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Over theyears,many computationalmethods have been created for the analysis of the impact
of single amino acid substitutions resulting from single-nucleotide variants in genome coding
regions. Historically, all methods have been supervised and thus limited by the inadequate
sizes of experimentally curated data sets and by the lackof a standardized definition of variant
effect. The emergence of unsupervised, deep learning (DL)-based methods raised an impor-
tant question: Canmachines learn the languageof life from the unannotated protein sequence
data well enough to identify significant errors in the protein “sentences”? Our analysis sug-
gests that some unsupervised methods perform as well or better than existing supervised
methods. Unsupervised methods are also faster and can, thus, be useful in large-scale
variant evaluations. For all othermethods, however, their performance varies by both evalua-
tionmetrics and by the type of variant effect being predicted.We also note that the evaluation
of method performance is still lacking on less-studied, nonhuman proteins where unsuper-
vised methods hold the most promise.

Prediction of genomic variant effect is argu-
ably the holy grail of precision medicine,

evolutionary analysis, and molecular function
annotation. Over the last 20 years, machine
learning techniques have captured the leading
role in this field. This is primarily because of the
enormous number of variables that go into es-
tablishing the effect of a specific variant. For
example, evaluating the change in a protein
functiondue to a single amino acid substitution,
that is, the result of amissense single-nucleotide
variant (SNV), may require evaluating all con-
comitant structural changes, proximity to ac-
tive sites, and evolutionary history/conserva-

tion measures of the protein as a whole and at
the specific position in question. Furthermore,
the number of variants that have yet to be ana-
lyzed is large and growing. That is, every human
genome differs from the reference by ∼0.1% in
SNVs, leading to roughly 3.5 million variants
per individual (Pang et al. 2010; Pelak et al.
2010) and at least 84.7 million unique variants
in the human population (1000 Genomes
Project Consortium et al. 2015). Note that if
we commit to the task of evaluating the variant
effect on the abilities of other species, particu-
larly bacteria, the number of variants needing
annotation would grow exponentially.
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A [NOT SO] PERFECT CASE
FORMACHINE LEARNING

Using machine learning methods for human
variant analysis, however, has been historically
complicated by the difficultyof definingmeasur-
able variant effect classes. For example, “Does
this variant causedisease?”maybeayes/noques-
tiononly for somecancerdrivers andmonogenic
disorders; note that thevariant effectmayneed to
be further modified by the allelic dominance.
Nevertheless, many methods have claimed the
ability to predict variant pathogenicity, without
explicitly defining the term’s meaning. This re-
ductionist paradigm that has longdominated the
field of genetics (Gibson 2012; Katsanis 2016)
answers a very different question than whether
the complex interplay of all individual genome
variants with the environment is likely to give
rise to a particular disease.

Existing experimentally derived, quantified,
and validated variant annotations that could be
used for method training are few in the scientific
databases and have, so far, been hard to extract
from the literature. For example, the manual cu-
ration efforts to collect monogenic disease/phe-
notype-associated variants in OMIM (Hamosh
et al. 2000)haveonlyannotated∼23,000 (0.027%
of 84.7M) SNVs (Savojardo et al. 2021). Addi-
tional disease-associated and putatively neutral
missense SNVswere collected inHumVar (Cap-
riotti et al. 2006), from the work of SwissProt
curators (Boeckmann et al. 2003; Bairoch et al.
2004), and in the more recent HuVarBase
(Ganesan et al. 2019). The latter parses a large
number of resources to extract 774,863 disease-
annotated variants (718,590 are missense)—a
“staggering” 0.92% of all known human SNVs.

Non-disease-relevant variant functional ef-
fect is even harder to come by. The Protein Mu-
tant Database (PMD) (Nishikawa et al. 1994;
Kawabata et al. 1999), a project started in 1989,
required reading over 42,000 relevant scientific
articles to extract the subjective, qualitatively
binned measurements of the variant effect of
over 200Kvariants indifferent species onprotein
structure, stability, and/or function; note that
human variants make up less than a fifth of this
data set. While recent small studies have been

more proactive in distributing their data (see,
e.g., the VariBench collection [Sarkar et al.
2020]), study reporting, data accessibility, and
cross-study standardization, remain limited.
Given the resulting disproportionately wide
and short training data tables (i.e., relatively few
variants and many features that can describe a
variant), the field has gotten very creative in data
collection for prediction method development/
training.

