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Figure 1: Proposed pipeline for training a single controller capable of controlling multiple morphologies. Given an environment
and a task, Quality Diversity algorithms explore the domain and discover e�ective morphologies and their controllers. These
controllers are used as teacher controllers and their knowledge is distilled into a single controller. The distilled controller
successfully controls the morphologies of the teacher controllers. Moreover, the distilled controller generalizes well to unseen
morphologies in a zero-shot manner and provides a better prior for further specialization on unseen morphologies and tasks.

ABSTRACT
Finding controllers that perform well across multiple morphologies
is an important milestone for large-scale robotics, in line with recent
advances via foundation models in other areas of machine learning.
However, the challenges of learning a single controller to control
multiple morphologies make the ‘one robot one task’ paradigm
dominant in the �eld. To alleviate these challenges, we present a
pipeline that: (1) leverages Quality Diversity algorithms like MAP-
Elites to create a dataset of many single-task/single-morphology
teacher controllers, then (2) distills those diverse controllers into a
single multi-morphology controller that performs well across many
di�erent body plans by mimicking the sensory-action patterns of
the teacher controllers via supervised learning. The distilled con-
troller scales well with the number of teachers/morphologies and
shows emergent properties. It generalizes to unseen morpholo-
gies in a zero-shot manner, providing robustness to morphological
perturbations and instant damage recovery. Lastly, the distilled con-
troller is also independent of the teacher controllers – we can distill
the teacher’s knowledge into any controller model, making our
approach synergistic with architectural improvements and existing
training algorithms for teacher controllers.
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1 INTRODUCTION
Finding controllers that perform well across di�erent morpholo-
gies is an important milestone for large-scale robotics. Similar to
the ‘foundation models’ that enable progress in other areas of ma-
chine learning, such as computer vision or language processing, a
foundational multi-morphology controller can facilitate progress in
robotics by enabling �ne-tuning to downstream tasks with a smaller
amount of data (which is important because the best methods for
training control models such as evolutionary or reinforcement
learning algorithms are data-ine�cient). Moreover, models capable
of controlling a multitude of robots can enable better brain-body
co-optimization by being a good �tness estimator for unseen mor-
phologies [28], hence better specialization and performance can
be obtained for a given domain by exploiting multi-morphology
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controllers. However, obtaining such controllers, despite being of
great interest, remains an open problem. As identi�ed in [13], the
�eld is mostly stuck in the ‘one robot one task’ paradigm – training
a new robot and controller from scratch for each new task such as
locomotion, object manipulation, climbing, etc.

The challenges that drive the �eld into the ‘one robot one task’
paradigm are twofold. The �rst issue is the incompatible control –
the di�erences in action and observation spaces of di�erent robots
or tasks [20]. While it is straightforward to have ‘compatible’ con-
trollers through caching trick [16], having wide enough input (and
output) layers to accommodate the maximum possible number of
sensory inputs (and motor outputs), while simply ignoring unused
nodes for morphologies with a smaller number of inputs (outputs),
it turns out that such controllers are hard to train to control multiple
morphologies, whether reinforcement learning [16] or evolutionary
optimization [27] algorithms are used. This hardship of training
stems from the complexity of learning many tasks/morphologies.

These two challenges, incompatible control and hardship of train-
ing, are intertwined as the controller model one chooses to use as a
multi-morphology controller determines the loss landscape and in
return, a�ects its training dynamics. Previous work on obtaining
multi-morphology controllers mostly focuses on complexifying con-
troller models by enforcingmodularity (aiming for emergent higher-
scale control at the robot level [6, 16, 30, 33]) or by employing recent
developments in Graph Neural Networks and Transformers (uti-
lizing their ability to deal with arbitrary-sized inputs [13, 20, 47]).
These attempts not only solve the incompatibility problem but also,
presumably, shapes the loss landscape and o�er easier training.

In this work, however, we focus solely on the hardship of training
multi-morphology controllers, instead of addressing it indirectly
by architectural changes, which makes our approach synergistic
with existing work. Our proposed method stems from our search
for a ‘simple’ procedure for learning a multi-morphology controller.
Inspired by existing literature on knowledge distillation [3, 9, 14, 21,
25, 32, 39, 46] – learning to match input-output patterns of teacher
models via supervised learning, we investigate the use of response-
based, o�ine, multi-teacher policy distillation to learn a single
multi-morphology controller. We collect a dataset of (>1B4AE0C8>=,
02C8>=) pairs from teacher controllers optimized to control single
morphology and then employ supervised learning to train a single
controller on this collected dataset.

