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a superfamily1 but not a family2. For the purpose of computational

studies, this working definition lends itself to a gradated problem,

where one lowers the sequence identity between proteins in the

łtestž dataset with the query/target protein, and determines whether

proteins similar to the query can be detected. This is the setting

for this paper, and it is in this setting, over decreasing levels of

sequence identity, in which we evaluate pre-trained, transformer-

based PLMs (over exclusively protein sequences) of various sizes

for their ability to detect remote homologs.

Remote homology prediction is a particularly appropriate prob-

lem to determine whether a PLM pre-trained exclusively over pro-

tein sequences has also encoded/learned structure information. As

one lowers sequence identity, it becomes increasingly difficult to

identify homologous proteins based on sequence; remote homologs

are those that retain their function (and structure) similarity at

low levels of sequence identity. So, if a PLM allows identification

of homologs at very low levels of sequence identity, then it has

additionally encoded structure in its learned representations.

In this paper, we select powerful, representative, state-of-the-art

transformer-based PLMs (trained exclusively over protein sequence

data) and evaluate whether representations learned by them aid

in remote homology detection/prediction. We employ a rigorous

setting, where, by lowering sequence identity, we clarify whether

the problem of remote homology prediction has been "solved."

Indeed, in contrast to existing pre-prints and other reported findings

that enthusiastically declare the problem solved (see Section 2), we

show through a careful evaluation that these reports are highly

exaggerated. The problem, particularly as one reaches the truly

challenging setting of 30% or lower sequence identity, remains

challenging for all current, SOTA PLMs, including large ones such

as ESM2. This is one of the major findings of this paper.

An additional contribution of this paper is the presentation of

metrics to objectively determine whether the distance between

PLM-learned representations of proteins correlates with distance

between corresponding sequences. This becomes particularly im-

portant after removing from consideration easy, high-sequence

identity pairs. This analysis and others clarify and allow us to bet-

ter understand the success and failure cases of PLMs for remote

homology prediction. For instance, as we show here, we identify

which protein domains are most and least amenable to remote-

homology prediction based on PLM representation-similarity; we

provide several visualizations to aid our understanding of whether

useful structural information is easily-obtainable (or not) from PLM-

learned representations of proteins.

The rest of this paper is organized as follows. We first relate

some definitions, preliminaries, and necessary details about exist-

ing PLMs in Section 2. Section 3 relates our analysis setting, and

the metrics utilized. Section 4 reports our findings, and Section 5

concludes the paper.

1A protein superfamily is the largest grouping (clade) of proteins for which common
ancestry can be inferred.
2A protein family is a group of proteins with a common evolutionary origin, reflected
by their related functions and similarities in sequence or structure.

2 RELATEDWORK AND BACKGROUND

2.1 Protein Classification and Homology

Currently, the most commonly used definition of remote homology

in computational studies is based on the hierarchical classification

system for proteins provided in the SCOP2 [2, 3] and SCOPe [5, 12]

databases [6]. These databases divide protein sequences into łdo-

mainsž in levels of classes, folds, superfamilies, families, protein re-

gions, and protein types. Generally, the criteria for family member-

ship are related to sequence-level similarities; SCOP’s documenta-

tion indicates that all sequences sharing sequence identity above

30% are grouped in the same family.

However, this appears to be a simplification of the actual cri-

teria, as the analysis in [6] is based on similarity-based sequence

clustering rather than all-to-all alignment and comparison of all

protein sequence pairs in the database. Using this system, proteins

belonging to the same superfamily are referred to as superfamily-

level homologs [27]. Proteins in the same superfamily but in dif-

ferent families are considered remote homologs at the superfamily

level [6, 22, 27].

2.2 Protein Language Models

Several iterations of PLMs have been developed since the advent

of the transformer architecture. In particular, in this paper we em-

ploy three publicly available, pre-trained, SOTA PLMs to obtain

representations for our analysis:

(1) ESM-1 is the Evolutionary-Scale Modeling PLM [23]. ESM

has been trained on 250 million protein sequences (a total

of 86 billion amino acids) on masked-language-modelling

tasks. While there are several lighter-weight ESM-1 variants,

we utilize the ESM-1b variant with 33-layers and 650 M

parameters.

(2) ESM-2 is a more recent update to the ESM-1 architecture

and was trained with variations spanning from 8 M to 15 B

parameters [17]. For consistency, we used the 33-layers, 650

M parameter version.

(3) ProtTrans T5 [10] is another, more recent PLM with self-

supervised training, based on the original T5 model [21] for

natural language processing. Specifically, ProtTrans-T5 is a

3 B parameter encoder-decoder model, and it was trained on

a denoising task where 15% of the amino acids in the input

were randomly masked.

All three of these models employ masked-token prediction as their

training objective.