NOTALL VARIANT IMPACT IS THE SAME

Here lies the root of the confusion—under-
standing of exactly which variant effect is being
predicted is limited across the nearly 200 cur-
rently available, supervised methods (Hu et al.
2019; Zhu et al. 2020). For example, SNAP
(Bromberg and Rost 2007; Hecht et al. 2015) is
trained using (all species) single amino acid sub-
stitutions collected from the PMD, where func-
tional effect refers to the result of experimental
evaluations of the activity of wild-type versus
mutated proteins. As expected, SNAP aims to
predict the variant functional effect. One version
of PolyPhen-2 (Adzhubei et al. 2010) is trained
on the HumVar data set, that is, pathogenic var-
iants versus those with no such annotation. Cu-
riously, PolyPhen is also meant to predict the
possible effect of the variant on the function
and structure of the affected protein. CADD
(Kircher et al. 2014) contrasts observed coding
and noncoding variants with simulated muta-
tions, predicting variant functional effect and
both disease causation and association. Further-
more, meta-methods (e.g., REVEL [Ioannidis
et al. 2016]) rely on input from a variety of dis-
parate techniques to summarize some fluid def-
inition of variant effect. The recent advances in
deep learning (DL) and unsupervised methods
(e.g., DeepSequence [Riesselman et al. 2018],
EVE [Frazer et al. 2021], and ESM1V [Meier
et al. 2021]) have given rise to even less-explain-
able effect predictions. While these models are
better suited to evaluate variants on a large scale,
the specific type of effect that their variant scores
capture is unclear. Numerous efforts have been
undertaken to evaluate the performance of the
various methods (e.g., The Critical Assessment
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of Genome Interpretation Consortium 2022),
but these are also limited by the lack of corre-
spondence between the questions being asked
and the type of answers that these tools have
been developed to provide.

Excluding the prediction of measurable
structural or stability changes, there are three
broad kinds of effects that are relevant: (evolu-
tionary) fitness effect, pathogenicity (disease
causation), and (molecular) function change.
We argue that existing computational methods
have largely failed to recognize the difference
between these three types of effect.

IMPACTOF VARIANT EFFECT TYPE
ONMETHODDEVELOPMENT

While closely related, the three types of variant
effects are not identical and, in fact, are very dif-
ferent in non-edge cases. Evolutionary fitness,
for example, is often evaluated in terms of pop-
ulation frequencyorconservationof themutated
site across species; that is, variants are expected to
bemoreor less common inhumanpopulationor
across species because of the impact they have on
their carrier ability to survive and reproduce.
Evolutionary history, however, does not guaran-
tee current success. Thus, for individual human
genomes, variant population frequency or site
conservation alone is unlikely to lead to a precise
conclusion about variant functional effect or in-
volvement in causing a disease. Similarly, a slight
change in the function of a given protein may be
insufficient to make a fitness difference on the
human population level or to bring on a clearly
definable disease phenotype.

The relationship of evolutionary fitness with
disease is complicated by the polygenic nature of
most disorders,making it impossible to infer truly
causative variants. However, even in the case of
monogenic disorders, the selective disadvantage
of causative variants is not always guaranteed, and
population-specific frequency is paramount. For
example, the sickle cell hemoglobin allele is ex-
ceedingly rare (∼0% minor allele frequency
[MAF]) in Europe and the Americas, but more
common (MAF>0.5%) throughout most of the
African continent, and pervasive (MAF>9%)
across the large area stretching from southern

Ghana to northern Zambia (Piel et al. 2010).
Thus, elucidating the specific relationship be-
tween disease and fitness requires a much deeper
understanding of the nature of the disease and of
the features of the affected populations.

Technological problems, for example, insuf-
ficient sequencing across populations, limited
experimental resolution in establishing func-
tional effect, and even statistical inference pa-
rameters, complicate matters further. For exam-
ple, genome-wide association studies (GWAS),
require that a given variant be present in some
significant fraction of the population (e.g., 5%).
This frequency, however, would be improbable,
if not impossible, for a true disease-causing, se-
lectively disadvantageous variant.

Furthermore, outside of humanpopulations,
the words fitness, pathogenicity, and popula-
tion frequency are measured using different
scales and, thus, methods pretrained with hu-
man data cannot be expected to produce similar
results across organisms.

The lack of effect type differentiation in lit-
erature could be attributed to the variants histor-
ically analyzed in wet-lab experiments and used
for, first, establishing the theoretical framework
for effect identification and, later, for computa-
tionalmethoddevelopment.Due to scientific in-
terest and time/money constraints, scientists
aimed to study variants likely to cause a disease;
after all, why not start with a variant that is likely
to cause diabetes or trigger cancer development?
At the same time, due to experimental limita-
tions, functional variant effect could only be
measured reliably for high-effect variants with
visible phenotypic displays, such as a drastic re-
duction in catalytic activity, reduced number/
size of cell colonies, or evenmisshapen red blood
cells. On the other hand, many experimentally
annotated negative/no-effect findings were inci-
dental and often not explicitly or rigorously eval-
uated.

This bias toward hunting for high-effect var-
iants has been recently elucidated through the
development of deep scanning mutagenesis
(DMS) methods that quantitatively, for one type
of function per experiment, evaluatemany, if not
all, possible variants per given protein (Araya
and Fowler 2011). DMS experiments demon-
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strated that the scale of variant effects is contin-
uous and, by sampling from only the high-effect
variants, we forgo the understanding ofwhat “ef-
fect”means (Miller et al. 2017, 2019; Pejaver et al.
2019). As such, even a perfectly trained super-
vised classifier would tend to underestimate the
number of function effect-carrying variants in a
given protein or gene, whilemethod evaluations,
of either supervised or unsupervised methods,
may overestimate the correlation between the
three types of variant effect.