Indeed, we show that knowledge distillation results in controllers
that match the performance of teacher controllers on many di�er-
ent morphologies, without needing any complex architecture or
message-passing scheme – just a simple neural network with a
single hidden layer that is made compatible with the caching trick
can learn to control hundreds of robots for the locomotion task in
a matter of minutes on a consumer laptop. We also note that our
method is agnostic to the choice of the distilled controller. Once we
collect a dataset of (>1B4AE0C8>=,02C8>=) pairs, it can be used to train
any neural network, including the modular or graph-based models
developed to alleviate the challenges of incompatible control.

It might seem, however, that optimizingmany teacher controllers
that specialize in particular morphologies to be able to train a sin-
gle multi-morphology controller defeats the purpose. For this, we
would like to show two important points. First, the teacher con-
trollers are only used to collect (>1B4AE0C8>=,02C8>=) pairs and then

discarded. They can be as simple as possible for faster optimization
on a particular morphology. Moreover, one can use abundant pub-
licly available pre-trained controllers instead of training them from
scratch. More importantly, we show that the distilled controller
displays emergent properties. Our investigations show that the
distilled controller is robust to morphological perturbations and
generalizes to unseen morphologies in a zero-shot manner. More-
over, it can be used as a prior for further specialization on unseen
morphologies or tasks to speed up the adaptation process. These
properties justify the cost of training teacher controllers – we gain
more than the sum of teacher controllers by distilling them into
a single controller. Most of all, our proposed approach is orthog-
onal to the previous work developing complex architectures for
multi-morphology control – we could use such models to further
enhance the emergent properties of the distilled controllers.

It is not obvious, nonetheless, how to select teacher controllers’
morphologies. Indeed, the choice of morphologies to train the
multi-morphology controller is an important question that has
been ignored in the literature so far. Existing works either heuristi-
cally [6, 16, 20, 47] choose the morphologies to train with, or assume
that e�ective morphologies are known prior to the training [13].
Considering that, unlike most prior work, we need experiences
((>1B4AE0C8>=,02C8>=) pairs) of e�ective morphologies as well to
distill that knowledge into a single controller, we resort to Quality
Diversity (QD) algorithms [37, 38] for �nding e�ective morpholo-
gies with their optimized controllers, similar to [9, 21] where QD
is used to create a repertoire of behaviors for a single robot and
knowledge distillation is used to distill that knowledge into a single
controller. In our case, given that the feature descriptors are based
on morphological attributes, a QD algorithm is used to explore
the morphology space and optimize controllers for a variety of
high-performing morphologies with di�erent trade-o�s in their
morphological attributes for a given domain. We show that these
controllers can be used as teachers to distill into a single controller
that is capable of controlling a variety of distinct morphologies that
perform well for the given domain, and that generalizes well to
unseen morphologies in a zero-shot manner.

Overall, we present the two-stage pipeline illustrated in Fig. 1
that �rst explores a given domain with QD algorithms to �nd high-
performing morphologies and their respective controllers, and then
exploits this knowledge by distilling it into a single controller. The
main contributions of this work are to:

• demonstrate the e�ectiveness of knowledge distillation for
multi-morphology controller training – a simple procedure
that can train simple models to control multiple morpholo-
gies. (Sec. 3)

• propose the use of QD algorithms for the automated dis-
covery of e�ective morphologies with their optimized con-
trollers for the distillation process. (Sec. 4)

• investigate the capabilities of the distillation process and
distilled controllers (Sec. 5) and show that
– the distillation process is controller agnostic, making it
synergistic with existing work that develops complex con-
troller models. (Sec. 5.1)

– the distilled controllers scale well with the number of
teachers. (Sec. 5.2)
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– the distilled controllers generalize well to unseen mor-
phologies, justifying the cost of obtaining teacher con-
trollers. (Sec. 5.3)

– the distilled controllers provide a better prior for further
specialization, unlocking transfer learning opportunities
in the robotics �eld. (Sec. 5.4)

