy, and dark blue) to the quiescent case. The thin portion of each line represents the ambient SW 
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and the thick portion is the CME flux rope. All profiles are shown on the same scale to facilitate comparison. 

From top to bottom, Figure 7 shows the normalized total magnetic field, BR, BT, and BN field components, veloc-

ity,  temperature, and number density. Since most plasma properties vary by orders of magnitude between the Sun 

and Earth, at each satellite we show the profiles normalized by the maximum value within the flux rope portion of 

the profile for the case with the HSS. For example, for the first satellite, we find the maximum in the thick portion 

of the pink profile and use this to normalize both the pink and light blue profiles. The same approach is used at 

each subsequent satellite. The velocity is the only parameter shown without normalization.

At the first satellite (0.13 au, pink and light blue), the profiles are nearly identical as minimal evolution has 

occurred. The most obvious difference is in the SW speed and temperature following the CME, which shows 

the HSS in the pink case. The pink CME does show a slightly shorter duration and temperature by this distance.

Figure 4. Same format as Figure 3 but showing profiles for the average coronal mass ejection.
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By the second satellite (0.35 au, red and blue) we already see significant differences in the synthetic profiles. 

The red HSS-driven case is shifting toward an earlier arrival. The HSS accelerates the CME to higher speeds and 

compresses it. This compression enhances the magnetic field and temperature, though at this distance the density 

remains similar. All three properties vary with the CME size, but the density is based on the total volume whereas 

the magnetic field and temperature depend more strongly on the cross-sectional width in the model. We note that 

the magnetic field increases in intensity, but the rotation in the individual vector components remains the same.

These effects are further magnified by the third (0.70 au, maroon and navy) and fourth (0.99 au, brown and dark blue) 

satellites. The arrival times continue to separate, the CME in the quiescent background actually arrives at the third 

satellite around the same time as the HSS-driven CME reaches the fourth satellite. The HSS-driven case continues 

to shorten (relatively) in duration and enhance in internal properties, including density. These profiles highlight the 

extreme effects that one may expect from the interaction between a CME and HSS by the time it reaches 1 au.

5. Parameter Space Results

As done in Kay, Nieves-Chinchilla, et al. (2022), we perform a set of observations sampling parameter space 

to better understand the effect of different HSS properties on the CME–HSS interactions. We vary the CH area 

Figure 5. Results for the slow coronal mass ejection with a time-dependent high speed stream. The figure has the same 

format as an individual subfigure in Figure 3.
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between 200 × 10 8 km 2 and 2,500 × 10 8 km 2 and the initial HSS front between 0 au and 1.2 au. We use a resolu-

tion of 200 × 10 8 km 2 in the area and 0.1 au in the distance. For each combination of CH area and HSS distance, 

we simulate both a fast and an average CME using the same CME properties as in Section 3.

Before looking at the parameter space results, we consider what this variation in CH area and HSS front distance 

corresponds to with our time-dependent simulations. Figure 8 shows contours of different properties versus the 

CH area and initial HSS front distance. Figure 8a shows the region of the HSS in which the CME front is located 

at the start of the simulation. Region 0 corresponds to the upstream SW, 1–3 to the three SIR regions, 4 to the 

plateau, 5 to the tail, and 6 to the downstream SW. The difference in HSS size can be seen as the range of front 

distances corresponding to regions 1–5 increases with CH area. We note that the step-like features at the region 

boundaries are due to the coarse resolution of the grid.

Figure 8b shows the longitude at which the HSS front is initially at 1 au given each pair of HSS input parameters. 

The HSS follows a Parker spiral due to the solar rotation so, at a single point in time, the distance of the HSS front 

decreases as one moves toward higher longitudes (using Carrington-like or Stonyhurst-like coordinates). We find 

minimal variation with the CH area as the curvature of the spiral is essentially driven by the solar rotation. The 

corresponding longitudes of the 1 au fronts vary between roughly 50° east and 10° west of the source location.

The bottom row shows the region in which the CME nose is embedded when it reaches 1 au, analogous to panel 

(a). Figure 8c shows results for the fast CME and Figure 8d for the average CME. For the fast CME, we find that 

Figure 6. Contours of the speed in the equatorial plane. The top row shows the slow coronal mass ejection (CME) with the time-dependent high speed stream (HSS) 

and the bottom without any HSS. The boundary of the CME is outlined in white. For each row, we show three time steps roughly corresponding to the time of first 

contact at each of the three farthest satellites (pale blue dots).
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the CME will have reached the upstream quiescent SW if the initial HSS front distance is below about 0.3 au. It 

only remains in the downstream quiescent field for the smallest CH areas and farthest initial distances. In contrast, 

almost none of the average CME cases reach the upstream SW. The average CME moves slightly faster than the 

bulk motion of the HSS, but if the HSS starts sufficiently far out we do see a section of parameter space where 

the average CME cannot catch up to it and remains in the downstream region.