In evaluating variant effect, one readily avail-
able representation of evolutionary fitness—con-
servation of the mutated site—has been exceed-
ingly useful and used by many methods. The
reasoning behind the use of this feature is clear
—conserved positions are conserved for a reason
and, thus, should not change. The use of conser-
vation across methods has, however, ensured that
most predictions are largely nonorthogonal, that
is, they tend to predict the same conservation-
evidenced outcomes. This conclusion is support-
edbytheminimalvariationinperformanceacross
methods and minimal performance improve-
ment of meta-methods. The recent development
of single-sequence-based, unsupervised, protein
language models (pLMs) appears to bypass the
explicit need for conservation information. These
models may capture a different effect signal and,
alone or in concert with other techniques,may be
helpful in distinguishing variant effect types.

CAN THE TOOLS OF TODAY ANNOTATE
VARIANT EFFECT?

In this work, we evaluate the advances in variant
effect prediction across the various models and
effect types and sizes.We first evaluate the contri-
bution of variant frequency and position conser-
vation to variant effect predictor scores. We sug-
gest that these characteristics of variants are the
best currently available, although indirect, repre-
sentations of variant “fitness.”We then use exper-
imentally validated sets of variants to evaluate the
method’s ability to predict variant functional ef-
fects. Here, we assess both a selection of variants
explored in the scientific literature (reported in the
PMD) and an exhaustive collection of variants
fromDMSexperiments. Finally,weassess theper-

formance of methods in annotating variants as
being pathogenic (i.e., likely disease-causing [re-
ported in ClinVar; Landrum et al. 2018]).

We consider three types of methods (SOM
methods): classical methods and supervised and
unsupervised DL methods. Classical methods
use computational (e.g., SIFT [Ng and Henikoff
2003; Hu and Ng 2013]) and machine learning–
based (e.g., REVEL) techniques,where input fea-
tures (e.g., conservation, structure, or other
method predictions) are selected on the basis of
biological relevance. Their training/develop-
ment data classifies variants into two groups—
effect or no effect—however defined. Supervised
DL methods may similarly use selected biologi-
cal variant or protein features (e.g., MetaRNN
uses variant frequency), conservation scores,
and output of other prediction methods, or they
may rely simply on protein sequence and struc-
ture (e.g., Seq-UNet [Dunhamet al. 2023]). They
are also trained to reflect on variant effect (e.g.,
pathogenicity in the case of MetaRNN [Li et al.
2022]) and variant “rare-ness” (probability that
the variant is rare), or the corresponding posi-
tion-specific scoring matrix (PSSM) of amino
acids (in the case of Seq-UNet). As opposed to
classical methods, however, all methods in this
category use DL architectures to achieve their
task. Finally, unsupervised DL methods use se-
quence information alone without an attached
variant classifier. Their outputs are then evaluat-
ed to explore the difference between wild-type
and mutant sequences (SOM methods in Sup-
plemental Material).

To evaluate the performance of all methods,
we scaled each method’s prediction scores into
the [0, 1] range usingmin–max scaling across all
variants in all data sets and made all scores uni-
directional (1 = effect, 0 = no effect; SOM meth-
ods in SupplementalMaterial). Furthermore, we
developed a standardized, population frequen-
cy-based means for score threshold selection.
For each method, we identified a threshold to
separate effect versus no-effect variants as the
one below inwhich 95%of the variants common
in the population (allele frequency ≥0.01) were
observed (Zeng and Bromberg 2019). We argue
that this approach allows for high precision in
identifying variants of high effect, even if the
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recall of smaller effect variants is limited. Finally,
to represent the conservation baseline, we used
phastCons (Siepel et al. 2005), computed on
multiple sequence alignments of 16 primate ge-
nomesto thehumangenome.Earlierwork found
that using primate genome alignments wasmore
informative of variant effect than all vertebrate
alignment (Sun and Yu 2019). Genome-align-
ment-based methods may not be as sensitive to
protein structure/function changes as the more
protein-focused methods. However, the conser-
vationof genomic sites inprotein-coding regions
may be driven by non-protein-sequence-specific
needs (e.g., splice sites, mRNA stability, tRNA
binding, etc.).We thus argue that these estimates
are better suited for baseline assessments of var-
iant fitness and report phastCons performance
for comparison with all data sets.

VARIANT EFFECT PREDICTORS AND
LANGUAGEMODELS RECOGNIZE
POPULATION FREQUENCY

Variants in the human genome are not evenly
distributed across coding genes. In our analysis
of the ALFA data (Phan et al. 2020), only slightly
more than half (58%) of the 16,671 proteins con-
sidered in this study corresponded to genes that
carried a common variant (allele frequency
≥0.01), while nearly all had a singleton (allele
count= 1) or an ultra-rare variant (frequency
<0.001). Rare variantswere only present in rough-
ly three-quarters of the proteins (0.01> allele fre-
quency ≥0.001; 74%). Although the uneven dis-
tributionof variants insomeof theproteinscanbe
explained by insufficient data, disagreement be-
tweensequencingprojects,whichcouldbeexpect-
ed if individual project data were not representa-
tive, is rare.Where projects do disagree, it is often
one, usually smaller project that assigns higher
frequency, while all others do not. For exam-
ple, the FLYWCH-type protein (NP_001294997)
contains no common variants according toALFA
(sample size = 48,480) or any of the population-
specific projects but has one SNP (rs61747748;
ALFAMAF= 0.0014) labeled as common by the
Simons genome diversity project (sample size =
12). Thus, we expect that common variants are
indeed limited to a subset of genes. For these, the

absence of common variants may identify evo-
lutionarynoveltyand thus less time toperpetuate
variants throughout the population.Alternative-
ly, these genes can be essential and thus resist
variance altogether. We note that in-depth eval-
uation of the reasons for this variant disparity
across genes/proteins is beyond the scope of
this work.