2 METHODS
Simulation. We use Evolution Gym version 1.0.0 (Evogym) [1] for
simulating 2D voxel-based soft bodied robots. The raw observations
that the simulation provides are processed to acquire voxel volume
(2 R), speed (2 R2), and material type (one-hot encoded vector E of
length 5). We also process the timesteps into a saw wave-shaped
time signal by applying mod 25 to it. While the simulation engine
is deterministic, we apply a small noise to the observations sampled
from N(0, 0.01) to model sensory noise.
Tasks and performance evaluation.We mainly experiment in
theWalker-v0 environment which consists of a �at surface of length
100 in voxels with a locomotion task where robots try to reach the
end of the surface. We also experiment with a similar locomotion
task that consists of a soft, dynamic surface called BridgeWalker-
v0. In both environments, we use the modi�ed reward function
from [27, 28] which encourages the robot to �nish the tasks as fast
as possible. Due to the stochasticity we injected into the system
in terms of observation and action noises, we repeat each �tness
evaluation multiple times and take the average. Unless otherwise
noted, each simulation is repeated 5 times.
Robot representation and control. Robots in Evogym consist of 4
types of materials. There are twomaterials under active control, one
that expands horizontally and one that expands vertically. There
are also two passive materials, rigid and elastic, that are under the
e�ects of forces created by active materials and dynamics of the
environment. Robots are directly represented as a matrix' 2 )�⇥,
where ) 2 {0,1,2,3,4} encodes the materials (or lack thereof), and
we use (� ,, ) = (5, 5), following the practice of limiting the robot
design space [4, 5, 7, 18, 22, 24, 27, 28, 45]. Robots are controlled
by specifying a scalar action (2 [0.6, 1.6]) that is used to determine
the target length by multiplying the action with the resting length.
Controllers are queried every 5th timestep and the last action is
repeated for the remaining timesteps to prevent high-frequency
dynamics. We apply a small noise to the actions sampled from
N(0, 0.01) to model actuator noise.
Controller models. Throughout the work, we experiment with 3
di�erent controllers – ‘Global FC’, ‘Global Tx’, and ‘Modular FC’,
modeled by di�erent neural network architectures – ‘FC’ stands
for fully connected and ‘Tx’ stands for transformer, and belonging
2 di�erent control paradigms – global indicates a centralized con-
troller where observations from all voxels are concatenated and
consumed at once by the controller to output actions for each voxel,
similar to the ones used in [10, 23, 26, 27, 43, 44], and modular
indicates a shared, decentralized controller that observes a local
neighborhood and output action for a single voxel, similar to the

(a) Biped (b) Worm (c) Triped (d) Block

Figure 2: Experimented morphologies to show the ef-
fectiveness of knowledge distillation for training multi-
morphology controller.

ones used in [16, 23, 24, 27, 28, 35]. All controllers are made com-
patible through the use of caching trick and are not conditioned on
the morphology explicitly.1
Optimization algorithms. To show the ine�ectiveness of joint
training on �xed morphologies, we use the reinforcement learning
algorithm Twin Delayed Deep Deterministic policy gradients algo-
rithm (TD3) [12] (starting from the clean implementation of [15])
and the evolutionary optimization algorithm Age-Fitness Pareto
Optimization (AFPO) [40] (with population size of 16). After demon-
strating the ine�ectiveness of both approaches, we introduce our
approach where we use the Map-Elites algorithm [29] as a Quality
Diversity algorithm to create an archive of diverse and e�ective
morphologies with their optimized controllers where the two fea-
ture descriptors are the number of existing voxels and the number
of active voxels. In each generation of the Map-Elites algorithm,
we create 16 new solutions from 16 randomly chosen solutions
from the map. The o�spring are created by mutation only. Fol-
lowing [1, 27, 28], robot representations are mutated by changing
the material of each voxel with a 10% probability and controllers
are mutated by adding a noise sampled from N(0, 0.1). The new
solutions are created by mutating either the morphology or the
controller, chosen with a 50% probability, as in [5, 27, 28].
Statistical testing To measure the statistical signi�cance for dis-
tilled controllers, we calculate the relative performance of the dis-
tilled controllers compared to teacher controllers and apply one-
sample t-test [41] with the null hypothesis of the population mean
of 1. Where we compare two samples, we use the Wilcoxon Rank
Sum test [48]. All comparisons are done with the ? = .05 threshold.