5.1. Comparison With Previous Results

Table 2 lists the results of the parameter space study for both the fast and average cases. The left column lists the 

different outputs from OSPREI for both CME and sheath properties (divided by the horizontal line). The two 

vertical lines separate results for the fast and average cases. Within each region the first column lists the final 

value at 1 au for the quiescent case, followed by the most negative and most positive change in that value over 

the HSS parameter space exploration. We do not include a detailed analysis of each row within this table but the 

values are included for completeness. The general results are the same as in the analogous study within Kay, 

Nieves-Chinchilla, et al. (2022), just with small changes in magnitude due to the new time-dependent nature of 

the background HSS.

We briefly look at contours of the variation in parameter space for several outputs. Again, the results are funda-

mentally the same as Kay, Nieves-Chinchilla, et al. (2022) (compare to the right panels within Figures 4–9 of 

Figure 7. Normalized in situ profiles comparing the results for the slow coronal mass ejection (CME) with and without the background high speed stream (HSS). From 

top to bottom, the rows show the normalized total magnetic field, BR, BT, BN, velocity, temperature, and number density. The pink, red, maroon, and brown profiles 

correspond to results using an HSS background, and respectively to increasing satellite distances (25 R⊙, 75 R⊙, 150 R⊙, and 213 R⊙). The corresponding profiles for 

the ambient background are respectively the light blue, blue, navy, and dark blue lines. The thicker portion of each profile corresponds to the CME and the rest to solar 

wind (either ambient or HSS). For each satellite distance, both the ambient and HSS profiles have been normalized using the maximum value within the CME for the 

HSS case (e.g., both red and blue have been normalized by the maximum in the bold part of red). For the magnetic field components, we use the maximum in the total 

magnetic field strength for normalization.
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that work), but we include a few examples for illustrative purposes. Figure 9 shows several contour plots for the 

fast case (left column) and the average (case). The dashed black lines indicate the final region in which the CME 

front is located at 1 au (the same as Figures 8c and 8d). From top to bottom, Figure 9 includes the transit time, 

axial aspect ratio, magnetic field strength in the sheath, and the yaw. We will go into further detail for the yaw in 

Section 5.2 as it was not studied in Kay, Nieves-Chinchilla, et al. (2022). The color map is set so that white indi-

cates little to no change, red is a positive change, and blue is a negative change in the final value of a parameter.

We find that the HSS can only cause a decrease in the transit time. The HSS either causes an acceleration or a 

decrease in the amount of drag so that the CME moves faster and reaches 1 au quicker. This causes a change of up 

to 9 hr for the fast CME and 5 hr for the average CME. These largest values occur when the CME is located in the 

plateau of the HSS for the entirety of its propagation. We saw this effect in Kay, Nieves-Chinchilla, et al. (2022), 

but now the CME can remain in the plateau for a longer time as the HSS also propagates out radially.

For the fast CME, we mostly see an increase in the axial aspect ratio (Figure 9c). This occurs in the plateau where the 

drag forces are minimal and the CME experiences less pancaking. For the average CME we see a decrease in pancak-

ing toward the back of the plateau, but also see an increase toward the SIR. The drag forces increase when the CME 

emerges from the plateau to the SIR and the aspect ratio quickly begins decreasing. For the average case, the aspect 

ratio falls below the quiescent value for quite a few cases. The fast case experiences the same effects but the magni-

tude of the changes in this post-plateau “recovery” phase cannot fully counteract the effects from its time within the 

plateau for all but the closest initial HSS distance. In general, the internal CME properties mirror the evolution of the 

aspect ratio, there is less contraction and more expansion in the plateau, leading to lower/weaker plasma properties. 

Once the CME reaches the SIR the drag increases, more pancaking and contraction occurs and the internal properties 

begin enhancing.

Figure 8. Contours of various properties based on the coronal hole area and initial front distance of the high speed stream (HSS). (a) The region in which the front of 

the coronal mass ejection (CME) is located at the start of a simulation. (b) The longitude at which the front of the HSS is at 1 au at the start of the simulation. (c, d) The 

region in which the front of the CME is located once it reaches 1 au (fast CME in (c), average CME in (d)).
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The sheath also evolves in a systematic manner. The shock is weaker in the plateau since the background speed is 

closer to that of the CME. This causes less compression, so we see weaker values, such as shown for the magnetic 

field strength of the sheath driven by the fast CME in Figure 9e. At the SIR, the drag suddenly increases as the SW 

velocity decreases and we see a stronger shock and more compression. As the CME moves toward the upstream 

region the shock and corresponding sheath properties approach the values of the quiescent case. The average 

case cannot form a shock, or even a compression region in front of the CME, within the plateau as it propagates 

slower than the background SW in this region. The gray shaded region in Figure 9f corresponds to input param-

eters that have a CME unable of driving a shock at 1 au. Outside of this region, we find an enhancement region 

when the CME reemerges into the SIR or upstream region with faster speed than in the quiescent case, leading 

to an increase in the magnetic field strength, and a weaker region when the CME is within the HSS tail at 1 au.