Here,we set out to evaluate the relationship of
the variant frequency with the predicted variant
effect. We considered the genes lacking common
variants to be somewhat biologically unique and,
possibly, misrepresented in training data of com-
putational methods. We thus retained only the
variants in those genes that carried both common
and other variant types together and sampled
35,082 variants in 9,142 proteins (Supplemental
Fig. S1; Supplemental Table S1).

Thenature of training/developmentdataused
by many supervised methods had, due to experi-
mental limitations, mostly labeled rare human
pathogenicvariantsasdeleterious(i.e., pathogenic
and/or of large negative functional effect), while
common variants were largely deemed neutral
(i.e., notpathogenicnorbearing functional effect).
For example, very common (i.e., >5% allele fre-
quency) variants are defined as benign by
ACMG–AMP experts (i.e., stand-alone evidence
of benign effect [BA1]). We thus expected that
classical methods for prediction of variant effect,
represented here by CADD, REVEL, PolyPhen,
and SIFT, as well as supervised DL methods (i.e.,
MetaRNN, MVP [Qi et al. 2021], Seq-UNet,
VESPA[Marquet et al. 2022], andAlphaMissense
[Cheng et al. 2023]), would identify less frequent
variants as having a larger effect.

We observed the expected method behavior
(Fig. 1А), although the difference between scores
of commonversus rare-type variantswasnot large
for most methods. All classical methods per-
formed roughly the same, but, curiously, super-
vised DL methods spanned the range of abilities
in this analysis; they ranged from identifying al-
most no disparity in population frequency (Seq-
UNet and MVP) to classic-like performance
(VESPA) tonearly perfect frequency classification
(MetaRNN). Note that while all methods were
better at differentiating common from ultra-rare
variants than from rare ones, MetaRNN was sig-
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Figure1.Evaluationof performance of variousmethodsondata sets. Performance is reported as theROCAUCfor
all data sets and methods used in this study. Higher ROC indicates better ability to differentiate (A) common
variants from all other population frequency variants, (B) conserved fromunconserved variants, (C) functionally
neutral variants in the ProteinMutantDatabase (PMD) fromvariants assigned an effect, (D) effect/no-effect deep
scanningmutagenesis (DMS) variants, and (E) pathogenic variants fromputatively benign baseline. Dashed lines
indicate the performance of an empirical random classifier.
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nificantlymore so, suggesting that thepathogenic-
ity signal that it learned is primarily frequency-
driven. Note that at our selected scoring threshold
mostmethods included themajorityof all variants
—common or not—indicating the rarity of vari-
ants with high effect (threshold line is higher than
the bulk of variant scores) (Fig. 2; Supplemental
Fig. S2).

We expected that unsupervised models,
trained on most available protein sequences,
would capture global sequence signals rather than
specific population frequencies. In fact, common
human variants may be expected to have some
level of evolutionary significance for phenotypi-
cally distinct human populations (Bromberg et
al. 2013; Mahlich et al. 2017) but are unlikely to
disturb the global protein language patterns. Fur-
thermore, while rare and ultra-rare variants carry
the bulk of evolutionarily deleterious variation,
these drastically damaging changes make up only
a small fraction of the massive total number of
rare variants. That is, we expected to see little dif-
ference between the scores of common and rare

variants. Indeed, for some models (e.g., protein-
BERT [Brandes et al. 2022] orUniRep [Alley et al.
2019]), scores were not a major indicator of vari-
ant frequency. For others, however (e.g., ESM1b
[Rives et al. 2021] and ProtTransT5 [Elnaggar
et al. 2022]), we observed that scores were as dif-
ferent across variant frequency classes as for some
classical methods (Fig. 1A). Note AlphaMissense
was trained using frequency labels; thus, its im-
proved performance in capturing frequency sig-
nals was expected if underwhelming.

Our findings thus indicate that, on average,
a given variant’s population frequency is only
moderately indicative of its predicted effect, as
captured by (most) methods regardless of pre-
dictor class.

VARIANT PREDICTIONS CORRELATE
ACROSSMANYMETHODS

In the presence of many methods for predicting
variant effect, it is natural for scientists to evalu-
ate individual variants using a number of tools to
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establish agreement. The above findings, howev-
er, confirm that many methods are nonorthog-
onal and will often produce similar results—re-
gardless of the actual effect that the variant may
have. Indeed, it is informative to evaluate the
performance of different methods on the set of
variants where their predictions disagree (Brom-
berg and Rost 2007). We thus asked what is the
relationship between method scores? (Fig. 3).