3 KNOWLEDGE DISTILLATION FOR
MULTI-MORPHOLOGY CONTROL

Optimizing controllers capable of controlling multiple di�erent
morphologies is a challenging problem [13, 16, 27]. Here, we pro-
vide a naive attempt (referred to as joint training) at learning a
controller (Global FC) for controlling the four predetermined and
�xed morphologies shown in Fig. 2, both with evolutionary opti-
mization (AFPO [40]) and reinforcement learning (TD3 [12]). Fol-
lowing [27, 36], we use the minimum performance among all mor-
phologies as the �tness for the evolutionary algorithm to help avoid
specialization to a subset of morphologies while ignoring others.

Fig. 3 demonstrates the joint training trajectories with both algo-
rithms, as well as isolated training for eachmorphology individually.
Both algorithms struggle to optimize a multi-morphology controller
during joint training. While the evolutionary algorithm converges
1Details of controller architectures can be found in our code repository: mertan-
a/towards-multi-morphology-controllers
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Figure 3: Training trajectories of isolated training on each
morphology individually (solid lines) vs. the performance of
each morphology during joint training on all (dashed lines).
Lines show the mean values and the shaded areas show the
standard errors, calculated over 3 repetitions. Reinforcement
Learning (left) can �nd solutions that work well for multiple
morphologies but ignore others. Evolutionary algorithms
(right) �nd solutions that perform similarly on all morpholo-
gies, but they exhibit sub-optimal performance.

to a sub-optimal but similar-performing solution for all morpholo-
gies, reinforcement learning �nds solutions that work better for
some morphologies, ignoring others. Yet both algorithms fail to
�nd controllers that match the performance of single-morphology
controllers each trained in isolation.

To overcome the challenging training of multi-morphology con-
trollers, here we propose the use of response-based, o�ine, multi-
teacher knowledge distillation [3, 14], also known as policy distilla-
tion in reinforcement learning [32, 39], for the training of a single
general controller capable of controlling multiple robots with di�er-
ent morphologies. We evolve single-morphology controllers for our
experimented morphologies in Fig. 2 and use their experiences to
create a dataset of (>1B4AE0C8>=,02C8>=) pairs. This dataset is then
used for supervised learning to train a single multi-morphology
controller to minimize the error in recreating the correct action
for a given observation regardless of which robot the action is
sampled from. Once we have the dataset, the training of the multi-
morphology controller can be done in an o�ine supervised fashion.
In our experiments, we model the controllers by neural networks
and use the gradient descent algorithm Adam [17] to train them.

To demonstrate the e�ectiveness of this approach, we replay
the best controllers found by the evolutionary algorithm during
isolated training of each morphology at each repetition, ⇠A

<,< 2
{⌫8?43,,>A<,)A8?43,⌫;>2:}, A 2 {1, 2, 3}, 100 times and collect
the (>1B4AE0C8>=,02C8>=) pairs into 81 (34, all possible combinations
of champions for each morphology) datasets ⇡8 , 8 2 [1..81]. Using
these datasets, we distill 81 multi-morphology controllers, all with
the same controller model as the teacher controllers – Global FC, by
training the controllers on the datasets for 100,000 steps with mini-
batches of size 128 and learning rate of 0.001, in a supervisedmanner
where the loss is the mean squared error between the estimated and
ground truth actions. All hyperparameters are chosen heuristically.

Figure 4: Performance of the multi-morphology controller
relative to teacher single-morphology controllers for each
experimented morphology (<40= ± (⇢). Here, and in all �g-
ures, the dotted line marks equal performance. Knowledge
distillation can successfully train a single controller to con-
trol multiple morphologies as well as controllers speci�cally
optimized for individual morphologies.

Fig. 4 shows the performance of the distilled multi-morphology
controllers relative to the corresponding single-morphology con-
trollers, averaging over 81 cases. Knowledge distillation from single-
morphology controllers results in multi-morphology controllers
that achieve near-perfect teacher-level performance. Moreover, we
see that in some cases the distilled multi-morphology controller
outperforms the teacher single-morphology controller, as indicated
by the error bars. These results demonstrate the e�ectiveness of
knowledge distillation for the training of compatible controllers,
without resorting to complex architectures or training schemes.

4 QUALITY DIVERSITY FOR DOMAIN
EXPLORATION

In the previous section, we experiment with heuristically chosen
�xed morphologies and show that knowledge distillation can be uti-
lized successfully to train a single controller capable of controlling
multiple robot morphologies, without the need for any specialized
architecture. Now the question is, how shouldwe choosewhichmor-
phologies to use for the training of the teacher single-morphology
controllers, given a domain – an environment and a task?

