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Abstract. Unconditionally stable time stepping schemes are useful and often practically
necessary for advancing parabolic operators in multi-scale systems. However, serious accuracy
problems may emerge when taking time steps that far exceed the explicit stability limits. In our
previous work, we compared the accuracy and performance of advancing parabolic operators in
a thermodynamic MHD model using an implicit method and an explicit super time-stepping
(STS) method. We found that while the STS method outperformed the implicit one with overall
good results, it was not able to damp oscillatory behavior in the solution efficiently, hindering
its practical use. In this follow-up work, we evaluate an easy-to-implement method for selecting
a practical time step limit (PTL) for unconditionally stable schemes. This time step is used to
‘cycle’ the operator-split thermal conduction and viscosity parabolic operators. We test the new
time step with both an implicit and STS scheme for accuracy, performance, and scaling. We
find that, for our test cases here, the PTL dramatically improves the STS solution, matching or
improving the solution of the original implicit scheme, while retaining most of its performance
and scaling advantages. The PTL shows promise to allow more accurate use of unconditionally
stable schemes for parabolic operators and reliable use of STS methods.

1. Introduction

Thermodynamic magnetohydrodynamic (TMHD) models, like many other models of complex
physical systems, contain processes spanning widely varying time scales. This makes numerical
integration difficult, as the time steps required to describe the fastest processes can be quite
small. When using explicit time-stepping methods, the stability requirements for these fast
processes can further restrict the time steps (often a great deal), making the simulations
computationally intractable. To combat this problem, unconditionally stable time-stepping
algorithms can be used, effectively eliminating the numerical time step restrictions. However,
such methods are prone to miss-use, as integrating them with very large time steps can cause
fast processes of the system to not be captured, and/or introduce large errors to the system.

In our previous work ([1], referred henceforth as ‘Paper I’), we compared two popular
unconditionally stable time-stepping algorithms applied to the parabolic operators within the
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Magnetospheric Algorithm outside a Sphere (MAS) TMHD model, which is used to study
the solar corona and heliosphere (see references therein). These were the L-stable [2] implicit
Backward Euler (BE) method solved with a preconditioned conjugate gradient (PCG) solver,
and an explicit super time stepping (STS) scheme, specifically, the A-stable [2] second-order
Legendre Extended Stability Runge-Kutta method (RKL2) [3]. It was found that the RKL2
method computationally outperformed BE+PCG (especially in scalability across many CPUs),
but suffered from solution artifacts in some isolated regions of the model domain. These artifacts
appeared to be the result of using too large a time step combined with the poor high-mode
damping of the A-stable RKL2 method when applied to the artificial kinematic viscosity term
used to damp small spurious oscillations arising from other parts of the model.

This issue raised concerns about the robust use of STS methods in general, and in MAS, led
to limiting its production use to a small selection of run types. While the BE+PCG’s L-stable
properties made it more robust (avoiding the solution artifacts), we have observed cases where
it too can suffer from weak damping of oscillations when given too large of a time-step. One way
to mitigate this issue is to ‘cycle’ the parabolic operator, effectively reducing the time-step, and
allowing the high modes to damp through successive application of the operator. However, it is
difficult to know how many cycles are required a-priory [4], and overestimation can significantly
reduce the computational performance.

In this work, we follow-up Paper I by evaluating a novel, easy-to-implement method for
dynamically calculating a practical time step limit (PTL) for unconditionally stable time
stepping schemes applied to parabolic PDEs. The PTL is implemented in MAS, where we use
it to automatically set the minimum number of cycles needed for the operator-split parabolic
operators over one full MAS time step (set by the flow CFL condition). To improve performance,
the PTL is re-evaluated dynamically each cycle, reducing the total number of cycles needed over
the full time step. As in Paper I, we test the PTL using an implicit scheme and an STS scheme.
We use two real-world cases to compare solution quality, performance, and scaling.