We observed that in binary variant assess-
ment at the established threshold (Fig. 3, red),
all methods, except MetaRNN, were in nearly
perfect agreement.We also found that conserva-

tion (phastCons) scores correlated with method
predictions, suggesting that conservation alone
may have been sufficiently informative of these
predictions.

The relationship between method scores,
however, was somewhat more informative (Fig.
3, blue). As expected from binary comparisons,
many predictor scores correlated to some extent,
UniRep and Seq-UNet being the exceptions.
However, conservationwasno longeraswell rep-
resentative of other methods. Therewas a signif-
icant level of correlation between most super-
vised methods, whether DL-based or not. ESM
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and ProtTrans scores were correlated among
themselves and also with supervised methods.
ProteinBert (Brandes et al. 2022), ProtBert
(Rao et al. 2019), and PLUS-RNN (Min et al.
2021) agreed in their predictions, but only some-
what correlated with other unsupervised meth-
ods, suggesting that these pLMs captured a
somewhat different signal.

Importantly, PLUS-RNN sequence repre-
sentations were contextualized in protein struc-
ture, as were Seq-UNet predictions, allowing
these methods to capture longer-range residue
contacts. We thus suggest that Seq-UNet,
PLUS-RNN and, by correlation, ProteinBert
and ProtBert, predictions may be orthogonal to
ESM and ProtTrans unsupervised DL methods.
That is, the agreement of these methods on var-
iant effect may be more informative than either
oneof themethodsalone.We furtherexplore this
notion with functionally annotated PMD vari-
ants below.

Conservation Is Orthogonal to Frequency
and Recognized by All Predictors

Many, if not most, of the classical variant effect
prediction methods heavily rely on the conser-
vation of variant position across protein homo-
logs. This is warranted as significantly delete-
rious substitutions could be expected to be
eliminated in evolution. In our work, this obser-
vation is also supported by the agreement be-
tween binary assessments of variants using
phastCons versus other methods (Fig. 3, red).
However, conservation scores alone are limited
in thepredictionofnuances of variant effect, as is
evident from lower corresponding score correla-
tions (Fig. 3, blue). There aremultiple reasons for
this observation. First, sufficiently descriptive es-
timates of per residue conservation are compli-
cated and often limited to large gene/protein
families (Triant and Pearson 2015; Malhis et al.
2019). Second, co-occurring mutations across
multiple positions may dampen or increase in-
dividual variant effects (Holcomb et al. 2021).
Finally, position conservation does not easily
translate into quantitative descriptions of the se-
verity of the effect (Miller et al. 2017). Here, the
nature of a particular variant substitution may

ameliorate the impact of affecting a conserved
position or worsen the impact of tweaking an
unconserved one. Thus, an aspartic to glutamic
acid substitution in a conserved negatively
charged site may be acceptable, while a serine
to tryptophan change in a variable but buried
position may be severely disruptive.

We used the population frequency variant set
to evaluate howwell variant effect predictors cap-
ture conservation. We labeled as “conserved” all
variantswithaphastConsscore≥0.5,and“uncon-
served”otherwise.We then askedwhether variant
conservation and population frequency were re-
lated terms. That is, we evaluated whether com-
mon variants are differently conserved than rare
ones. In a discretized comparison, common vari-
ants were indeed less conserved than rare and ul-
tra-rareones; that is, common,rare,ultra-rare, and
singleton phastCons score medians were = 0.43,
0.59, 0.73, 0.76, respectively (Fig. 2A). However,
there was no significant correlation between con-
servation scores and frequency of variants in the
population (Pearson correlation=−0.09, Spear-
man correlation=−0.12). These observations
suggest that the signal describing theconservation
of variant sites is orthogonal to that describing
variant frequency.

We further observed that most effect predic-
tion methods distinguished between variants in
differentially conserved positions (Fig. 1B).How-
ever, classicalmethodperformancegreatly varied,
highlighting the differential emphasis on conser-
vation (as reported bygenome-based alignments)
in evaluating variant effect—some surprisingly
low (SIFT) and some high (CADD). Supervised
DL methods also displayed significantly varied
performance. As expected, MetaRNN conserva-
tion prediction performance was drastically low-
er than for prediction of variant frequency (Fig.
1A,B),whileMVP’sperformance improved, likely
due to the latter’s reliance on conservation scores.

We then asked whether conservation can be
predicted by methods that do not use it in train-
ing. In earlier work, Marquet et al. (2022) and
Dunham et al. (2023) found this to be possible.
For our data, pLMs appeared to be as good at
differentiating variant conservation as they
were for variant frequency, but their perfor-
mance was not as good as that of some classical
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methods (Fig. 1B) that use conservation formak-
ing predictions. Notably, the supervised DL
VESPA method performed worse than its base-
line language model ProtTransT5, highlighting
the fact that recognizing variant effect is not
equivalent to recognizing conservation. Also
note that ProtTransT5 was significantly better
at this task than other pLMs, suggesting that
some language models may produce more bio-
logically interpretable embeddings than others.