5.2. Yaw

Since the quiescent case experiences no rotation in the longitudinally uniform background, the bottom row of Figure 5 

shows the final yaw angle. For all CMEs, when the HSS front is initially at a distance close to the Sun then the 

lower-longitude flank of the CME is embedded in the HSS and the higher-longitude flank in quiescent SW. This causes 

more drag on the higher-longitude flank and a positive rotation in the yaw. Alternatively, if the HSS front is farther out 

then the opposite can happen, with only the higher-longitude flank embedded in the HSS and the lower-longitude flank 

experiencing more drag, resulting in a negative rotation. The exact distance to maximize a negative rotation varies with 

HSS size. In between these two extremes, we find a region where  the CME is fully embedded within the HSS and little 

to no rotation occurs. A larger region of parameter space corresponds to this fully-embedded lack of rotation for the 

average CME because the CME is smaller in size than the fast CME. We also see a region where the HSS is sufficiently 

Parameter

Fast Avg

Qui. Δ− Δ+ Qui. Δ− Δ+

vF (km/s) 764 0 354 576 −11 104

vExp (km/s) 89 −24 68 44 −45 16

AW (°) 50.1 −3.9 0.7 32.8 −1.5 2.7

AW⊥ (°) 23.3 −3.0 0.7 11.5 −0.5 1.0

δAx 0.373 −0.017 0.085 0.340 −0.056 0.023

δCS 0.367 −0.041 0.097 0.490 −0.213 0.033

B0 (nT) 76.8 −13.9 22.6 28.5 −5.1 47.5

nCME (cm −3) 8.0 −0.4 2.5 18.6 −2.1 5.3

log (TCME) (K) 4.829 −0.007 0.039 4.293 −0.017 0.036

Yaw (°) 0 −6.6 6.8 0 −2.2 1.6

Transit Time (hr) 41.3 −8.6 0 62.2 −5.3 0

Duration (hr) 17.8 −4.8 0 14.7 −7.1 0.9

r 3.74 −1.66 0.12 2.89 −1.89 0.16

vShock (km/s) 924 −1 365 660 −5 152

MA 6.7 −4.6 2.3 3.1 −1.8 0.3

Width (R⊙) 31.1 −7.2 6.4 32.6 −32.2 4.0

Duration (hr) 7.6 −3.1 0.3 10.9 −10.7 1.4

MSheath (10 15 g) 8.5 −7.1 0.5 1.9 −1.9 0.2

nSheath (cm −3) 15.7 −12.1 0 10.1 −8.4 5.3

BSheath (nT) 21.3 −16.1 18.0 18.2 −17.1 10.7

log (TSheath) (K) 6.408 −0.694 0.423 5.669 −0.652 0.157

vSheath,⊥ (km/s) 15.0 −5.8 51.8 26.2 −24.0 12.9

Transit Time (hr) 33.8 −6.6 0.1 51.8 −1.9 7.2

Table 2 

Variation in Final CME and Sheath Properties

 1
5

4
2

7
3

9
0

, 2
0

2
3

, 1
1

, D
o

w
n

lo
ad

ed
 fro

m
 h

ttp
s://ag

u
p

u
b

s.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
2

9
/2

0
2

3
S

W
0

0
3

6
4

7
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

5
/0

7
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



Space Weather

KAY ET AL.

10.1029/2023SW003647

19 of 31

Figure 9. The effects of different coronal hole areas and initial front distances on the simulation results. The contours show 

the change in various values from their corresponding results in an ambient solar wind (SW) background. The left column 

shows results for the fast coronal mass ejection (CME) and the right the average CME. The rows show the changes in the 

transit time, cross-sectional aspect ratio, Mach number, and yaw. The gray region in (f) indicates where the CME moving 

slower than the background SW and no shock/compression exists in front of the CME at the time of arrival.
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far out that the CME is fully embedded in the downstream quiescent region, so again no rotation occurs. We see that the 

HSS can cause the fast CME to rotate by about ±7° for the fast case, and ±2° for the average case. The increased drag 

on the fast CME, due to its higher speed, causes there to be more rotation.

Figure 10 further explores a maximally rotating fast case. The left panel shows contours of the radial velocity in 

the equatorial plane, analogous to Figure 6. We show a single time step when the CME reaches 0.99 au. We also 

include the CME-driven sheath in Figure 10a using the sheath width and CME boundary and approximating a 

constant speed within the sheath. Again, this is a visualization of an analytic simulation, not a full fluid simula-

tion, which is why the sheath abruptly ends at the flanks rather than smoothly transitioning back to ambient SW 

values. We include nine synthetic satellites, one at L1 and the rest separated by increments of 10°. All satellites 

are at 0.99 au. The colors match the in situ profiles shown in Figure 10b with the red satellite along the simulated 

Sun–Earth line, purple to pink representing increasingly positive satellite longitudes, and orange to yellow repre-

senting increasingly negative longitudes. Figure 10b has the same format as Figure 7 but shows physical units 

rather than being normalized. The short dashed portion of each profile corresponds to the ambient SW, the long 

dashed to the sheath, and the solid to the CME flux rope.