The paper is organized as follows. In Sec. 2, we describe the parabolic operators in the
MAS model and present a brief derivation of the PTL. Then, in Sec.3, we describe the test
setup, including the unconditionally stable methods, the test cases, and the computational
environment. Solutions computed with and without using the PTL are evaluated in Sec. 4,
including performance and scaling results. We conclude with a discussion in Sec.5.

2. A practical time step limit for integrating parabolic operators

Often, parts of a physical model that have smaller time scales than others are operator-split,
such that each operator is integrated over the overall time step using the partial solution of the
operator before it. The order and time steps of the splitting can be done in several ways, each
with a cost of adding a splitting error to the system [5]. Each split operator is advanced over
the time step independently by integrating

∂ u

∂t
= F(u), (1)

where F(u) ≡ F(x,u, ...) is the currently split operator.
The MAS model1 described in Paper I (see references within) uses an overall time step set

by a flow CFL condition, and operator splits several terms that would require very small time
steps. These include the parabolic operators of artificial kinematic viscosity and Spitzer thermal
conduction [6] given by

Fvisc(v) =
1

Ä
∇·(¿(x) Ä∇v) , and Ftc(T ) =

(µ − 1)mp

2 k Ä
∇·

(

fc(r) fm(T0)»0 T
5/2
0 b̂b̂ · ∇T

)

, (2)

1 See predsci.com/mas for additional details and references
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where v, T , and Ä are the plasma flow velocity, temperature, and density respectively, ¿(x) is

the coefficient of viscosity, b̂ = |B|/B is the normalized direction of the magnetic field, µ = 5/3
is the adiabatic index, mp is the proton mass, k is Boltzman’s constant, »0 is the Spitzer
coefficient for thermal conduction, fm(T ) is used to increase the parallel thermal conductivity
at low temperatures which, in conjunction with an inverse modification to radiative cooling,
broadens the transition region [7], fc(r) is a profile that limits the radial extent that collisional
thermal conduction is active, and T0 is the previous step’s temperature used to keep the operator
linear through lagged diffusivity [8].

If the numerical stability time step limit of the operator-split parabolic term is smaller than
the overall step, it can be cycled at its stable limit (at extreme computational cost), or an
unconditionally stable scheme can be utilized. As described in Sec. 1, the latter can lead to
problems when the overall time step is very large compared to the explicit limit. In such cases,
the operator can be cycled (with many less cycles than an explicit scheme) to reduce solution
artifacts. However, the number of cycles is typically set by experimentation (see the discussion
in Ref. [4]) which can be time consuming to determine, and is therefore not practical for large
MHD models.

A novel method to compute a practical time-step limit (PTL) for a parabolic operator is
introduced in Ref [9]. Given a parabolic equation of the form of Eq. 1, the goal is to maintain
the sign of the difference in adjacent cells when integrating from time tn to tn+1 = tn +∆t:

∆un+1

i⃗
∆un

i⃗
g 0, (3)

where i⃗ is the grid point in question and ∆u is the difference between the solution at i⃗ and
its cell neighbor. In general, this condition can be considered in all directions and dimensions.
For simplicity, we show one direction, where we define ∆un

i = un
i − un

i−1. Using the first-order

Taylor expansion of the solution un+1 in ∆t and dropping higher order terms, Eq. 3 becomes

(∆un
i )

2 +∆t∆un
i ∆Fn

i g 0,

where ∆Fn
i = Fi(u

n) − Fi−1(u
n). The only case where this condition is not unconditionally

satisfied is when ∆un
i ̸= 0, ∆Fn

i ̸= 0, and ∆un
i ∆Fn

i < 0, in which case

∆t f −
∆un

i

∆Fn
i

. (4)

