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ABSTRACT

Protein language models based on the transformer architecture
are increasingly shown to learn rich representations from protein
sequences that improve performance on a variety of downstream
protein prediction tasks. These tasks encompass a wide range of
predictions, including prediction of secondary structure, subcellu-
lar localization, evolutionary relationships within protein families,
as well as superfamily and family membership. There is recent
evidence that such models also implicitly learn structural informa-
tion. In this paper we put this to the test on a hallmark problem
in computational biology, remote homology prediction. We em-
ploy a rigorous setting, where, by lowering sequence identity, we
clarify whether the problem of remote homology prediction has
been solved. Among various interesting findings, we report that
current state-of-the-art, large models are still underperforming in
the “twilight zone” of very low sequence identity.
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1 INTRODUCTION

An explosion in the number of known protein sequences is allow-
ing researchers to leverage the Transformer [29] architecture and
build Protein Language Models (PLMs) [4, 11, 13]. PLMs are highly
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appealing due to their ability to learn task-agnostic representations
of proteins. In particular, they provide an alternative framework to
link protein sequence to function without relying on sequence align-
ments and similarity. Sequence representations learned via PLMs
have been shown useful for various prediction tasks, including pre-
dicting secondary structure [11], subcellular localization [11, 26],
evolutionary relationships within protein families [14], and super-
family [15] and family [20] membership.

Observations from recent studies indicate that PLMs, though
trained exclusively on sequence data, learn structural information;
work in [24] suggests that sequence-only PLMs indeed learn struc-
tural aspects. Scaling up to 15 billion parameters in ESM-2 (and
training over 65 million unique sequences) yields representations
that, harnessed through an equivariant NN, additionally predict ter-
tiary structure (though not at AlphaFold2 accuracy) [17]. These re-
ports are not entirely surprising; PLMs capture the well-understood
selective pressures that have been exerted on protein sequences
throughout millennia of evolution. These pressures originate from
the functional requirements of proteins, which in-turn determine
their structure by affecting the evolution of their underlying se-
quences. This ability to encode structure is perhaps also a major
aspect of the utility of PLMs in downstream prediction tasks re-
lated to protein function, even if limited to superfamily prediction,
function co-localization, Gene Ontology categorization [16, 18] and
more.

We caution, however, that such performance, though seemingly
impressive, may be somewhat exaggerated for various reasons.
First, care has to be taken when constructing training datasets
to remove sequence redundancy as well as to avoid data leakage,
where proteins in the test data set may have high sequence identity
with proteins in the training dataset. Second, structure and function
are well preserved above 30% sequence identity [25]. Proteins with
similar structure and function are also present below this level of
identity but cannot be detected from sequence similarity alone [25].
It remains unclear how PLMs perform in this zone (which some
authors have taken to referring to as the “twilight zone” [25]).

One challenging, hallmark problem in computational molecular
biology, remote homolog detection, is a suitable stress test for how
much a PLM has learned from sequence information alone, and
whether indeed it can detect remote homologs in the twilight zone.
It is worth noting that (protein) remote homology detection refers to
the identification of proteins that are similar in structure but share
low sequence identity; this is a working definition. The term remote
homology was originally introduced to refer to proteins that share
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a superfamily! but not a family?. For the purpose of computational
studies, this working definition lends itself to a gradated problem,
where one lowers the sequence identity between proteins in the
“test” dataset with the query/target protein, and determines whether
proteins similar to the query can be detected. This is the setting
for this paper, and it is in this setting, over decreasing levels of
sequence identity, in which we evaluate pre-trained, transformer-
based PLMs (over exclusively protein sequences) of various sizes
for their ability to detect remote homologs.

Remote homology prediction is a particularly appropriate prob-
lem to determine whether a PLM pre-trained exclusively over pro-
tein sequences has also encoded/learned structure information. As
one lowers sequence identity, it becomes increasingly difficult to
identify homologous proteins based on sequence; remote homologs
are those that retain their function (and structure) similarity at
low levels of sequence identity. So, if a PLM allows identification
of homologs at very low levels of sequence identity, then it has
additionally encoded structure in its learned representations.