If predictions of the methods in our study
could be considered equivalent to experimental,
in vitro or in vivo, analysis, these results would
indicate that conservation plays a significant, if
not all-encompassing, role in explaining variant
effect (i.e., it contributes 0.1–0.3 of overall ROC
AUC). However, given that method perfor-
mance in predicting true variant effect is limited
and exceedingly varied by the test/evaluation set
used to establish performance metrics, our re-
sults suggest that the value of conservation alone
is unlikely large, as confirmed by phastCons per-
formance on function-relevant and pathogenic
variants (Fig. 1C–E).That is, the signal of billions
of years of evolution has to be seen through the
prism ofmore information to be interpreted and
applied to effect prediction.

Functional Effect Is a Combination of Many
Factors Recognizable by Unsupervised
Methods

As expected from the previously described bias
in experimental studies, functionally significant
changes affect conserved sites somewhat more
frequently than unconserved ones (phastCons
performance; Fig. 1C,D). Thus, given their abil-
ity todifferentiate variants by conservation,most
methods could be expected to perform at least as
well or better in differentiating mutations of
functional effect from those of no effect. Note
that both effect and neutral (no-effect) variants
were found across the full range of conservation
scores, somewhat complicating the problem
(Supplemental Fig. S3).

Allmethodswere indeedsignificantlybetterat
identifying knockout (large effects) thanmild and
moderate effect variants (Fig. 2C; Supplemental
Fig. S3). Notably, unsupervised methods were as

good as earlier techniques in differentiating the
knockout/effect versusno-effect variants.Howev-
er, allmethod score distributionswere sufficiently
overlapping as to often “misidentify” experimen-
tally labeled neutral variants as having an effect
(Supplemental Fig. S3). Note that experimentally
establishing variants as neutral is a difficult task,
with literature reports often disproven in later
publications (Bromberg et al. 2013; Zeng and
Bromberg 2019).

We found that, at the binary effect threshold,
REVEL was excellent at labeling all effect/knock-
out variants (PMD set of human variants, F1
measure = 0.78;Table1). Similarbehaviorwasob-
served forMetaRNN (0.84). Note thatMetaRNN
was trained to predict pathogenic variants, this
result suggesting that only variants of high func-
tional effect indiseasegeneswouldbe identifiedas
impactful. Itshighrecall confirmsthatmanyof the
MetaRNN predicted pathogenic variants were
also of high functional effect. On the other hand,
VESPA (F1= 0.62) was trained using the PMD
data and hence could be expected to perform
well. However, our population-based threshold
has somewhat altered its performance in favor
of very high precision (90%), but lower recall
(47%) predictions. At the default threshold
(Supplemental Table S4), VESPA F1 was higher
(0.66),whileMetaRNNperformance lower (0.81);
for MVP, the difference between thresholds was
even greater (F1= 0.65 at our threshold, F1= 0.84
at default threshold; Table 1; Supplemental Table
S4). These differences highlight the issues of ap-
plying scoring thresholds tomethods without op-
timization for specific tasks.

This method performance may also seem
higher thanexpected in light of the small number
of no-effect variants in our data. In fact, allmeth-
ods mislabeled neutral variants to a certain ex-
tent (e.g., MetaRNN labeled 86% of all experi-
mental neutrals as having an effect). VESPA,
however, only tagged 16% of the neutral variants
incorrectly (Table 1). This mislabeling by all su-
pervisedmethods highlights the effect of the pre-
viously mentioned bias in selecting variants for
evaluation—variants in disease genes are more
likely to be experimentally evaluated andmay be
erroneously tagged as neutral on the basis of
nonexhaustive experimentation. We note that
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these could potentially be successfully recovered
as having an effect using computational analysis.

ESM and ProtTrans pLMs did as well as su-
pervised methods in differentiating distributions
of knockout/effect versus no-effect variants (Fig.
1C) and worse than supervised models at our
selected cutoff (Table 1). Nevertheless, Prot-
TransT5, the best performer of all unsupervised
models (F1 = 0.64; Table 1), mislabeled only 20%
of the neutrals—a performance on par with
best-supervised methods. We also note that at
the standard (nonfrequency-optimized thresh-
old; Supplemental Table S4), all ESM and Prot-
Trans models improved in performance as mea-
sured by the F1 measure (e.g., ProtTransT5
F1nonoptimized = 0.84, as the cost of drastically re-
duced precision [prec = 0.78 vs. = 0.88, respec-
tively]).

Given the bias in available experimental eval-
uation data toward variants of high effect, we fur-
ther evaluated predictions of variant annotations
extracted by DMS techniques. Specifically, we
considered annotations of two proteins (PTEN
and TPMT) (Notin et al. 2022; Supplemental
Material). For this set of variants, supervised DL
methods performed best (highest ROCAUC; Fig.
1D) across the scoring spectrum. Specifically, the
best performerswereVESPA (andVESPAl), both
pLM (ProtTransT5)-based models, closely fol-
lowed by AlphaMissense (Fig. 1D; Table 1), also
pLM-based. Their improved performance (over
unsupervisedmethods) suggests significant value
in fine-tuning.