The condition can be checked in all directions surrounding grid cell i⃗ that meet the criteria
over every grid cell, and the minimum time step calculated. However, Ref. [9] found (in their
cases) that the minimum ∆t always occurred at the location of the maximum absolute value of
the components of F (denoted as Fmax). This allowed them to avoid needing to compute the
conditions over the whole grid and sidestep numerical sensitivity issues near values very close
to zero. Here, we make the assumption that their result extends to our cases and only compute
the time step conditions at the grid location of Fmax, which we denote as k⃗. The PTL can then
be defined as

∆tPTL f min

[

−
un
k⃗
− un

k⃗+⃗i

F
k⃗
(un)− F

k⃗+⃗i
(un)

]

, (5)

where the minimum is taken for all i⃗ one cell away in the 6 orthogonal grid directions.
Once the PTL is found, the number of cycles to integrate the operator at the PTL over the

larger overall time-step can be set. However, since the operator is parabolic and smooths the
solution with each application, the PTL can be dynamically re-evaluated and applied after each
cycle. This can increase the PTL size after each step, leading to much fewer overall cycles,
increasing performance. A detailed formulation and analysis of the PTL is discussed in Ref [9].
Here, we test applying the PTL to a full production code (MAS) on real-world problems.
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3. Test setup

3.1. Unconditionally stable schemes

In Paper I, we described our implementation of the first-order accurate, L-stable BE+PCG
scheme, which has been successfully used in the MAS code for many years. The implementation
uses two choices of preconditioners (PC1 and PC2). PC1 (point-Jacobi) is inexpensive to
formulate and apply, but limited in its effectiveness to reduce solver iterations, while PC2 (non-
overlapping ILU0 factorization) is more expensive to formulate and apply, but also more effective
at reducing iterations. PC1 is easily vectorized, making it simple to implement efficiently on
vector-optimized hardware (e.g. GPUs), while the standard implementation of PC2 is not
vectorizable, requiring the use of alternative algorithms and libraries for use on GPUs [10, 11].
The current version of MAS only supports PC1 on GPUs, while PC2 is used when running on
CPUs (an important factor in comparing MAS’s CPU and GPU performance). The BE+PCG
has two important drawbacks - the requirement of global communications for the dot products
which hinders scaling, and the necessity of using a linear operator.

The other scheme described and tested in Paper I was the explicit second-order extended
stability Runge-Kutta Legendre super time stepping (RKL2) scheme [12, 3]. RKL2 is
easy to implement, second-order accurate, can handle a non-linear operator, has no global
synchronization points, and is vectorizable yielding efficient implementation on GPUs. However,
it is only A-stable and does not damp high modes well for large time steps.

The second-order Gegenbauer method (RKG2) recently introduced in Ref. [13] has similar
performance to the RKL2 scheme, but with a better damping amplification factor for high modes.
In Fig. 1, we show the estimated speedups of RKL2 and RKG2, and compare the amplification
factors of the BE, RKL2, and RKG2 with ³ = 3/2 (see Ref. [14]) schemes to the exact solution
of a simple 1D heat equation problem. We see that the RKG2 scheme’s amplification factor
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Figure 1: Left: Estimated speedup of the RKL2 and RKG2(3/2) schemes compared to explicit
Euler (approximating one Euler step to have the same computational cost as one STS iteration).
Middle: Amplification factors for the BE, RKL2, and RKG2 schemes when applied to a 1D
uniform grid heat equation discretized with a second-order central finite difference at a time-
step 500 times larger than the explicit Euler limit. Right: Same as middle, but on a log scale
to show the difference in the BE scheme’s damping rate compared to the exact solution.

is qualitatively similar to the RKL2, but saturates to a lower value and is less variable across
modes. The RKG2 is also shown to be similar in performance to RKL2. We note that even the
BE scheme’s damping of modes diverges from the exact solution greatly, but overall it is much
better than that of the STS schemes.