In this paper, we select powerful, representative, state-of-the-art
transformer-based PLMs (trained exclusively over protein sequence
data) and evaluate whether representations learned by them aid
in remote homology detection/prediction. We employ a rigorous
setting, where, by lowering sequence identity, we clarify whether
the problem of remote homology prediction has been "solved."
Indeed, in contrast to existing pre-prints and other reported findings
that enthusiastically declare the problem solved (see Section 2), we
show through a careful evaluation that these reports are highly
exaggerated. The problem, particularly as one reaches the truly
challenging setting of 30% or lower sequence identity, remains
challenging for all current, SOTA PLMs, including large ones such
as ESM2. This is one of the major findings of this paper.

An additional contribution of this paper is the presentation of
metrics to objectively determine whether the distance between
PLM-learned representations of proteins correlates with distance
between corresponding sequences. This becomes particularly im-
portant after removing from consideration easy, high-sequence
identity pairs. This analysis and others clarify and allow us to bet-
ter understand the success and failure cases of PLMs for remote
homology prediction. For instance, as we show here, we identify
which protein domains are most and least amenable to remote-
homology prediction based on PLM representation-similarity; we
provide several visualizations to aid our understanding of whether
useful structural information is easily-obtainable (or not) from PLM-
learned representations of proteins.

The rest of this paper is organized as follows. We first relate
some definitions, preliminaries, and necessary details about exist-
ing PLMs in Section 2. Section 3 relates our analysis setting, and
the metrics utilized. Section 4 reports our findings, and Section 5
concludes the paper.

1A protein superfamily is the largest grouping (clade) of proteins for which common
ancestry can be inferred.

2A protein family is a group of proteins with a common evolutionary origin, reflected
by their related functions and similarities in sequence or structure.
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2 RELATED WORK AND BACKGROUND

2.1 Protein Classification and Homology

Currently, the most commonly used definition of remote homology
in computational studies is based on the hierarchical classification
system for proteins provided in the SCOP2 [2, 3] and SCOPe [5, 12]
databases [6]. These databases divide protein sequences into “do-
mains” in levels of classes, folds, superfamilies, families, protein re-
gions, and protein types. Generally, the criteria for family member-
ship are related to sequence-level similarities; SCOP’s documenta-
tion indicates that all sequences sharing sequence identity above
30% are grouped in the same family.

However, this appears to be a simplification of the actual cri-
teria, as the analysis in [6] is based on similarity-based sequence
clustering rather than all-to-all alignment and comparison of all
protein sequence pairs in the database. Using this system, proteins
belonging to the same superfamily are referred to as superfamily-
level homologs [27]. Proteins in the same superfamily but in dif-
ferent families are considered remote homologs at the superfamily
level [6, 22, 27].

2.2 Protein Language Models

Several iterations of PLMs have been developed since the advent
of the transformer architecture. In particular, in this paper we em-
ploy three publicly available, pre-trained, SOTA PLMs to obtain
representations for our analysis:

(1) ESM-1 is the Evolutionary-Scale Modeling PLM [23]. ESM
has been trained on 250 million protein sequences (a total
of 86 billion amino acids) on masked-language-modelling
tasks. While there are several lighter-weight ESM-1 variants,
we utilize the ESM-1b variant with 33-layers and 650 M
parameters.

(2) ESM-2 is a more recent update to the ESM-1 architecture
and was trained with variations spanning from 8 M to 15 B
parameters [17]. For consistency, we used the 33-layers, 650
M parameter version.

(3) ProtTrans T5 [10] is another, more recent PLM with self-
supervised training, based on the original T5 model [21] for
natural language processing. Specifically, ProtTrans-T5 is a
3 B parameter encoder-decoder model, and it was trained on
a denoising task where 15% of the amino acids in the input
were randomly masked.

All three of these models employ masked-token prediction as their
training objective.

3 METHODS
3.1 Classic Definition: Remote Homology

In this study, we utilize the Structural Classification of Proteins
SCOP2 [2, 3] database (latest update: 29 June 2022), containing
5,936 families and 2, 816 superfamilies. SCOP2 defines family as a
group of closely related proteins with clear evidence for their evolu-
tionary origin and superfamily as a group that brings together more
distantly-related protein domains. The similarity among proteins in
a superfamily is frequently limited to common structural features
that, along with a conserved architecture of active or binding sites
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or similar modes of oligomerization, suggest a probable common
evolutionary ancestry.

Following the definition from [6, 22, 27], we first define that a
pair of proteins, p; and pj, are remote homologs if they belong to
the same superfamily but different families, as follows:

1, ifSF,-:SFjandFi#Fj )

areRemoteHomologs(pi, pj) = .
0, otherwise

where SF; and F; define the superfamily and family label anno-
tation of the i-th protein.