As opposed to using heuristically chosen morphologies [16, 20,
30], we propose to utilize the QD algorithms [37, 38] to evolve dis-
tinct high-performing solutions representing trade-o�s in a feature
space, exploring the solution space for a given domain. De�ning
the feature descriptors based on the morphology of the robot, we
can utilize QD algorithms to evolve di�erent robot-controller pairs
with varying morphologies, optimized for a particular environment
and task. We prefer the QD algorithm over alternatives, as it al-
lows �ner control over the diversity of morphologies by explicitly
describing feature descriptors and bins, and results in greater di-
versity [31]. Knowledge distillation can then be applied to create a
single controller capable of controlling a variety of di�erent robots,
exhibiting behavior optimized for the domain.
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Figure 5: An example map produced by the MAP-Elites algo-
rithm. Each cell corresponds to a robot-controller pair with
its �tness shown as the color of the cell. The X-axis di�erenti-
ates bins in the map by the number of total voxels present in
the robot, while the y-axis strati�es robots by their number
of active voxels. MAP-Elites successfully evolves a variety of
high-performing robots.

In particular, we experiment with the MAP-Elites algorithm [29],
similar to [31], where the feature descriptors for robots are the
number of existing voxels and the number of active voxels. Fig. 5
shows the map produced by the MAP-Elites algorithm after 20,000
generations of evolution. We see that the MAP-Elites algorithm
explores the morphology space for the given task and evolves a map
with 296 wide-ranging unique morphologies that can locomote as
e�ectively as the ones in similar works [27, 28].

Having produced this map for a given task or domain, we start ex-
perimentingwith knowledge distillation to create amulti-morphology
controller. We experiment with two heuristically chosen criteria
for the selection of teacher robots: �tness and morphology.

First, we experiment with selecting di�erent robots as teachers
based on their �tness values. We order the solutions by their �tness
values and distill a multi-morphology controller for the top 10%
of solutions, which are shown in Fig. 6 (left). The distilled multi-
morphology controller successfully controls 29 slightly di�erent
morphologies representing di�erent trade-o�s between the number
of voxels and the number of active voxels, and its performance is
statistically indistinguishable (at ? = 0.05-level) from the single-
morphology controllers as shown in Fig. 6 (right).

To test the whether distillation process can result in controllers
capable of controlling maximally di�erent morphologies, we choose
35 individuals from the map that are spread across the feature space,
as shown in Fig. 7 (left). The performance of the distilled controller
compared to teacher controllers on each experimented morphology
can be seen in Fig. 7 (right). While the controller is capable of
matching the performance of the teacher controllers in 28 out of 35
morphologies (? > .32), it performs worse than the teachers in 5
cases and exceeds the teacher performance in 2 cases. Surprisingly,
the cases where the distilled controller fails to achieve teacher-level
performance occur when the teachers’ performances are low (color
represents the �tness of the original controller).

2See the distilled controller in action.

Figure 6: (left) Top 10% of individuals (29 in total) used
as teachers for distilling a multi-morphology controller,
marked with an x. (right) Performance of the distilled multi-
morphology controller on each trained morphology com-
pared to their original teacher controllers across 10 runs
with noise. Each data point is plotted and its color repre-
sents the �tness of the original controller. The mean point
is labeled with an x. The distilled controller achieves almost
perfect performance, matching the performances of teacher
single-morphology controllers.

Figure 7: (left) 35 individuals maximally spread across the
feature space, marked with an x. (right) Performance of the
distilled multi-morphology controller on each trained mor-
phology compared to their original teacher controllers across
10 runs with noise. The distilled controller matches the per-
formance of teacher controllers in most cases. The cases
where there is a performance drop occur where the teacher
controller does not perform well on the morphology.2

Overall, our experimentation shows that QD algorithms can be
utilized to discover e�ective morphologies, as well as controllers
optimized to control them. Subsequently, the knowledge that resides
in the map can be distilled into a single controller, resulting in a
controller capable of controlling a diverse set of morphologies.