This case has a 5.1° rotation in yaw at the time of the first CME (not sheath) contact at L1. This can be seen by 

comparing to the satellite locations in Figure 10a. When the CME is just reaching the synthetic Sun–Earth L1 

point, the satellite at −40° is already within the flux rope but the satellite at 40° is still within the sheath. The 

parameter space exploration showed that the introduction of a HSS could change the transit time by 9 hr for the 

fast CME, but this was only determined at the CME nose and did not account for any spatial variations. For this 

case, the CME reaches the satellite at −40° after 33.1 hr and the satellite at 40° at 38.4 hr. The corresponding 

Figure 10. Results for the fast coronal mass ejection (CME) with the high speed stream (HSS) tuned to maximize the yaw rotation. The left panel shows contours of 

the total velocity in the equatorial plane, analogous to Figure 6. The different colored circles represent synthetic satellites used by ForeCAT In situ Data Observer. The 

right panel shows in situ profiles for all nine satellites with the color of each line matching the satellite position in panel (a). From top to bottom in panel (b), each row 

shows the total magnetic field, BR, BT, and BN field components, velocity, temperature, and number density. For each profile, the solid portion represents the CME, the 

long dashes the sheath region, and the short dashes the solar wind (ambient or HSS).
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sheath arrival times are 27.3 and 30.5 hr and the CME (not including shock) durations are 10.6 and 15.3 hr. Since 

the CME reaches the satellite at 40° later it has more time to develop a sheath and expand than at −40°. The forces 

are causing the CME to pancake, notice again the variation in velocities within the CME, but it is still overall 

expanding in size while the aspect ratio changes, leading to the increase in duration at the later contact.

The profiles in Figure 10b further illustrate this behavior. In our simulation, the temperature and number density 

are uniform throughout the CME. This means that all satellites see the same value if they are within the CME at a 

given time step/front distance. This is certainly an oversimplification of a real CME that likely shows much more 

variation along its toroidal axis. We still expect, for expanding CMEs, that earlier impacts should have higher 

density and temperature on average, but there will be more local variation about the general behavior.

While the density and temperature are uniform, our model does have some spatial variation in the flux rope 

magnetic field. The strength at the toroidal axis is uniform along the axis but the local magnetic field depends on 

the distance from the axis and the current aspect ratio of the cross section. Averaging over the full CME portion of 

the profile, we see the stronger magnetic field for earlier impacts. Within each profile, the field tends to increase 

as the satellite approaches the toroidal axis, then decrease as it moves away.

We see some variation in the direction of the magnetic field vector across different satellite longitudes. The vector 

is shown in radial–tangential–normal (RTN) coordinates. Even if there was no yaw rotation we would expect 

some longitudinal variations as the normal to the toroidal axis is, in general, only parallel to the radial vector at 

the CME nose. The normal component will not vary with longitude, but the equatorial projection of the vector 

will separate into both a radial and a tangential component, the exact nature of which depends on the CME shape, 

size, and distance. When the yaw is 0° the relative magnitude of the radial and tangential components will vary 

symmetrically for positive and negative longitude.

In this case, the toroidal axis lies within the equatorial plane so for a satellite impacting exactly at the nose, we 

would expect to first see only normal field with no radial or tangential component as the satellite begins sampling 

the fully poloidal field. Our satellite has an impact parameter of zero, if it did not go exactly through the center 

of the cross section then we would expect the poloidal field to have a radial component. As the satellite moves 

inward the poloidal field decreases, while the toroidal field, which points tangentially, increases. At the center of 

the cross section the field is entirely toroidal and tangential. As the satellite exits the CME the process is reversed, 

and if the CME is expanding all magnitudes will slowly decrease over time.

For this case, the positive yaw rotation cause the normal to the toroidal axis within the equatorial plane and toroi-

dal direction to be more aligned with satellite radial and tangential directions as one moves toward more positive 

longitudes. The higher longitude profiles show very little radial component and, despite having impact occur later 

when B0 is weaker, they have stronger toroidal field than the cases at lower longitudes. We see no variation in the 

normal field beyond that from the slight decrease in B0 over time.

We see some variation in the speed with the magnitude increasing for impacts toward the flanks since this CME 

is pancaking. We see the largest values for the satellites at positive longitudes where the CME is not actually 

interacting locally with the HSS, but this is a result of oversimplifications in the model. The CME interacts with 

the HSS over time, continually causing more pancaking, which would lead to an increase in speed wherever the 

interaction is occurring. The model approximates the change in shape (and corresponding velocities) as symmet-

ric about the nose because it is not yet sophisticated enough to handle that level of asymmetry in the flux rope 

shape. In a real scenario, we expect that there would be more distortion of the CME from its rigid (beyond aspect 

ratio) axial shape and more local variations so we would not see the enhanced speed at high longitudes.