Since the inability to efficiently damp high modes is a key factor in the solution artifacts we
observe in Paper I, we choose to use RKG2 over RKL2 in this work. We also note that it is
critically important to ensure that the number of STS iterations of the RKG2 method be odd,
otherwise the amplification factor approaches one at the highest modes. Details of the RKG2
scheme implementation are shown in Appendix A.
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3.2. Test cases

To test the effects and performance of the PTL, we utilize two production MAS simulation
runs. The first test (Test 1) is a lower resolution version of a thermodynamic MHD relaxation
based on simulations used in Ref. [15]. This test has 3.4 million highly non-uniform grid points
and uses a constructed lower radial magnetic field boundary combining a global dipole with a
localized bi-pole representing an active region. The second test (Test 2) is a slightly modified
(small changes in the viscosity values) version of the thermodynamic MHD relaxation used in
Paper I with a size of 22.8 million grid points. This test uses real-world observed surface radial
magnetic fields for the lower boundary.

For comparing solutions with and without using the PTL, we run each test’s relaxation for a
total of 8 hours of simulated physical time. For performance and scaling results, we only use Test
2, where we start the simulation with the final output of an 8-hour relaxation, and continue the
run for another 6 simulated physical minutes. Since these performance runs are much shorter
simulations than those used in production, we subtract off the loading time of the relaxation
solution initial condition from the wall clock time.

3.3. Computational environment

Since Paper I, the MAS code has been updated to run on NVIDIA GPUs through the use of
OpenACC [16] and Fortran’s ‘do concurrent’ standard parallelism constructs [17]. We therefore
test the methods on both CPU and GPU systems. For the solution comparison run of Test 1,
we utilize an in-house workstation with an NVIDIA RTX 3090Ti GPU, while for Test 2 we use
32 nodes of the Expanse system at the San Diego Supercomputer Center (SDSC). For testing
the parallel scaling performance on CPUs, we use between one and 32 nodes of Expanse, while
on GPUs, we use between one and eight GPUs on a single node at the Delta system at the
National Center for Supercomputing Applications (NCSA). The details of the hardware and
software configurations used are shown in Appendix B.

We note that the MAS code is highly memory-bandwidth bound, making the maximum
memory bandwidth the best indication of expected relative performance between systems, given
the same algorithm. However, as discussed in Sec. 3.1, MAS uses a more effective preconditioner
when run on CPUs than on GPUs, making the relative performance between CPU and GPU a
practical time-to-solution comparison, and not an apples to apples hardware comparison.

4. Results

The key questions we want to address are:

(i) Can using the PTL with the RKG2 scheme obtain a solution similar (or better) to the
original BE+PCG scheme?

(ii) Does using the PTL with the BE+PCG scheme improve its solution?

(iii) How does the PTL affect performance for both BE+PCG and RKG2 schemes?

(iv) Does using the PTL allow RKG2 to be competitive with the original BE+PCG scheme in
both solution quality and performance?

4.1. Solution comparisons

To address the first two questions, we run the test cases with both BE+PCG and RKG2, each
with and without using the PTL and compare the solutions. Like in Paper I, the overall global
solution looks qualitatively the same using all methods (not shown here). Our focus here is on
the locations and quantities within the solutions that exhibit oscillatory behavior, such as the
zoomed views in Paper I’s Fig. 7. For Test 1, this issue can be seen in the ϕ-component of
the velocity field near the solar surface. A zoomed portion of the solution, along with 1D cuts
through the view are shown in Fig. 2.
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BE+PCG: Original RKG2: Original BE+PCG: PTL RKG2: PTL

Figure 2: Comparison run results for Test 1. A small section of the solution output of vϕ is
shown in the ¹ − ϕ plane (top) with the black line indicating the cut that is plotted in 1D
(bottom). The PTL is shown to improve the quality of the solution when using either RKG2
and BE+PCG. The scheme used for each result is shown at the bottom of each column, where
the text color corresponds to the performance result figures in the next section.

In this case, we notice that even the original BE+PCG scheme does not fully damp out
the run’s oscillations, implying that either the viscosity coefficient of the problem is not high
enough, or that the time step is so large, not even the BE+PCG scheme can apply the specified
viscosity correctly. The latter seems to be the case since the PTL run with BE+PCG eliminates
the oscillations, answering question (ii) in the affirmative.