5 INVESTIGATING ABILITIES OF DISTILLED
CONTROLLERS

5.1 Model Independence
So far we have experimented with the same controller model for the
distilled controller as the teacher controller – Global FC. However,
once we collect the dataset of {>1B4AE0C8>=,02C8>=} pairs, we can
train any controller architecture to do the mapping. It allows us to
use deeper or more complex architectures only for the distillation
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(a) Global FC (b) Global Tx (c) Modular FC

Figure 8: The same dataset acquired from individuals that
are spread across the feature space distilled into three dif-
ferent controllers. (left) The same controller as the teacher
controller achieves the same level of performance as the
teachers for most of the cases. (middle) We distill into a more
capable transformer controller and show that it is capable of
achieving teacher-level performance in all cases, even sur-
passing teacher performance in one case. (right) We process
the dataset to change the global observations to local ob-
servations and distill a modular controller that achieves a
similar multi-morphology performance as the global con-
troller. Please note the varied y-axis scales across sub�gures.

part of the process where we use supervised learning while using
simpler architectures that can be e�ectively trained with evolution
during the QD process. Moreover, the distilled controller is not
limited to the same control paradigm as the teachers either. For in-
stance, the dataset can be pre-processed to turn global observations
into local observations to distill a shared decentralized/modular
controller (similar to the ones used in [16, 23, 24, 27, 28, 35]) while
the teachers are centralized/global controllers (similar to the ones
used in [10, 23, 26, 27, 43, 44]).

To display controller model independence, we use the 35 individ-
uals that are maximally spread to the feature space, shown in Fig. 7
(left), as teachers and distill a transformer-based global controller
("Global Tx") as well as a fully-connected neural network based
modular controller ("Modular FC). All controllers achieve near-
teacher-level performance on almost all morphologies, as shown
in Fig. 8. Moreover, their performances show variation, indicating
that the type of controller a�ects the distillation performance. This
creates an opportunity for incorporating existing work that designs
compatible multi-morphology architectures [6, 13, 16, 20, 47] into
our approach to improve multi-morphology performance further.

5.2 Scaling
To test how many di�erent teacher individuals can be distilled
into a single multi-morphology controller, we experiment with
using increasing numbers of individuals from the map as teachers.
Speci�cally, we experiment with using the top 10, 40, 75, 100% of
individuals in the order of their �tness as teachers, which results
in 29, 118, 222, and 296 teachers, respectively.

When we distill into all of the introduced multi-morphology
controllers (Global FC, Global Tx, Modular FC), we see that all of
the distilled controllers achieve performances closer to teachers, as

Figure 9: Performance of the distilled controllers with an
increasing number of teachers with di�erent morphologies.
While di�erent distilled controllers scale di�erently, they
all achieve similar performances compared to teachers.

shown in Fig. 9. As the number of teachers increases, the perfor-
mance for the distilled controllers tends to slightly decrease and the
error bars grow. However, we see that they show di�erent scaling
behaviors, demonstrating the possibility that a bigger or more com-
plex controller architecture can achieve better performance. While
we experiment with heuristically chosen architectures as a proof
of concept, one can treat the architecture as a hyperparameter and
optimize it for a particular domain.

5.3 Generalization to Unseen Morphologies
We have shown above that (1) we can evolve a diverse set of mor-
phologies with their respective controllers for the locomotion task
optimized for di�erent trade-o�s in the feature space, and (2) these
individuals can be used as teachers to distill into a single multi-
morphology controller. The distilled controller is capable of con-
trolling a diverse set of morphologies with near teacher-level per-
formance and scaling up to the full map that covers 296 distinct
morphologies. Here, we examine whether distilled controllers can
generalize to unseen morphologies.

To test the generalization of the distilled controller to unseen
morphologies, we choose two random individuals from the map,
shown in Fig. 10 (left), and create a list of morphologies that transi-
tion from the morphology of one individual to the other, by chang-
ing one voxel at a time. We discard any morphology if it is not con-
nected or if it exists in the map. This list of morphologies contains
a number of unseen morphologies between the chosen individuals.
We also note that this process can create unseen morphologies that
are missing a number of voxels from seen morphologies and can be
considered amputation scenarios. Therefore testing controllers on
these morphologies also provides a way for us to test the damage
recovery abilities of the controllers. As opposed to methods like
[2, 8, 19] where the system spends time to �gure out how to re-
cover from damage, we would be measuring instant (i.e. zero-shot)
damage recovery through the robustness of the controller.

To this end, we test distilled controllers (trained on the full map)
on this set, as well as the single controller from the map was trained
on the body plan closest to new morphologies. Fig. 10 (right) shows
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Figure 10: Using the pair of individuals marked on the map
(left), we create a list of unseen morphologies in between
the two morphologies of the selected individuals and mea-
sure the performance of the distilled controllers (right). As a
baseline, we also measure the performance of the controller
with the closest morphology from the map. Solid lines show
the mean values of 10 �tness evaluations and shady regions
show the standard errors. Distilled controllers generalize
well to unseen morphologies, never performing worse than
the closest controller from the map and outperforming them
in most cases (transition steps 1 to 10).