3 METHODS

3.1 Classic Definition: Remote Homology

In this study, we utilize the Structural Classification of Proteins

SCOP2 [2, 3] database (latest update: 29 June 2022), containing

5, 936 families and 2, 816 superfamilies. SCOP2 defines family as a

group of closely related proteins with clear evidence for their evolu-

tionary origin and superfamily as a group that brings together more

distantly-related protein domains. The similarity among proteins in

a superfamily is frequently limited to common structural features

that, along with a conserved architecture of active or binding sites















Language Models for Remote Homology BCB ’23, September 3ś6, 2023, Houston, TX, USA

SUPPLEMENT

This providesmore analysis on łhardž and łsoftž domains for ESM1b

and ESM2.

Table 7: Superfamilies with highest AUC(@th=0.3) in ESM1b.

Super

family

Description ROC PRC HIT-10 Num

Seqs

Num

RHs

3000884 Ribosomal pro-

tein L16p/L10e

1.00 0.70 0.33 54 1450

3000255 omega toxin-like 0.99 0.34 0.22 67 1980

3000050 Thioredoxin

reductase-like

0.99 0.00 0.00 44 1236

3001604 beta-lactamase/

transpeptidase-

like

0.99 0.27 0.02 211 4070

3000309 Scorpion toxin-

like

0.99 0.70 0.43 129 11884

3000020 4Fe-4S ferredox-

ins

0.98 0.51 0.25 63 2856

3000224 Porins 0.98 0.04 0.29 52 1916

3000113 2Fe-2S

ferredoxin-

like

0.98 0.01 0.14 49 1140

3000845 Furanosidase-

like

0.98 0.03 0.04 51 1870

3000545 Snake toxin-like 0.98 0.42 0.11 66 1402

Table 8: Superfamilies with lowest AUC(@th=0.3) in ESM1b.

Super

family

Description ROC PRC HIT-10 Num

Seqs

Num

RHs

3001375 Isocitrate/ Iso-

propylmalate

dehydrogenase-

like

0.17 0.00 0.00 74 2722

3000053 S13-like H2TH

domain

0.33 0.00 0.04 84 3098

3001947 FMN-dependent

nitroreductase-

like

0.34 0.00 0.00 70 1162

3000110 RNA-binding do-

main RBD

0.40 0.00 0.06 236 11876

3000570 UBC-like 0.40 0.00 0.09 85 1994

3001059 Acid proteases 0.48 0.02 0.18 146 10592

3000143 Ribonuclease H-

like

0.48 0.00 0.03 145 17824

3000738 Bet v1-like 0.51 0.00 0.10 78 4842

3000098 Nudix 0.52 0.00 0.03 66 1916

3001261 C-type lectin-like 0.54 0.00 0.38 132 4820

Table 9: Superfamilies with highest AUC(@th=0.3) in ESM2.

Super

family

Description PRC HIT-10 ROC Num

Seqs

Num

RHs

3000255 omega toxin-like 0.97 0.15 0.07 67 1980

3000309 Scorpion toxin-

like

0.96 0.60 0.37 129 11884

3000224 Porins 0.94 0.16 0.27 52 1916

3001217 Flavoproteins 0.93 0.01 0.10 70 3992

3001804 Trimeric LpxA-

like enzymes

0.93 0.05 0.42 45 1560

3001375 Isocitrate/ Iso-

propylmalate

dehydrogenase-

like

0.91 0.00 0.00 74 2722

3000433 50S Ribosomal

protein L14-like

0.90 0.01 0.34 86 2346

3001604 beta-lactamase/

transpeptidase-

like

0.90 0.03 0.02 211 4070

3002736 FimA/ Mfa2-like 0.89 0.00 0.07 42 1336

3000091 GHKL (Gyrase

Hsp90 Histidine

Kinase MutL)

do...

0.89 0.00 0.00 56 2196

Table 10: Superfamilies with lowest AUC(@th=0.3) in ESM2.

Super

family

Description PRC HIT-10 ROC Num

Seqs

Num

RHs

3001966 L28p-like 0.29 0.00 0.00 57 1620

3000044 D-2-hydroxyacid

dehydrogenase-

like

0.40 0.00 0.00 72 1626

3002200 NADH-quinone

oxidoreductase

subunit 11-like

0.41 0.00 0.07 44 1322

3001733 YjgF-like 0.42 0.00 0.00 58 1530

3000110 RNA-binding do-

main RBD

0.44 0.00 0.02 236 11876

3000473 G protein-

coupled receptor-

like

0.45 0.00 0.00 130 9018

3000264 Calponin-

homology

domain CH-

domain

0.46 0.00 0.00 49 1664

3001261 C-type lectin-like 0.48 0.00 0.03 132 4820

3000098 Nudix 0.49 0.00 0.03 66 1916

3001694 WD40 repeat-like 0.50 0.00 0.00 72 3204
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