For the RKG2 scheme, we see that the original implementation does a poor job applying
the viscosity to damp oscillations and/or is adding its own oscillations due to the large time
step (see Ref. [9]). In contrast, when using the PTL with RKG2, the oscillations have been
damped, and the resulting solution is qualitatively similar to the BE+PCG solution with PTL,
with only a small ‘notch’ near ¹ = 1.4 being a noticeable difference. The quality improvement
of the solution when using the PTL is also seen clearly in the 2D cut planes, where the PTL has
drastically cleaned up the original RKG2 solution. In this case, we have shown that the answer
to question (i) is ‘yes’, as the PTL RKG2 is not only ‘as good’ as the original BE+PCG, but,
in this case, is substantially better.

Moving to Test 2, in Fig. 3 we show zoomed-in portions of the ϕ-component of the current
density for each solution, along with 1D cuts through the view. We see similar results as in
Test 1. The original BE+PCG scheme does not have much oscillatory behavior in this case, but
when using the PTL, the solution changes and becomes much smoother overall. The original
RKG2 scheme once again suffers from oscillatory behavior, but is cleaned up substantially when
applying the PTL. In this case, the PTL RKG2 solution is even closer qualitatively to the PTL
BE+PCG than in Test 1.

We can therefore conclude (at least for these cases) that the answer to both questions (i) and
(ii) is ‘yes’, as the PTL improves the solution of both schemes, and allows the RKG2 scheme
to yield a very close solution to BE+PCG, with the PTL RKG2 solution being a significant
improvement over the original BR+PCG scheme. However, to know whether it is practical to
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BE+PCG: Original RKG2: Original BE+PCG: PTL RKG2: PTL

Figure 3: Comparison run results for Test 2. A small section of the solution output of jϕ is
shown in the r − ¹ plane (top) with the black line indicating the cut that is plotted in 1D
(bottom). The PTL is shown to improve the quality of the solution when using both RKG2 and
BE+PCG. Notation is the same as Figure 2.

use the PTL for either scheme, these solution results need to be viewed in conjunction with each
scheme’s computational performance.

4.2. Performance

We start by looking at the performance results for the solution comparison runs shown in the
previous section, which we show in Fig. 4. In both tests, we see that the original RKG2 scheme
is faster than the original BE+PCG scheme as expected. Using the PTL on BE+PCG makes
the code slower by up to a factor of two, with the slowdown for viscosity being a factor of around
four. While this method did improve the solution over the original scheme, the improvement
may not be worth the performance hit. Looking at the PTL RKG2 runs, we see that, while they
are slower than the original RKG2 runs, they are comparable to the run time of the original
BE+PCG scheme. Since the solution for the PTL RKG2 scheme is an improvement to the
original BE+PCG solution, and comparable to the PTL BE+PCG scheme’s solution, the small
increase in run time is acceptable, and makes the RKG2 competitive with the original BE+PCG
scheme, answering question (iv) in the affirmative for this case.

In Paper I, the performance advantages of the STS scheme over BE+PCG were even more
pronounced when looking at parallel scaling across multiple CPUs. Here, we test the scaling with
and without the PTL to see if the analysis above remains valid, and if the RKG2’s advantage
increases. The timing results for the two parabolic operators (thermal conduction and viscosity)
portion of the runs are shown in Fig. 5. On the CPUs, we see that the BE+PCG exhibits
expected scaling, and for the thermal conduction operator on large numbers of nodes, exhibits
‘super-scaling’. This super scaling is likely due to the very large size and speed of the EPYC
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Figure 5: Test 2 scaling results for the thermal conduction (left two plots) and viscosity (right
two plots) operators on CPUs (left) and GPUs (right).