3.2 Hardened Definition: Remote Homology

We harden the above definition to accommodate the sequence iden-
tity threshold and focus on the truly hard cases; that is, no pair
of remote homologs will share sequence identity more than a pre-
defined threshold. This threshold will ensure that this pair falls
into the "twilight zone" [25] in terms of sequence identity. The
sequence identity is computed as a pairwise global alignment score.
The extended equation is as follows:

1, ifSF; = SF;j and F; # Fj
areRemoteHomologs(pi, pj, th) = and identity(p;, pj) < th

0, otherwise
@
We report experiments and results considering both of the above
equations which allows us to truly gauge the performance of various
PLMs as the problem becomes harder (lower sequence identity). We
observe in our study that there is a high number of sequence pairs
in different families with above 30% sequence identity than the
sequence pairs belonging to the same family domain in the SCOP2
database (Figures not shown). This reinforces our hypothesis that
extra filtering may be required if we want to identify the nontrivial
remote-homologs without high sequence-level similarity, to test
PLMs with. Fig. 1 shows the pairwise sequence identity distribution
in the SCOP2 [2, 3] database.

Frequency in SCOP

20 40 60 80
Pairwise Sequence Identity (%)

Figure 1: Histogram showing the sequence identity distribu-
tion of sequence pairs from the SCOP2 database.
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3.3 Learned Amino-acid Level and Protein-level
Representations

For a protein, 1 < i < N, in the SCOP2 database, each defined by
its sequence of [; amino acids, we obtain a corresponding represen-
tation s; € REXD from a PLM transformer; in this representation,
each amino acid of a protein is mapped into RP.

Given a learned s; € RUxD , we obtain protein-level representa-
tion p; € R1P by taking the average of the learned amino-acid-
level features over the sequence length as in:

L

pi= l Z Sij ®)

1 j=1

3.4 Comparing PLM-learned Representations of
Proteins

Following the methodology of Rives et al.[22], we adopt cosine
similarity between a pair of protein representations as our similar-
ity metric. Specifically, for each pair of sequences in SCOP2, we
compute the representation similarity as follows:
Pi Pj

Toell, T @

sim(pi, pj) =

3.5 Comparing Sequences of Proteins

To enable our analysis of the embedding representations of remote
homologs in PLMs, we compute pairwise sequence alignments
and identity scores for each of the 2 x () pairs of sequences in
the SCOP2 database. To compute these, we used Biopython’s[7]
pairwise alignment tool with default parameters.

3.6 From Representation Similarity to
Prediction of Remote Homology

We employ several metrics and forms of analysis to evaluate whether
structural commonalities between pairs of sequences are reflected
in their embeddings.

3.6.1 Query-based Analysis. Using each sequence’s PLM-learned
embedding as a query (g;), we exclude all other sequences from
the same family (F;) from the corpus of sequences (C) that will be
queried. In our case, C refers to the set of all N sequences in SCOP2.
We then exclude from C all sequences sharing a sequence identity
above a given threshold th with the query sequence. The remaining
query-sequence pairs are denoted as {(g;,s)|q; € C, s € C;}, where
Ci =C\ (F; U {s € C : identity(qj,s) > th}).

For evaluating the performance, we consider the ground truth
to be (i.e., the sequences are true homologs) if a sequence in the
test dataset is from the same superfamily as the query and false
otherwise, in accordance with Equation 2.

We then compare the pairwise embedding similarities and ground
truths across all queries to obtain the following metrics:

(1) Area Under Reciever Operating Characteristic Curve (AU-

ROC) [8]. We also report DeLong variances in the AUROC([9].
(2) Area Under Precision-Recall Curve (AUPRC) [8].
(3) Hit-10 [19] is the percentage of queries for which a true
homolog was in the top-10 sequences with the most similar
embeddings.
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3.6.2 Clustering Analysis. We perform k-means clustering on the
embeddings of sequences from the most-successfully-predicted and
least-successfully-predicted superfamilies from each PLM based
on the AUC (see above). We evaluate the quality of the resulting
clusters and their agreement with the ground truth (i.e., whether
sequences from the same superfamily are likely to be clustered
together).

4 RESULTS & ANALYSIS
4.1 Experimental Setup

Our experimental setup is designed with the goal of accessibility
and reproducibility.