The sheath portion of the profiles behaves similarly to density and temperature within the flux rope. The sheath 

evolves uniformly so its properties have the same magnitude at all locations at a given time/CME front position. 

The magnetic field magnitude is uniform, but the orientation does vary according to the local orientation of the 

flux rope since we assume that the SW field drapes about the CME. We see that the normal component remains 

the same but the component in the equatorial plane rotates between the radial and tangential directions.

6. Observed Case

Our final example combining OSPREI and MEOW-HiSS is an observed case, previously simulated with OSPREI 

and a quiescent background in Ledvina et  al.  (2023)—hereafter L23. This CME erupted at 21:00 UT on 26 
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January 2022 from an active region on the far side of the Sun. As the event is back-sided, we see no evidence in 

Solar Dynamics Observatory (SDO) imagery, but Extreme UltraViolet Imager (EUVI), onboard Solar TErrestrial 

RElations Observatory (STEREO)-A, does observe post-eruptive arcades approaching the eastern limb. This 

CME is associated with the arrival of an event at Parker Solar Probe (PSP; Fox et al., 2016) on 29–30 January 

2022. The PSP observations show a HSS stream following the CME, and we can still see a CH to the left of the 

source region when it rotates into the STEREO and SDO fields of view. We use the observations of the CH in 

SDO to measure the CH area (as described in Kay et al., 2023) and estimate the initial distance at the time of the 

CME eruption using the rate of solar rotation.

Before analyzing the in situ profiles, we present contours of the speed to visualize the CME–HSS interaction. 

Figure 11 shows these contours in the meridional (left) and the equatorial (right) planes at three different time 

steps. The meridional cut is taken along the plane through the CME nose. The blue dot represents the location of 

PSP. Earth (not shown) is located roughly 150° clockwise from the longitude of PSP at the start of the simulation. 

To visualize the HSS in the meridional plane we approximate it as having the same angular width and variation 

in the latitudinal direction as it has in the longitude in the equatorial plane. This assumption is only used for visu-

alization purposes and is not a part of MEOW-HiSS generally.

The HSS starts just to the east of the CME, initially only interacting with the eastern flank of the CME (Figures 11a 

and 11b). By the time the CME-driven sheath reaches PSP (Figures 11c and 11d), the HSS is catching up to this 

relatively slow CME so that the HSS front is about halfway between the Sun and the back of the CME along the 

radial line cutting through the CME nose. When PSP exits the CME (Figures 11e and 11f), the back portion of 

the CME is fully embedded in the HSS.

We now compare the observed and modeled in situ profiles. Figure 12 shows the PSP observations in black and 

include, from top to bottom, B, BR, BT, BN, v, T, and n. We identify a shock arrival at 0:00 UT on the 29th and the start 

of the CME (flux-rope-like component) at 9:00 on the same day. The exact boundary between the rear of the CME 

and front of the HSS is open to interpretation but we approximate it at 13:00 UT on 30 January 2022. One could argue 

for a boundary at 0:00 UT on 30 January based on v, n, and T, but the total B remains very smoothly varying beyond 

this time. We have also investigated the plasma beta (not shown), which essentially mimics the temperature profile, 

increasing above unity when the temperature begins to rise, and remaining high. The plasma beta is often a useful 

metric for determining flux rope boundaries but as a HSS pushes on a CME from behind, we expect heating will occur 

in its trailing portion. Furthermore, if the CME and HSS have oppositely directed magnetic field then reconnection 

can occur, mixing and heating the plasma as well as raising the beta. We suspect that the region between 00:00–13:00 

UT is likely an interaction region between the CME and the SIR of the HSS. As we will see, the modeled flux rope 

and the following SIR do have opposite signs for BT so it is plausible that reconnection occurs and mixes the plasma.

Table 3 lists the OSPREI input parameters for both L23 and this work (labeled K23). In both cases, a full OSPREI 

simulation, including ForeCAT, was performed. The focus of L23 was how different magnetograms affect 

OSPREI results for four different events. They tuned each event to the in situ observations using a synchronic 

magnetogram, which updates a synoptic magnetogram using the most recent daily observations from the Earth's 

perspective. As this is a back-sided event, the synchronic magnetogram is not necessarily the best choice, so we 

instead use the synoptic magnetogram. We also use the most up-to-date version of OSPREI, incorporating all the 

changes in the ANTEATR component. This includes the sheath development, the 2-point drag, the HSS back-

ground, and the yaw rotation. We re-tune the OSPREI results by hand to find an approximate best fit with the new 

version incorporating all the changes.

Figure 12 includes the results from both L23 (yellow) and this work (K23, red), as well as several intermediate 

results to show how the different model improvements affect the in situ results. The line styles within each profile 

represent the same breakdown between ambient SW, sheath, and flux rope as in previous figures. The vertical 

dashed lines show the sheath, CME ejecta start, and CME ejecta end. We note that we are simply showing the 

model evolution, not trying to identify the most important factor in improving the fit to the in situ profile. The 

improved profile is a compound effect of all the changes and was found as such, using all the new features at once. 