CPU’s cache, such that the local portion of the grid (which decreases with increasing number
of CPU cores) is fitting into the fast cache. The RKG2 exhibits stronger super scaling for both
the thermal conduction and viscosity operators, and is overall faster than the BR+PCG. When
using the PTL, each method runs slower than their original implementations as expected, up
to a factor of four. However, while the RKG2 with PTL runs slower than the original non-PTL
BE+PCG method on small numbers of CPU nodes, when run on many CPU nodes, the super
scaling causes it to be faster. Therefore, we see that the PTL RKG2 scheme can outperform the
original BE+PCG scheme, while producing a better solution as shown in Sec. 4.1.

On the GPUs, all methods do not scale perfectly, likely caused by GPU-GPU communication
overheads and the problem size not being large enough to fully saturate the GPUs. In this case,
the RKG2 is always faster than the BE+PCG. This is expected since the GPU runs only use the
less effective PC1 preconditoner for BE+PCG. For thermal conduction, the PTL RKG2 method
outperforms the original BE+PCG method by a factor of 2, while for viscosity the two run times
are almost the same. Given the superior solution quality of the PTL RKG2 over the original
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BE+PCG method, these results strongly favor the use of PTL with RKG2 over BE+PCG.
In all the cases shown here, we see that using PTL with BE+PCG slows down the operator

considerably, by up to a factor of 4. Therefore, although the PTL with BE+PCG yields a better
solution than without PTL, the drop in performance may be unacceptable. This implies that
the PTL has made STS methods competitive with BE+PCG, answering question (iv) in the
affirmative.

The above analysis was for the two parabolic operators in isolation. However, since these
operators are only part of the overall run time (around 30%, see Paper I) of the MAS code, we
also look at the effects on the total wall clock time, which we show in Fig. 6. In the CPU case,
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Figure 6: Test 2 scaling results for total Wall clock time (with startup time removed) on CPUs
(left) and GPUs (right).

the overall code scales ideally, with a small amount of super-scaling when run on 32 CPU nodes.
Given the amount of super scaling shown in Fig. 5, this shows that different sections of the code
have varying levels of scaling efficiency.

We once again see that using the RKG2 scheme yields the best performance overall. The
RKG2 scheme with PTL is slower than the original BE+PCG scheme for small numbers of CPU
nodes, but has similar performance for more than 8 CPU nodes, and surpasses its performance
for 32 CPU nodes. Using PTL with BE+PCG is once again much slower. On GPUs, the RKG2
with PTL closely matches the performance of the original BE+PCG scheme on all numbers of
GPUs. Given the improvements of the solution using the PTL with RKG2 over the original
RKG2 and BE+PCG, the new scheme is overall advantageous, where the performance loss on
low numbers of CPU nodes is likely acceptable.

5. Discussion

In this paper, we have followed up our analysis in Paper I comparing unconditionally stable
explicit STS schemes to implicit schemes for parabolic operators in a thermodynamic MHD
model by applying an easy-to-use practical time step limit (PTL). This limit is designed to
ensure a consistent solution structure from one time step to the next and is implemented as
inner steps at a dynamically recalculated time step. Using the PTL was shown to improve the
solution for both the RKG2 STS scheme and for the implicit BE+PCG scheme. Using the PTL
reduces performance of the operators, in some cases by a large factor. However, it was found
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that the RKG2’s original performance and scaling advantage over the BE+PCG scheme allow it
to be competitive against the BE+PCG scheme even when using the PTL, all while exhibiting a
much better solution than the original RKG2. The results presented imply the following answers
to the questions in Sec. 4:

(i) Can using the PTL with the RKG2 scheme obtain a solution similar (or better) to the
original BE+PCG scheme?
Yes, as shown in Figs. 2 and 3.

(ii) Does using the PTL with the BE+PCG scheme improve its solution?
Yes, as shown in Figs. 2 and 3.

(iii) How does the PTL affect performance for both BE+PCG and RKG2 schemes?
In both cases, the performance decreases, however due to the original performance advantage

of the RKG2 scheme, the PTL applied to RKG2 exhibits similar or better performance than

the original BE+PCG.