4.1.1  Data Preprocessing. We opt to perform our analysis using all
sequences in SCOP2 with minimal preprocessing or filtering. One
exception to this is the removal of sequences where multiple spans
were indicated within the same sequence, due to the ambiguity
this creates when assessing the domains of the sequence and sub-
sequences. We remove 506 such sequences compared with the total
of 36,900 sequences provided in SCOP2 database. Consequently,
we have 2, 260, 440 remote-homolog pairs at the superfamily level.
Note that we analyze significantly more remote-homologs (24 times)
compared to Rives et. al [22] that reports performance on 92, 944
pairs of remote-homologs from SCOPe due to heavy filtration.

4.1.2  Sequence-ldentity Thresholding. We compute the performance
metrics using all protein sequences as individual queries. The thresh-
olds we choose vary from 10% to 100% sequence identity with 5%

increment. To compute AUROC, AUPRC, and HIT-10, we do not

perform any sub-sampling or averaging of the protein sequences

but instead choose to calculate all query-vs-ground-truth pairs and

compute the metrics once over all samples, for each value of the

sequence-identity threshold. This has the advantage of providing

robust and reliable metrics, but this strategy also weights our re-
sults in favor of the larger superfamilies when compared with the

strategy of sampling a single query from each superfamily. So, to

provide a more fine-grain analysis at the superfamily level, we also

report the same metrics for individual superfamilies from "hard"

and "soft" domains, that is, difficult-to-predict and easy-to-predict

superfamilies for each PLM.

4.2 Performance in the Twilight Zone

Figures 2, 3, and 4 show AUROC, AUPRC, and HIT-10 respectively
for all three PLMs at varying levels of the sequence identity thresh-
old. These metrics are also reported in numerical form in Tables 1,
2, and 3. For reference, “random” is added as a random baseline
model; in it, the distribution of ground-truths is unchanged, but
random numbers are used for embedding similarities. In Table 1
the DeLong variance is reported below the AUROC scores. These
results appear to confirm that PLMs still struggle to identify remote
homologs in the “twilight zone” [1, 25] from the sequence alone.
We observe AUROC dropping sharply when the sequence identity
threshold is lowered below 40%, indicating that above this threshold
the problem is much easier.

We also note much lower performance than Rives et. al [24] at
remote homology, even with no filtering (see “AUROC (Eq. 1)” in
Table 1, or th=100% in Figure 2 ). Because the dataset used in their
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study of remote-homology prediction is not publicly available, we
can only speculate as to the lower performance observed here. It is
possible that it is due to the differences in the filtration applied to the
dataset mentioned in Section 4.1.1, or differences in methodology
for computing embeddings or calculating metrics that go beyond
the details listed in their paper.
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Figure 2: AUROC and DeLong variance embedding simi-
larity as a predictor of homology for embeddings from all
three PLMs, as the filtering sequence identity threshold is
decreased from 100% to 10%. A threshold of 100% indicates no
filtering beyond removal of sequences in the same family as
the query, following Eq. 1. PLM embeddings of each sequence
from the sequences in SCOP2 are used as queries.

Table 1: AUROC Comparison. DeLong variances are shown
below the AUROC score.

PLMs AUROC AUROC (Eq. 2)

(Eq. 1)

th=40% th=30% th=20% th=10%

ESM1b | 0.721% 0.717% 0.667% 0.563% 0346+

4.31E-08 6.02E-08  2.86E-07 451E-06  4.15E-04
ESM2 0.663% 0.658+ 0.635% 0.584+ 0.430%

4.32E-08 6.04E-08 2.66E-07 4.16E-06 3.92E-04
ProtTrans] 0.836% 0.837% 0.785% 0.703% 0.564%
T5 2.21E-08 3.01E-08  1.73E-07  2.69E-06  4.66E-04

Because remote homolog pairs are exceedingly rare when com-
pared with the number of possible sequence pairs in SCOP2, this
created a significant class-imbalance in the ground truth, calculat-
ing the AUROC scores. Thus, DeLong variances are also provided
to give a measure of the reliability of the provided AUROC scores,
especially as the threshold is lowered and the number of positive-
ground-truth examples becomes even lower. In addition, we observe
the similar trend of decreasing performance in AUPRC scores, indi-
cating that these results are not simply an artifact of the worsening
class imbalance as the threshold is lowered. The random baselines
shown in Figures 2, 3, and 4 also confirm that the changing ground
truth distribution for different values of the threshold are not to
blame for the decrease in performance.
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Figure 3: AUPRC of embedding similarity as a predictor of
homology, as filtering threshold is decreased from 100% to
10%, from all three PLMs.