When building to this case one step at a time the magnitude of each change depends on the order in which we 

introduce the changes, and the relative importance would likely vary between different CMEs.

In building to the new version, the first step (K230, orange profile) is just a change in input parameters but no 

change in the OSPREI capabilities. The most significant change is in the internal temperature of the CME, here 
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Figure 11. Contours of the total velocity in the meridional (left) and equatorial (right) planes at several steps during the 

simulation. The white line indicates the edge of the simulated coronal mass ejection (CME). The top row shows early in the 

evolution, the middle near the time of first contact with the CME, and the bottom near the time the satellite exits the back of 

the CME and enters the high speed stream.
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Figure 12.
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we use a much lower value to decrease the excessive expansion, resulting in a shorter duration and a better match 

to the observations. The modeled in situ temperature is slightly lower than the observations for both the L23 and 

K230 cases, but the observations show many fluctuations that will never be captured with a uniform temperature 

model. The K23 input parameters also noticeably change the radial velocity profile in the corona (initial speed 

v0, the distance that linear acceleration starts, R1, the distance that linear acceleration ceases, R2, and the final 

coronal speed, vF), and slight changes in the initial position (latitude, longitude, and tilt), CME mass (MCME), 

edge-on width (AW⊥), internal magnetic field (B0), adiabatic index (γ), and expansion factor (fExp). The net effect 

of these, when using the previous version of OSPREI, is a later arrival time, shorter duration, and higher internal 

magnetic field strength, density, and speed. Depending on the metric, this result is arguably not a better fit to the 

observations than L23, but we emphasize that this is just an interim step. This set of inputs is only optimal when 

all the changes are incorporated.

We then include the CME-driven sheath (K231, light blue profile). We see minimal changes from K230 in the 

flux rope portion of the profile, mostly just a slight shift toward an earlier arrival time. However, the profile does 

now include a sheath, which fairly well reproduces the observed sheath duration, total magnetic field strength, 

velocity, and temperature. We see excessive compression in the density and the vector components are oversim-

plified as we are using a smooth profile to represent a highly turbulent region. Here is a clear example of where 

an interim step could produce a better fit with a different set of inputs, such as lowering B0 in this case. Again, 

our focus is not in quantifying the importance of each step as we believe they are all important, but rather simply 

illustrating how OSPREI has evolved from the L23 case.

Figure 12. Comparison of the simulations of the 26 January 2022 coronal mass ejection (CME) with Parker Solar Probe in situ observations (black lines). We shows 

incremental steps moving from the L23 results (yellow) to the final version developed for this work (red). The sequential steps are a change in input parameters (orange), 

the inclusion of the CME-driven sheath (light blue), the improvement in the drag calculation (blue), the inclusion of the background high speed stream (maroon), and 

finally the addition of yaw rotation (red). The order of the rows and the different line styles are the same as in Figure 10. The vertical dashed lines represent the time of 

the shock arrival, the start of the CME ejecta, and the end of the CME ejecta.

CME L23 K23 SW L23 K23

Lat (°) −17 −18 nSW (cm −3) 20 25

Lon (°) 30 29.5 vSW (km/s) 350 325

Tilt (°) 60 45 BSW (nT) 5 10

R0 (R⊙) 1.1 1.1 log (TSW) (K) 4.70 4.70

R1 (R⊙) 1.1 1.3 Cd 1 1

R2 (R⊙) 3.0 15 CH Area (10 8 km 2) – 932

v0 (km/s) 50 80 RHSS0 (au) – −0.27

vF (km/s) 500 600

MCME (10 15 g) 6 10

AW (°) 45 45

AW⊥ (°) 20 15

Yaw (°) – 0

δAx 0.7 0.7

δCS 1 1

log (TCME) (K) 6.36 5.34

B (nT) 2,500 2,800

B0 (nT) 3,570 4,000

τ 1 1

C 1.927 1.927

γ 1.66 1.33

fExp 0.85 0.5

Table 3 

OSPREI Input Parameters for the Observed Case
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Next, we update the drag to the new version (K232, blue line), followed by including the HSS (K233, maroon 

line) as well as the yaw rotation to reach the current OSPREI version (red line). These three lines are hard to 

distinguish between in Figure 12. In particular, this CME only rotates 2.5° so the maroon line is fully obscured by 

the red line. The only instance in which the maroon line is marginally noticeable, even when zooming in, is in the 

middle of the flux rope for BR as it falls slightly above the red line. We do see some  difference between the blue 

and red cases, particularly near the rear of the CME. The change in drag moves the total magnetic field profile to 

a near exact match to the observations and the vector components do an adequate job of reproducing the average 

behavior of the observations. The fit is worse near the rear of the CME, where we expect there to be signatures of 

the interaction with the HSS. The updated drag causes a slightly earlier arrival and shorter duration than in K231 

but the speed is still too low near the CME rear.