Figure 11: Performances of the distilled controllers plotted
against the baseline controllers on 357 unseen morphologies.
Each data point is plotted. The distilled controllers outper-
form the baseline in most cases (all ? < .001), showing the
emergent ability to instantly adapt to unseen morphologies.

a typical example of this process. While the performances of the
closest controllers from the map drop as the morphology changes,
distilled controllers perform better than the baseline. Moreover,
their performance di�ers based on the controller, demonstrating
the possibility that a specialized controller architecture or control
strategy can be even more e�ective in its generalization capabilities.

We repeat this process with 30 randomly chosen individual pairs
and report the performances of distilled and baseline controllers
on each unseen morphology (357 in total) in Fig. 11. Points above
the dotted line are the cases where the distilled controllers outper-
formed the controller of the most similar morphology from the map
(the number of such cases is 250 for the Global FC, 267 for Global Tx,
and 246 for Modular FC). Overall, the distilled controllers perform
approximately 1.5 times better than the closest controller on aver-
age, outperforming the baseline (all ? < .001 with the alternative
hypothesis that the sample distribution mean is greater than 1) and
showing ability to adapt to unseen morphologies instantly.

(a) Walker-v0 (b) BridgeWalker-v0

Figure 12: Number of generations to achieve 95% of the end
performance for the distilled controller and the baseline
controller, lower is better. The distilled controller converges
slightly faster compared to the baseline controllers. This
trend also held in the time to reach 90% or 99% of the end
performance (all ? < .01).

5.4 Rapid Finetuning
The above results show impressive instant generalization to new
morphologies interpolated within the map. But what about adapta-
tion to these morphologies via further controller optimization? We
are interested in testing how good of a prior the distilled controllers
are for further specialization on unseen morphologies or on di�er-
ent tasks. Ideally, we expect the distilled controller to perform better
as a starting point for further specialization, allowing us to have
foundational models that enable rapid adaptation to downstream
tasks, whether they are unseen morphologies or di�erent objectives
(akin to initializing an image classi�er with ResNets pre-trained
on ImageNet). This can help mitigate the cost of training for many
robotics applications and accelerate the development in the �eld.

To see how good of a prior the distilled controller is for further
specialization on unseen morphologies and tasks, we run 300 gener-
ations of AFPO [40] where all individuals in the starting population
are initialized with the Global FC multi-morphology controller
distilled from the full map. For each unseen morphology that we
sampled in the previous experiment (357 in total), we �x the mor-
phology and �netune the distilled controller on that morphology
performing the original Walker-v0 task. To assess wider generaliza-
tion, in a second condition, we also take that same morphology and
controller originally learned on the Walker-v0 task and �netune it
on the BridgeWalker-v0 environment (a slightly di�erent locomo-
tion task). As a baseline, for each unseen morphology, we �nd the
controller of the robot with the most similar morphology from the
map and initialize the evolutionary run with that controller instead
of the distilled controller. We note that both the distilled controller
and the baseline controllers have the same architecture.

While the performances of the run champions do not show any
statistically signi�cant di�erences between the baseline and the
distilled controller in both environments, we see that runs with
the distilled controller achieve 90%, 95%, and 99% of their respec-
tive �nal performances faster compared to runs with the baseline
controllers (Fig. 12). These results demonstrate that the distilled
controller provides a better starting point for further specialization,
enabling rapid �netuning to downstream tasks.
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6 DISCUSSION
The �rst part of our pipeline consists of QD algorithms for the
discovery of high-performing diverse morphologies and their con-
trollers. While this solves the issue of �nding good morphologies
to train a distilled model on, which has not been addressed in pre-
vious work, it also increases the computational cost of our pipeline
greatly, since we end up optimizing a controller for each morphol-
ogy in the map. While we believe our method has an advantage
in this regard since we can use simple controllers in the QD phase
and then distill their knowledge into any complex model, we leave
the comparison of our method to methods such as [13, 16, 30] in
terms of number of simulation steps for future work.