Table 2: AUPRC Comparison.

PLMs AUPRC AUPRC (Eq. 2)

(Eq- 1)
th=40%  th=30%  th=20%  th=10%
ESM1b | 1.003e-02 | 1.111e-02 2.563e-03 2370e-04 3.186e-05
ESM2 4.559e-03 5.111e-03  1.582e-03 2.067e-04 3.519e-05

Prottrans-| 2.411e-02
T5

2.692e-02  6.927e-03  9.341e-04 5.901e-05

The Hit-10 scores show a similar trend regarding model perfor-
mance in the “twilight zone”, but with the difference that ESM-1b
now outperforms ProtTransT5 and ESM-2 on this metric. Because
this metric is calculated at the query level and then averaged over
all queries, this may indicate that there are some classes of query
where ESM-1b can identify the remote homologs at least to some
degree, but the other two models completely fail to assign a high
“top-10” rank to the true homologs.

0.5
0.4
—— esmlb
% 0.3 1 esm?2
Lol — protTransT5
—— random
0.1
0.0
100 80 60 40 20

Threshold (%)
Figure 4: HIT-10 of embedding similarity as a predictor of
remote-homology, as filtering threshold is decreased from
100% to 10% for all three PLMs.

Table 3: HIT-10 comparison.

Methods | HIT-10 HIT-10 (Eq. 2)

(Eq. 1)
th=40% th=30% th=20% th=10%
ESM1b 1.003e-02 1.111e-02  2.563e-03 2.370e-04  3.186e-05
ESM2 4.559¢e-03 5.111e-03  1.582e-03  2.067e-04 3.519e-05

Prottrans-| 2.411e-02
T5

2.692e-02  6.927e-03  9.341e-04 5.901e-05
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4.3 Protein Domain Analysis for Remote
Homology Prediction

In addition to calculating AUROC across all queries in the SCOP2
database, we also calculate the same metrics separately for query
sequences coming from each superfamily in SCOP2. To identify
the “hard” and “soft” (i.e., difficult-to-predict and easy-to-predict)
superfamilies for each PLM, we start with the 150 superfamilies with
the highest number of remote homologs in SCOP2, and identify
the 10 superfamilies with the highest AUC and the 10 with the
lowest AUC when attempting to predict homologs based on PLM
embeddings, when using queries from that superfamily.

Notably, the better-performing superfamilies tended to have
fewer included sequences on average, indicating that these may
be the superfamilies with more refined and restrictive definitions
than the larger superfamilies shown in Table 4 and 5. Another
explanation is that the inflated AUROC scores may be caused by the
increased class imbalance for queries from the smaller superfamilies.
However, the PRC column indicates that generally the bottom-10
superfamilies tended to also have lower PRC. To a lesser degree,
this also holds for the Hit-10 scores, despite the fact that even many
the top-10 superfamilies had a hit-10 score of zero.

Table 4 shows the superfamilies with the highest AUROC when
using embeddings from the ProtTransT5 model (the best-performing
PLM, judging by its AUROC in Table 1) to predict remote homologs,
and Table 5 shows the superfamilies where the AUC was lowest.
Similar tables, giving the hard and soft domains for the other two
PLMs, are provided in the supplement. Note that the AUC scores
used here are using the sequence-identity filtering threshold of 30%.

4.4 Visual Analysis of Hard and Soft sets

To visualize how well the “hard” and “soft” domains are separated
in the representational space of the PLMs, we perform a T-SNE [28]
dimensionality reduction to view the embeddings from these super-
families in a two dimensional plot. The T-SNE transformation is fit
using all sequences in the SCOP2 database. Note that superfamily-
based filtering is only applied later, when producing the visualiza-
tions. In Figure 5, 6 and 7, we report the top-5 “soft” domains in
the top panel and the bottom-5 “hard” domains in the bottom panel
for ESM1b, ESM2 and ProtTransT5, respectively. Subjectively, in all
cases this appears to show cleaner and more defined clusters when
considering the “soft” domains, relative to the “hard”. This indicates
some level of agreement between the distances between sequences
in our T-SNE projection, and the cosine similarity between pairs
of sequences that we used to define remote homologs in the high
dimensional protein embedding space.