(iv) Does using the PTL allow RKG2 to be competitive with the original BE+PCG scheme in
both solution quality and performance?
Yes, as shown in Figs. 2,3,4 and 6

We note that these answers are implied by the results obtained here, and are not guaranteed
to be true in all cases. We have tested the PTL in other models, such as our flux evolution
code HipFT2, and our magnetic map smoothing tool called Diffuse [18]. In both these models,
the PTL always avoided solution artifacts that were shown to occur when using very large time
steps, with very little decline in performance. Work is proceeding on the theoretical formulation
and analysis of the PTL, including careful testing, especially in nonlinear cases [9]. While the
performance when applied to real-world simulations will be model and scheme dependent, the
results shown here are encouraging that using the PTL can be used as a simple high performance
way to avoid unwanted behavior of parabolic operators when using large time steps. The PTL
also may be a great way to ensure proper behavior of STS methods, making them a more robust
and practical option for the integration of parabolic operators in multi physics models such as
thermodynamic MHD.

Appendix A.

The RKG2 scheme with α = 3/2 [13, 14] is given by

u0 = un

y0 = F (u0)
u1 = u0 + µ̃1∆t y0

do k = 2 : s
uk = µk uk−1 + νk uk−2

+(1− µk − νk)u0
+µ̃k ∆t F (uk−1) + γk ∆t y0

enddo

un+1 = us,

do k = 3 : s

bk =
4 (k − 1) (k + 4)

3 k (k + 1) (k + 2) (k + 3)

µk =

(

2 +
1

k

)

bk
bk−1

νk = −

(

1

k
+ 1

)

bk
bk−2

µ̃k = µk w

γk =

(

k (k + 1)

2
bk−1 − 1

)

µ̃k,

enddo

2 Soon to be released at https://www.github.com/predsci/hipft
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where un is the current solution, un+1 is the solution after integrating the full time step ∆t, F
is the parabolic operator, uk is the solution at STS iteration k, and

w =
6

(s+ 4) (s− 1)
, b0 = 1, b1 =

1

3
, b2 =

1

15
, µ1 = 1,

µ̃1 = w, µ2 =
1

2
, ν2 = −

1

10
, µ̃2 = µ2w, γ2 = 0.

The number of required iterations s is given by

s =

⌈

1

2

√

25 + 24
∆t

∆tEuler

−

3

2

⌉

,

where ∆tEuler is the explicit Euler stability time step. We note that it is critically important to
ensure that the number of iterations be odd (by adding an iteration if needed), otherwise the
amplification factor approaches one at the highest modes.

Appendix B.

The details of the hardware and software specifications used in this paper are shown in Table B1.

SDSCExpanse NCSADelta LocalGPU

CPUNode GPU(8x)Node Workstation

CPU (2x) AMD EPYC (2x) AMD EPYC Intel Core-i5
Rome 7742 Milan 7763 Raptor Lake 13600KF

GPU N/A (8x) NVIDIA A100-40GB-SXM4 NVIDIA RTX 3090 Ti
CPU Cores 128 128 14
DRAM 128GB 320GB (GPUs) 24GB (GPU)
Peak Memory
Bandwidth 410 GB/s 12,440 GB/s (GPUs) 1,008 GB/s (GPUs)
Max Flops 9 TFlops 78 TFlops (GPUs) 0.625 TFlops (GPUs)
Network HDR InfiniBand HPE SlingShot N/A
MPI Library OpenMPI 4.1.3 OpenMPI 3.1.5 OpenMPI 3.1.5
Compiler GCC 10.2.0 NV HPC SDK 23.5 NV HPC SDK 23.5
OS Rocky 8.7 Red Hat Enterprise 8.8 Mint 21.2

Table B1: System hardware and software configuration of SDSC Expanse, NCSA Delta, and
our local workstation used for the results shown in this paper.
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