Including the HSS causes the CME duration to finally shorten to match that of the observations at least when 

including the “mixed” region of the observations. We also see an increase in the speed at the back of the CME, 

not only an increase relative to K232 but an actual increase within the profile between the middle and end. This is 

the signature of the HSS accelerating the CME. While we do capture some increase, the extent of it is still much 

weaker than that seen in the observations. Overall, the new changes in the model allow us to find an excellent 

match to the timing and properties of the sheath and front portion of the CME, but the model may still be a bit 

too simplistic to fully capture the dynamic interaction, including potential reconnection effects, at the rear of 

the  CME.

We run an ensemble of OSPREI simulations varying the initial CME latitude, longitude, tilt, both angular widths, 

both aspect ratios, radial velocity, mass, internal magnetic field strength, and temperature, as well as the CH area 

and initial HSS front distance. This represents all of the input parameters with significant uncertainties in their 

initial values. As this is a highly multi-dimensional parameter space, it is possible that we were not able to find 

their optimal values in our initial manual exploration. We run an ensemble of 200 simulations with all of the 

chosen parameters varying simultaneously. We specify a range for each varied parameter, which sets the width of 

a Gaussian distribution centered about the ensemble seed, and from which the varied inputs are randomly drawn.

Our ensemble produces 200 different in situ profiles, all of which include portions of the ambient SW, sheath, 

and flux rope. To quantitatively define which profile is “best” we must develop some form of metric combin-

ing information about the timing and accuracy representing various plasma properties. We calculate the metric 

using the mean absolute fractional error in the total magnetic field, velocity, number density, and temperature 

between the observed sheath start and the end of the flux rope. We sum the fractional error for all four properties 

and add  the  absolute error (in days) for the arrival of the sheath front, CME front, and CME end. This metric is 

somewhat arbitrary and we have no justification for it being the best for all cases, but it is certainly a reasonable 

combination of the errors we wish to minimize.

Using this metric, we have identified the best fit. Figure 13 shows each of the ensemble members in gray, the 

seed in red (corresponding to the values listed in Table 3), and the best fit in purple. We note a minimal difference 

between the best fit and the seed case for this case. All panels, other than the temperature, show a slight shift in 

the flux rope profiles, but the best fit and seed profiles largely overlap. We do see a slight increase in the velocity 

in the best fit case within the mixed region at the back of what we have labeled as flux rope. Had we set the flux 

rope end to a different time, we would have likely found a different best fit. Further study needs to be performed 

to identify the optimal metric (and boundaries) for quantifying the quality of fit across a variety of observations.

7. Discussion

This work presents the coupling of two strategically simplified models in an attempt to reproduce an interaction 

that is very complicated in the real world. There are certainly a number of oversimplifications, but we see promis-

ing results in a variety of applications. We believe that the combination of OSPREI and MEOW-HiSS can be very 

powerful in the right circumstances, but some caution should be applied before blindly applying it to every case.

The biggest caveat is that OSPREI includes almost no local variations, the evolution all happens on a global scale. 

This is particularly an oversimplification for the yaw rotation. A CME is a coherent structure to some extent, but 

realistically information about what is happening at one flank does not immediately affect the behavior at the 

other flank and result in a solid body rotation. In the example of one flank embedded in an HSS and the other in 

quiescent SW, we would expect differing drag to cause the two flanks to propagate out differently so that one will 
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Figure 13. Ensemble results using the red line from Figure 12 as an ensemble seed. The gray lines represent individual 

ensemble members and the best fit member is shown in purple. The rest of the Figure is in the same format at Figure 12.
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move farther out relative to the other. Realistically this does not generate a net torque about the nose that rotates 

the CME as a rigid structure, it is a series of localized changes. Owens et al. (2017) show that a CME should 

be considered less and less of a coherent structure as it propagates outward while expanding and experiencing 

changes in the internal Alfvén speed. This suggests that the solid body rotation will become a worse approx-

imation at farther distances. The solid body rotation within OSPREI should be thought of as a mathematical 

simplification of much more complicated behavior that can hopefully provide a useful approximation, much in 

the manner that a one-dimensional drag equation is used for the propagation of a CME, or MHD is used to repre-

sent the collective behavior of an untenable number of individual particles. We believe that OSPREI is largely 

providing a reasonable approximation of the overall behavior, but this needs to be confirmed with multipoint in 

situ observations.

With this in mind, we advocate intelligent application based on the relative location of a HSS–CME interaction 

and the observing satellite. If the interaction is happening close to the satellite's trajectory through the CME 

then we have relatively high confidence in the results. If the satellite encounter happens at one flank but the 

interaction occurs at the other we encourage caution, particularly in the in situ profile within the flux rope. As 

far as OSPREI and MEOW-HiSS can provide the general net evolution from a series of local changes then the 

arrival time may be fine, but we have already seen examples of the flux rope velocity seeming inappropriate for 

far satellite longitude with the fast CME in Figure 10. Using Figure 10, we estimate that the in situ profiles will 

be fine up to 10°–20° from the longitudinal boundary of the CME–HSS interaction, but this is a ballpark guess 

and needs further validation.