4.5 Distribution of Pairwise Embedding
Similarity

To better understand the significance of a given similarity level
between two sequences in the representational space of the PLMS,
we visualize the distribution of embedding similarities across all se-
quence pairs in SCOP2 in all three PLMs in Figure 8. All three PLMs
show unimodal distributions of embedding similarities. However,
the distributions for both ESM models is skewed heavily toward
higher similarities between embeddings. Interestingly, the distribu-
tion for ProtTransT5 embedding similarities is almost identical to
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Table 4: Superfamilies with highest AUROC(@th=0.3) in Prot-
TransTS5, selected from a list of 150 superfamilies with the
most remote homologs in the SCOP database. Note that the
maximum possible number of sequence pairs that can be
remote homlogs is actually higher than the number of se-
quences in the superfamily. This is because the number of
pairs is 2 X (‘SZF l). Also note that the sequence counts reported
in the “Num Seqs” and “Num RHs” columns are prior to ap-
plying the threshold.

Super Description ROC PRC HIT-10 Num Num
family Seqs  RHs
3000845  Furanosidase- 1.00 0.01 0.00 51 1870
like
3000255 omega toxin-like 1.00 0.58 0.22 67 1980
3002200 NADH-quinone 1.00  0.59 0.00 44 1322
oxidoreductase
subunit 11-like
3000050 Thioredoxin 1.00 0.33 0.02 44 1236
reductase-like
3001604  beta-lactamase/ 1.00  0.29 0.02 211 4070
transpeptidase-
like
3000069 DEATH domain 1.00 0.53 0.13 61 2580
3000309 Scorpion toxin-  0.99  0.77 038 129 11884
like
3000224 Porins 0.99 0.44 0.29 52 1916
3001790 Thiamin 0.99 0.17 0.19 59 2920
diphosphate-
binding fold
(THDP-binding)
3000884 Ribosomal pro- 0.98 0.02 0.00 54 1450
tein L16p/L10e

Table 5: Superfamilies with lowest AUROC(@th=0.3) in Prot-

TransT5.

Super Description ROC PRC HIT-10 Num Num

family Seqs  RHs

3000110 RNA-binding do-  0.47  0.00 0.03 236 11876
main RBD

3000570  UBC-like 0.52  0.00 0.04 85 1994

3001694  WD40 repeat-like  0.54  0.00 0.00 72 3204

3001397 SIS domain/ Ribo-  0.57  0.00 0.00 101 5824
somal protein S2-
like

3000053  S13-like H2TH  0.59  0.00 0.01 84 3098
domain

3000098 Nudix 0.60  0.00 0.09 66 1916

3001284 S15/NS1 RNA- 0.61  0.00 0.00 55 1152
binding domain

3000066 Protein kinase- 0.64  0.00 0.00 413 21446
like (PK-like)

3001808  Cysteine pro- 0.65 0.01 0.23 166 22180
teinases

3001593  Adenine nu- 0.66 0.00 0.00 57 2314
cleotide  alpha
hydrolases-like
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Figure 5: T-SNE plot of ESM-1b embeddings for sequences
from superfamilies that had the (top panel) top-5 AUROC
and (bottom panel) bottom-5 AUROC shown in Tables 7 and
8.

the distribution of pairwise sequence identities in SCOP2 shown
in Figure 1. However, while this may seem to indicate that the
sequence information is retained by the model, it may actually
be a coincidence: Figure 9 shows little correlation between pair-
wise sequence identity and pairwise embedding similarity in the
ProtTransT5 model.

4.6 Clustering Analysis

To better quantify how well-defined and separated the superfamilies
from the “hard” and “soft” domains are in the representational
space of PLMs, we provide a clustering analysis. Table 6 shows the
performance of k-means clustering on the “hard” and “soft” domains
using embeddings from each of the PLMs. Note that for each PLM,
we use its own “hard” and “soft” domains based on the AUROC
of that PLM’s embeddings at predicting the remote homologs in
those domains. Predictably, this unsupervised clustering is more
successful at differentiating the “soft” superfamilies from each other
than it is at differentiating the “hard” superfamilies. These results
serve to bolster the results achieved using pairwise cosine similarity,
indicating that this distinction between “hard” and “soft” domains
holds, even at the cluster (rather than just sequence-pair) level.
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Figure 6: T-SNE plot of ESM-2 embeddings for sequences
from superfamilies that had the (top panel) top-5 AUROC
and (bottom panel) bottom-5 AUROC shown in Tables 9 and
10.