Given the above results, we suggest that while
ESM and ProtTrans pLMs could possibly be used
in identifying variant effect, large-scale analysis of
variants benefits from more fine-tuned method
application. Nevertheless, pLMs use may be par-
ticularly meaningful for nonhuman variants,
where gene/protein large family alignments and
experimental annotations are not readily available.

Prediction Methods Capture Different
Signals

Given the results of our score correlation experi-
ments, we asked whether combining methods
may produce more precise classification of vari-
ants. We evaluated the precision of a jury-of-two

method on PMD knockout versus no-effect vari-
ants, by only considering an agreement between
the two methods as an effect prediction. In fact,
asking two methods to agree significantly im-
provedprecision, albeit at thecost of recall (Fig. 4).

We observed this behavior for almost all
combinations ofmethods.As expected,methods
that performedworse on theirown, gotmore of a
boost. phastCons, for example, greatly benefitted
from the addition of almost any other method’s
input—even without major cost to recall. Some
interesting combinations were present (e.g., RE-
VEL—an ensemble method including SIFT,
PolyPhen, and CADD scores, still benefitted
from the addition of either of these methods),
albeit at a significant >15% cost to recall.

We did not expect much improvement from
combining pLMswith correlated scores.Howev-
er, addingESM2(Linet al. 2023) toProtTransT5,
did result in an 8% gain in precision and a 12%
loss in recall. This observation suggests that
scores could be further fine-tuned to eke out
only the (few) high-reliability variants in each
set. Adding uncorrelated unsupervised model
scores (PLUS-RNN or ProteinBERT) was some-
what beneficial for ProtTransALBERT precision
(adding 13%), but less so for ProtTransT5 or
ESM2 precision (adding 8%–10%), while drasti-
cally reducing recall for all (by 38%–47%).

These results suggest that relying on the dif-
ferences in latent spaces described by individual
unsupervised models does not necessarily im-
prove variant effect capture. More analysis of
data set selection and parameter optimization
choices is necessary to define the unique charac-
teristics of pLMs that care about individual
“words” (residues) in protein “sentences” (se-
quences).

Unsupervised Methods Clearly Capture
Signals of Pathogenicity

Identifying variant pathogenicity has long been
the focusof humangenetics andamajordriverof
research initiatives. Currently, two major re-
sources provide information about designations
of variant pathogenicity—ClinVar and ClinGen
(Rehm et al. 2015). ClinVar focuses on variant
pathogenicity, as recommended by ACMG–
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Figure 4. Improved precision at cost of recall by method jury. Most predictors’ precision (red) benefits and recall
(blue) suffers from the addition of another method in identifying severe (knockout) variants.
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AMP (Richards et al. 2015) for variants inter-
preted for Mendelian conditions. ClinGen, on
the other hand, is primarily concerned with es-
tablishing gene-disease involvement. Variant
pathogenicity is then determined by evaluating
genetic variants using the ACMG–AMP guide-
lines and gene-specific criteria developed by
ClinGen expert panels. Note that in a sort of
circular logic, disease genes are often defined
on thebasis of thepathogenic variants they carry.

ForMendelian/monogenic disorders, the pro-
cess for establishing variant pathogenicity is a rel-
ativelywell-defined, if laborious, task. Forcomplex
disorders, clinical observations and the experi-
mental evidence of variant effect need to be over-
whelming. As such, at the time of writing of this
article (July 2023), 5312 variants in 2599 genes
have been curated by ClinGen (ClinGen Statistics
2023), ofwhich2546weredesignatedaspathogen-
ic or likely pathogenic. ClinVar, on theother hand,
has collected 15,410 variants labeled by curators
and nearly twomillion with some level of annota-
tion (ClinVarStatistics 2023).Note that evengiven
all precautions, a sufficient number of designated
pathogenic variants have been observed in seem-
ingly healthy individuals, suggesting the involve-
ment of supporting and/or alternative molecular
pathways (Shah et al. 2018). This biological incon-
gruence is arguablyevenmorepronounced in larg-
er, literature-curated repositories of pathogenicity
data (Cassa et al. 2013) (e.g.,HumanGenomeMu-
tation Database [HGMD] [Stenson et al. 2020]).
Nevertheless, in this work, we assumed that,
regardless of the possiblemislabeling of some var-
iants, the full collection of ACMG–AMP guide-
lines-verified pathogenic variants is greatly en-
riched in disease-causing mutations. Note that to
evaluate the methods’ performance on a set that
would not have likely overlapped with the meth-
ods’ training data, we limited the extraction of
pathogenic variants to those identified after 2022
(Supplemental Material).

Identifying putatively non-disease-causing
variants for comparison to pathogenic ones was
nearly impossible.Given theACNGrequirements
forclassifyingvariants as benign,wedonot expect
that these variants’ characteristics (e.g., high pop-
ulation frequency, experimentaldata showing lack
of functional effect, and nonsegregation with

known disease) could in any way significantly
overlap with those of the putatively pathogenic
variants. Moreover, accepting multiple lines of
computational evidence as a strong support for
the likely benign-ness of variants is logically cir-
cuitous—trainpredictors to recognizebenignvar-
iants and then label themas likelybenign.Thus, in
this work, we simply asked whether pathogenic
variants can be recognized by the existing meth-
ods as different from the rest of the variants ob-
served in the human population.