We also do not include any feedback between the rotating CME and the exterior SW. The yaw rotation should 

cause external compression and rarefaction, which will act to counteract and slow down the rotation. This means 

that our already small estimates of the rotation may likely be overestimates. This questions the necessity of actu-

ally including yaw rotation in future interplanetary CME simulations. We do not have reconstructions of CMEs 

in interplanetary space that account for any evolution in a yaw angle. Even if they did, this work suggests that 

the expected rotation would certainly be smaller than the uncertainty in the reconstruction. This work shows that 

while the CME–HSS interaction can certainly noticeably affect the interplanetary propagation of a CME, any 

large-scale rotations will likely only have minimal effects.

8. Conclusion

We have presented the coupling of two existing models, OSPREI and MEOW-HiSS. OSPREI simulates the 

Sun-to-Earth evolution of a CME, including a component modeling its interplanetary propagation, expansion, 

and deformation. Kay, Nieves-Chinchilla, et al. (2022) had used a static HSS background with OSPREI and found 

that the drag greatly decreases when a fast CME is embedded within the plateau and tail of a HSS. Once it reaches 

the SIR and upstream SW the drag suddenly increases and the CME properties begin approaching the values that 

would be expected in a quiescent background. Alternatively, a slow CME can be accelerated by a HSS. MEOW-

HiSS models a time-dependent HSS background and can easily be coupled with OSPREI. We find that the same 

general results occur when a CME interacts with a time-dependent HSS but the motion of the HSS changes how 

long the CME spends within each region.

In addition to coupling OSPREI with MEOW-HiSS, we have made several improvements in the interplanetary 

component of OSPREI. These improvements take advantage of being able to use a higher dimensional SW back-

ground, as opposed to the previous option that only varied with radial distance. We have modified the drag force 

to better account for differences between the front and back of the CME, such as quiescent SW ahead and a HSS 

pushing from behind. We have also introduced a yaw-like rotation where the CME rotates about its nose based on 

a net torque from different drag forces on opposite flanks of the CME.

We present a series of studies with the coupled models. We first closely analyze the interplanetary evolution of 

both a fast and an average CME interacting with a HSS. This includes determining the propagation, expansion, 

and deformation of the CME, as well as the growth of a CME-driven sheath. We compare how these factors 

change between a quiescent background, a static HSS, and a time-dependent HSS. We then present an extreme 

case where we have optimized the inputs to have the HSS give the CME a strong push from behind.

We next look into the variation in the CME and sheath results for different HSSs, as defined by the initial distance 

of the time-dependent HSS front and the area of the CH that generates the HSS. We find similar results to Kay, 
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Nieves-Chinchilla, et al. (2022) with respect to how CME properties vary from the quiescent case depending on 

which HSS region they are embedded in when they reach 1 au. The time dependence simply causes changes in the 

relation between the initial HSS properties and the corresponding final region for the CME at 1 au.

We also analyze the yaw rotation for different initial HSS properties. When one CME flank is embedded in the 

HSS and the other in quiescent SW we see a rotation in the yaw due to the flank on the HSS side propagating 

faster than the flank on the quiescent side. If the CME is fully embedded within the HSS then little to no rota-

tion is observed as the forces are relatively balanced. We find a maximal rotation of about 7°, which can cause a 

difference of about 5 hr in the arrival time and the duration of opposite flanks. We conclude that large-scale yaw 

rotation can only introduce minimal changes in observed CME behavior.

We compare OSPREI with MEOW-HiSS results for a CME–HSS interaction that was observed by PSP on 29–30 

January 2022. This case was previously simulated by Ledvina et al. (2023) with an older version of OSPREI and a 

quiescent background. We see that the improvements within OSPREI and the inclusion of MEOW-HiSS improve 

our ability to reproduce this event, finding excellent matches to the observed arrival time, CME duration, and 

total magnetic field profile. We also see good matches to the vector components of the magnetic field, temper-

ature, and number density, but suspect some difference occurs near the back of the CME due to reconnection 

with  the HSS, which is not captured by OSPREI. OSPREI reproduces the observed velocity very well in the front 

of the CME and even shows an enhancement toward the rear, but much weaker than seen in the observed case.

Overall the coupling of OSPREI and MEOW-HiSS shows promising initial results. Further validation against 

observed cases is required but we expect that this could be a powerful tool for forecasting complicated, interacting 

cases, which often tend to drive the most significant space weather events.

Data Availability Statement

The OSPREI model, including the incorporation of MEOW-HiSS, is publicly available and archived through 

Zenodo (Kay,  2023). The in situ data from Parker Solar Probe data were retrieved from CDAWeb (NASA 

CDAWeb Development Team, 2019).
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