Table 6: Cluster separability and accuracy metrics for K-
means applied to embeddings for all sequences coming from
the top-10 “hard” and “soft” domains (i.e., superfamilies)
for each model, where the superfamily label is taken as the
ground truth.

esmlb esm2 protTransT5
Top 10 AUC (“Soft” Domains)
Silhouette 0.210186  0.210186 0.210186
ARI 0.716840  0.716840 0.716840
NMI 0.868765  0.868765 0.868765
Bottom 10 AUC  (“Hard” Domains)
Silhouette 0.120892  0.120892 0.120892
ARI 0.479750  0.479750 0.479750
NMI 0.595362  0.595362 0.595362

5 CONCLUSION

Through our rigorous experiments where we carefully controlled
the difficulty of the setting for remote homology prediction, we
have gained valuable insights into the current state of PLMs in
identifying remote homology and capturing structural features of
protein sequences. Our main set of results largely conflicts with the
analogous analyses performed by other research groups investigat-
ing their own state-of-the-art PLMs. In summary, remote homology
prediction remains difficult for PLMs where it matters; that is, as
sequence identity gets lower.

BCB ’23, September 3-6, 2023, Houston, TX, USA

0125 °© 3000845 -~
« 3000255 ML,
0.100{ ¢ 3002200 . o o . .
« 3000050 R . L
0.075 3001608 ° ‘% L ;."l e
N o o?$ I". o .-.... .
0.050 LT ALY & N .
" b ™ 1T :'. e .
0.0254 % g L° ,["t‘:a? .,
e Se 0"'-;. % o o o
. . »? ® g *® o
0.000 . -,!_ r o
o W . ‘e,
—0.025 .« ve. .
L]
—0.050 R
~0.050 —0.025 0.000 0.025 0.050 0.075 0.100 0.125
0.20
e 3000110 ° .
0154 °© 3000570 .
« 3001694
0104 °© 3001397
: « 3000053
0.05 A ¢ e Qe
L]
i o & ° %
0.00 ee e
LN ] ()
.’ \':o
—0.05 1 ¢
-0.10
L] ° °
—0.050 —0.025 0.000 0.025 0.050 0.075 0.100 0.125
Figure 7: Top: T-SNE plot of ProtTransT5 embeddings for

sequences from superfamilies that had the (top panel) top-5
AUROC and (bottom) bottom-5 AUROC shown in Tables 4
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Figure 8: Histogram showing pairwise embedding similari-
ties (cosine) for each model, using all pairwise comparisons
between sequences from the SCOP2 database.

By conducting analyses in the challenging "twilight zone" and
excluding numerous trivial samples from the dataset used to eval-
uate remote homology prediction metrics, we have shed light on
the behavior of PLMs under difficult conditions. We have exam-
ined specific superfamilies where PLMs effectively capture remote
homologs as well as cases where they exhibit poor performance,



BCB ’23, September 3-6, 2023, Houston, TX, USA

& g =]

. .

5o F .
o.\’ ;

Pairwise Sequence Identity (%)
o
o
X
o
I. .
g
e
L)
- A

Pairwise Embedding Similarity (%)

Figure 9: Scatterplot of embedding similarity vs Sequence
identity for 1000 randomly-sampled pairs of sequences in the
SCOP2 database. Embeddings shown are from ProtTransTS5.

offering valuable insights for improving future PLMs and even fa-
cilitating the development of novel protein-modeling approaches
beyond the traditional PLM paradigm.

In addition, our thorough analysis includes visualizations of
various aspects of PLM representations that provide further un-
derstanding of their successes and failures. These visualizations
complement our main conclusion and offer useful insights into the
factors contributing to PLMs’ performance.

We also uncovered important details regarding the distribution
of protein domains and pairwise sequence identities in the SCOP
database that supplement their original documentation and provide
missing information regarding the presence of many sequences
officially categorized as being in different families, that in reality
share a high sequence identity.

In future work, we plan to leverage these findings to inform our
exploration of different training regimes and model architectures.
Rather than relying on sequence-level similarity, we aim to focus on
performance in the "twilight zone" using a new benchmark dataset.
Furthermore, we aspire to incorporate more biological knowledge
to explain the successes and failures of existing PLMs through
further analysis.