In our evaluation, methods differentiated
likely pathogenic versus baseline variants with
similar accuracy as pathogenic versus baseline
variants (Fig. 1E; Supplemental Fig. S4). It thus
stands to reason that curated likely pathogenic
variants are indeed pathogenic according to the
current criteria or that the predictor resolution is
insufficient to tell thedifferencebetween the two.
Thefirst inference ismore likely, given the inabil-
ity of the variant and protein characteristic-na-
ive, unsupervisedmethods to significantly better
label pathogenic variants than likely pathogenic
ones. This observation further suggests that the
current process of pathogenic variant accumula-
tion is either near perfect or heavily biased by the
used experimental and clinical techniques.

All classical methods, however designed, ex-
plicitly select features of variants and their host
protein sequences (e.g., conservation, structure,
solvent accessibility, etc.) to attempt capture of
variant effect. As the pathogenicity of a variant
generally translates into a large effect on protein
function, ifnotviceversa, these tools consistently
did better in our hands-on differentiating path-
ogenic variants fromputatively benign ones than
functionally impactful variants from neutral
ones (higher ROCAUC; Fig. 1C,E). Even simply
using conservation was somewhat more infor-
mative for the pathogenicity set of variants
than for the functional effect set. However, con-
servation alone was insufficient to precisely dif-
ferentiate pathogenic variants, suggesting that
they are not, contrary to expectations, confined
to the strongly conserved sites.

Of all supervised methods, MVP and Seq-
UNet were the worst performers for the patho-
genicity set, but even they attained an ROCAUC
=∼0.7 (Fig. 1E). Note that the contribution of
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variant rarity in defining pathogenicitywas illus-
trated by MetaRNN performance, that is, a
method that considers population frequency ex-
plicitly andwas thus able to differentiate baseline
(more frequent) variants from pathogenic ones
almost perfectly.

Of the unsupervised DL methods, ESM and
ProtTrans were able to differentiate clinically sig-
nificant variants from the general population bet-
ter than simply using conservation. Thesemodels
were also as good as or better than many of
the supervised methods. At our selected thresh-
olds, all ESM and ProtTrans models did well in
recognizing pathogenicity (F1≥ 0.72, Table 1),
and were better for this set than at predicting
functional effect. This observation once again re-
affirms that pathogenic variants are of high func-
tional effect and are almost never common.How-
ever, as neither of the unsupervised methods
captured variant population frequency well (Fig.
1A), therarityofpathogenicvariants isanunlikely
cause of thesemodels’pathogenicity classification
abilities.

Variant Effects Are Correlated but Not
Interchangeable for Effect Prediction

The ability of all methods in our study to dif-
ferentiate variant effect across effect types is
worth exploring further (Fig. 5; Supplemental
Fig. S5). For example, all methods note that
large-scale functional effect (purple lines) is al-
most as bad as pathogenicity (red lines). Further-
more, most methods frequently label variants
found in the population, regardless of their fre-
quency, as having no effect. In fact, variants that
are annotated as having no functional effect
(green line) are more frequently predicted to
have an effect by all methods than ultra-rare var-
iants (orange dashed line in Fig. 5; Supplemental
Fig. S5).

Our graphs also tell us that optimal threshold
selection, rarely considered by new methods in
the field, is a difficult to capture. However, estab-
lishing this threshold is a necessary exercise for
allowing the evaluation of individual variants.
That is, a higher ROC AUC of the method is
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meaningless to a scientist looking for an assess-
ment of the effect of their variant of interest.
Furthermore, comparisons of method perfor-
mance on different data sets and at differently
selected cutoffs are bound to bring different per-
formance results,making the selectionof thebest
variant effect predictor nearly impossible (Fig. 1;
Table 1; Supplemental Table S4).

Our results indicate that (some)unsupervised
methods capture more than variant population
frequency or variant site conservation. Instead,
they seem to reflect functionally relevant features
of variants, learning to extract information di-
rectly from the language of life. This ability allows
for their correct labeling of pathogenic variants as
well. Interpreting their assessments as binary clas-
sifications of a particular variant, however, re-
quires a much deeper understanding of what
makes an SNV unacceptable to the protein or or-
ganism it affects. It is also bound to broaden our
horizons, allowing for the evaluationof variants in
less well-annotated genes—a significant gain for
exploration of, for example, the bacterial world.

CONCLUDING REMARKS

Multiple methods have been developed for anno-
tation of the effect of missense variants. Appear-
ance of unsupervised models has produced yet
more of suchmethods. Our evaluation ofmethod
performance suggests that ESM and ProtTrans-
based methods are the best performers in this
space, exhibiting similar or better performance
than specifically trained tools. However, neither
of the existing supervised or unsupervised meth-
ods is able to evaluate all variant effect correctly.

To improveperformance, betterdefinitionsof
variant effect, as well as larger training sets for
model fine-tuning are still necessary. The future
“gold standard” predictor should indeed identify
variant effect precisely. However, we hope that
these models are also able to speed up discovery
by labeling impactful variants in less studied
spaces before experimental annotations catch up.
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