In our QD experiments, we observed that the number of migra-
tions (i.e. solutions that move from one cell of the MAP-Elites map
to another via a mutation to their morphology) is very limited. This
is in line with the existing literature in brain-body co-optimization
that demonstrates mutation to morphologies is often detrimental
to the performance and results in ine�ective search over the mor-
phology space [4, 5, 27, 28]. The inability of solutions to migrate
to new morphologies is concerning as goal-switching and creating
stepping stones are core principles that make QD algorithms, and
especially MAP-Elites, e�ective and important. We believe that
having a relatively high-resolution map was helpful in our case,
as it reduces the di�erence between morphologies in neighbor-
ing cells. However, we are doubtful how well QD algorithms will
scale to more complex morphology spaces where having a higher-
resolution map would be infeasible. In future work, we are going
to investigate this phenomenon and how QD algorithms behave on
the problem of brain-body co-optimization.

The second part of our pipeline is knowledge distillation as an
alternative for the training of multi-morphology controllers (given
that there exist teacher controllers). Our investigation shows that
knowledge distillation can train simple controllers for multiple
morphologies that would be untrainable from scratch without the
capacity of a much larger network. Crucially, the distilled con-
trollers show emergent properties. The most important of them is
the generalization to unseen morphologies in a zero-shot manner.
The generalization ability allows distilled controllers to be robust
to perturbations to the morphology of the robot. In this sense, we
consider our work as the successor of the "Resilient Machines" [2]
and "Robots that can adapt like animals" [8]. In the former, the
adaptation to morphological changes happens through continuous
self-modeling that happens in an evolutionary time scale, and in
the latter, the adaptation occurs in a faster time scale through intel-
ligent search over a behavior repertoire. In our case, the distilled
controller is already capable of controlling multiple morphologies
(including seen and unseen morphologies) and can adapt instantly.
In the case of a failure, one can work backward in the methods to
�nd or optimize a controller that can recover from the damage.

Moreover, we are interested in utilizing distilled controllers to
enhance the search over the morphology space. The literature on
brain-body co-optimization points out the ine�ective search over
the morphology space due to fragile co-adaptation of body and
brain as a major challenge for brain-body co-optimization [4, 28, 34].
Recently, the investigation of [28] indicates that not being able to
estimate the maximum performance of morphology without fully

optimizing a controller may be a critical part of what makes the
search ine�ective. The distilled multi-morphology controller that
generalizes to unseen morphologies can alleviate this issue and
enable a better search over the morphology space.

In a similar vein, being able to control a multitude of modular
morphologies unlocks a potential for adaptation and functionality
through morphological changes. A distilled general controller can
enable ideas such as damage recovery through shape-shifting, and
recon�guration to perform di�erent functions similar to the ones
in [19, 49, 50]. We would like to investigate the ways of exploiting
general controllers in these ways in future work.

In future work, we would like to examine the generalization
ability of the distilled controllers when we use more complex com-
patible controllers [13, 16, 20, 47]. Moreover, we used heuristically
chosen parameters for the distillation process where we trained
the distilled controller for a �xed number of steps. We would like
to investigate the use of a held-out validation set of morphologies
to maximize the generalization abilities via for early stopping or
meta-learning of controllers [11, 42]. We also experimented with
heuristically chosen ways of selecting teachers and assumed that a
multi-morphology controller distilled from the full map would be
the best for their emergent properties such as generalization. How-
ever, it is not clear how many teacher robots we need to e�ectively
train a distilled general controller, or which set of pre-trained robots
make the best teachers. Future work should investigate how the
selection of teachers a�ects the distilled controllers’ performance
and how they should be selected. Lastly, we used the Evogym sim-
ulator [1], which is a 2D voxel-based soft robot simulator. The
applicability of our method in di�erent types of robots/domains,
in 3D, and in real robot scenarios should be investigated in future
work to show the generality of our approach.

7 CONCLUSION
We present a pipeline for creating compatible controllers that can
control multiple morphologies. Given an environment and a task,
we explore with Quality Diversity algorithms [37, 38] to �nd mor-
phologies representing di�erent trade-o�s and individual controllers
optimized to control these morphologies. After the exploration
phase, we exploit these specialized single-morphology controllers
as teacher controllers and distill their behaviors into a single con-
troller that can control multiple morphologies via supervised knowl-
edge distillation. We �nd that distilled controllers generalize well to
unseen morphologies, and increase adaptation e�ciency as a prior
for further �netuning of the behavior. We hope that this approach
will contribute to future progress in multi-robot general controllers
and brain-body co-optimization.
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