We believe that our work will be valuable to researchers dedi-
cated to advancing protein structure models. The datasets, code,
and analyses presented here are available at: github.com/amoldwin/
plm-remote-homolog-analysis.
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SUPPLEMENT Table 9: Superfamilies with highest AUC(@th=0.3) in ESM2.
This provides more analysis on “hard” and “soft” domains for ESM1b
d ESM2. Super Description PRC HIT-10 ROC Num Num
an .
family Seqs  RHs
) s . . _ . 3000255  omega toxin-like  0.97 0.15 0.07 67 1980
Table 7: Superfamilies with highest AUC(@th=0.3) in ESM1b. 3000309 Scorpion toxin- 0.9 060 037 10 1issd
like
Super Description ROC PRC HIT-10 Num Num 3000224  Porins 0.94 0.16 027 52 1916
family Seqs _ RHs 3001217  Flavoproteins 0.93 001 010 70 3992
3000884  Ribosomal pro- 1.00 0.70 033 54 1450 3001804  Trimeric LpxA- 0.93 0.05 042 45 1560
tein L16p/L10e like enzymes
3000255  omega toxin-like 0.99 0.34 0.22 67 1980 3001375  Isocitrate/ Iso- 0.91 0.00 0.00 74 2722
3000050  Thioredoxin 0.99  0.00 0.00 44 1236 propylmalate
reductase-like dehydrogenase-
3001604  beta-lactamase/ 0.99 0.27 0.02 211 4070 like
transpeptidase- 3000433  50S  Ribosomal  0.90 0.01 034 86 2346
like protein L14-like
3000309  Scorpion toxin-  0.99 0.70 0.43 129 11884 3001604  beta-lactamase/ 0.90 0.03 0.0z 211 4070
like transpeptidase-
3000020  4Fe-4S ferredox- 0.98  0.51 0.25 63 2856 like
ins 3002736 FimA/ Mfa2-like 0.89 0.00 0.07 42 1336
3000224 Porins 0.98 0.04 0.29 52 1916 3000091 GHKL (Gyrase 0.89 0.00 0.00 56 2196
3000113 2Fe-2S 0.98 0.01 0.14 49 1140 Hsp90 Histidine
ferredoxin- Kinase MutL)
like do...
3000845  Furanosidase- 0.98 0.03 0.04 51 1870
like Table 10: Superfamilies with lowest AUC(@th=0.3) in ESM2.
3000545 Snake toxin-like 0.98  0.42 0.11 66 1402
Super Description PRC HIT-10 ROC Num Num
Table 8: Superfamilies with lowest AUC(@th=0.3) in ESM1b. family Seqs  RHs
3001966  L28p-like 0.29 0.00 0.00 57 1620
Super Description ROC PRC HIT-10 Num Num 3000044  D-2-hydroxyacid  0.40 0.00 0.00 72 1626
family Seqs  RHs dehydrogenase-
3001375  Isocitrate/  Iso- 0.17  0.00 0.00 74 2722 like
propylmalate 3002200 NADH-quinone 0.41 0.00 0.07 44 1322
dehydrogenase- oxidoreductase
like subunit 11-like
3000053  S13-like H2TH  0.33  0.00 0.04 84 3098 3001733 YjgF-like 0.42 0.00 0.00 58 1530
domain 3000110  RNA-binding do- 0.44 0.00 0.02 236 11876
3001947  FMN-dependent 0.34  0.00 0.00 70 1162 main RBD
nitroreductase- 3000473 G protein-  0.45 0.00  0.00 130 9018
like coupled receptor-
3000110  RNA-binding do- 0.40  0.00 0.06 236 11876 like
main RBD 3000264  Calponin- 0.46 0.00 0.00 49 1664
3000570 UBC-like 0.40  0.00 0.09 85 1994 homology
3001059  Acid proteases 0.48  0.02 0.18 146 10592 domain CH-
3000143  Ribonuclease H- 0.48  0.00 0.03 145 17824 domain
like 3001261 C-type lectin-like  0.48 0.00 0.03 132 4820
3000738 Bet v1-like 0.51  0.00 0.10 78 4842 3000098 Nudix 0.49 0.00 0.03 66 1916
3000098  Nudix 0.52  0.00 0.03 66 1916 3001694  WD40 repeat-like  0.50 0.00 0.00 72 3204
3001261  C-type lectin-like ~ 0.54  0.00 0.38 132 4820
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